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Abstract A singularly perturbed boundary value problem for a piecewise-smooth non-
linear stationary equation of reaction-diffusion-advection type is studied. A new class of
problems in the case when the discontinuous curve which separates the domain is monotone
with respect to the time variable is considered. The existence of a smooth solution with
an internal layer appearing in the neighborhood of some point on the discontinuous curve
is studied. An efficient algorithm for constructing the point itself and an asymptotic rep-
resentation of arbitrary-order accuracy to the solution is proposed. For sufficiently small
parameter values, the existence theorem is proved by the technique of matching asymptotic
expansions. An example is given to show the effectiveness of their method.
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1 Introduction

In recent years, reaction-diffusion-advection equation with a small parameter that is also

called singularly perturbed equation has attracted much attention due to their practical use

as mathematical models in optical electronics, medical science, in-situ combustion problems,

atmospheric science, etc (see [1–4]). Generally speaking, this kind of problem is studied by

several methods such as geometric singular perturbation theory (see [5–10]), asymptotic method

(see [11–15]), numerical algorithm (see [16–19]).

This paper investigates a boundary value problem for a stationary case of piecewise-smooth

reaction-diffusion-advection equation. In this case, the nonlinear function on the right of differ-

ential equation is discontinuous on some monotone discontinuity curve. The main complexity of

this problem is the existence of a smooth solution with a steep gradient in the neighborhood of

some point on this curve, which is called the internal layer (see [20–26]). The biggest challenge

is to determine the transition point itself and an asymptotic approximation of the smooth solu-

tion. Similarly stated problems have been considered in [27–35]. As studied in papers [30–35],
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the discontinuity line located in the domain of function on the right of differential equation is

vertical to the time variable. Using a new method, we shall generalize the basic results in the

case of problems with discontinuous time variables (see [35]) to the case of equations whose state

variables are discontinuous. Moreover, our results can be used to develop efficient numerical

algorithms for some models with discontinuous coefficients (see [36–37]).

1.1 Model problem

We will consider the singularly perturbed boundary value problem



µ2 d

2u

dx2
= f

(
µ
du

dx
, u, x

)
, 0 < x < 1,

u(0, µ) = u0, u(1, µ) = u1,

(1.1)

where µ > 0 is a small parameter, and u is an unknown scalar function.

Let

µ
du

dx
= v.

It is easy to see that problem (1.1) is equivalent to the following system of first-order differential

equations:




µ
du

dx
= v, µ

du

dx
= f(v, u, x), 0 < x < 1,

u(0, µ) = u0, u(1, µ) = u1.

(1.2)

Suppose that the following conditions are satisfied.

Condition 1 The function f(v, u, x) has the form

f(z, u, x) =





f (−)
(
µ
du

dx
, u, x

)
, (u, x) ∈ D(−),

f (+)
(
µ
du

dx
, u, x

)
, (u, x) ∈ D(+),

where

D(−) = {(u, x) | g(x) < u ≤ l, 0 ≤ x ≤ 1},

D(+) = {(u, x) | −l ≤ u ≤ g(x), 0 ≤ x ≤ 1},

here functions f (∓)(v, u, x) are sufficiently smooth on the sets {v | −l1 ≤ v ≤ l1} × D(∓).

Moreover, g(x) is sufficiently smooth and monotonely nondecreasing in the interval 0 ≤ x ≤ 1.

As shown in Figure 1, the discontinuous curve Γ : u = g(x), 0 ≤ x ≤ 1 separates the domain

D = {(u, x) | −l ≤ u ≤ l, 0 ≤ x ≤ 1} into two subdomains D(∓).

Condition 2 Assume that the degenerate equation f (∓)(0, u, x) = 0 has isolated roots

u = ϕ(∓)(x) on the subdomains D(∓), and one has the inequalities:

(a) f (−)(0, g(x), x) 6= f (+)(0, g(x), x), 0 ≤ x ≤ 1,

(b) f
(∓)
u (0, ϕ(∓)(x), x) > 0, (ϕ(∓)(x), x) ∈ D(∓).

As shown in Figure 1, two curves y = ϕ(−)(x) and y = ϕ(+)(x) intersect the curve y = g(x)

at two points Q and P , whose abscissas are denoted by q and p, respectively, in the xy-

plane. If p < q, then problem (1.1) may have a solution with a sharp internal layer in the
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Figure 1 The solution of problem (1.1).

neighborhood of x = x∗ (0 < x∗ < 1). The transition point x∗ where the solution passes

through the monotone curve is unknown beforehand. Similarly, the case when the function

g(x) is monotonely nonincreasing in the interval [0, 1] can also be considered.

1.2 Associated system

Consider the associated system (see [11]),

dũ

dτ
= ṽ,

dṽ

dτ
= f(ṽ, ũ, x), (1.3)

where x ∈ [0, 1] is a parameter.

By virtue of Conditions 1–2, the characteristic equation

∣∣∣∣
0− λ 1

fu(0, ϕ
(∓)(x), x) fv(0, ϕ

(∓)(x), x)− λ

∣∣∣∣ = 0

or

λ2 − fv(0, ϕ
(∓)(x), x)λ − fu(0, ϕ

(∓)(x), x) = 0

has two roots of different signs. The reason behind this is that

∆ = f2
v (0, ϕ

(∓)(x), x) + 4fu(0, ϕ
(∓)(x), x) > 0, λ1λ2 = −fu(0, ϕ

(∓)(x), x) < 0.

