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Abstract Božek (1980) has introduced a class of solvable Lie groups Gn with arbitrary
odd dimension to construct irreducible generalized symmetric Riemannian space such that
the identity component of its full isometry group is solvable. In this article, the authors
provide the set of all left-invariant minimal unit vector fields on the solvable Lie group Gn,
and give the relationships between the minimal unit vector fields and the geodesic vector
fields, the strongly normal unit vectors respectively.
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1 Introduction

Let (M, g) be a Riemannian manifold and (T1M, gs) be the unit tangent sphere bundle

equipped with the Sasaki metric. Every smooth unit vector field determines a mapping between

(M, g) and (T1M, gs), embedding M into its tangent unit sphere bundle T1M . Every smooth

unit vector field X on M can be viewed as a submanifold of T1M , then if the manifold M is

compact and orientable, we can define the volume of X as the volume of the immersion.

Gluck and Ziller firstly considered the problem of determining unit vector fields which have

minimal volume in [8]. They proved that the unit vector fields of minimum volume on the unit

sphere S3 are precisely the Hopf vector fields. However, this is no longer true for the higher

dimensional sphere S2n+1, n ≥ 2 (see [10–11, 13–14]). In [7], the authors proved that a unit

vector field V is a critical point of the volume functional restricted to the set of unit vector

fields X1(M) if and only if V : M → T1M is a minimal immersion. So such unit vector fields

are called minimal even though the manifold is not compact.

Some examples of Lie groups equipped with minimal unit vector fields are provided in [4, 7,

9, 15–18]. For three dimensional Lie groups, Tsukada and Vanhecke gave all the left invariant
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minimal unit vector fields in [16]. Yi in [18] obtained all the left-invariant minimal unit vector

fields on the semi-direct product Rn
⋊P R, where P is a nonsingular diagonal matrix. But for

most of examples of Lie groups, it is difficult to determine all the left invariant minimal unit

vector fields, there are just some special minimal unit vector fields.

Božek introduced a class of important solvable Lie groups Gn with arbitrary odd dimension

to construct irreducible generalized symmetric Riemannian space such that the identity compo-

nent of its full isometry group is solvable in [5]. In rencent years, a great deal of mathematical

effort has been devoted to the study of the solvable Lie group Gn. In [6], Calvaruso, Kowalski

and Marinosci studied homogeneous geodesic of solvable Lie groups Gn. Aghasi and Nasehi

in [3] generalized this study to the Randers setting of Douglas type, they proved that these

homogeneous Randers spaces are locally projectively flat Finsler spaces. In [1], the authors

studied some other geometrical properties on these spaces with dimension five, and extended

those geometrical properties for an arbitrary odd dimension in both Riemannian and Lorentzian

cases in [2].

Thus, it is an interesting question to determine the left invariant minimal unit vector fields

on Lie groups Gn. The study of this problem will deepen our understanding of this kind of Lie

groups undoubtedly. In this paper, the aim is to provide the set of all left invariant minimal

unit vector fields on these Lie groups Gn by Lagrange multiplier method. For an integer n ≥ 2,

a unimodular solvable Lie group Gn is defined as follows:

Gn =













eu0 0 · · · 0 x0

0 eu1 · · · 0 x1

· · · · · · · · · · · · · · ·
0 0 · · · eun xn

0 0 · · · 0 1













,

where (x0, x1, · · · , xn, u1, · · · , un) ∈ R
2n+1 and u0 = −

n
∑

i=1

ui. Considering the following left

invariant vector fields

Uα =
∂

∂uα

, α = 1, · · · , n

and

Xi = eui
∂

∂xi

, i = 0, 1, · · · , n.

By [2], we can equip Gn with a left invariant Riemannian metric as follow

g =

n
∑

i=0

e−2ui(dxi)
2 +

n
∑

α=1

(duα)
2.

The inner product which is induced by this metric shows that the set {X0, X1, · · · , Xn, U1, · · · ,
Un} is an orthonormal frame field for the Lie algebra gn of Gn.

The main result can be shown as follows.
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Theorem 1.1 For Lie group Gn, n ≥ 2, the set of left invariant minimal unit vector fields

is

{±X0}
n
⋃

i=1

{±Xi}
n
⋃

i=1

{±Ui}

n
⋃

l=2

{

l
∑

α=1

(kiαXiα + kn+iαUiα) | kn+iα
2 + kiα

2 =
1

l
,

n
∑

β=1

kn+β = 0
}

∪
{

n
∑

i=1

1√
n
Ui

}

∪
{

n
∑

i=1

− 1√
n
Ui

}

.

