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Finite Abelian Groups of K3 Surfaces with
Smooth Quotient

Taro HAYASHTI!

Abstract The quotient space of a K3 surface by a finite group is an Enriques surface
or a rational surface if it is smooth. Finite groups where the quotient space are Enriques
surfaces are known. In this paper, by analyzing effective divisors on smooth rational
surfaces, the author will study finite groups which act faithfully on K3 surfaces such that
the quotient space are smooth. In particular, he will completely determine effective divisors
on Hirzebruch surfaces such that there is a finite Abelian cover from a K3 surface to a
Hirzebrunch surface such that the branch divisor is that effective divisor. Furthermore,
he will decide the Galois group and give the way to construct that Abelian cover from
an effective divisor on a Hirzebruch surface. Subsequently, he studies the same theme for
Enriques surfaces.

Keywords K3 surface, Finite Abelian group, Abelian cover of a smooth rational

surface
2000 MR Subject Classification 14J28, 14J50

1 Introduction

In this paper, we work over C. A K3 surface X is a smooth surface with h'(Ox) = 0 and
Ox(Kx) = Ox, where Kx is the canonical divisor of X. In particular, a K3 surface is simply
connected. Finite groups acting faithfully on K3 surfaces are well studied. Let w be a non-
degenerated two holomorphic form. An automorphism f of a K3 surface is called symplectic
if f*w = w. A finite subgroup G of automorphisms of a K3 surface is called symplectic if G
is generated by symplectic automorphisms. The minimal resolution X, of the quotient space
X/G is one of a K3 surface, an Enriques surface and a rational surface. The surface X,, is
a K3 surface if and only if G is a symplectic group. Symplectic groups are classified (see [10,
13, 16]). If the quotient space of X/G is smooth, then it is an Enriques surface or a rational
surface. The quotient space X/G is an Enriques surface if and only if G is isomorphic to Z/2Z
as a group and the fixed locus of G is an empty set. It is not well-known what kind of rational
surface is realized as the quotient space of a K3 surface by a finite subgroup of Aut(X). In this
paper, we will consider the case where X/G is a smooth rational surface. The minimal model
of smooth rational surfaces is the projective plane P? or a Hirzebruch surfaces IF,, where n # 1,
and F; is isomorphic to P? blow-up at a point. In other words, all smooth rational surfaces
which are not minimal are Fy or given by blowups of F,, for 0 < n. Therefore, if X/G is not
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P2, then there is a birational morphism f : X/G — F,. Our first main results are to analyze
the quotient space X/G and G when X/G is smooth.

Theorem 1.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that
X/G is smooth. For a birational morphism [ : X/G — F,, from the quotient space X/G to a
Hirzebruch surface F,,, we get that n =0,1,2,3,4,6,8 or 12. Furthermore, if n = 6,8,12, then
f is an isomorphism.

Let X be a K3 surface, and w be a non-degenerated holomorphic two form of X. For a
finite group G of Aut(X), we write G as a set of symplectic automorphisms of G. Then there
is a short exact sequence: 1 — Gy — G -2 C,, — 1, where C,, is a cyclic group of order n, and
©(g) ==&, € C* such that g*w = {w in H2Y(X) for g € G.

Theorem 1.2 Let X be a K3 surface, G be a finite subgroup of Aut(X) such that X/G is
smooth. Then the above exact sequence is split, i.e., there is a purely non-symplectic automor-
phism g € G such that G is the semidirect product Gs x {g) of G5 and {(g).

Next, we will classify finite Abelian groups which act faithfully on K3 surfaces and the
quotient space is smooth.

Definition 1.1 We will use the following notations:
7)27%°, 7./3Z%°, 7./47%¢, 7.)27.%¢ © 7./32.%¢, 7./27%7 & 7,/47%9,

7.)27. & 7.]3Z°" @ Z.JAZ, 7./27. ® 7./AZ ® 7./8Z.
1 <a<5, 1<b,ec<3, ,
(d, e) = (17 1)7 (17 2)7 (17 3)7 (27 1)7 (27 2)7 (37 1)7 (37 2)7

(f,9)=(1,1),(1,2),(2,1),(3,1), h=1,2
" {Z/zz@“, Z/A7%¢, 7.)22°% @ 7./37°, 7.]27°% © 7./AZ }

a=1,2,3,4,5, c=1or3, (de)=(1,1),(1,2) or (3,2)

AG -

Ao {Z/zz@a 7.)37%°, 7.)22.% © 7./47.%9 }
a=1,2,3,4,5 b=1,2,3, (f,9) = (1,1),(1,2),(2,1),(3,1) |’
Z/27%%, 7./]AZ%% 7./27 & Z./3Z%°, 7.)27% © 7./4Z,

AG = {2/22@2/32@2@2/42 7.)27. & LJAT & 1./ 87. :
a=1,2,3,45 e=1,2,3, f=1,2,3

AC, {Z/zz®“ 7.)37%, 7.)27° & 7./32%2, 7.)27.%7 @ 7./47.%9 }
a=1,2,3,4, b=1,2,3, (f,9) = (1,1),(1,2),(2,1),(3,1)

AGs {Z Z@d@Z/3Z@G Z/2Z@Z/3Z€BZ/4Z}’

,1),(1,2),(3,1)

AG, {Z/QZ@B“ Z/4Z 7/27. & 7./32%2, Z/2Z@f@Z/4Z}7
a=1,2,3, f=1,2

AGg = {Z/3Z%", Z/22%* ® Z/3Z : b= 1,2},

AGs := {Z/2Z & Z/AL}
AGr2 == {Z/22.&L/3L} .
Notice that AG = U AG,,. In [15], Uludag classified finite Abelian groups

n=0,1,2,3,4,6,8,12,00
for the case X/G is P2. Furthermore, he gave the way to construct the pair (X, G) where X is
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a K3 surface and G is a finite subgroup of Aut(X) such that X/G = P2. We have the following
theorem.

Theorem 1.3 (see [15]) Let X be a K3 surface and G be a finite Abelian subgroup of
Aut(X) such that the quotient space X/G is isomorphic to P2. Then G is one of AGs as a
group. Conwversely, for every G € AG s, there is a K3 surface X' and a finite Abelian subgroup
G’ of Aut(X') such that X'/G’' =2 P? and G' = G as a group.

By analyzing the irreducible components of the branch locus of the quotient map p : X —
X/G, we will study a pair (X, G) consisting of a K3 surface X and a finite Abelian subgroup
G of Aut(X) such that the quotient space X/G is smooth. More precisely, the preimage of

the branch locus of p is U  Fix(g) where Fix(g) := {z € X : g(xz) = x}. Recall that for
geG\{idx }
an automorphism f of finite order of a K3 surface, if Fix(f) contains a curve, then f is non-

symplectic. The fixed locus of a non-symplectic automorphism is well-known, e.g. [1-2, 14].
By analyzing the fixed locus of non-symplectic automorphisms of G from the branch divisor
of the quotient map, we will reconstruct G from the branch divisor of the quotient map. In
Section 4, we will investigate the relationship between a branch divisor and exceptional divisors
of blowups. Based on the above results, we will obtain our second main result.

Theorem 1.4 Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X) such
that the quotient space X /G is smooth. Then G is one of AG as a group. Conversely, for every
G € AG, there is a K3 surface X' and a finite Abelian subgroup G’ of Aut(X") such that X' /G’
is smooth and G' =2 G as a group.

Furthermore, in Section 3, for a Hirzebruch surface F, and an effective divisor B on F,,
we will give a necessary and sufficient condition for the existence of a finite Abelian cover
f:+X — T, such that X is a K3 surface and the branch divisor of f is B. In other words, we
will solve a part of the Fenchel’s problem for Hirzebruch surfaces. In addition, we will decide
the Galois group and give the way to construct f : X — F,, from the pair F,, and B.

Theorem 1.5 Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X) such
that the quotient space X /G is isomorphic to F,,. Then G is one of AG,, as a group. Conversely,
for every G € AG,,, there is a K3 surface X' and a finite Abelian subgroup G’ of Aut(X') such
that X' /G’ is isomorphic to F,, and G' = G as a group.

Subsequently, we will get a similar result for Enriques surfaces.

Definition 1.2 We use the following notations:

AG(E) Z)27°%°, 7./AZ%?%, 7.)22%7 & 7./A7, 7.JA7 © 7./8Z
) ra=2,3,4, f=1,2 ’

AGoo(E) := {Z/22%% : a=2,3,4},

7./27.°%, 7.J47%?, 7./22.%7 @ 7./ATZ
AGO( ) :{ )
ca=2,3,4, f=1,2
7./27.%%, 7,/22%F @ 7,/A%, 7.JAT. ® 7./87.
AGH (B) :{ / / / / / ’
ca=2,3,4, f=1,2
AGo(E) == {Z/22%, Z/4Z®?, Z/22%* ® Z/AZ: a = 2,3},
AG4(E) := { /228 Z/AL} .
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Then AG(E) = U AG,(E). Let E be an Enriques surface and H be a finite
n=0,1,2,4,00

Abelian subgroup of Aut(F) such that E/H is smooth. Let X be the K3-cover of E, and
G :={s € Aut(X) : s is a lift of some h € H}. Then G is a finite Abelian subgroup of Aut(X),
G has a non-symplectic involution whose fixed locus is empty, and X/G = E/H. The case of
E/H = P? was studied in [7]. By analyzing the groups of Theorem 1.4, we get the following
theorems.

Theorem 1.6 Let E be an Enriques surface and H be a finite subgroup of Aut(FE) such that
the quotient space E/H is smooth. If there is a birational morphism from E/H to a Hirzebruch
surface F,,, then 0 < n < 4. In particular, if the quotient space E/H is a Hirzebruch surface
F,, thenn =0,1,2,4.

Theorem 1.7 Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E)
such that the quotient space E/H is isomorphic to F,,. Then H is one of AG,(E) as a group.
Conversely, for every H' € AG,(FE), there is an Enriques surface E' and a finite Abelian
subgroup H' of Aut(E") such that E'/H’ is smooth and H' = H as a group.

Theorem 1.8 Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E)
such that the quotient space E/H is smooth. Then H is one of AG(E) as a group. Conversely,
for every H € AG(FE), there is an Enriques surface E' and a finite Abelian subgroup H' of
Aut(E’) such that E'/H' is smooth and H' = H as a group.

Section 2 is preliminaries. In Subsection 3.1, we will give examples for pairs (X', G’)
described in Theorem 1.4. In other words, we will show that for each G € AG, where
n=0,1,2,3,4,6,8,12, there is a pair (X', G’), where X' is a K3 surface and G’ is a finite A-
belian subgroup of Aut(X’) such that G = G’ as a group and X’/G’ = F,,. Furthermore, we will
give the way to construct (X', G’), and we will show that the way to construct (X', G') is unique-
ly determined up to isomorphism from the branch divisor of the quotient map p : X’ — X'/G".
In Subsection 3.2, we will describe branch divisors and Abelian groups for the case where the
quotient space is a Hirzebruch surface. In Section 4, first, we will show Theorems 1.1-1.2. Next,
we will show that for a pair (X, G) where X is a K3 surface and G is a finite Abelian subgroup,
if X/G is smooth, then G is isomorphic to one of AG as a group. In Section 5, we will show
Theorems 1.6-1.8.

2 Preliminaries
We recall the properties of the Galois cover.

Definition 2.1 Let f : X — M be a branched covering, where M is a complex manifold
and X is a normal complex space. We call f : X — M the Galois cover if there is a subgroup
G of Aut(X) such that X/G 2 M and f : X — M is isomorphic to the quotient map p: X —
X/G= M. We call G the Galois group of f: X — M. Furthermore, if G is an Abelian group,
then we call f : X — M the Abelian cover.