In the phase plane (ũ, ṽ), each of the equilibrium points (ϕ(∓)(x), 0) is a saddle point.

The associated system (1.3) defines equations

ṽ
dṽ

dũ
= f(ṽ, ũ, x) (1.4)

for the phase trajectories on the plane (ũ, ṽ), for any x ∈ [0, 1].

Condition 3 Suppose that the separatrices which are described by (1.4) with the initial

conditions

ṽ(ϕ(∓)(x)) = 0 (1.5)
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Figure 2 Graphic illustration of the separatrix Φ(ṽ, ũ, x) = Φ(0, ϕ(−)(x∗), x∗) issuing from the saddle

point (ϕ(−)(x∗), 0) and the separatrix Φ(ṽ, ũ, x) = Φ(0, ϕ(+)(x∗), x∗) entering the saddle point

(ϕ(+)(x∗), 0).

Figure 3 Graphic illustration of the heteroclinic orbit between saddle points (ϕ(−)(x∗), 0) and

(ϕ(+)(x∗), 0).

have the form Φ(ṽ, ũ, x) = c for any x ∈ [0, 1].

By Conditions 1–3, in the plane (ũ, ṽ), for any fixed x, there exist separatrixes Φ(ṽ, ũ, x) =

Φ(0, ϕ(∓)(x), x) passing through the saddle points (ϕ(∓)(x), 0). In the course of determining

the leading terms in the asymptotic expansion of boundary layer, the solvability of the following

boundary value problems for system (1.3) taken at x = 0 and x = 1 plays an important role:





dũ

dτ0
= ṽ,

dṽ

dτ0
= f (−)(ṽ, ũ, 0), τ0 =

x

µ
≥ 0,

ũ(0) = u0, ũ(+∞) = ϕ(−)(0), ṽ(+∞) = 0

(1.6)

and




dũ

dτ1
= ṽ,

dṽ

dτ1
= f (+)(ṽ, ũ, 1), τ1 =

x− 1

µ
≤ 0,

ũ(0) = u1, ũ(−∞) = ϕ(+)(1), ṽ(−∞) = 0.

(1.7)

According to Conditions 1–3, in the phase plane (ũ, ṽ), there exists a stable manifold Φ(ṽ, ũ, x) =

Φ(0, ϕ(−)(0), 0) passing through the saddle point (ϕ(−)(0), 0), and there exists a stable man-

ifold Φ(ṽ, ũ, x) = Φ(0, ϕ(+)(1), 1) passing through the saddle point (ϕ(+)(1), 0). Therefore, if

boundary values u0 and u1 are located on the corresponding stable manifolds, then problems

(1.6) and (1.7) are solvable.

Condition 4 Suppose that in the phase plane (ũ, ṽ), the vertical line ũ = u0 intersects

the stable manifold Φ(ṽ, ũ, x) = Φ(0, ϕ(−)(0), 0) passing through the saddle point (ϕ(−)(0), 0),
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and the vertical line ũ = u1 intersects the stable manifold Φ(ṽ, ũ, x) = Φ(0, ϕ(+)(1), 1) passing

through the saddle point (ϕ(+)(1), 0).

To determine the leading term in the asymptotic expansion of internal layer, it is necessary

to consider the following boundary value problem for system (1.3) taken at x = x∗:





dũ

dτ
= ṽ,

dṽ

dτ
= f (∓)(ṽ, ũ, x∗), τ =

x− x∗

µ
∈ R,

ũ(0) = g(x∗), ũ(∓∞) = ϕ(∓)(x∗), ṽ(∓∞) = 0,

(1.8)

where g(x∗) ∈ [ϕ(+)(x∗), ϕ(−)(x∗)]. Then in the phase plane (ũ, ṽ), there are two separatrixes

in and out passing through each of saddle points (ϕ(∓)(x∗), 0). Without loss of generality, we

assume that these separatrixes lie in the lower half-plane ṽ < 0. Thus, one can obtain the

following sufficient condition needed to guarantee that problem (1.8) is solvable.

Condition 5 Suppose that the separatrix Φ(ṽ, ũ, x) = Φ(0, ϕ(−)(x∗), x∗) issuing from the

saddle point (ϕ(−)(x∗), 0) intersects the vertical line y = g(x∗), and the separatrix Φ(ṽ, ũ, x) =

Φ(0, ϕ(+)(x∗), x∗) entering the saddle point (ϕ(+)(x∗), 0) intersects the vertical line y = g(x∗)

in the phase plane (ũ, ṽ) (see Figure 2).

As shown in Figure 1, the transition point x∗ where the solution of problem (1.1) passes the

monotone curve is unknown. To find x∗, for any x ∈ [p, q], we introduce the function

H(x) = ṽ(−)(g(x))− ṽ(+)(g(x)), (1.9)

where ṽ(∓)(ũ) is the solution of Φ(ṽ, ũ, x) = Φ(0, ϕ(∓)(x), x). We require that the following

condition is satisfied.

Condition 6 Assume that the equation H(x) = 0 has a solution x = x0, x0 ∈ [p, q] (see

Figure 3), and the inequality H′(x)(x0) 6= 0 holds.

2 Formal Asymptotics

As shown in Figure 1, problem (1.1) may have a solution with an internal transition layer

in the neighborhood of monotone curve y = g(x). To construct an asymptotic approximation

to the solution of problem (1.1) that has an internal layer separately on the intervals [0, x∗] and

[x∗, 1], we consider two classical boundary value problems




µ
du(−)

dx
= v(−), µ

du(−)

dx
= f (−)(v(−), u(−), x), 0 < x < x∗,

u(−)(0, µ) = u0, u(−)(x∗, µ) = g(x∗)

(2.1)

and



µ
du(+)

dx
= v(+), µ

du(+)

dx
= f (+)(v(+), u(+), x), x∗ < x < 1,

u(+)(x∗, µ) = g(x∗), u(+)(1, µ) = u1.