This paper is organized as follows. We recall some basic notions and facts about minimal

unit vector fields in Section 2. In Section 3, we give all left invariant minimal unit vector fields

on Gn, i.e., Theorem 1.1. Finally we devote Section 4 to discuss the relationships between the

minimal unit vector and the geodesic vector, the strongly normal vector in Theorems 4.1 and

4.2, respectively.

2 Preliminaries

Let (M, g) be a n-dimensional smooth Riemannian manifold and X(M) be the set of all

vector fields on M . Furthermore, ▽ denotes the Levi-Civita connection.

Assume that X1(M) is the non-empty set of unit vector fields. For V ∈ X1(M), we define

a positive definite symmetric tensor field LV by

LV = I + (▽V )∗▽V, (2.1)

where I, (▽V )∗ denote the identity map and the adjoint operator of (▽V ), respectively. And

let f(V ) = (detLV )
1

2 , then for a compact closed oriented manifold M , the volume functional

of vector fields Vol : X1(M) → R is given by

Vol(V ) =

∫

M

f(V )dv,

where dv is the volume form on (M, g).

Now we give a (1, 1)-tensor field KV and a 1-form ωV associated to V . They are defined as

KV = f(V )LV
−1(▽V )∗, ωV = C1

1 (▽KV ).

We can easily get

ωV (X) = tr(Z 7→ (▽ZKV )(X)).

Let HV denote the distribution consisting of the tangent vectors orthogonal to V . In [7] it

is proved that V is a critical point for the volume functional Vol on X1(M) if and only if ωV

vanishes on HV .



70 S. X. Zhang and J. Tan

For an orthonormal basis {E1, E2, · · · , En} of the tangent space, ωV (X) can be written as

ωV (X) =

n
∑

i=1

g((▽Ei
KV )(X), Ei).

Besides, it is shown that V is critical if and only if the submanifold of (T1M, gs) determined by

V is minimal (see [7]), where gs is the Sasaki metric.

Definition 2.1 (see [18]) A unit vector field V on a Riemannian manifold (M, g) is called

minimal if ωV (X) = 0 for all X ∈ HV .

Now we consider left invariant unit vector fields on Lie groups. Let G be a n-dimensional

connected Lie group equipped with a left invariant metric, and g be the Lie algebra of G. Then

the left invariant metric on G determines the inner product 〈·, ·〉 on g. Furthermore, let S be

the unit sphere of g. By the left invariance, the function f can be considered as a function on

S. The distribution HV is invariant with respect to the left translation and can be equal to

orthogonal complement V ⊥ of V in g. So V ⊥ is identified with the tangent space TV S of the

unit sphere S at V . Therefore we have the following lemma.

Lemma 2.1 (see [16]) A left invariant unit vector field V on a Lie group G is minimal if

and only if the linear map ωV on g vanishes on V ⊥ ∼= TV S.

Now we compute the differential df of the function f on S at V . And we have the following

proposition:

Proposition 2.1 (see [17]) For X ∈ TV S, we have

ωV (X) = −dfV (X)− tr adKV X

and V is minimal if and only if

dfV (X) = −tr adKV X

for all X ∈ TV S.

If the Lie group G is a unimodular Lie group, that is tr adX = 0 for all X ∈ g (see [12]), we

can easily get the following corollary.

Corollary 2.1 A left invariant unit vector field V on a unimodular Lie group G is minimal

if and only if V is a critical point of the function f on S.

3 Left-Invariant Minimal Unit Vector Fields on Gn

For any n ≥ 1, the unimodular solvable Lie group Gn is as follows:

Gn =













eu0 0 · · · 0 x0

0 eu1 · · · 0 x1

· · · · · · · · · · · · · · ·
0 0 · · · eun xn

0 0 · · · 0 1













,
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where (x0, x1, · · · , xn, u1, · · · , un) ∈ R
2n+1 and u0 = −

n
∑

i=1

ui. Considering the following left

invariant vector fields

Uα =
∂

∂uα

, α = 1, · · · , n

and

Xi = eui
∂

∂xi

, i = 0, 1, · · · , n.