Definition 2.2 Let f : X — M be a finite branched covering, where M is a complex
manifold and X is a normal complex space and A be the branch locus of f. Let By,--- , Bs be
wrreducible hypersurfaces of M and positive integers by, --- ,bs, where by > 2 fori =1,--- 5.
If A = By U---UB;s and for every j and for any irreducible component D of f~(B;) the
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S

ramification index at D is b;, then we call an effective divisor B := > b;B; the branch divisor
i=1

of f.

Let X be a normal projective variety and G be a finite subgroup of Aut(X). Let Y := X/G
be the quotient space and p : X — Y be the quotient map. The branch locus, denoted by A
is a subset of Y given by A :={y € Y | [p~(y)| < |G|}. It is known that A is an algebraic
subset of dimension dim (X) — 1 if Y is smooth (see [19]). Let {B;};_; be the irreducible
components of A whose dimension is 1. Let D be an irreducible component of D of p~!(B;)
and Gp := {9 € G : gp = idp}. Then the ramification index at D is b; := |Gp|, and the
positive integer b; is independent of an irreducible component of pt (Bj). Then b1B1+- - -+b, B,
is the branch divisor of G. We state the facts (Theorems 2.1-2.2) of the Galois cover theory
which we need.

Theorem 2.1 (see [12]) For a complex manifold M and an effective divisor B on M, if
there is a branched covering map f : X — M where X is a simply connected complex manifold
X and the branch divisor of f is B, then there is a subgroup G of Aut(X) such that X/G = M
and [ : X — M is isomorphic to the quotient map p : X — X/G = M. Furthermore, a pair
(X, G) is a unique up to isomorphism.

Theorem 2.2 (see [12]) For a complex manifold M and an effective divisor B := Y b;B;

=1
on M, where B; is an irreducible hypersurface fort =1,--- . n. Let f: X — M be a branched
cover whose branch divisor is B and where X is a simply connected complex manifold. Then

for a branched cover g : Y — M whose branch divisor is ) b;B; and b} is divisible by b; and
=1

m < n, there is a branched cover h: X —Y such that f = goh.

Let X be a K3 surface and G be a finite subgroup of Aut(X) such that X/G is smooth.
Since K3 surfaces are simply connected, G is determined by the branch divisor of the quotient
map p: X — X/G from Theorem 2.1. In order to classify finite Abelian groups G which act on
K3 surfaces and the quotient space is smooth, we will search a smooth rational surface S and
an effective divisor B on S such that there is a K3 surface and a finite subgroup G of Aut(X)
such that X/G = S and the branch divisor of the quotient map p : X — X/G is B. There is
the problem which is called Fenchel’s problem.

Problem 2.1 Let M be a projective manifold. Give a necessary and sufficient condition on
an effective divisor D on M for the existence of a finite Galois (resp. Abelian) cover 7 : X — M
whose branch divisor is D.

The Fenchel’s problem was originally for compact Riemann surfaces and was answered by
Bundgaard-Nielsen [4] and Fox [5].

k

Theorem 2.3 (see [4-5]) Let k > 1 and let D := Y mxz; be a divisor on a compact
i=1

Riemann surface M where x; € M and m; € Z for i =1,--- k. Then there is a finite Galois

cover p: X — M such that the branch divisor of p is D except for
(i) M =P and k=1, and
(i) M =P, k=2 and my # mao.
Furthermore, for the case M = P!, there exists a finite Abelian cover P! — P! whose branch
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divisor is D if and only if
(i) k =2 and mq = mq or
(ii) k =3 and my = mg = ms = 2.

In order to study the cover of the Galois cover X — X /G, the following theorem is useful.
Theorem 2.4 Let X be a smooth projective variety, and G be a finite subgroup of Aut(X)

such that X/G is smooth. Let p: X — X/G be the quotient map, and B :=b1B1 + --- + b, B,
be the branch divisor of p. Then

Kx =p" KX/G"’Z b P "B,
i=1

where Kx (resp. Kx/q) is the canonical divisor of X (resp. X/G).

Let X be a K3 surface and G be a finite subgroup of Aut(X) such that X/G is smooth,
and B be the branch divisor of the quotient map p : X — X/G. The canonical line bundle of
a K3 surface is trivial. By Theorem 2.4, the branch divisor is restricted in the Picard group of
the smooth rational surface X /G, i.e., B must satisfy

—1,
Kxjq+ Z ;—Bi=0 in Picg(X/G).
i=1

In Subsection 3.1, we will show that for a Hirzebruch surface F,,, if F,, has an effective divisor

B = Z b;B;, where B; is an irreducible curve and b; > 2 fori = 1,--- | k, such that Z bL 1B +

1=

Ks = 0 in Picg(F,,), then 0 < n < 12. In Section 4, we will show Theorem 1.1 by using Theorem
2.4.
The following theorem is important for checking the structure of G from the branch divisor.

Theorem 2.5 (see [17]) For a K3 surface X and a finite subgroup G of Aut(X) such that
k
X/G is smooth. Let B := Y b;B; be the branch divisor of the quotient map p : X — X/G.

i=1
!

We put p*B; = E b;Ci,j where Cy j is an irreducible curve for j =1,--- 1. Let Go, , == {g €
i=

G: gqc,, =ido,, } and G; be a subgroup of G, which is generated by Gc,,, -+ ,Gc,,, and

I C{l,---,k} be a subset. Then, the following holds.
(i) If (X/G)\ Uier B; is simply connected, then G is generated by {G;}jcq1,... ky\I-
(ii) Go, ; 2 Z/biZ and Gc, ; is generated by a purely non-symplectic automorphism of order
b;.
1
(ili) If G is Abelian, then there is an automorphism g € G such that |J C;; C fix(g), and

Jj=1
hence C; ; are pairwise disjoint.

(iv) If the self-intersection number (B; - B;) of B; is positive, then | = 1, and hence G; is
generated by a purely non-symplectic automorphism of order b;.
Proof We will show (i). We assume that (X/G)\ | B; is simply connected. Let H be the
i€l
subgroup of G which is generated by {G;}jeq1,... xp1, and Xo := X\ J p~(B;). Then G and

i€l
H act on Xj. We assume that G # H. Let Y := Xy/H be the quotient space, and G’ := G/H.
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Then G’ acts faithfully on Y, Y/G' = (X/G)\ U B;, and the branch locus of Y — Y/G’
i€l
is a finite set. Since (X/G)\ |J B; is smooth and simply connected, this is a contradiction.
icl
Therefore, G is generated by {G} ecq1,... k}\1-
Since X is a K3 surface, an automorphism whose fixed locus contains a curve can only be
purely non-symplectic. Therefore, by the definition of the ramification index b;, we get (ii).
We will show (iii) and (iv). Since B; is contained in the branch locus, we get p~1(B;) =
1
U Ci; € U fix(g). Since G is finite, for each j, there is s; € G such that C; ; C fix(s;). Since
Jj=1 geG
B; is irreducible, we get that p(C; ;) = p(Ci ) for 1 < j < k <. Therefore, there is t € G such
that t(Oi_’j) = Ci,k- Since Ci)j C ﬁX(Sj) and t(Ci)j) = Oi,k, we obtain that Ci,k C ﬁX(tOSjOt_l).
Since G is Abelian, we have s; = tos;ot~!. We get (iii). If the self intersection number (B; - B;)
of B; is positive, then by Hodge index theorem, we get [ = 1. By (ii), G; = Z/b;7Z is generated
by a purely non-symplectic automorphism of order b;.

Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X) such that X/G is
k
smooth and B := Y b;B; be the branch divisor of the quotient map p : X — X/G. If k =1,

then by Theorem Z2.15, G = Gp, 2 Z/b1Z. We assume that k = 2. By Theorem 2.5, G is
generated by Gp, = Z/017Z and Gp, = Z/bsZ. Moreover, we assume that the intersection
By N By of By and By is not an empty set. Since By N By # 0, p~1(B1) N p~1(B2) # 0.
Since the fixed locus of an automorphism is a pairwise disjoint set of points and curves, we get
Gp, NGp, = {idx}. Therefore, G = Gp, ® Gp,, but in the case of k > 3 it is not necessary
G:éGBi evenif B;NB; #0for1 <i<j<k.

i=1

1
For an irreducible component B; of B we write p*B; = »_ b;C; where C; is a smooth
j=1
curve for j = 1,--- 1. Since the degree of p is |G|, by (iv) of Theorem 2.5, we get that
|G|(B; - B;) = b21(C;-Cj) for j =1,--- 1. If the self-intersection number (B;)? of B; is positive,
then by (iv) of Theorem 2.5, we get that [ = 1 and the genus of C is 2 or more. If (B;)?

is zero, then Cy,---,C; are elliptic curves. If (B;)?2

is negative, then Cy,--- ,C} are rational
curves. Recall that there is ¢ € G such that g is a non-symplectic automorphism of order
b; and C1,---,C; are contained in Fix(g). There are many results on the number of curves,
the genus of curves, and the number of isolated points of the fixed locus of a non-symplectic
automorphism. We use them to search B such that there is a Galois cover f : X — S such
that X is a K3 surface and the branch divisor of f is B and we use them to restore G from B.

Here S is a smooth rational surface and B is an effective divisor on S.

3 Abelian Groups of K3 Surfaces with Hirzebruch Surfaces

k
Here, we give the list of a numerical class of an effective divisor B = Y b;B; on F,, such
i=1

=1 B; = 0 in Picg(F,).

k
that B; is a smooth curve for each i = 1,--- ,k and Ky, + >
i=1

Definition 3.1 For a Hirzebruch surface IF,, where n € Z>q, we take two irreducible curves
C and F such that Pic(F,) = ZC®ZF, (C-F) =1, (F-F) =0, (C-C) = —n and
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Kp, = —2C — (n+ 2)F in Pic(F,) = ZC ® ZF. Notice that for n = 0, C = priOpi(1) and
F = pr;Opi(1), and for n > 1, C is the unique curve on [, such that the self-intersection
number is negative, and F' is the fibre class of the conic bundle of F,,.

Lemma 3.1 Let F,, be a Hirzebruch surface where n # 0 and C' C F,, be an irreducible
curve. Then one of the following holds:

(1o =cC.

(2) C" = F in Pic(F,).

(3) C" = aC + bF where a > 1 and b > na.

Definition 3.2 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that
l
X/G = TF,. Let B := > b;B; be the branch divisor of the quotient map p : X — X/G. For

i=1

each B;, there are integers oy, B; such that B; = a;C + 5;F in Pic(F,,). We call

l

> bi(aiC + BiF)

i=1
as the numerical class of B.

Proposition 3.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that
X/G=T,. Then 0 <n <12.

Proof We assume that X/G = F,, where n > 1. Let B be the branch divisor of the quotient
k l
map p: X — X/G. Wewrite B := > b;B; + >_ 0B} such that B; # I! and B = F in Pic(F,,)
j=1

i=1
fori=1,---,kand 7 =1,---,[. Since the canonical line bundle of a K3 surface is trivial and

Pic(F,,) is torsion free, by Theorem 2.4, we get that

l
O—K]Fn-‘rz b Z 3 B} in Pic(Fy).

i=1

Since B; is an irreducible curve for i = 1, - - - | k, there are integers ¢;, d; such that B; = ¢;C+d; F
in Pic(F,,) and (¢;,d;) = (1,0) or d; > ne; > 0. By Ky, = —2C—(n+2)F in Pic(F,,) = ZCDZF,
we get that

k
bl

b; —1 b' —1
n—+2 Z .
1=1
Since b; > 2, § < bb_l < 1. Since 2 = Zl bi— 2101 = 3 or 4. By a simple calculation,
k
we get that (i) > ¢ = 4 if and only if b = -+ = b, = 2, and (ii) if Zci = 3, then

i=1 i=1
(b1, ,bg;c1, -+ ,c) where ¢; < --- < ¢ is one of (3;3), (2,4;1,2), (3,3;1,2), (2,3,6;1,1,1),
(2,4,4;1,1,1) and (3,3,3;1,1,1).
We assume that (¢;,d;) # (1,0) for i = 1,--- |k, i.e.,, C is not an irreducible component of

k Lo
B. Since d; > nc; fori=1,--- k, by 2= 3 2= 1cl and n+2 = Z%—fldi+ > bjb—,l,weget
; =08

i=1 1=1
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1o, ;o
that n +2>2n+ > bjb,_l. Since b'ib4l >0, weget0<n<2.
j=1 J i

We assume that (¢;,d;) = (1,0) for some 1 <14 < k, i.e., C is an irreducible component of B.