(2.2)

Then we match the asymptotic expansions of the solutions to problems (2.1), (2.2) at the tran-

sition point (x∗, g(x∗)) smoothly. Thus, a smooth asymptotic solution of the original problem
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(1.1) with an internal layer in the neighborhood of discontinuous curve y = g(x) is obtained.

To this end, it is necessary to satisfy the following smoothness condition

v(−)(x∗, µ) = v(+)(x∗, µ), (2.3)

where the unknown point (x∗, g(x∗)) shall be found by the matching asymptotic expansion

method after constructing the asymptotics of solutions to problems (2.1), (2.2).

In order to describe the solution in a sharp internal layer region and in the neighborhood of

endpoints of the interval [0, 1], the stretched variables are introduced:

τ0 =
x

µ
, τ =

x− x∗

µ
, τ1 =

x− 1

µ
.

Note that the solution in region without steep gradient depends on the slow variable x. Then

we write out the asymptotic representations of two auxiliary problems (2.1), (2.2):

{
u(−)(x, µ) = u(−)(x, µ) + Lu(τ0, µ) +Q(−)u(τ, µ),

v(−)(x, µ) = v(−)(x, µ) + Lv(τ0, µ) +Q(−)v(τ, µ)
(2.4)

and
{
u(+)(x, µ) = u(+)(x, µ) +Q(+)u(τ, µ) +Ru(τ1, µ),

v(+)(x, µ) = v(+)(x, µ) +Q(+)v(τ, µ) +Rv(τ1, µ),
(2.5)

where u(∓)(x, µ), v(∓)(x, µ) are the regular parts of asymptotic approximation to the solution-

s u(∓)(x, µ), v(∓)(x, µ), respectively, Lu(τ0, µ), Lv(τ0, µ) are left boundary layer parts at the

endpoint x = 0, Ru(τ1, µ), Rv(τ1, µ) are right boundary layer parts at the endpoint x = 1, and

Q(∓)u(τ, µ), Q(∓)

v(τ, µ) are internal layer parts in the neighborhood of transition point (x∗, g(x∗)).

Each function of asymptotic representations (2.4), (2.5) shall be written in the forms of

power series of small parameter µ:

u(∓)(x, µ) = u
(∓)
0 (x) + µu

(∓)
1 (x) + · · ·+ µku

(∓)
k (x) + · · · , (2.6)

v(∓)(x, µ) = v
(∓)
0 (x) + µv

(∓)
1 (x) + · · ·+ µkv

(∓)
k (x) + · · · , (2.7)

Lu(τ0, µ) = L0u(τ0) + µL1u(τ0) + · · ·+ µkLku(τ0) + · · · , (2.8)

Lv(τ, µ) = L0v(τ0) + µL1v(τ0) + · · ·+ µkLkv(τ0) + · · · , (2.9)

Ru(τ1, µ) = R0u(τ1) + µR1u(τ1) + · · ·+ µkRku(τ1) + · · · , (2.10)

Rv(τ1, µ) = R0v(τ1) + µR1v(τ1) + · · ·+ µkRkv(τ1) + · · · , (2.11)

Q(∓)u(τ, µ) = Q
(∓)
0 u(τ) + µQ

(∓)
1 u(τ) + · · ·+ µkQ

(∓)
k u(τ) + · · · , (2.12)

Q(∓)v(τ, µ) = Q
(∓)
0 v(τ) + µQ

(∓)
1 v(τ) + · · ·+ µkQ

(∓)
k v(τ) + · · · , (2.13)

where Q
(∓)
k u(τ), Q

(∓)
k v(τ), Lku(τ0), Lkv(τ0), Rku(τ1), Rkv(τ1) (k ≥ 0) are imposed the stan-

dard conditions at infinity:

Q
(∓)
k u(∓∞) = 0, Lku(+∞) = 0, Rku(−∞) = 0, (2.14)

Q
(∓)
k v(∓∞) = 0, Lkv(+∞) = 0, Rkv(−∞) = 0. (2.15)
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In order to determine high-order asymptotic terms of internal layer and boundary layer

Q
(∓)
k u(τ), Q

(∓)
k v(τ) and Lku(τ0), Lkv(τ0), Rku(τ1), Rkv(τ1) (k ≥ 1), the following condition is

also needed.

Condition 7 Suppose that one has the inequalities

f (−)
v (Q

(−)
0 v, ϕ(−)(x∗) +Q

(−)
0 u, x∗) ≤ 0,

f (+)
v (Q

(+)
0 v, ϕ(+)(x∗) +Q

(+)
0 u, x∗) ≥ 0,

f (−)
v (L0v, ϕ

(−)(0) + L0u, 0) ≥ 0,

f (+)
v (R0v, ϕ

(+)(1) +R0u, 0) ≤ 0.

2.1 Regular part

The equations for determining the regular terms u(∓)(x), v(∓)(x) take the form

µ
du(∓)

dx
= v(∓), µ

dv(∓)

dx
= f (∓)(v(∓), u(∓), x). (2.16)

Substituting (2.6)–(2.7) into (2.16) and matching the coefficients of like powers of µ, we obtain

the degenerate equations

v
(∓)
0 (x) = 0, f (∓)(0, u

(∓)
0 (x), x) = 0,

whose solution are

v
(∓)
0 (x) = 0, u

(∓)
0 (x) = ϕ(∓)(x)

by Condition 2.