By [2], we can equip Gn with a left invariant Riemannian metric as following

g =

n
∑

i=0

e−2ui(dxi)
2 +

n
∑

α=1

(duα)
2.

The inner product which is induced by this metric shows that the set {X0, X1, · · · , Xn, U1, · · · ,
Un} is an orthonormal frame field for the Lie algebra gn of Gn and the Lie bracket is introduced

as follows:

[X0, Uα] = X0, [Xα, Uβ] = −δαβXα, [Xi, Xj ] = [Uα, Uβ] = 0.

By Koszul’s formula in [12],

2g(▽eiej , ek) = g([ei, ej ], ek)− g([ej , ek], ei) + g([ek, ei], ej),

the non-vanishing Riemannian connection components are given by

▽X0
Uα = X0, ▽X0

X0 = −
n
∑

i=1

Ui,

▽Xi
Ui = −Xi, ▽Xi

Xi = Ui,

where i, j, α, β = 1, · · · , n.
For V =

n
∑

i=0

kiXi +
n
∑

i=1

kn+iUi, where
2n
∑

i=0

ki
2 = 1, we have

▽V =

























n
∑

i=1

kn+i 0 · · · 0 0 · · · 0

0 −kn+1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · −k2n 0 · · · 0

−k0 k1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
−k0 0 · · · kn 0 · · · 0

























,

and by (2.1), we can get

LV =

























1 +
(

n
∑

i=1

kn+i

)2
+ nk0

2 −k0k1 · · · −k0kn 0 · · · 0

−k0k1 1 + kn+1
2 + k1

2 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·

−k0kn 0 · · · 1 + k2n
2 + kn

2 0 · · · 0
0 0 · · · 0 1 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 · · · 1

























.
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So we can easily get

detLV =

n
∏

i=1

(1 + kn+i
2 + ki

2)
[

1 +
(

n
∑

i=1

kn+i

)2

+ nk0
2 −

n
∑

i=1

k0
2ki

2

1 + kn+i
2 + ki

2

]

. (3.1)

Proof of Theorem 1.1 By Corollary 2.1, for a unimodular Lie group G, a left invariant

unit vector field V is minimal if and only if V is a critical point of the function f on S.
Let H(k0, k1, · · · , k2n) , detLV , we will find the set of critical points of the function

H(k0, k1, · · · , k2n) with the constraint

g(k0, k1, · · · , k2n) =
2n
∑

i=0

ki
2 − 1 = 0. (3.2)

Using the Lagrange multiplier method, we need to solve the following system of equations:
{

▽H = λ▽g,

g = 0.

Let Ω =
n
∏

j 6=i,j=1

(1 + kn+j
2 + kj

2). From the first equation above, we have the following:

2k0

(

n−
n
∑

j=1

kj
2

1 + kn+j
2 + kj

2

)

Ω(1 + kn+i
2 + ki

2) = 2λk0, (3.3)

2kiΩ
(

1 +
(

n
∑

j=1

kn+j

)2

+ (n− 1)k0
2 −

n
∑

j 6=i,j=1

k0
2kj

2

1 + kn+j
2 + kj

2

)

= 2λki, (3.4)

2Ω
[(

n
∑

j=1

kn+j

)

(1 + kn+i
2 + ki

2) + kn+i

(

1 +
(

n
∑

j=1

kn+j

)2

+ nk0
2

−
n
∑

j 6=i,j=1

k0
2kj

2

1 + kn+j
2 + kj

2

)]

= 2λkn+i, (3.5)

where i = 1, 2, · · · , n.
For the case n = 1, the result is already known in [16] by Tsukada and Vanhecke. So we

will restrict ourselves to n ≥ 2. Firstly, we have the following assertion.

Claim 3.1 λ 6= 0.

Proof It is easy to find that

(

n−
n
∑

j=1

kj
2

1 + kn+j
2 + kj

2

)

n
∏

j=1

(1 + kn+j
2 + kj

2) > 0,

n
∏

j 6=i,j=1

(1 + kn+j
2 + kj

2)
(

1 +
(

n
∑

j=1

kn+j

)2

+ (n− 1)k0
2 −

n
∑

j 6=i,j=1

k0
2kj

2

1 + kn+j
2 + kj

2

)

> 0.