For simplify, we assume that ¢ = 1. In the same way as above, we get that n+2 > n(2 — blb—:l).
Since 2 < by < 6, we obtain 0 < 12 < n.

Notice that by simple calculations, there are not a K3 surface X and a finite subgroup G
of Aut(X) such that X/G = F; for | = 10, 11.

k
In Section 6, we will give the list of a numerical class of an effective divisor B = Y b;B; on
i=1

b=l B, = 0 in Pic(F,,).

F,, such that B; is a smooth curve for each i = 1,--- ,k and Kg, + Y, 5

K2

k
=1

3.1 Abelian covers of a Hirzebruch surface by a K3 surface

Let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G is a
Hirzebruch surface F,,, and B be the branch divisor of the quotient map p : X — X/G. In
this section, we will decide the numerical class of B. Notice that since G is Abelian and the
quotient space X /G is smooth, the support of B and that of p* B are simple normal crossing.

Furthermore, we will show that the structure as a group of G depends only on the numerical
class of B by Theorem 2.5, and we will give the way to construct X and G which depends only
on the numerical class of B by Theorem 2.1 and the cyclic cover. As a result the following will
follow. For each G € AG,, where n =0,1,2,3,4,6,8,12, there is a pair (X,G’) where X is a
K3 surface and G’ is a finite Abelian subgroup of Aut(X) such that G = G’ as a group and
X/G" = TF,. In [9], the case where G 2 Z /27 is studied.

Theorem 3.1 (see [3, Chapter I, Section 17]) Let M be a smooth projective variety, and
D be a smooth effective divisor on M. Then if the class Op(D)/n €Pic(M), then there is the
Galois cover f : X — M whose branch divisor is nD and the Galois group is isomorphic to
Z/nZ as a group.

For n > 0, a Hirzebruch surface F,, is isomorphic to a variety F,, in P* x P2,
Fo={([Xo: X1],[Yo: Y1:Ya]) € P! x P*: XYy = X]'V1}.

From here, we assume that F,, = F,,. The first projection gives the fibre space structure
f :F,, — P! such that the numerical class of the fibre of f is F, and

C={(Xo: X1],[Yo:Y1:Ys]) €F,: Yo =Y; =0}

is the unique irreducible curve on [F,, such that the self-intersection number is negative. Let a
and b be positive integers such that b > na. Furthermore, we put

F(Xo, X1,Y0,Y1,Ys) := > tij R XX ety Jy by pmi=k

0<i<b—na,0<j,k<a,j+k<a

where ¢; 5 € C, and
BF = {([XQ : Xl], [YO : Yl : YQ]) S Fn : F(XQ,Xl,Yo,Yl,}/g) == 0}

If B is an irreducible curve of F,,, then Brp = aC + bF in Pic(F,,).
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Let g, and g,, be automorphisms of P! which are induced by matrixes

(0 1 (1 0
gl A 1 0 9 gm L 0 Cm 9

where (,,, is an m-th root of unity m > 2. Then (g1, g2) = Z/2Z%?, and (g,,) = Z/mZ for
m > 2. Here for a subset S of group G, (S) is the subgroup of G which is generated by S. Then

P! =P'/(g1,92) and P'=P'/(gn),

and the quotient maps are isomorphic to

P!> [20: 21) = [(28 +28)%: (25 — 2D)?] € P and P! 3 [2: 21] > [20: 2] € P

for m > 2, and the branch divisors are
2xg + 221 + 222 and mxo + maq,

where 2o :=[1:0], 21 :=[0:1] and x9 :=[1 : 1].

The above Galois covers Pt — P! /(gy, g2) = P! and P! — P!/(g,,) = P! naturally induce
the Galois covers of P! x P! and IF,, whose Galois groups are induced by g,, for m > 2. We will
explain in a bit more detail for IF,,. For P* — P! /{(gy, g2), let P! xp1 IF,, be the fibre product of
P! — PY/{g1,92) and f : F,, — PL. Let p : P! xp1 F,, — F,, be the natural projection of the
fibre product. Then

P! xp1 F,, 2 Fyp,

and p : P! xp1 F,, = F,, is the Galois cover such that the branch divisor of p is
2F 4+ 2F + 2F in Pic(F,,),

and the Galois group is isomorphic to Z/2Z%? as a group, which is induced by (g1, g2). Let C,
be the irreducible curve on F,, such that the self-intersection number is negative and F,, is the
numerical class of the fibre F,, — P! for m > 1. Then

p*C, =Cy, and p*F, =4Fy, in Pic(Fy,).

For P! — P /(gy), let P! xp1 IF,, be the fibre product of P! — P! /(g,,) and f : F,, — P'. Let
p: P! xp1 F,, = F,, be the natural projection of the fibre product. Then

P! xp1 F,, 2 Foom,
p: P! xp1 F,, — F, is the Galois cover such that the branch divisor of p is
mF +mF in Pic(F,),
and the Galois group is isomorphic to Z/mZ as a group, which is induced by (g,,), and
p*Cp =Cpn and p*F, =mF,, in Pic(F,,).

Definition 3.3 From here, we use the notation that B;’fj (or simply B; ;) is a smooth curve
on IFy, such that Bffj =iC + jF in Pic(F,,) for n >0, where k € N.
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Proposition 3.2 For each numerical classes (6.1)~(6.3) of the list in Section 6, there is a
K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G = P! x P and the
numerical class of the branch divisor B of the quotient map p : X — X/G is (6.1)—(6.3).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of
Aut(X), if X/G =2 P! x P! and the numerical class of the branch divisor B of the quotient map
p: X — X/G is (6.1)~(6.3), then G is isomorphic to Z/37, 7./3Z%%, 7./3Z%3, in order, as a
group.

Proof Let Bs 3 be a smooth curve on P! x P!. Then the numerical class of 3Bs 3 is (6.1).
By Theorem 3.1, there is the Galois cover p : X — P! x P! such that the branch divisor is
3Bj3 3 and the Galois group is Z/3Z as a group. By Theorem 2.4, the canonical divisor of X is a
numerically trivial. By [18], X is not a bi-ellitptic surface. By [8], X is not an Abelian surface.
If X is an Enriques surface, then there is the Galois cover ¢ : X’ — P! x P! such that X' is a
K3 surface, the Galois group is Z/27 @ 7/3Z as a group, and the branch divisor is 3Bs 3. By
Theorem 2.5, this is a contradiction. Therefore, X is a K3 surface.

In addition, let (X', G') be a pair of a K3 surface X' and a finite Abelian subgroup G’ of
Aut(X') such that X’/G’ = P! x P! and the numerical class of the branch divisor B’ of the
quotient map p’ : X’ — X'/G" is (6.1). By Theorem 2.5, G' = 7Z/37Z as a group. Since the
support of B’ is smooth, there is a smooth curve Bj 3 such that B’ = 3Bj ;. Then by the
above discussion, there is the Galois cover f : X — P! x P! such that X is a K3 surface, the
branch divisor is B’, and the Galois group G is Z/3Z as a group. Since a K3 surface is simply
connected, by Theorem 2.1, the pair (X', G’) is isomorphic to the pair (X, G).

Let Bf o, Bf y and By 3 be smooth curves on P* x P* such that Bi ; + Bf ; + By 3 is simple
normal crossing. Then the numerical class of 3B o + 3B+ 3B 3 is (6.2). Let p: P! x P! —
P! x P! be the Galois cover such that the branch divisor is 3B} ; +3Bj , and the Galois group
is Z/3Z as a group, which is induced by the Galois cover P! 3 [z : 21] = [z : 23] € PL. Since
Bl o+ B} o+ By s is simple normal crossing, p*Bj 3 is a reduced divisor on P' x P! such that
whose support is a union of pairwise disjoint smooth curves, and p* By 3 = (3, 3) in Pic(P! x P).
As for the case of (6.1), there is the Galois cover ¢ : X — P! x P! such that X is a K3 surface,
the Galois group is Z/3Z as a group, and the branch divisor is 3p*Bj 3. Then the branched
cover poq: X — P! x P! has 3Bj ; + 3B} + 3B1,3 as the branch divisor. Since X is simply
connected, by Theorem 2.1, po ¢ is the Galois cover. Since the degree of poq is 9, by Theorem
2.5, the Galois group of p o q is Z/3Z%? as a group.

Conversely, for a K3 surface X and a finite Abelian subgroup G of Aut(X) such that
X /G = P! xP! and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.2). By the above discussion, G isomorphic to Z/3Z%? as a group, and X — X/G is given
by the composition of the Galois cover X — P! x P! whose numerical class of the branch
divisor is (6.1) and the Galois cover p : P! x P! — P! x P! which is induced by the Galois cover
Pt > [20: 21] = [28 : 23] € PL.

As for the case of (6.2), we get the claim for (6.3). In this case, the Galois group is Z/3Z%3
as a group. Furthermore, let X be a K3 surface and G be a finite Abelian subgroup of Aut(X)
such that X/G = P! x P! and the numerical class of the branch divisor B of G is (6.3). As for
the case of (6.2), X — X/G is given by the composition of the Galois cover X — P* x P! whose
numerical class of the branch divisor is (6.1) and the Galois cover p : P! x P! — P! x P! which is
isomorphic to the Galois cover p : P xP! 5 ([z0 : 21], [wo : w1]) = ([28 : 23], [wd : wi]) € P xPL.
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For (6.1), we obtain an example if we use a curve Bs 3 in P! x P! given by the equation
Bsz: zowp + zow? + 23wi 4+ 22303 = 0.
For (6.2), we obtain an example if we use curves B})O, 312,0, B 3 in P x P! given by the equations
B%)O 120 =0, B%,O 121 =0, Bis:zws+ zows + 2w + 22w = 0.

For (6.3), we obtain an example if we use curves B})O, 312,0, By 1, Bé)l, Bg)l in P! x P! given by
the equations

1 2
Biy:20=0, Bjig:z1=0, Bii:zowo+ zowr + z1wp+ 2z1w1 = 0,

1 _ 2 —
By, :wo=0, Bj;:w =0.

Corollary 3.1 For each numerical classes (6.194), (6.83) and (6.302), (6.251), (6.201),
(6.84) of the list in Section 6, there is a K3 surface X and a finite Abelian subgroup G of
Aut(X) such that X/G = F,, and the numerical class of the branch divisor B of the quotient
map p: X — X/G is (6.194), (6.83) and (6.302), (6.251), (6.201), (6.84).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G =T, and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.194), (6.83) and (6.302), (6.251), (6.201), (6.84), then G is Z/3Z, Z/2Z ® Z/3Z, /3L,
Z)27. & 7)3L, 7.]37%2, Z./)27 & Z/3Z%2, in order, as a group.

Proof In the same way as Proposition 3.2, we get this corollary. More specifically, let X
be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G = F,,, and B be the
branch divisor of the quotient map p: X — X/G. Then we get the following.

i) If the numerical class of B is one of (6.194), (6.302), then X — X /G is given by Theorem
3.1.

ii) If the numerical class of B is (6.83), then X — X/G is given by the composition of the
Galois cover X’ — Fo whose numerical class of the branch divisor is (6.194) and the Galois
cover F; — F; which is induced by the Galois cover P! — P! of degree 2.

iii) If the numerical class of B is one of (6.251), (6.201), (6.84), then X — X/G is given
by the composition of the Galois cover X’ — g whose numerical class of the branch divisor is

(6.302) and the Galois cover Fg — F,,, which is induced by the Galois cover P! — P! of degree
6

_
For (6.194), we obtain an example if we use a curve Bs g in Fy given by the equation

B316 N Y03 + Y13 + }/23 = O
For (6.83), we obtain an example if we use curves Bs 3, B&l, 3371 in F; given by the equations
Bis:Y§+YP+Y3 =0, Bi,:Xo=0, B, :X;=0.