By virtue of Condition 2, the remaining coefficients u
(∓)
k (x), v

(∓)
k (x) (k > 0) are obtained

by linear equations

v
(∓)
k (x) =

du
(∓)
k−1(x)

dx
, u

(∓)
k (x) =

h
(∓)

k (x)

f
(∓)
u (0, u

(∓)
0 (x), x)

,

where h
(∓)

k (x) is known functions that depends on u
(∓)
j (x) (j < k). These equations are solvable.

In particular,

h
(∓)

1 (x) = −f (∓)
v (0, u

(∓)
0 (x), x)

du
(∓)
0

dx
.

2.2 Internal layer functions

The problems for finding the internal layer functions Q(∓)u(τ), Q(∓)v(τ) at the transition

point (x∗, g(x∗)) are as follows





dQ(∓)u

dτ
= Q(∓)v,

dQ(∓)v

dτ
= f (∓)(v(∓)(x∗ + µτ) +Q(∓)v, u(∓)(x∗ + µτ) +Q(∓)u, x∗ + µτ)

−f (∓)(v(∓)(x∗ + µτ), u(∓)(x∗ + µτ), x∗ + µτ),

Q(∓)u(0, µ) = g(x∗)− u(∓)(x∗, µ), Q(∓)u(∓∞, µ) = 0,

Q(∓)z(∓∞, µ) = 0.

(2.17)
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After substituting (2.12)–(2.13) into (2.17) and matching the coefficients of like powers of µ,

one can obtain the problems for determining Q
(∓)
0 u(τ), Q

(∓)
0 v(τ),





dQ
(∓)
0 u

dτ
= Q

(∓)
0 v,

dQ
(∓)
0 v

dτ
= f (∓)(Q

(∓)
0 v, ϕ(∓)(x∗) +Q

(∓)
0 u, x∗),

Q
(∓)
0 u(0) = g(x∗)− ϕ(∓)(x∗),

Q
(∓)
0 u(∓∞) = 0, Q

(∓)
0 v(∓∞) = 0.

(2.18)

By means of variable substitution

ũ(τ) = ϕ(∓)(x∗) +Q
(∓)
0 u(τ), ṽ(τ) = Q

(∓)
0 v(τ), (2.19)

problem (2.18) can be rewritten as (1.8). According to the discussion of associated system (1.8),

problem (2.18) has solutions Q
(∓)
0 u(τ), Q

(∓)
0 v(τ), which satisfy the exponential estimates (see

[11])

|Q
(∓)
0 u(τ)| ≤ C

(∓)
0 e±κ(∓)τ , |Q

(∓)
0 v(τ)| ≤ C

(∓)
1 e±κ(∓)τ , (2.20)

where C
(∓)
0 > 0, C

(∓)
1 > 0, κ(∓) > 0.

Since Q
(∓)
k u(τ), Q

(∓)
k v(τ), k ≥ 1 can be determined in a similar way, here we consider

Q
(∓)
1 u(τ), Q

(∓)
1 v(τ), which are defined from the following boundary layer problem





dQ
(∓)
1 u

dτ
= Q

(∓)
1 v,

dQ
(∓)
1 v

dτ
= f̃

(∓)
v (τ)Q

(∓)
1 v + f̃

(∓)
u (τ)Q

(∓)
1 u+ h

(∓)
1 (τ),

Q
(∓)
1 u(0) = −u

(∓)
1 (x∗),

Q
(∓)
1 u(∓∞) = 0, Q

(∓)
1 v(∓∞) = 0,

(2.21)

where

h
(∓)
1 (τ) = f̃ (∓)

v ϕ(∓)′(x∗) + f̃u[ϕ
(∓)′(x∗)τ + u

(∓)
1 (x∗)] + f̃ (∓)

x τ,

here f̃
(∓)
v (τ), f̃

(∓)
u (τ), f̃

(∓)
x (τ) are defined at the point (Q

(∓)
0 v, ϕ(∓)(x∗) +Q

(∓)
0 u, x∗).

The equations of problem (2.21) can be rewritten as second-order differential equations

d2

dτ2
Q

(∓)
1 u = f̃ (∓)

v (τ)
d

dτ
Q

(∓)
1 u+ f̃ (∓)

u (τ)Q
(∓)
1 u+ h

(∓)
1 (τ). (2.22)

Multiplying p(∓)(τ) = e−
∫

τ

0
f̃(∓)
v

(s) ds on both sides of these equations, it follows from Condition

7, (2.21) and Green formula that

Q
(∓)
1 v(τ) =

∫ τ

∓∞
ṽ(∓)(η)p(∓)(η)h

(∓)
1 (η) dη +Q

(∓)
1 u(τ)ṽ(∓)′ (τ)

p(∓)(τ)ṽ(∓)(τ)
. (2.23)

Thus, one can obtain the Cauchy problem




dQ
(∓)
1 u

dτ
=

ṽ(∓)′(τ)

p(∓)(τ)ṽ(∓)(τ)
Q

(∓)
1 u+

∫ τ

∓∞
ṽ(∓)(η)p(∓)(η)h

(∓)
1 (τ) dη

p(∓)(τ)ṽ(∓)(τ)
,

Q
(∓)
1 u(0) = −u

(∓)
1 (x∗),

(2.24)



Asymptotic Solution to a Stationary Piecewise-Smooth PDE 89

whose solutions can be represented in the forms

Q
(∓)
1 u(τ) = Q

(∓)
1 u(0)M(τ) +N(τ), (2.25)

where

M(τ) = exp
( ∫ τ

0

ṽ(∓)′(s)

p(∓)(s)ṽ(∓)(s)
ds

)
,

N(τ) =

∫ τ

0

∫ ξ

∓∞
ṽ(∓)(η)p(∓)(η)h

(∓)
1 (η) dη

p(∓)(ξ)ṽ(∓)(ξ)
exp

(∫ τ

ξ

ṽ(∓)′(s)

p(∓)(s)ṽ(∓)(s)
ds

)
dξ.