If λ = 0, by (3.3)–(3.4) we have

k0 = k1 = · · · = kn = 0.
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Then we can simplify (3.5) to

(

n
∑

j=1

kn+j

)

(1 + kn+i
2) + kn+i

[

1 +
(

n
∑

j=1

kn+j

)2]

= 0, (3.6)

if kn+i = 0, we obtain
n
∑

j=1

kn+j = 0, then we get kn+1 = · · · = k2n = 0. This contradicts to

(3.2).

So all kn+j (j = 1, · · · , n) are not equal to 0, by (3.6), we have

1

kn+1

+ kn+1 = · · · = 1

k2n
+ k2n,

by (3.2), we obtain kn+1 = · · · = k2n = ± 1√
n
. This contradicts to (3.6). Therefore, we have

the conclusion: λ 6= 0.

Case 3.1 k0 6= 0.

Now, by (3.3) we can get

λ =
(

n−
n
∑

j=1

kj
2

1 + kn+j
2 + kj

2

)

n
∏

j=1

(1 + kn+j
2 + kj

2). (3.7)

If k1 6= 0, according to (3.4), we have

λ =

n
∏

j=2

(1 + kn+j
2 + kj

2)
(

1 +
(

n
∑

j=1

kn+j

)2

+ (n− 1)k0
2 −

n
∑

j=2

k0
2kj

2

1 + kn+j
2 + kj

2

)

. (3.8)

Then with the help of Mathematica, we solve the system of (3.2), (3.7)–(3.8), the solution set

is empty. So we have k1 = 0. In the same way, we can get k2 = · · · = kn = 0.

If kn+1 6= 0, from (3.5) we obtain

λ =

n
∏

j=2

(1 + kn+j
2)
[(

n
∑

j=1

kn+j

)1 + k2n+1

kn+1

+
(

1 +
(

n
∑

j=1

kn+j

)2

+ nk0
2
)]

. (3.9)

Since k1 = · · · = kn = 0, (3.7) can be reduced to

λ = n

n
∏

j=1

(1 + kn+j
2).

So we have

n(1 + kn+1
2) =

(

n
∑

j=1

kn+j

)1 + k2n+1

kn+1

+
(

1 +
(

n
∑

j=1

kn+j

)2

+ nk0
2
)

. (3.10)

Solving the system of (3.2), (3.10) by Mathematica, the solution set is empty. We have kn+1 = 0.

Similarly, kn+2 = · · · = k2n = 0.

In conciusion, we have k0 = ±1, so ±X0 are minimal unit vector fields.

Case 3.2 k0 = 0.
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Case 3.2.1 ∃ l(1 ≤ l ≤ n) such that ki1 6= 0, · · · , kil 6= 0, kn+1 = · · · = k2n = 0, where

1 ≤ i1 < · · · < il ≤ n. In this case, for kiα(1 ≤ α ≤ l), from (3.4), we have

n
∏

j 6=iα ,j=1

(1 + kj
2) = λ

according to (3.2), we have kiα = ± 1√
l
, 1 ≤ α ≤ l.

Thus, the set of left invariant minimal vector fields is

n
⋃

l=1

{

l
∑

α=1

± 1√
l
Xiα

∣

∣

∣ 1 ≤ i1 < · · · < il ≤ n
}

. (3.11)

Case 3.2.2 ∃ l (1 ≤ l ≤ n) such that ki1 6= 0, · · · , kil 6= 0, where 1 ≤ i1 < · · · < il ≤ n, and

kn+j (1 ≤ j ≤ n) are not equal to 0 simultaneously.

Assume ki 6= 0, (3.4) can be written as

λ =

n
∏

j 6=i,j=1

(1 + kn+j
2 + kj

2)
(

1 +
(

n
∑

j=1

kn+j

)2)

, (3.12)

so if ∃β 6= µ, kβ 6= 0, kµ 6= 0, we have

1 + kn+β
2 + kβ

2 = 1 + kn+µ
2 + kµ

2. (3.13)

Then for kn+i, according to (3.5), we have

kn+iλ =
(

n
∑

j=1

kn+j

)

n
∏

j=1

(1 + kn+j
2 + kj

2) + kn+i

n
∏

j 6=i,j=1

(1 + kn+j
2 + kj

2)
[

1 +
(

n
∑

j=1

kn+j

)2]

.