For (6.302), we obtain an example if we use a section C' and a curve Bs 12 in Fg given by the
equation
B2112 : }/02 + Y12 + }/22 =0.



Finite Abelian Groups of K3 Surfaces 111

For (6.251), we obtain an example if we use a section C' and curves Bs g, Bé)l, Bg)l in F3 given
by the equations

Byg: Yy + Y +Yy =0, cBj,:Xo=0, Bj,:X1=0.

For (6.201), we obtain an example if we use a section C' and curves By 4, Bj 1, Bf ; in Fy given
by the equations

Byy:Y§+Y 4+Yy =0, Bj,:Xo=0, Bj,:X;=0.

For (6.84), we obtain an example if we use a section C' and curves By, Bf 1, B3 | in Fy given
by the equations

Boo: Yy + Y2 4+Yy =0, Bj,:Xo=0, Bj,:X;=0.

Proposition 3.3 For each numerical classes (6.4)—(6.13) of the list in Section 6, there are
a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G = F,, and the
numerical class of the branch divisor B of the quotient map p: X — X/G is (6.4)—(6.13).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of
Aw(X), if X/G = F,, and the numerical class of the branch divisor B of the quotient map
p: X = X/G is (6.4)—(6.13), then G is Z/2Z, 7,)27.92, 7,)27.93, 7./ 2.8 L/AZ, T.)2L.&7,/AZ9?,
7)22%% & ZJAZ, 7.)2723, 7.)22.%°, 7.)27%4, 7./273 ® ZJ4AZ, in order, as a group.

Proof In the same way as Proposition 3.2, we get this proposition. More specifically, let
X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G = F,,, and B be
the branch divisor of the quotient map p : X — X/G. Then we get the following.

(i) If the numerical class of B is (6.4), then X — X/G is given by Theorem 3.1.

(ii) If the numerical class of B is one of (6.5)—(6.13), then X — X/G is given by the
composition of the Galois cover X — P! x P! whose numerical class of the branch divisor is
(6.4) and the Galois cover P! x P! — P! x P! which is induced by the Galois cover P! — P!

For (6.4), we obtain an example if we use a curve By 4 in P! x P! given by the equation
By (24 4 2D)(wi + w) + 222 22w w? = 0.
For (6.5), we obtain an example if we use curves Bj o, B} o, B2,4 in P! x P! given by the equations

Big:izg=0, Big:iz1=0, Baa:(z5+27)(wj+wi)+ 22z wiwi = 0.

For (6.6), we obtain an example if we use curves B}_’O, B%_’O, B 9, Bé_rl, Bg,l in P! x P! given by
the equations

B%,o i 29 =0, Bio :21=0, Bago: (2(2) + zf)(wg + w%) + 2z9z1wowy = 0,
Bé,l LWy = O, 3871 LW = 0.
For (6.7), we obtain an example if we use curves B})O, 312,0, Bs 4 in P x P! given by the equations

Big:iz0=0, Big:z1=0, Bys:(z0+21)(wg+wi)+ (20— 21)wiwi =0.
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For (6.8), we obtain an example if we use curves Bll)o, B12)0, By 1, Bé)l, Bg)l in P! x P! given by
the equations

B%,o 129 =0, Bio :21=0, Bii:(z0+21)(wo+wi)+2(z0 — z1)(wo —wy) =0,
Bé)l two =0, Bal cwy = 0.

For (6.9), we obtain an example if we use curves B}_’O, B%_’O, B 9, Bé_rl, Bg,l in P! x P! given by
the equations

BiO L2 = 0, BiO L2 = 0, BLQ(ZQ + 21)(1128 + ’LU%) + (Z() — zl)wowl,

1. — 2 . —
BO,l LWy = O, Bo71 LW = 0.

For (6.10), we obtain an example if we use curves B o, Bf g, Bf 5, B1,4 in P! x P! given by the
equations
B%,O L 20 = 0, B%,O 121 = O, B?,O 20— k1 = 0,

Bia: (20 + zl)(wé + w‘f) +2(z0 — zl)(wé - wil) =0.

For (6.11), we obtain an example if we use curves BY o, Bf o, BY 5, B1,1, B 1, B3 1, Bi | in P* x P!
given by the equations

1 . _ 2 . — 3 . —
Bl,O-ZO—Oa Bl,o-zl—(), Bl)O-ZO_Zl_Oa

Bl71 : (ZQ — 221)’[1}0 + (22’0 + zl)wl =0,
Bé)l two =0, Bg,l cwyp =0, Bg’)l two —wy =0,

For (6.12), we obtain an example if we use curves Bj o, B} o, B} o, B1,2, Bj 1, Bg, in P! x P!
given by the equations

1 . — 2 — 3 . —
Bl)O.ZQ—O, Bl’O.Zl—O, Bl)O.ZQ—Zl—O,

Bi: (20 — 2z1)wi + (220 + z1)wi =0, B, :wo =0, B, :w; =0.

For (6.13), we obtain an example if we use curves B}_’O,B%_’O,Bfo,Blyl,Béﬂl,BS)l in P! x P!
given by the equations

1 . _ 2 . — 3 . —
Bl,O-ZO—Oa Bl,o-zl—(), Bl)O-ZO_Zl_O;

By (z0 — 221)wo + (220 + 21)w1 =0, B&l s wo =0, Bg,l cwp = 0.

Corollary 3.2 For each numerical classes (6.79) and (6.195), (6.85) and (6.277), (6.202),
(6.86), (6.87) of the list in Section 6, there is a K3 surface X and a finite Abelian subgroup G
of Aut(X) such that X/G =2 TF,, and the numerical class of the branch divisor B of the quotient
map p: X — X/G is (6.79) and (6.195), (6.85) and (6.277), (6.202), (6.86), (6.87).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of
Aut(X), if X/G =2 F,, and the numerical class of the branch divisor B of the quotient map
p: X — X/G is (6.79) and (6.195), (6.85) and (6.277), (6.202), (6.86), (6.87), then G is Z/27Z,
)27, 12292, 7.)27, 7.]27%°2, 7.]27 & L)AL, 7./]27%3, in order, as a group.
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Proof In the same way as Proposition 3.2, we get this corollary. More specifically, let X
be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G = F,,, and B be the
branch divisor of the quotient map p: X — X/G. Then we get the following.

i) If the numerical class of B is one of (6.79), (6.195), (6.277), then X — X/G is given by
Theorem 3.1.

ii) If the numerical class of B is one of (6.85), then X — X/G is given by the composition of
the Galois cover X — Fy whose numerical class of the branch divisor is (6.195) and the Galois
cover Fy — F; which is induced by the Galois cover P! — P! of degree 2.

iii) If the numerical class of B is one of (6.202) , (6.86), (6.87), then X — X/G is given
by the composition of the Galois cover X — F4 whose numerical class of the branch divisor is

(6.277) and the Galois cover Fy — F,, which is induced by the Galois cover P! — P! of degree
4
For (6.79), we obtain an example if we use a curve By g in Fy given by the equation

By : XZYH + X3V + Xo X1 Yy = 0.
For (6.195), we obtain an example if we use a curve By g in Fo given by the equation
Byg: Yy + Y+ Y5 = 0.
For (6.85), we obtain an example if we use curves By 4, B&l, 3371 in ¥y given by the equations
Bia Yy +Y{+Ys =0, Bj,:Xo=0, B}, :X;=0.

For (6.277), we obtain an example if we use a section C' and a curve Bs 12 in Fy given by the
equation
Byio: Y3+ Y2 +Y] =0.

For (6.202), we obtain an example if we use a section C' and curves Bs g, Bé_rl, Bg,l in Fy given
by the equations

Bsg: Y3 +Y? +Y5 =0, Bj,:Xo=0, Bj,:X1=0.

For (6.86), we obtain an example if we use a section C' and curves Bs 3, Bé)l, Bg)l in [F; given
by the equations

Bys: Yg +Y?+Y5 =0, Bj,:Xo=0, Bj,:X1=0.

For (6.87), we obtain an example if we use a section C' and curves Bs s, Bé_rl, Bg_rl, Bg,l in Iy
given by the equations

Bss: Yy +Y +Yy =0, Bj,:Xo=0, Bj,:X1=0, Bj;:Xo—X;=0.

Proposition 3.4 For each numerical classes (6.14)—(6.16) of the list in Section 6, there
are a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G = F,, and the
numerical class of the branch divisor B of the quotient map p: X — X/G is (6.14)—(6.16).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G 2T, and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.14)—(6.16), then G is Z/27%2%, 7.J27.%3, 7./27%*, in order, as a group.
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Proof Let 32172, B§72 be smooth curves on P! x P! such that B%)Q + B§72 is simple normal
crossing. Then the numerical class of 2Bj, + 2B3, is (6.14). Since B}, = (2C + 2F) in
Pic(P! xP), by Theorem 3.1, there are the Galois covers p; : X; — P! x P! such that the branch
divisor of p; is 2B§)2 for i = 1,2 and the Galois group of p; is isomorphic to Z/2Z as a group
for i = 1,2. Since B}, + B3, is simple normal crossing, the fibre product X := X1 xp1,p1 X
of p1 and p» is smooth. Therefore, there is the Galois cover p : X — P! x P! such that X is
a K3 surface, the Galois group is isomorphic to Z/2Z%% as a group, and the branch divisor
is 232172 + 2B§)2. The rest of this proposition is proved in the same way as Proposition 3.2.
More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that
X/G = T,, and B be the branch divisor of G. Then we get the following.

(i) If the numerical class of B is (6.14), then X — X /G is given by Theorem 3.1 and the
fibre product.

(ii) If the numerical class of B is one of (6.15)—(6.16), then X — X/G is given by the
composition of the Galois cover X — P! x P! whose numerical class of the branch divisor is
(6.14) and the Galois cover P! x P* — P! x P! which is induced by the Galois cover P* — P*.

For (6.14), we obtain an example if we use curves Bj 5, B3 5 in P! x P! given by the equations

1 2,2 | 2, 2 2 2,2 2 2
B o zqwy + 2zjwy =0,  Bjo:zgwy + ziwy = 0.

For (6.15), we obtain an example if we use curves Bio, Bio, B]]:727 BiQ in P! x P! given by the
equations

I 2 ., 1. 2 2 _ 2 2 2 _
Big:20=0, Big:z1=0, Bj,:zowy+znwy=0, DBjzowi+zwy=0.

For (6.16), we obtain an example if we use curves B{ o, B} o, Bi 1, Bi 1, B}, Bj, in P! x P!
given by the equations

B%,O 129 =0, Biozl =0, B},l (20 — 22’1)’[1}0 + (220 + z1)w1 =0,

Bi, tzo(wo — 2wy) + z1(2wo +w1) =0, By, :we=0, Bjy:w =0.

Corollary 3.3 For each numerical classes (6.80) and (6.196), (6.89) and (6.197), (6.88)
and (6.279), (6.203), (6.90), (6.91) of the list in Section 6, there is are a K3 surface X and a
finite Abelian subgroup G of Aut(X) such that X/G = F,, and the numerical class of the branch
divisor B of the quotient map p : X — X/G is (6.80) and (6.196), (6.89) and (6.197), (6.88)
and (6.279), (6.203), (6.90), (6.91).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G 2T, and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.80) and (6.196), (6.89) and (6.197), (6.88) and (6.279), (6.203), (6.90), (6.91), then G is
Z)22%?, /272, 7,/22%3, 7,/22%?, 72233, 7,/222?2, 7,)22®3, 7/22%% & TJAZ, T/2Z*, in
order, as a group.