From (2.23) and (2.25), functions Q
(∓)
1 u(τ), Q

(∓)
1 v(τ) have the exponential estimates of the

type (2.20).

2.3 Boundary layer terms

The equations and boundary value conditions for determining left boundary layer functions

Lu(τ0), Lv(τ0) at the endpoint x = 0 have the forms





dLu

dτ0
= Lv,

dLv

dτ0
= f (−)(v(−)(µτ0) + Lv, u(−)(µτ0) + Lu, µτ0)

−f (−)(v(−)(µτ0), u
(∓)(µτ0), µτ0),

Lu(0, µ) = u0 − u(−)(0, µ), Lu(+∞, µ) = 0,

Lv(+∞, µ) = 0.

(2.26)

Likewise, the problems for finding the right boundary layer functions Ru(τ1), Rv(τ1) at the

endpoint x = 1 can be obtained





dRu

dτ1
= Rv,

dRv

dτ1
= f (+)(v(+)(1 + µτ1) +Rv, u(+)(1 + µτ1) +Ru, 1 + µτ1)

−f (+)(v(+)(1− µτ1), u
(+)(1 − µτ1), 1− µτ1),

Ru(0, µ) = u1 − u(+)(1, µ), Ru(−∞, µ) = 0,

Rv(−∞, µ) = 0.

(2.27)

For L0u(τ0), L0v(τ0) and R0u(τ1), R0v(τ1), we have





dL0u

dτ0
= L0v,

dL0v

dτ0
= f (−)(L0v, ϕ

(−)(0) + L0u, 0),

L0u(0) = u0 − ϕ(−)(0),

L0u(+∞) = 0, L0v(+∞) = 0

(2.28)
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and




dR0u

dτ1
= R0v,

dR0v

dτ1
= f (+)(R0v, ϕ

(+)(1) +R0u, 1),

R0u(0) = u1 − ϕ(+)(1),

R0u(−∞) = 0, R0v(−∞) = 0.

(2.29)

Set

ũ(−)(τ0) = ϕ(−)(0) + L0u(τ0), ṽ(−)(τ0) = L0v(τ0)

and

ũ(+)(τ1) = ϕ(+)(1) +R0u(τ1), ṽ(−)(τ1) = R0v(τ1).

Considering the discussions about auxiliary systems (1.6) and (1.7), problems (2.28) and (2.29)

have solutions L0u(τ0), L0v(τ0) and R0u(τ1), R0v(τ1) accordingly. In addition, if Conditions 1–

4 are satisfied, then functions L0u(τ0), L0v(τ0) and R0u(τ1), R0v(τ1) have exponential estimates

of type (2.20).

The problems for determining Lku(τ0), Lkv(τ0) and Rku(τ1), Rkv(τ1) have the forms




dLku

dτ0
= Lkv,

dLkv

dτ0
= f̂

(−)
v (τ0)Lkv + f̂

(−)
u (τ0)Lku+ Lhk(τ0),

Lku(0) = −u
(−)
k (0),

Lku(+∞) = 0, Lkv(+∞) = 0

(2.30)

and




dRku

dτ1
= Rkv,

dRkv

dτ1
= f̂

(+)
v (τ1)Rkv + f̂

(+)
u (τ1)Rku+Rhk(τ1),

Rku(0) = −u
(+)
k (1),

Rku(−∞) = 0, Rkv(−∞) = 0,

(2.31)

where the functions f̂
(−)
v (τ0), f̂

(−)
u (τ0) are defined at the point (L0v, ϕ

(−)(0)+L0u, 0), f̂
(+)
v (τ1),

f̂
(+)
u (τ1) are defined at the point (R0v, ϕ

(+)(1)+R0u, 0), Lhk are known functions that depend

on u
(−)
n (x) (n ≤ k) and Lnu(τ0), Rnu(τ1) (n < k), and the functions Rhk are known functions

depending on u
(+)
n (x) (n ≤ k) and Lnu(τ0), Rnu(τ1) (n < k).

By Condition 7, the solutions of problems (2.30) and (2.31) can be represented as

Lkv(τ0) =

∫ τ0
+∞

ṽ(−)(η)p̂(−)(η)Lhk(η)dη + Lku(τ0)ṽ
(−)′(τ0)

p̂(−)(τ0)ṽ(−)(τ0)
, (2.32)