If kn+i = 0, we can obtain
n
∑

j=1

kn+j = 0, if kn+i 6= 0, we also have
n
∑

j=1

kn+j = 0. Then we can

easily get at least two kn+j 6= 0.

Thus for ∀ kn+α (1 ≤ α ≤ n), (3.5) can be reduced to

kn+αλ = kn+α

n
∏

j 6=α,j=1

(1 + kn+j
2 + kj

2). (3.14)

If kn+α 6= 0, solving the system of (3.12), (3.14), we can get

1 + kn+α
2 + kα

2 = 1 + kn+i
2 + ki

2. (3.15)

According to (3.15), (3.2) and
n
∑

j=1

kn+j = 0, we obtain

kn+iβ
2 + kiβ

2 =
1

l
,

n
∑

α=1

kn+α = 0, (3.16)

where kn+iβ 6= 0 or kiβ 6= 0, β = 1, · · · , l.
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Thus, the set of left invariant minimal vector field is

n
⋃

l=2

{

l
∑

α=1

(kiαXiα + kn+iαUiα)
∣

∣

∣ kn+iα
2 + kiα

2 =
1

l
, ∃ kn+iβ 6= 0,

n
∑

β=1

kn+β = 0
}

. (3.17)

Case 3.2.3 k1 = · · · = kn = 0.

In this case, (3.5) can be reduced to

(

n
∑

j=1

kn+j

)

n
∏

j=1

(1 + kn+j
2) + kn+i

n
∏

j 6=i,j=1

(1 + kn+j
2)
[

1 +
(

n
∑

j=1

kn+j

)2]

= λkn+i. (3.18)

If kn+α 6= 0, the equation above can be written as

n
∏

j 6=α,j=1

(1 + kn+j
2)
[(

n
∑

j=1

kn+j

) (1 + kn+α
2)

kn+α

+ 1 +
(

n
∑

j=1

kn+j

)2]

= λ. (3.19)

• If ∃ kn+i = 0, by (3.18), we have
n
∑

j=1

kn+j = 0. Then we can simplify the equation above

to

λ =

n
∏

j 6=α,j=1

(1 + kn+j
2). (3.20)

Therefore if kn+α, kn+β 6= 0, α, β = 1, · · · , n, we have kn+α
2 = kn+β

2.

According to



















kn+α
2 = kn+β

2

n
∑

j=1

kn+j = 0,

we obtain that the set of minimal unit vector fields is

n−1
⋃

l=1

{

l
∑

α=1

kn+iαUiα

∣

∣

∣ kn+iα = ± 1√
l
,

n
∑

i=1

kn+iα = 0, 1 ≤ i1 < · · · < il ≤ n
}

. (3.21)

• If kn+1 6= 0, · · · , k2n 6= 0, according to (3.1), we have

H =

n
∏

i=1

(1 + kn+i
2)
[

1 +
(

n
∑

i=1

kn+i

)2]

.

Then taking natural logarithm, we have H ′ = lnH =
n
∑

i=1

ln (1 + kn+i
2) + ln

[

1 +
(

n
∑

i=1

kn+i

)2]

.

Applying Lagrange multiplier method, we get

λ =
1

1 + kn+i
2
+

n
∑

i=1

kn+i

[

1 +
(

n
∑

i=1

kn+i

)2]

kn+i

, ∀i = 1, · · · , n. (3.22)
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For α 6= β, we can obtain

− (kn+α + kn+β)(kn+α − kn+β)

(1 + kn+α
2)(1 + kn+β

2)
=

(

n
∑

i=1

kn+i

)

(kn+α − kn+β)

[

1 +
(

n
∑

i=1

kn+i

)2]

kn+αkn+β

. (3.23)

If kn+α − kn+β 6= 0, we have

− (kn+α + kn+β)

(1 + kn+α
2)(1 + kn+β

2)
=

(

n
∑

i=1

kn+i)

[

1 +
(

n
∑

i=1

kn+i

)2]

kn+αkn+β

. (3.24)

With the help of Mathematica, when kn+α+kn+β 6= 0 and
n
∑

i=1

kn+i 6= 0, there are no solutions.

Therefore, we have

(kn+α + kn+β)(kn+α − kn+β) =
(

n
∑

i=1

kn+i

)

(kn+α − kn+β) = 0. (3.25)

According to the constraint condition g =
n
∑

i=1

kn+i
2 − 1 = 0, we can get the following results.