Proof In the same way as Proposition 3.2, we get this corollary. More specifically, let X
be a K3 surface, G be a finite Abelian subgroup of Aut(X) such that X/G = F,,, and B be the
branch divisor of the quotient map p : X — X/G. Then we get the following.

(i) If the numerical class of B is one of (6.80), (6.196), (6.197), (6.279), then X — X/G is
given by Theorem 3.1 and the fibre product.
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(ii) If the numerical class of B is (6.89), then X — X/G is given by the composition of
the Galois cover X — 3 whose numerical class of the branch divisor is (6.196) and the Galois
cover F; — F; which is induced by the Galois cover P! — P! of degree 2.

(iii) If the numerical class of B is (6.88), then X — X/G is given by the composition of
the Galois cover X — F5 whose numerical class of the branch divisor is (6.197) and the Galois
cover Fy — F; which is induced by the Galois cover P! — P! of degree 2.

(iv) If the numerical class of B is one of (6.203), (6.90), (6.91), then X — X/G is given
by the composition of the Galois cover X — F, whose numerical class of the branch divisor is
(6.279) and the Galois cover Fy — F; which is induced by the Galois cover P! — P! of degree
4.

For (6.80), we obtain an example if we use curves Bs 4, B2 2 in F; given by the equations

Boa: XgY? + X7Y7 + XoX1Yy =0, Byy: Y7 + Y7 +Y7 =0.
For (6.196), we obtain an example if we use curves B%A, B%A in Fy given by the equations
By, 2Yg + Y7 +Y; =0, B3, : Yy +Y2+2Y5 =0.

For (6.89), we obtain an example if we use curves B%)Q,B%Q,Bé)l,BS)l in F; given by the
equations
By 2V + Y2 +Y5 =0, Bj,: Y7+ Y7 +2Y5 =0,

Bi,:Xo=0, Bj,:X;=0.

For (6.197), we obtain an example if we use a section C' and curves By 2, By g in Fa given by
the equations

Bio:Yo+Y2 =0, Bag:XJY?+ X7V + (X§ +2X7)Y5 =0.

For (6.88), we obtain an example if we use a section C' and curves By 1, By 3, Bj 1, Bg , in Fy
given by the equations

Bi1:Yy+Ys =0, Bas:XoY?+ XYy + (Xo+2X1)Ys =0,

Biy:Xo=0, Bj,:X1=0.

For (6.279), we obtain an example if we use a section C' and curves By 4, By g in Fy given by
the equations
Biy:Yo+Yy=0, Bog:YZ+Y2+Y]=0.

For (6.203), we obtain an example if we use a section C' and curves By 2, Bz 4, B 1, B3 | in Fy
given by the equations

Bio:Yo+Ya=0, Boy:Y7+Y?+Y:=0,

Biy:Xo=0, Bj,:X1=0.

For (6.90), we obtain an example if we use a section C' and curves By 1, Bs 2, Bé)l, Bg)l in IFy
given by the equations

Bi1:Yo+Ys =0, Bao: Y7+ Y2+Y]=0,
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BO,l . XO — O, Bo71 . X]_ — O.

For (6.91), we obtain an example if we use a section C' and curves Bj 1, B 2, Béﬁl, Bgﬁl, Bgﬁl in
F; given by the equations

Bi1:Yo+Ys=0, Bas:Yi+Y24+Y]=0,
By,:Xo=0, Bj,:X1=0, B’:Xo—X;=0.

A lattice is a pair (L,b) of a free Abelian group L := Z%" of rank n and a symmetric
non-degenerate bilinear form b : L x L — 7Z taking values in Z. The discriminant group of L is
LY /L, where the dual LY := {m € L®Q | b(m,l) € Z for all [ € L} (here we denote by b the
Q linear extension of b). Let U be the hyperbolic lattice, and A,, and let F,, be the negative
definite lattices of rank n associated to the corresponding root systems.

Proposition 3.5 For each classes (6.17)—(6.18) of the list in Section 6, there is a K3
surface X and a finite Abelian subgroup G of Aut(X) such that X/G =2 TF,, and the numerical
class of the branch divisor B of the quotient map p: X — X/G is (6.17)—(6.18).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G =T, and the numerical class of the branch divisor B of the quotient map p: X — X/G
is (6.17)—(6.18), then G is Z/3Z%%, 7./3Z%2, in order, as a group.

Proof Let Bf,, B, and B}, be smooth curves such that B, + B} ; + B} | is simple
normal crossing. Since B} ; 4+ Bf | 4+ B} ; = (3C 4 3F) in Pic(P' x P'), by Theorem 3.1, there
is the Galois cover p' : X' — P! x ]P’1 such that the branch divisor is 3B{ ; +3B7 ; + 3B} | and
the Galois group is isomorphic to Z/37Z as a group. Since B}J + Bil + Bil is simple normal
crossing, singular points of X’ are rational double points. More precisely, the singular locus of
X'’ consists of six Ay points. Let p,, : X/, — X' be the minimal resolution of X’. Then the
canonical divisor of X/, is numerical trivial. Since X/, has a curve such that the self-intersection
number is negative, X/, is a K3 surface or Enriques surface. Since X/, has an automorphism
s of order 3 such that the curves of Fix(s) are three rational curves C; for ¢ = 1,2, 3, by [11],
X, is a K3 surface. By [1, Theorem 2.8 and Proposition 3.2] or [14, Table 2], we get that

Pic(X!)* = {a € Pic(X!): sfa=a} =2U ® E; ® A3.

Let z1,- -+, z¢ be singular points of X', and ey, - - , €12 be the exceptional divisors of p,,, where
2i = pm(€2i—1) = pm(eq;) for i = 1,--- 6. Notice that (eg;—1 - e2;) = 1, (€21 - €2;—1) = —2
and (eq; - e9;) = —2. Since C; C Fix(s) for i = 1,2, 3, we get that (ez;—1 Ues;) NFix(s) contains
at least 2 points. Since s(eg;—1 Ueq;) = (e2,-1 U eg;) and eg;_1 M ey; is one point, we get that
€2i—1 Neg; C Fix(s). Therefore, s(eg;—1) = eg;—1 and s(es;) = e9;, and hence eg;_1,eq; €
Pic(X! )" for i = 1,---,6. Since Pic(X!)* is a primitive sublattice, the minimal primitive
sublattice which contains (p’ o p,,)*Pic(P! x P') and ey, - - -, e12 of Pic(X! ) is Pic(X/,)*"

Let f :=p' opy : X;, = P' x P'. Since f.C; = B} |, we get (C;- f*F) = ((C+F)-F)=1
for i = 1,2,3. Let

el eZ + 2e9;
C) = 01+Z 2i-1) €2 1+Z 2] 2))(621'—14-2621')-
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Then (Ci . ei) =0fori= 1, s ,12. Since (621'_1 -egi_l) = —2, (621'_1 s €91+ 2621’) =0 and
(e2i—1 + 2e9; - €2,_1 + 2e3;) = —6, we get 6C] € Pic(X/,). Therefore, the minimal primitive
sublattice K of Pic(X/,)*", which contains f*C and 6C} is a unimodular lattice. Let M be
the minimal primitive sublattice of Pic(X/,), which contains the curves ey,---,ej2. Then
M C U*. Since U is a unimodular lattice and M and U are sublattice of Pic(X/,)*", we
get U ® M = Pic(X!,)*". Therefore, the rank of M is 12 and MY /M = Z/3Z%*. Thus, by
[6,Theorem 5.2] there is a K3 surface X and a symplectic automorphism ¢ of order 3 of X
such that X’ = X/(t), and hence there is a finite Abelian subgroup G C Aut(X) such that
X/G = P! x P, G = 7Z/3Z%?, and the branch divisor is 3B},1 + 3B}, + 3B} ,. In the same
way, we get the claim for (6.18).

More specifically, let X be a K3 surface X, G be a finite Abelian subgroup G of Aut(X)
such that X/G = P! x P!, and the numerical class of the branch divisor B of G is (6.17) or
(6.18). By Theorem 3.1, there is the Galois cover p’ : X’ — P! x P! such that the branch
divisor is B and the Galois group is isomorphic to Z/3Z as a group. Then we get that X is the
universal cover of X’ of degree 3.

For (6.17), we obtain an example if we use curves B%)l, Bil, Bil in P! x P! given by the
equations

1 2
B171 : Zowo + 21wy = 0, Bl)l t zpwo — z1wp = 0, Bil t zowy + z1wg = 0.

For (6.18), we obtain an example if we use curves Bj o, Bi1,Bi2 in P! x P! given by the
equations

. — . _ . 2 2 2 _
Bl,O 120 =0, Bl,l t zowy + z1wg = 0, BLQ FZowi + 21wy + z1wy = 0.

Corollary 3.4 For each numerical classes (6.198), (6.92) and (6.204) and (6.303), (6.252),
(6.205), (6.93) of the list in Section 6, there are a K3 surface X and a finite Abelian subgroup G
of Aut(X) such that X/G = TF,, and the numerical class B of the branch divisor of the quotient
map p: X — X/G is (6.198), (6.92) and (6.204) and (6.303), (6.252), (6.205), (6.93).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of
Awt(X), if X/G = F,, and the numerical class of the branch divisor B of the quotient map
p: X — X/G is (6.198), (6.92) and (6.204) and (6.303), (6.252), (6.205), (6.93), then G is
Z/3L%2, 7,)27 & T)3L®?, T)3L®?, /3192, Z)2L & L/3Z%%, LJ3L?, 727 & Z/3L%?, in
order, as a group.

Proof In the same way as Proposition 3.5, we get this corollary. More specifically, let X
be a K3 surface X, G be a finite Abelian subgroup G of Aut(X) such that X/G 2 F,,, and B
be the branch divisor of the quotient map p: X — X/G. Let p’ : X’ — P! x P! be the Galois
cover such that the branch divisor is B and which is given by Theorem 3.1. Then we get the
following.

(i) If the numerical class of B is one of (6.198), (6.204), (6.303), then X is the universal
cover of X' of degree 3.

(ii) If the numerical class of B is (6.92), then X — X/G is given by the composition of the
Galois cover X’ — Fy whose numerical class of the branch divisor is (6.92) and the Galois cover
F, — F; which is induced by the Galois cover P! — P! of degree 2.

(iii) If the numerical class of B is one of (6.252), (6.205), (6.93), then X — X/G is given
by the composition of the Galois cover X’ — g whose numerical class of the branch divisor is
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6.303) and the Galois cover Fg — F,,, which is induced by the Galois cover P! — P! of degree

—~

e

For (6.198), we obtain an example if we use curves Bi,, Bf,, B}, in Fy given by the
equations
Bl,:Yo+Yoa=0, Bi,:Y1+Y2=0, Bj,:Yo+Y1+Y,=0.

For (6.92), we obtain an example if we use curves Bf ;, B} |, Bf |, Bj 1, Bj ; in F; given by the
equations
Bi,:Yo+Ya=0, B, :Y1+Y;=0, B}, :Yo+Y1+Yo=0,

Bi,:Xo=0, Bj,:X;=0.

For (6.204), we obtain examples if we use a section C' and curves B%)g, Big in Fy given by the
equations

B%)g, : XoYo + XoY1 + X1Ye =0, B%)g, : X1Yo + X1Y1 4+ 2X0Ys =0.

For (6.303), we obtain examples if we use a section C' and curves Bj 4, Bf 5 in F given by the
equations
Blg:Yo+2Ys=0, Big:Y1+2Y,=0.

For (6.252), we obtain examples if we use a section C' and curves By 5, Bf 3, Bj, B3 | in F3
given by the equations

Big:Yy+2Y, =0, Bis:Y;+2Y,=0,

Bj,:Xo=0, Bj,:X,=0.

For (6.205), we obtain examples if we use a section C' and curves B%)Q,B%)Q,Bé)l,Bg)l in Fy
given by the equations

Bi,:Yy+2Y, =0, Bj,:Y;+2Y,=0,

Bj,:Xo=0, Bj,:X,=0.