Lku(τ0) = −u
(−)
k (0)M (−)(τ0) +N (−)(τ0), (2.33)

where

p̂(−)(τ0) = e−
∫ τ0
0 f̂(−)

v
(s) ds, M (−)(τ0) = exp

(∫ τ0

0

ṽ(−)′(s)

p̂(−)(s)ṽ(−)(s)
ds

)
,
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N (−)(τ0) =

∫ τ0

0

∫ ξ

+∞
ṽ(−)(η)p̂(−)(η)Lhk(η) dη

p̂(−)(ξ)ṽ(−)(ξ)
exp

( ∫ τ0

ξ

ṽ(−)′(s)

p̂(−)(s)ṽ(−)(s)
ds

)
dξ

and

Rkv(τ1) =

∫ τ1

−∞
ṽ(+)(η)p̂(+)(η)Rhk(η) dη +Rku(τ1)ṽ

(+)′(τ1)

p̂(+)(τ1)ṽ(+)(τ1)
, (2.34)

Rku(τ1) = −u
(+)
k (1)M (+)(τ1) +N (+)(τ1), (2.35)

where

p̂(+)(τ1) = e−
∫ τ1
0 f̂(+)

v
ds, M (+)(τ1) = exp

(∫ τ1

0

ṽ(+)′(s)

p̂(+)(s)ṽ(+)(s)
ds

)
,

N (+)(τ1) =

∫ τ1

0

∫ ξ

−∞
ṽ(+)(η)p̂(+)(η)Rhk(η) dη

p̂(+)(ξ)ṽ(+)(ξ)
exp

( ∫ τ1

ξ

ṽ(+)′(s)

p̂(+)(s)ṽ(+)(s)
ds

)
dξ.

It follows from (2.32)–(2.35) that Lku(τ0), Lkv(τ0) and Rku(τ1), Rkv(τ1) also satisfy the expo-

nential estimates similar to (2.20).

3 Existence of a Smooth Solution to the Original Problem (1.1)

Suppose that x∗ exists, then solutions of two auxiliary problems (2.1) and (2.2) are defined

in the regions [0, x∗]× [g(x∗), l] and [x∗, 1]× [−l, g(x∗)] respectively. Thus, it is easy to see that

these two problems are classical singularly perturbed two point boundary value problems whose

asymptotic solutions are smooth on both sides of monotone curve y = g(x). In the following,

the existence of x∗ is proved and we justify the fact that composite solution obtained in Section

2 is smooth at the transition point (x∗, g(x∗)).

We represent x∗ in the form of the sum

x∗ = xδ := x0 + µx1 + · · ·+ µnxn + µn+1(xn+1 + δ), (3.1)

where δ is a parameter.

As proved in [11], problems (2.1), (2.2) have solutions u(∓)(x, µ, δ), whose asymptotic rep-

resentations are
{
u(∓)(x, µ, δ) = U

(∓)
n (x, µ, δ) +O(µn+1),

v(∓)(x, µ, δ) = V
(∓)
n−1(x, µ, δ) +O(µn),

(3.2)

where




U (−)
n (x, µ, δ) =

n∑

k=0

µk(u
(−)
k (x) +Q

(−)
k u(τ) + Lku(τ0)),

U (+)
n (x, µ, δ) =

n∑

k=0

µk(u
(+)
k (x) +Q

(+)
k u(τ) +Rku(τ1)),

V
(−)
n−1(x, µ, δ) =

n−1∑

k=0

µk(v
(−)
k (x) +Q

(−)
k v(τ) + Lkv(τ0)),

V
(+)
n−1(x, µ, δ) =

n−1∑

k=0

µk(v
(+)
k (x) +Q

(+)
k v(τ) +Rkv(τ1)),
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here the internal layer functions Q
(∓)
k u(τ), Q

(∓)
k v(τ) depend on τδ = x−xδ

µ
and the unknown

parameter x∗. Taking account of v
(∓)
0 (x) = 0 and expanding both sides of the smoothness

condition (2.3) into power series of µ, one can obtain the matching conditions that make sure

the asymptotic solution is smooth at the point (x∗, g(x∗)):





Q
(−)
0 v(0) = Q

(+)
0 v(0), (3.3)

v
(−)
1 (x0) +Q

(−)
1 v(0) = v

(+)
1 (x0) +Q

(+)
1 v(0), (3.4)

γ
(−)
k (x0, · · · , xk−1) +Q

(−)
k v(0) = γ

(+)
k (x0, · · · , xk−1) +Q

(+)
k v(0), k ≥ 2,

where γ
(∓)
k (x0, · · · , xk−1) are known functions depending on x0, · · · , xk−1. By virtue of Con-

dition 6, there exists x0 ∈ (p, q) such that H(x0) = 0, thus, (3.3) is satisfied, and (3.3) can

be rewritten as ṽ(−)(0) = ṽ(+)(0). Therefore, the leading term of x∗ is found. Below we will

discuss how to find x1.

Lemma 3.1 Under Condition 6, x1 is determined by the linear equation

x1H
′(x0)ṽ

(∓)(0) +

∫ 0

−∞

ṽ(−)p(−)f̃ (−)
x η dη −

∫ 0

+∞

ṽ(+)p(+)f̃ (+)
x η dη = 0. (3.5)

Proof Taking ṽ(−)(0) = ṽ(+)(0) into consideration, and substituting (2.23), (2.25) into

(3.4), we have

Ĥ(x1) = 0, (3.6)

where

Ĥ(x1) = ṽ(−)(0)ϕ(−)′(x0)− ṽ(−)(0)ϕ(+)′(x0)− ṽ(−)′(0)u
(−)
1 (x0) + ṽ(+)′(0)u

(+)
1 (x0)

+ [(g′(x0)− ϕ(−)′(x0))ṽ
(−)′(0)− (g′(x0)− ϕ(+)′(x0))ṽ

(+)′ (0)]x1

+

∫ 0

−∞

ṽ(−)(η)p(−)(η)h
(−)
1 (η) dη −

∫ 0

+∞

ṽ(+)(η)p(+)(η)h
(+)
1 (η) dη.