When n is odd, kn+1 = · · · = k2n = ± 1√
n
.

When n is even, kn+1 = · · · = k2n = ± 1√
n
or kn+i = ± 1√

n
,

n
∑

i=1

kn+i = 0, i = 1, · · · , n.
So we obtain the set of minimal vector fields is


















{

n
∑

i=1

1√
n
Ui

}

∪
{

n
∑

i=1

− 1√
n
Ui

}

, n = 2m+ 1, m ∈ N+,

{

n
∑

i=1

1√
n
Ui

}

∪
{

n
∑

i=1

− 1√
n
Ui

}

∪
{

n
∑

i=1

kn+iUi | kn+i = ± 1√
n
,

n
∑

i=1

kn+i = 0
}

.

(3.26)

In conclusion, combining with (3.11), (3.17), (3.21), (3.26) and case 3.1, we obtain all left

invariant minimal unit vector fields on the solvable Lie group Gn (n ≥ 2) as follows:

{±X0}
n
⋃

i=1

{±Xi}
n
⋃

i=1

{±Ui}

n
⋃

l=2

{

l
∑

α=1

(kiαXiα + kn+iαUiα) | kn+iα
2 + kiα

2 =
1

l
,

n
∑

β=1

kn+β = 0
}

∪
{

n
∑

i=1

1√
n
Ui

}

∪
{

n
∑

i=1

− 1√
n
Ui

}

.

This completes the proof of Theorem 1.1.

4 Geodesic Vector Fields and Strongly Normal Unit Vectors on Gn

In this section, firstly we determine all geodesic vector fields on Gn and obtain the relation-

ship between geodesic vector fields and minimal unit vector fields. Then we study the strongly

normal unit vectors on Gn.
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Definition 4.1 A unit vector field V on a Riemannian manifold (M, g) is called a geodesic

vector field if ▽V V = 0.

The set of all geodesic vector fields on Gn is given as follows.

Theorem 4.1 For n ≥ 2, the set of all left invariant geodesic vector fields on the solvable

Lie group Gn is
{

n
∑

i=1

kn+iUi

∣

∣

n
∑

i=1

kn+i
2 = 1

}

∪
{

n
∑

i=0

kiXi

∣

∣ ki = ± 1√
n+1

}

.

Proof Let V =
n
∑

i=0

kiXi +
n
∑

i=1

kn+iUi, since the Lie brackets of gn are as follows:

[X0, Uα] = X0, [Xα, Uβ] = −δαβXα, [Xi, Xj ] = [Uα, Uβ] = 0,

and the non-vanishing Riemannian connection components are given by

▽X0
Uα = X0, ▽X0

X0 = −
n
∑

i=1

Ui,

▽Xi
Ui = −Xi, ▽Xi

Xi = Ui,

where i, j, α, β = 1, · · · , n.
Then we have

▽V =



























n
∑

i=1

kn+i 0 · · · 0 0 · · · 0

0 −kn+1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · −k2n 0 · · · 0

−k0 k1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
−k0 0 · · · kn 0 · · · 0



























.

So

▽V V = k0

[(

n
∑

i=1

kn+i

)

X0 −
n
∑

i=1

k0Ui

]

+
n
∑

i=1

ki(−kn+iXi + kiUi)

= k0

(

n
∑

i=1

kn+i

)

X0 −
n
∑

i=1

kikn+iXi +

n
∑

i=1

(ki
2 − k0

2)Ui.

.

If V is a geodesic vector field, by ▽V V = 0, we have


















k0

(

n
∑

i=1

kn+i

)

= 0,

kikn+i = 0,

ki
2 − k0

2 = 0, i = 1, · · · , n.

If k0 = 0, then ki = 0, i = 1, · · · , n, so the geodesic vector field V =
n
∑

i=1

kn+iUi, where

n
∑

i=1

kn+i
2 = 1; If k0 6= 0, then ki 6= 0 and kn+i = 0, i = 1, · · · , n, so the geodesic vector field

V =
n
∑

i=0

kiXi, where ki = ± 1√
n+1

.
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Therefore the set of all left invariant geodesic vector fields on the solvable Lie group Gn is

{

n
∑

i=1

kn+iUi

∣

∣

∣

n
∑

i=1

kn+i
2 = 1

}

∪
{

n
∑

i=0

kiXi

∣

∣

∣ ki = ± 1√
n+ 1

}

.