For (6.93), we obtain examples if we use a section C' and curves Bj ;, Bf |, Bj 1, Bj ; in Fy given
by the equations
Bl :Yo+2Ya=0, B} :Y;+2Ys=0,

Biy:Xo=0, Bj,:X1=0.

Proposition 3.6 For each numerical classes (6.19)—(6.20) of the list in Section 6, there
is a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G = F,, and the
numerical class of the branch divisor B of the quotient map p: X — X/G is (6.19)—(6.20).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G 2T, and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.19)—(6.20), then G is Z/27.%3, 7./27%3, in order, as a group.

Proof Let Bj; be a smooth curve on Pt x P! for i = 1,2, 3,4 such that > Bj ; is simple
i=1

4 .
normal crossing. Then the numerical class of )~ 2Bj ; is (6.19). We set {x1, 22} := B{ ; N B},
i=1
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and {xs, x4} := B} N B} . Let Z := Blow(y, 4, 24,0,P" x P'. Let E; be the exceptional
4
divisor for i = 1,2,3,4. Then Pic(Z) = Pic(P* x P!) @ ZE;. Let C; be the proper transform

=1
of Bj | for i =1,2,3,4. Then for i = 1,2, j = 3,4,

Ci=(C+F)—FE —FE, and C;=(C+F)—FE;—FE; inPic(2).

By Theorem 3.1, there are the Galois covers p; : Y7 — Z and ps : Y5 — Z such that the branch
divisor of p; is 2C +2C5, and that of py is 2C5+2Cy. Since C1NCy and C3NCy are empty sets,
4

Y7 and Y3 are smooth. Since > C{lﬁl is simple normal crossing, Y := Y7 Xz Y5 is smooth and
i=1

4

a K3 surface. Therefore, there is the Galois cover f : Y — Z whose branch divisor is Y 2C;
i=1

and Galois group is Z/2Z%? as a group. Let C! be a smooth curve on Y such that f*C; = 2C!

fori=1,2,3,4. Then

o) = f((% g) - %El - %Eg) and O = f*((g E) - %Eg - %E4) in Pic(Y).

Thus, we get

4
> frE;=2f"(C+F)-2C] —2C5 in Pic(Y).
i=1

4

By Theorem 3.1, there is the Galois cover g : W — Y whose branch divisor is Y 2f*F;. Let
i=1

E! be a smooth curve on W such that ¢* f*E; = 2E.. Since (f*E; - f*E;) = =2, (E.-E}) = -1

fori=1,2,3,4. Let f : W — X be a contraction of E},---, E}. Since Y is a K3 surface, X is
a K3 surface. Since W is a double cover of Y, there is a symplectic involution s of X such that
X/(s) — P'x P! is a Galois cover whose branch divisor is 2B} | +2Bf ;+2B7 | +2B¢ ;. Therefore,
there is a finite Abelian subgroup G' C Aut(X) such that X/G = P! x P!, G = Z/2Z%3, and
the branch divisor is 23%71 + 23%71 + 23?71 + 231171.

Next, let By, B1,2, B} 1, B ; be smooth curves on P! x P! such that By o+ B 2+B} ;+B7
is simple normal crossing. Then the numerical class of 2B; g + 2B 2 + 23%71 + 2B12)1 is (6.20).

We set {1, 22} := B1o N By and {3, 24} := B} | N B} . Let Z := Blow(y, 4, 24,0, X P,
4

Let E; be the exceptional divisor for i = 1,2,3,4. Then Pic(Z) = Pic(P! x P') @ ZE;. Let
i=1

C1,0,C1,2,Ct 1, CF be the proper transform of By o, Bi,2, Bi 1, Bil in order. Then

Ol,O =C - E1 — EQ and 01)2 = (C—FF) — E1 — EQ in PIC(Z)
and
Ci,=(C+F)-E;—E; and C},=(C+F)—FE3—E4 inPic(Z).

Let p1 : Y1 — Z be a cyclic cover whose branch divisor is 2C o + 2C4 2, and p2 : Yo — Z be a

cyclic cover whose branch divisor is 2C1 | + 2012’1. Then as for the case of (6.19), Y := Y1 xzYs
4

is a K3 surface, and there is the Galois cover f : Y — Z whose branch divisor is ) 2C; and
i=1

Galois group is to Z/2Z%2 as a group. Since L g”’ € Pic(Y) and % € Pic(Y), we get
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X 24: [T E;
M = f*(0,1) € Pic(Y). As for the case of (6.19), we get = € Pic(Y), and
hence we get the claim for (6.20).

More specifically, let X be a K3 surface X, G be a finite Abelian subgroup G of Aut(X)
such that X/G = P! x P!, and the numerical class of the branch divisor B of the quotient map
p: X — X/G is (6.19) or (6.20). By Theorem 3.1 and the fibre product, there is the Galois
cover p’ : X' — P x P! such that the branch divisor is B and the Galois group is Z/2Z%? as a

group. Then we get that X is the universal cover of X’ of degree 2.

For (6.19), we obtain an example if we use curves B} ;, B , B} ;, B{ ; in P' x P! given by
the equations

1 . _ 2 . _
Bl_’1 : Zpwo + z1wq = 0, Bl)1 : zowy — zywy1 = 0,
4
Big’)l : Zpwy + z1wg = 0, B171 s zowy — z1wg = 0.

For (6.20), we obtain an example if we use curves Bj o, B%)l, Bil, Bi in P! x P! given by the
equations

. _ 1. _
BLO 120=0, Bl71 : Zowo + 21wy = 0,

2 2 2
Bi1:zow1+z1wp =0, Biga:zowi + 3z1wg = 0.

Corollary 3.5 For each numerical classes (6.81) and (6.82) and (6.199), (6.94) and (6.200),
(6.96) and (6.282), (6.206), (6.97), (6.98) of the list in Section 6, there is a K3 surface X and
a finite Abelian subgroup G of Aut(X) such that X/G = F,, and the numerical class of the
branch divisor B of the quotient map p : X — X/G is (6.81) and (6.82) and (6.199), (6.94) and
(6.200), (6.96) and (6.282), (6.206), (6.97), (6.98).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G = TF,, and the numerical class of the branch divisor B of the quotient map p : X —
X/G is (6.81) and (6.82) and (6.199), (6.94) and (6.200), (6.96) and (6.282), (6.206), (6.97),
(6.98), then G is Z/27%3, 7)22%3, 7/27°3, 7.)22%*, 7/27°3, 7.)22.%*, 7./]27.°3, 7.)27.%4,
72293 ® ZJAZ, 7.J27%5, in order, as a group.

Proof In the same way as Proposition 3.6, we get this corollary. More specifically, let X
be a K3 surface X, G be a finite Abelian subgroup G of Aut(X) such that X/G 2 F,,, and B
be the branch divisor of the quotient map p : X — X/G. Then we get the following.

(i) We assume that the numerical class of B is one of (6.81), (6.82), (6.199), (6.200), (6.282).
By Theorem 3.1 and the fibre product, there is the Galois cover p’ : X’ — F,, such that the
branch divisor is B and the Galois group is Z/2Z%? as a group. Then X is the universal cover
of X’ of degree 2.

(ii) If the numerical class of B is (6.94), then X — X/G is given by the composition of
the Galois cover X — F3 whose numerical class of the branch divisor is (6.199) and the Galois
cover Fy — F; which is induced by the Galois cover P! — P! of degree 2.

(iii) If the numerical class of B is (6.96), then X — X/G is given by the composition of
the Galois cover X — Fy whose numerical class of the branch divisor is (6.200) and the Galois
cover Fy — F; which is induced by the Galois cover P! — P! of degree 2.

(iv) If the numerical class of B is one of (6.206), (6.98), (6.97), then X — X/G is given
by the composition of the Galois cover X — F4 whose numerical class of the branch divisor is
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6.303) and the Galois cover Fy — F,,, which is induced by the Galois cover P! — P! of degree
4
E.

For (6.81), we obtain an example if we use a section C' and curves Bj ,, Bf 5, B 5 in [y
given by the equations

Bi,: XoY1+ X1Yo + (Xo+ X1)Y2 =0, Bj,: XoY1 4+ 2X1Yo + (2Xo + X1)Y2 =0,

B}, :2X0Y1 + X1Yo + (Xo +2X1)Y2 = 0.

For (6.82), we obtain an example if we use curves Bl73,B}71,B%)1,B§)1 in F; given by the
equations
Bis: XgV1+ XYoo+ XoX1Y2 =0, Bi,:Yo+Y1+Y2 =0,

B} :Yy+2Y1+Y, =0, B}, :2Y+Y;+Y,=0.

For (6.199), we obtain an example if we use a section C' and curves By 4, B})z, B12)2 in Fy given
by the equations

Byu: XJY1+ (X§+X{)Ya=0, Bi,:Yo+Ya=0, Bi,:2Yy+2Y;=0.

For (6.94), we obtain an example if we use a section C' and curves Bj o, B}_rl, B%_rl, Bé_rl, Bg,l
in F; given by the equations

Bip: XoY1+ (Xo+ X1)Y2=0, Bi;:Yo+Y2=0, Bi,:2Y,+2Y; =0,

Biy:Xo=0, Bj,:X1=0.

For (6.200), we obtain an example if we use curves Bf o, Bf o, B} 5, Bl 5 in Fy given by the
equations
Bl,:Yy+2Y, =0, Bj,:Y1+2Y,=0,

B}, :3Yg+Y1+Y, =0, Bf,:Yy+Y+3Y;=0.

For (6.96), we obtain an example if we use curves B |, B |, B |, Bt |, B}, B3 in Fy given
by the equations
B, :Yy+2Y,=0, B, :Y1+2Y,=0,

B} :3Yg+Y1+Y2=0, Bf,:Yy+Y1+3Y;=0,
Biy:Xo=0, Bj;:X1=0.

For (6.282), we obtain an example if we use a section C' and curves B 4, B} ;, B} ; in F4 given
by the equations

Bi4:Yo+2Yo=0, B, :Y1+2Ya=0, B},:3Yp+Y1+Y2=0.

For (6.206), we obtain examples if we use a section C and curves B 5, B} 5, B} 5, B}, Bj; in
o given by the equations

Bi,:Yo+2Yo=0, Bi,:Y1+2Ya=0, B},:3Y+Y1+Y2=0.

Bi,:Xo=0, Bj,:X;=0.
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For (6.97), we obtain examples if we use a section C' and curves Bil, B12)1, Big’)l, 3571,33,1 in
F1 given by the equations

Bl :Yy+2Y,=0, Bf,:Y1+2Ya=0, B} :3Y+Y1+Y,=0.
Biy:Xo=0, Bj,:X1=0.

For (6.98), we obtain an example if we use a section C and curves Bf ;, Bf 1, B 1, B}, Bj 1,
B | in Fy given by the equations
Bi .Yo+2Ya=0, B},;:Y1+2Ys=0, B}, :3Y+Y1+Y2=0, Bj,:Yo+Y1+3Y;=0,
Bi,:Xo=0, Bj,:X1=0, Bj,;:Xo—X;=0.

Proposition 3.7 For numerical classes (6.278), (6.207), (6.99), (6.100) of the list in Section
6, there is a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G =2 F,
and the numerical class of the branch divisor B of the quotient map p : X — X/G is (6.278),
(6.207), (6.99), (6.100).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G 2T, and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.278), (6.207), (6.99), (6.100), then G is Z/AZ, 7.]27. & L)AL, 7.]AZP?, 7.]27% © 7.]AZ, in
order, as a group.