Let

Ĵ =

∫ 0

∓∞

ṽ(∓)(η)p(∓)(η)h
(∓)
1 (η)dη,

here

Ĵ = ϕ(∓)′(x0)

∫ 0

∓∞

[ṽ(∓)(η)p(∓)(η)f̃ (∓)
v + ṽ(∓)(η)p(∓)(η)f̃uη] dη

+ x1

∫ 0

∓∞

[ṽ(∓)(η)p(∓)(η)f̃u(η)ϕ
(∓)′(x0) + ṽ(∓)(η)p(∓)(η)f̃ (∓)

x (η)] dη+

+

∫ 0

∓∞

ṽ(∓)(η)p(∓)(η)f̃u(η)u
(∓)
1 (x0) dη +

∫ 0

∓∞

ṽ(∓)(η)p(∓)(η)f̃ (∓)
x (η)η dη,

which can be simplified as

Ĵ = −ϕ(∓)′(x0)ũ
(∓)′(0) + x1ϕ

(∓)′(x0)ũ
(∓)′′(0) + ũ(∓)′′(0)u

(∓)
1 (x0)

+ x1

∫ 0

∓∞

ṽ(∓)(η)p(∓)(η)f̃ (∓)
x (η) dη +

∫ 0

∓∞

ṽ(∓)(η)p(∓)(η)f̃ (∓)
x (η)η dη
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by using the equality

d

dτ

(
p(∓)(τ)

dũ(∓)′

dτ

)
− p(∓)(τ)f̃ (∓)

u (τ)ũ(∓)′ = 0.

Thus, Ĥ(x1) can be rewritten as

Ĥ(x1) = x1

[
g′(x0)(ṽ

(−)′(0)− ṽ(+)′(0)) +

∫ 0

−∞

ṽ(−)(η)p(−)(η)f̃ (−)
x (η) dη

]

− x1

∫ 0

+∞

ṽ(+)(η)p(+)(η)f̃ (+)
x (η) dη +

∫ 0

−∞

ṽ(−)(η)p(−)(η)f̃ (−)
x (η)η dη

−

∫ 0

+∞

ṽ(+)(η)p(+)(η)f̃ (+)
x (η)η dη.

In order to make sure that the coefficient of x1 in the linear equation above is nonzero, it is

necessary to obtain the representation of H′(x0).

Let
∂Q

(∓)
0 u

∂x
= w̃(∓),

∂Q
(∓)
0 v

∂x
= z̃(∓).

Differentiating with respect to x for the equations of problem (1.8), we have




d

dτ
w̃(∓) = z̃(∓),

d

dτ
w̃(∓) = f

(∓)
v (τ)z̃(∓) + f

(∓)
u (τ)(w̃(∓) + ϕ(∓)′(x)) + f

(∓)
x (τ),

w̃(∓)(0) = g′(x0)− ϕ(∓)′(x0), w̃(∓)(∓∞) = z̃(∓)(∓∞) = 0.

(3.7)

Applying Green formula leads to

H′(x0) = z̃(−)(0)− z̃(+)(0) = [ṽ(∓)(0)]−1g′(x0)(ṽ
(−)′ (0)− ṽ(+)′(0))

+ [ṽ(∓)(0)]−1
{∫ 0

−∞

ṽ(−)p(−)f̃ (−)
x dη −

∫ 0

+∞

ṽ(+)p(+)f̃ (+)
x dη

}
.

By virtue of Condition 5, the separatrixes Φ(ṽ, ũ, x) = Φ(0, ϕ(−)(x0), x0) do not intersect ũ = 0

as τ = 0. Thus, ṽ(∓)(0) 6= 0. Therefore, (3.6) can be rewritten as (3.5). By Condition 6, x1

can be uniquely determined by the linear equation (3.5).

Similarly, xk (k = 2, 3, · · · ) can be obtained by the same algorithm.

Denote

G(xδ , µ) =
d

dx
u(−)(xδ, µ)−

d

dx
u(+)(xδ, µ).

Substituting the asymptotic representations (3.2) of u(∓)(xδ, µ) into G(xδ , µ), it follows from

H(x0) = 0, Lemma 3.1 and the algorithm of constructing xk (k ≥ 2) that

G(xδ, µ) = µn(H′(x0)δ +O(µ)).

By Condition 6, H′(x0) 6= 0, for sufficiently small µ, there exists δ = δ such that G(xδ, µ) = 0.

Thus, provided δ = δ in the representation (3.1), the obtained xδ will guarantee that the

composite function

u(x, µ) =

{
u(−)(x, µ, δ(µ)), 0 ≤ x < xδ,

u(+)(x, µ, δ(µ)), xδ ≤ x ≤ 1
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is a smooth contrast structure solution to problem (1.1) in the neighborhood of x = xδ. After

replacing xδ by x, the accuracy of the first equation of (3.2) remains constant. So the main

theorem in this paper can be derived.

Theorem 3.1 Under Conditions 1–7, for sufficiently small µ > 0, the nonlinear boundary

value problem (1.1) has a smooth contrast structure solution u(x, µ), whose asymptotic repre-

sentations are as follows

u(x, µ) =





n∑

k=0

µk(u
(−)
k (x) +Q

(−)
k u(τ) + Lku(τ0)) +O(µn+1), 0 ≤ x < x,

n∑

k=0

µk(u
(+)
k (x) +Q

(+)
k u(τ) +Rku(τ1)) +O(µn+1), x ≤ x ≤ 1,

where

x = x0 + µx1 + · · ·+ µn+1(xn+1 + δ), τ =
(x− x)

µ
,

and an internal layer appears in the neighborhood of the discontinuous curve y = g(x).