By Theorem 1.1 and Theorem 4.1, we can easily obtain the sets of vector fields which are

both the minimal unit vector fields and the geodesic vector fields on the Lie group Gn, n ≥ 2

as follows:

n
⋃

i=1

{±Ui}
n
⋃

l=2

{

l
∑

α=1

± 1√
l
Uiα

∣

∣

∣

n
∑

i=1

kn+i = 0
}

∪
{

n
∑

i=1

1√
n
Ui

}

∪
{

n
∑

i=1

− 1√
n
Ui

}

.

Definition 4.2 A unit vector field V on a Riemannian manifold (M, g) is called strongly

normal if g(▽XAV Y, Z) = 0, ∀X,Y, Z ∈ HV , where AV = −▽V .

It is difficult to calculate all strongly normal unit vectors on the solvable Lie group Gn. So

we study the set of vector fields which are both the minimal unit vector fields and the strongly

normal vector fields as follows.

Theorem 4.2 For n ≥ 2, The set of vector fields which are both the minimal unit vector

fields and the strongly normal vector fields on the solvable Lie group Gn is

{±X0}
n
⋃

i=1

{±Xi}.

Proof Let X =
n
∑

i=0

aiXi +
n
∑

i=1

an+iUi, Y =
n
∑

i=0

biXi +
n
∑

i=1

bn+iUi, Z =
n
∑

i=0

ciXi +
n
∑

i=1

cn+iUi

and V =
n
∑

i=0

kiXi +
n
∑

i=1

kn+iUi. Assume that X,Y, Z, V satisfy the conditions

‖X‖ = ‖Y ‖ = ‖Z‖ = ‖V ‖ = 1

and

g(X,V ) = g(Y, V ) = g(Z, V ) = 0.

According to the non-vanishing Riemannian connection components

▽X0
Uα = X0, ▽X0

X0 = −
n
∑

i=1

Ui,

▽Xi
Ui = −Xi, ▽Xi

Xi = Ui,

where i, j, α, β = 1, · · · , n. Then

▽XAV Y = −▽X(▽Y V ) + ▽▽XY V
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= a0

[(

n
∑

i=1

bn+i

)(

n
∑

i=1

kn+i

)

+

n
∑

i=1

(k0b0 − biki)
]

X0

+

n
∑

i=1

ai(bn+ikn+i + biki − b0k0)Xi

+

n
∑

i=1

[

a0b0

(

n
∑

j=1

kn+j

)

+ aibikn+i − a0k0

(

n
∑

j=1

bn+j

)

− aikibn+i

]

Ui.

If V is a strongly normal unit vector, then

g(▽XAV Y, Z) = 0.

If V = ±X0, that is k0 = ±1, then a0 = b0 = c0 = 0, according to the above equation, we

can easily get ▽XAV Y = 0, so V = ±X0 are the strongly normal unit vectors. Similarly, ±Xi,

i = 1, · · · , n also are the strongly normal unit vectors.

If V = {±Ui}, without loss of generality, let V = U1, that is kn+1 = 1, k0 = · · · = kn =

kn+2 = · · · = k2n = 0, then an+1 = bn+1 = cn+1 = 0, we have

▽XAV Y = a0

(

n
∑

i=1

bn+i

)

X0 + (a0b0 + a1b1)U1 + a0b0

n
∑

i=2

Ui.

We can easily give a counter-example that V is not a strongly normal unit vector. Let

X = X0, Y = X0, Z = U2, then g(▽XAV Y, Z) = 1 6= 0. In the same way, we can prove that
n
⋃

l=2

{

l
∑

α=1

(kiαXiα + kn+iαUiα) | kn+iα
2 + kiα

2 = 1

l
,

n
∑

β=1

kn+β = 0
}

∪
{

n
∑

i=1

1√
n
Ui

}

∪
{

n
∑

i=1

− 1√
n
Ui

}

are not the strongly normal unit vectors.

Therefore, The set of vector fields which are both the minimal unit vector fields and the

strongly normal vector fields on the Lie group Gn, n ≥ 2 is {±X0}
n
⋃

i=1

{±Xi}.
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