Proof Let By g be a smooth curve on Fy. Then the numerical class of 2C'+4B5 g is (6.278).
Since By g = 2C + 8F in Pic(Fy4), by Theorem 3.1, there is the Galois cover p; : X; — Fy4 such
that the branch divisor is 2Bs g and the Galois group is Z/27Z as a group. Let E3 g be a smooth
curve on X; such that pjBsg = 2E35. Since C + Bsg is simple normal crossing, piC' is a
reduced divisor on X7, whose support is a union of pairwise disjoint smooth curves. Since
piC + Ea g = pi(2C + 4F) = 2p;(C + 2F) in Pic(X;), by Theorem 3.1, there is a Galois cover
p2 + Xo — X such that the branch divisor is pjC + Ea g and the Galois group is Z/2Z as a
group. Then p := p; o py : X9 — F4 is the branched cover such that p has 2C' + 4B5 g as the
branch divisor. In the same way of Proposition 3.2, X is a K3 surface, and p : X — Fy is the
Galois cover whose Galois group is Z/4Z as a group. In the same way of Proposition 3.2, we
get the claim for (6.207), (6.99), (6.100).

More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such
that X/G = F,,, and B be the branch divisor of the quotient map p: X — X/G. Then we get
the following.

(i) If the numerical class of B is (6.278), then X — X /G is given by the above way.

(ii) If the numerical class of B is one of (6.207), (6.99), (6.100), then X — X/G is given
by the composition of the Galois cover X’ — 4 whose numerical class of the branch divisor is
(6.278) and the Galois cover Fy — F,,, which is induced by the Galois cover P! — P! of degree

m

Z.
For (6.278), we obtain an example if we use a section C' and a curve By g in Fy given by the
equation
Bog Y+ Y2 +YE=0.
For (6.207), we obtain examples if we use a section C' and curves Bs 4, B 1, Bj, in Fo given
by the equations

Byy:Y§+Y 4+Yy =0, Bj,:Xo=0, Bj,:X;=0.
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For (6.99), we obtain examples if we use a section C' and curves By o, Bé)l, B&l in Fy given by
the equations

Boo:Y§+Y2+Yy =0, Bj,:Xo=0, Bi,:X=0.
For (6.100), we obtain examples if we use a section C' and curves B s, Bé_rl, B(2),17 Bg’)l in IFy
given by the equations

Boo:Y§+ Y7 4+Yy =0, Bj,:Xo=0, Bj,:X1=0, Bj;:Xo—X;=0.

Proposition 3.8 For numerical classes (6.280), (6.208) of the list in Section 6, there is
a K3 surface X and a finite Abelian subgroup G of Aut(X) such that X/G = F,, and the
numerical class of the branch diwisor B of the quotient map p : X — X/G is (6.280), (6.208).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G 2T, and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.280), (6.208), then G is Z./27. & 7./AZ, 7.]27.%% & 7./AZ, in order, as a group.

Proof Let B; ¢ and By 4 be smooth curves on Fy4 such that C'+ B; ¢+ By 4 is simple normal
crossing. Then the numerical class of 4C'+2B1 ¢ +4B 4 is (6.280). Since C+B; 4 = 2C+2F in
Pic(Fg), by Theorem 3.1, there is the Galois cover py : X; — 4 such that the branch divisor is
2C' +2B; 4 and the Galois group is Z/2Z as a group. Let E¢, Ey 4 be two smooth curves on X3
such that pjC' = 2E¢ and p{ By 4 = 2E 4. Since C+ B 6+ B 4 is simple normal crossing, pj B 6
is a reduced divisor on X7, whose support is a union of pairwise disjoint smooth curves. Since
piBis = pi(C+6F) = pi(C+4F)+pi(2F) = 2E; 4+ 2piF in Pic(X;), by Theorem 3.1, there
is the Galois cover py : X5 — X such that the branch divisor is 2p] B; ¢ and the Galois group is
Z/27.. Notice that p;ﬁ% € Pic(X3). Since C+ By ¢+ B 4 is simple normal crossing, p3 Ec and
p5E1 4 are reduced divisors on Xs, whose support are unions of pairwise disjoint smooth curves.
Since p5(Ec + By 4) = p5pi (C'+2F) = p3pi (C +6F) — pspi4F = p5pi Bi e —4p3pi F in Pic(X5)
and p;p;% € Pic(X3), by Theorem 3.1, there is the Galois cover p3 : X — X5 such that the
branch divisor is p3(Ec + E1 4) and the Galois group is Z/2Z. Then p :=pjopaops: X — Fy
is the branched cover such that p has 4C' + 2B ¢ + 4B; 4 as the branch divisor. In the same
way of Proposition 3.2, X is a K3 surface, and p : X — F, is the Galois cover whose Galois
group is Z/27 ® 7 /47 as a group. In the same way of Proposition 3.2, we get the claim for
(6.208).

More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such
that X/G = F,,, and B be the branch divisor of the quotient map p : X — X/G. Then we get
the following.

(i) If the numerical class of B is (6.280), then X — X/G is given by the above way.

(ii) If the numerical class of B is (6.208), then X — X/G is given by the composition of
the Galois cover X’ — Fy whose numerical class of the branch divisor is (6.280) and the Galois
cover Fy — Fy which is induced by the Galois cover P! — P! of degree 2.

For (6.280), we obtain an example if we use a section C' and curves By g, By 4 in Fy given
by the equations

Big: XeY1 + XYy + (X3 +2X])Yo =0, By4:2Yy+Yy=0.

For (6.208), we obtain an example if we use a section C' and curves By 3, B1 2, B&l, Bg)l in Fy
given by the equations

Bis: XoY1 + X1 Yo+ (Xo+2X1)Yo =0, B2:2Y5+Y2=0,
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1. _ 2 . —
Bo)l . XO — O, Bo71 . X]_ — O.

Corollary 3.6 For each numerical classes (6.311), (6.281), (6.210), (6.209), (6.101) of the
list in Section 6, there is a K3 surface X and a finite Abelian subgroup G of Aut(X) such that
X/G = F,, and the numerical class of the branch divisor B of the quotient map p : X — X/G
is (6.311), (6.281), (6.210), (6.209), (6.101).

Furthermore, for a pair (X, G) of a K3 surface X and a finite Abelian subgroup G of Aut(X),
if X/G = TF,, and the numerical class of the branch divisor B of the quotient map p : X —
X/G is (6.311), (6.281), (6.210), (6.209), (6.101), then G is Z/2Z & Z/AZ, Z./279% & 7./AZ,
L2293 S L)AL, )27 & L)AZP2, 7.)27 & Z/AZ & /8L, in order, as a group.

Proof In the same way Proposition 3.8, we get the claim. More specifically, let X be a K3
surface, G be a finite Abelian subgroup of Aut(X) such that X/G = F,,, and B be the branch
divisor of the quotient map p : X — X/G. Then we get the following.

(i) If the numerical class of B is (6.311), then X — X/G is given by the above way.

(ii) If the numerical class of B is one of (6.101), (6.209), (6.210), (6.281), then X — X/G
is given by the composition of the Galois cover X — Fg whose numerical class of the branch

divisor is (6.311) and the Galois cover Fg — [F,,, which is induced by the Galois cover P* — P!

of degree % .

For (6.311), we obtain examples if we use a section C' and curves B}_VS, Big in Fg given by
the equations
Blg:Yo+Y1+Y2=0, Big:Yo+Y+2Y,=0.

For (6.281), we obtain examples if we use a section C' and curves Bj 4, B} 4, Bj 1, Bg, in Fy
given by the equations

B%,43Y0+Y1+Y2=0, B%_’4:Y0—|—Y1—|-2Y2:()7
Bj,:Xo=0, B*:X;=0.

For (6.209), we obtain examples if we use a section C' and curves Bf 5, B} 5, By, Bg, in Fy
given by the equations

B%,23Y0+Yl+y2=0, B%72:Y0—|—}/1—|—2Y2:07
B&IZXO:(L B?: X, =0.

For (6.101), we obtain examples if we use a section C' and curves Bj ;, B} 1, By, Bg; in Fy
given by the equations

B%,13Y0+Y1+Y2=0, B%,11Y0+Y1+2Y2=O,
B&IZXO:(L B?: X, =0.

For (6.210), we obtain an example if we use a section C' and curves Bj ,, Bf 5, By, B, Bj
in [F5 given by the equations

B},QZYO‘FH‘F}/Q:O, B%72:Y0—|—}/1—|—2Y2:()7

Bi,:Xo=0, Bj,:X1=0, Bj;:Xo—X;=0.
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Proposition 3.9 For each numerical classes (6.316), (6.304), (6.283), (6.254), (6.253),
(6.211), (6.95) of the list in Section 6, there is a K3 surface X and a finite Abelian subgroup G
of Aut(X) such that X/G =2 TF,, and the numerical class of the branch divisor B of the quotient
map p: X — X/G is (6.316), (6.304), (6.283), (6.254), (6.253), (6.211), (6.95).

Furthermore, for a pair (X,G) of a K3 surface X and a finite Abelian subgroup G of
Aut(X), if X/G 2 TF,, and the numerical class of the branch divisor B of the quotient map p :
X — X/G is (6.316), (6.304), (6.283), (6.254), (6.253), (6.211), (6.95), then G is Z/2Z®Z/3Z,
Z]27°2 ©Z/3Z, 7)27 ® L)37%?2, 7.)22.% © /37, 7/27 ® L)3Z ® Z/AZ, 7./]27%* & Z/3Z%?,
)27 ® 7.)]37%°2 & ZJAZ, in order, as a group.

Proof Let Bj ), be a smooth curve on Fip for i = 1,2 such that C' 4+ Bf 1, + B} 5 is
simple normal crossing. Then the numerical class of 6C + 2Bj 1, + 3B7 15 is (6.316). Since
C+ B]]:712 = 2C + 12F in Pic(Fy3), by Theorem 3.1, there is the Galois cover p; : X1 — Fio
such that the branch divisor is 2C' + 2B ;, and the Galois group is Z/2Z as a group. Since
C'+ Bi 15 + Bi 15 is simple normal crossing, pj B 15 is a reduced divisor on X, whose support
is a union of pairwise disjoint smooth curves. Since C' and Bj ;, are smooth curves, there
are smooth curves E¢, Ell,12 on X; such that piC = 2Ec and p*{B},l2 = 2E} 5. Since
Ec+piB 15 = Ec+pi(C+12F) = Ec+piC+12piF = 3Ec+12p;F in Pic(X;), by Theorem
3.1, there is the Galois cover py : X — X such that the branch divisor is 3E¢ + 3p; B} ;5 and
the Galois group is Z/3Z as a group. Then p := pj o py : X — Fy5 is the branched cover such
that p has 6C + 23%712 + 33%712 as the branch divisor. In the same way as Proposition 3.2, X
is a K3 surface, and p : X — o is the Galois cover whose Galois group is G = Z/27Z & Z/3Z
as a group.

More specifically, let X be a K3 surface, G be a finite Abelian subgroup of Aut(X) such
that X/G = F,,, and B be the branch divisor of the quotient map p: X — X/G. Then we get
the following.

(i) If the numerical class of B is (6.316), then X — X/G is given by the above way.

(ii) If the numerical class of B is one of (6.304), (6.283), (6.254), (6.253), (6.211), (6.95),
then X — X/G is given by the composition of the Galois cover X’ — Fi2 whose numerical
class of the branch divisor is (6.316) and the Galois cover F15 — F,;, which is induced by the
Galois cover P! — P! of degree %

For (6.316), we obtain an example if we use a section C and curves B |5, Bf |5 in F15 given
by the equations

Biiy:Yo+2Y2 =0, Bj,:Y1+2Y;=0.

For (6.304), we obtain examples if we use a section C' and curves B}_ﬁ, B%_ﬁ, Bé)l, Bg)l in [Fg
given by the equations

Blg:Yy+2Y, =0, Big:Y;+2Y,=0,
Bi,:Xo=0, Bj,:X;=0.