4 Example

We consider the second order nonlinear Dirichlet boundary value problem




µ2u′′ =

{
(0.2− x)µu′ + u− 3, (u, x) ∈ D(−),

(0.9− x)µu′ + u+ 1, (u, x) ∈ D(+),

u(0) = 0, u(1) = 1,

(4.1)

where g(x) = 8x− 4.

Since the reaction-diffusion-advection equation with a small parameter is an important

mathematical model in different research fields, this example has a profound practical back-

ground. Example (4.1) can be used to develop mathematical models in mechanics, electronics,

biology, and other fields in the case when phenomena in inhomogeneous media with discontin-

uous characteristics occur. In [1], a multidimensional singularly perturbed reaction-diffusion-

advection problem with wave functions of electrons and holes and Coulomb potential depending

on the parameters of the layer is studied and the increase of tunnel barrier transparency leads

to a transition from the dipolar electron-hole system (EHS for short) with a double-peak wave

function of electrons to the spatially direct EHS. Furthermore, to describe an in-situ combustion

process, the reaction-diffusion-advection mathematical model with an internal layer is proposed

in [3]. Based on our theoretical results, the asymptotic behavior of a solution to example (4.1)

shall be discussed.

Let µ = 0, we have ϕ(−)(x) = 3, ϕ(+)(x) = −1 and v
(∓)
0 (x) = 0.

It is easy to verify that Conditions 1–7 in Theorem 3.1 are satisfied. The function (1.9) can

be rewritten as

H(x) =
0.2− x+

√
(0.2− x)2 + 4

2
(8x− 7)−

0.9− x−
√
(0.9− x)2 + 4

2
(8x− 3),

and the equation H(x0) = 0 has a solution x0 = 0.6204. The computation shows that H′(x0) 6=

0, so Condition 6 is also satisfied.
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The problems for determining Q
(∓)
0 u, Q

(∓)
0 v have the forms





dQ
(−)
0 u

dτ
= Q

(−)
0 v,

dQ
(−)
0 v

dτ
= (0.2− x0)Q

(−)
0 v +Q

(−)
0 u,

Q
(−)
0 u(0) = 8x0 − 7, Q

(−)
0 u(−∞) = 0, Q

(−)
0 v(−∞) = 0;





dQ
(+)
0 u

dτ
= Q

(+)
0 v,

dQ
(+)
0 v

dτ
= (0.9− x0)Q

(+)
0 v +Q

(+)
0 u,

Q
(+)
0 u(0) = 8x0 − 3, Q

(+)
0 u(+∞) = 0, Q

(+)
0 v(+∞) = 0,

whose solutions are

Q
(−)
0 u(τ) = −2.0368e0.8116τ , Q

(−)
0 v(τ) = −1.6531e0.8116τ ;

Q
(+)
0 u(τ) = 1.9632e−0.8699τ , Q

(+)
0 v(τ) = −1.7078e−0.8699τ .

For L0u, R0u, we have





dL0u

dτ0
= L0v,

dL0v

dτ0
= 0.2L0v + L0u,

L0u(0) = −3, L0u(+∞) = 0, L0v(+∞) = 0

and




dR0u

dτ1
= R0v,

dR0v

dτ1
= −0.1R0v +R0u,

R0u(0) = 2, R0u(−∞) = 0, R0v(−∞) = 0,

whose solutions acquire the forms

L0u = −3e−0.9050τ0 , R0u = 2e0.9513τ1 .

From the linear equation (3.5), one can obtain x1 = 0.6429.

Applying Theorem 3.1, problem (4.1) has a smooth asymptotic solution u(x, µ), which can

be represented as

u(x, µ) =

{
3− 2.0368e0.8116τ − 3e−0.9050τ0 +O(µ), 0 ≤ x < x,

−1 + 1.9632e−0.8699τ + 2e0.9513τ1 +O(µ), x ≤ x ≤ 1,

where

x = 0.6204 + 0.6429µ, τ =
(x− x)

µ
.

This problem has not an analytical solution, whose behavior can be described by an asymp-

totic solution obtained by our method. In addition, as µ takes sufficiently small value, the

accuracy O(µ) of the obtained smooth asymptotic solution y(x, µ) is very small. As shown in

Figure 4, our asymptotic solution is close to the numerical solution and there is an internal

layer in the neighborhood of discontinuous curve y = 8x− 4.
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Figure 4 Numerical solution of problem (4.1) and its zero-order asymptotic approximation

(µ = 0.003).

5 Conclusion

This paper investigates a stationary problem for a reactive-advection-diffusion differential

equation with discontinuous right-hand side. The sufficient conditions for the existence of

a smooth solution with an internal layer in the neighborhood of a point on the discontinuous

curve is given. Using theorems on existence of solutions to classical boundary value problems for

singularly perturbed nonlinear equations and algorithm for constructing asymptotic expansions

to these solutions, the existence of a smooth solution is proved. This work is an extension and

further development of the results in [35]. What’s more, our method can be generalized to

multidimensional singularly perturbed reaction-diffusion-advection problems. The results can

also be applied to propose an efficient numerical algorithm that uses the asymptotic solution

to construct non-uniform meshes to describe the behavior of internal layer of the solution to

similar problems stated in [36–37].
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