For (6.283), we obtain examples if we use a section C' and curves B}_A, Bf74, Bé)l, Bg)l in Fy
given by the equations

Bl,:Yo+2Ya=0, B}, :Y;+2Y,=0,

Bi,:Xo=0, Bj,:X;=0.
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For (6.253), we obtain examples if we use a section C' and curves B11)3, B12)3, B&l, B&l in [F3
given by the equations

Big:Yo+2Y,=0, Big:Yi+2Y,=0,
B, :Xo=0, Bj,:X,=0.
For (6.211), we obtain examples if we use a section C' and curves B} 5, B} 5, Bj 1, Bg, in Fy
given by the equations
Bi,:Yo+2Ys=0, Bi,:Y1+2Y,=0,
Biy:Xo=0, Bj,:X1=0.

For (6.95), we obtain examples if we use a section C' and curves B%)l, Bf_rl, Bé_rl, Bg)l in Fy
given by the equations

Bl :Yy+2Y, =0, B, :Y+2Y,=0,
Bi,:Xo=0, Bj,:X;=0.

For (6.254), we obtain an example if we use a section C' and curves B%73, B12)3, Bé)l, 3371, Bg)l
in [F3 given by the equations

B},33Y0+2Y2=0, Big:Yl—FZYQZ()’

Bj,:Xo=0, Bj,:X1=0, Bj,:Xo— X =0.

3.2 Complete proof of Theorem 1.5

In this section, we will show that there is no numerical class such that it has an Abelian K3
cover except the numerical classes which are mentioned in Subsection 3.1. Then by Subsection
3.1, we will get Theorem 1.5. From here, we use the notations that
i) X is a K3 surface,

ii) G is a finite Abelian subgroup of Aut(X) such that X/G 2 TF,,,
iii) p: X — X/G is the quotient map, and
k
iv) B:= Y b;B; is the branch divisor of p.
i=1

Furthermore, we use the notation that Bf; (or simply B ;) is a smooth curve on F,, such

that Bf; =iC + jF in Pic(F,) if n > 0 where k € N.

(
(
(
(

For the branch divisor B = 7 7 b Bl , where m,n(i) € N, we use the notation that
i=1j=1

G =19€G gpap ) =idpap )

Recall that by Theorem 2.5, G£i7ti is a cyclic group of order bz- which is generated by a non-
symplectic automorphism of order b; Since G is Abelian, the support of B and the support of
p* B are simple normal crossing.

k !
Lemma 3.2 We assume that X/G = F,, forn > 1. If B=aC+>_ bi(¢c;C+nc;F)+ > d;F;
i=1 j=1
in Pic(F,,), where a,b;,d; > 2 and ¢;,1 > 1, then3 >1>2 and dy = --- =d;.
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Proof By Theorem 2.5, there are pairwise disjoint smooth curves Ci,-,Chy such that
p*C =Y aC;. Since Ci,- -+, Cp, are pairwise disjoint, we get that ( Z C; - Z C) Z (C; -
i=1 =1
Ci))=m(C;-Cy) fori=1,--- m. Since(C-C):—n<O,(Ci-C)<0f0r2—1 - ,m. Since
X is a K3 surface, C; is a smooth rational curve for i = 1,---,m. Let pc, : C; — C be the

finite map. Let B, ne, be an irreducible curve on F,,. Since B, ne; = ¢;C + ne; F' in Pic(F,,),
we get that C'N B, ne, is an empty set. Since the support of B is simple normal crossing , p|c,

!
is the Galois covering whose branch divisor is ) d;(C N Fj). If d; # dj, then p;c, must be
=1

non-trivial. Since G is an Abelian group, p|c, is the Abelian cover, however by Theorem 2.3,
this is a non-Abelian cover. This is a contradiction. Therefore, dy = --- = d;.

6.137
6.172

By Lemma 3.2, the numerical class of B is not one of
(6.143), (6.150), (6.151), (6.152), (6.154), (6.159), (6.160),
(6.173), (6.174), (6.175), (6.179), (6.188), (6.193), (6.220), (6.227), (6.230), (6.235), (6.247
(6.248), (6.255), (6.256), (6.257), (6.264), (6.269), (6.271), (6.274), (6.276), (6.285), (6.288
(6.290), (6.295), (6.297), (6.301), (6.307), (6.310), (6.313), (6.315) of the list in Section 6.

6.128), (6.129), (6.132),

6.162), (6.170), (6.171),
), ( (6.235)
)

)
3
3

)

~—~ o~~~
A~ Y~~~
T — — —

)

N T

k ! :
Lemma 3.3 We assume that X/G =2 TF,, forn >1. If B=aC+>_ b;B;+ Z d; By, where

=1

(C- B)+Z(C B01)<3 and b; =dy if (C-B;)#0
1 Jj=

Mw

a7b’i7dj22, thendlzzd
fori=1,--- k.

2

Proof In the same way of Lemma 3.2, we get that for p*C = > C;, the finite map
i=1

!
pic; + Ci — C is the Abelian cover between P! whose branch divisor is Y d;(C' N Fj) and
j=1
Galois group is {g € G : | g(C1) = C1}. By Theorem 2.3, we get the claim.

By Lemma 3.3, the numerical class of B is not one of (6.127), (6.133), (6.134), (6.135),
(6.145), (6.146), (6.156), (6.157), (6.158), (6.161), (6.163), (6.164), (6.165), (6.166), (6.167),
(6.168), (6.169), (6.223), (6.224), (6.225), (6.236), (6.237), (6.238), (6.239), (6.240), (6.261),
(6.262), (6.263), (6.268), (6.270), (6.272), (6.273), (6.275), (6.284), (6.289), (6.292), (6.296),
(6.298), (6.299), (6.300), (6.306), (6.312), (6.314) of the list in Section 6.

Lemma 3.4 If there are irreducible curves By and Bs and positive even integers by, by > 2
such that B = by B1 + by By and (Bl . BQ) 75 0, then (Bl . BQ) =8.

Proof By Theorem 2.5, G = Gp, ® Gp, and Gg, =2 Z/b;Z for i = 1,2. Let s; € Gp, be

b; b

a generator for i = 1,2. Since G is Abelian, s o 5222 is a symplectic automorphism of order
b,

i

b
2. Since X/G is smooth, Fix(s? o 5272) =p~Y(B1)Np~1(By). Since the support of B is simple
normal crossing and |G| = bibe, we get that [p~1(B1) Np~1(B2)| = (B - B2). By the fact
that the fixed locus of a symplectic automorphism of order 2 are 8 isolated points, we get that
(By - By) = 8.

By Lemma 3.4, the numerical class of B is not one of (6.21), (6.25), (6.26), (6.28), (6.103),
(6.112), (6.130), (6.176), (6.213), (6.216), (6.241) of the list in Section 6.

Lemma 3.5 If there are irreducible curves By and Bs such that B = 3B; + 3B2 and
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(Bl Bg) 75 0, then (Bl . Bg) =3.

Proof By Theorem 2.5, G = Gp, ® Gp, and Gp, = Z/3Z for i = 1,2. Let s; € Gp, be
a generator for ¢ = 1,2. Since G is Abelian, we may assume that s; o s5 is a non-symplectic
automorphism of order 3. By Theorem 2.5, Fix(s; o s2) does not contain a curve. Then by [1,
Theorem 2.8] or [14, Table 2], Fix(s; o s2) is only three isolated points. Since X/G is smooth,
Fix(sj0s2) = p~1(B1)Np~1(Ba). Since By + By is simple normal crossing and G = Gp, ® Gp,,
we get that |[p~1(B1) Np~1(Bs)| = (B; - Bz). Therefore, we get (B; - By) = 3.

By Lemma 3.5, the numerical class of B is not one of (6.22), (6.23), (6.212), (6.218) of the
list in Section 6.

Lemma 3.6 If there are irreducible curves B; and positive integers by > 2 fori=1,--- |k
k
such that B = 3 b;B; and G = Gp, for some i, then (B; - B;) =0 for j # i.
i=1
Proof Recall that by Theorem 2.5, Gp,, is generated by a non-symplectic automorphism
of order by, and Fix(Gp,,) D p~'(By,) for m = 1,--- k. If (B; - B;) # 0 for j # 0, then
p~1(B;) Np~!(B,) is not an empty set. By the fact that the fixed locus of an automorphism is
a pairwise set of points and curves, this is a contradiction.

By Lemma 3.6, the numerical class of B is not one of (6.24), (6.131), (6.177), (6.219), (6.242)
of the list in Section 6.

Lemma 3.7 If there are irreducible curves By and By such that B = 2B; + 2By and
(B1 - By) # 0, then Bt € Pic(F,,) fori=1,2.

Proof By Theorem 2.5, G = Gp, @ Gp, and Gp, = Z/27Z for i = 1,2. Since the fixed
locus of a non-symplectic automorphism of order 2 is a set of pairwise set of smooth curves or
empty set, X/Gp, is smooth. Then there is a double cover X/Gp, — X/G =2 F,, whose branch
divisor is 2B; for i, j = 1,2 and 7 # j. By Theorem 3.1, % € Pic(F,) for i =1, 2.

By Lemma 3.7, the numerical class of B is not one of (6.27), (6.113), (6.117) of the list in
Section 6.

Lemma 3.8 If there are irreducible curves By, Ba, Bs such that B = 2By 4+ 3B + 6B3 and
(BQ-BQ) > 1 and (Bi-Bj)#OfOT1§i<j§3, then (BQ-BQ):l.

Proof Theorem 2.5, Gp, = Z/2Z, Gp, = Z/3Z, Gp, = Z/6Z. Since (B; - Bj) # 0 for
1<i<j<3,weget Gg, ®Gp, NGp, = {idx}. Therefore, G = Gp, ® Gp, ® Gp,. Since
(B2 - Ba) > 0, we get that p* B = 3C5 and the only curve of Fix(Gp,) is Cs.

We assume that (B - Bs) > 2. Since |G| = 36, (Cf,-CF ;) > 8, and hence the genus of C7
is at least 5. By [1,14] and the only curve of Fix(Gp,) is Cs, this is a contradiction.

By Lemma 3.8, the numerical class of B is not one of (6.29), (6.214) of the list in Section 6.

Lemma 3.9 If there are irreducible curves By, Bo, Bs such that B = 2By + 4B +4B3 and

Proof Theorem 2.5, Gp, = Z/2Z and Gp, = Z/AZ for i = 2,3. Since (B; - B;) # 0 for
1<i<j<3, weget G, N(Gp, ® Gp,) = {idx}. Therefore, G = Gp, ® Gp, & Gp,. Let
s € Gp, and t € G, be generators. Then s ot is a non-symplectic automorphism of order 4
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and p~!(B;) Np~!(Bz2) C Fix(s ot). By Theorem 2.5 and G = Gp, ® Gp, ® Gp,, Fix(sot)
does not contain a curve. By [2, Proposition 1], the number of isolated points of Fix(sot) is 4.
If (By - By) > 2, then [p~Y(B1) Np~!(Bs)| > 8. This is a contradiction.

By Lemma 3.9, the numerical class of B is not (6.30), (6.109), (6.155), (6.215) of the list in
Section 6.

Lemma 3.10 We assume that X/G = P! x P*. Then B # a({q} x P') + bC; + cCy where
C1 and Co are smooth curves on P! x P, C1 N Cy # 0, and a,b, c are even integers.

Proof We assume that B = a({q} x P!) + bCy + c¢Cy where C; and Cy are smooth curves
on P! x P!, C; NCy # 0, and a,b, c are even integers. Since C; N Cy # (), by Theorem 2.5,
G = Ge, ® Gea. Since b, ¢ are even integers, G¢,, G, are cyclic groups, and G = G¢, ® Geo,
the number of non-symplectic involution of G is 2. Since (Bi - C;) # 0 and a is even, G must
have at least 3 non-symplectic involutions. This is a contradiction.

By Lemma 3.10, the numerical class of B is not one of (6.31), (6.32), (6.33), (6.35), (6.36),
(6.37), (6.38) of the list in Section 6.

Lemma 3.11 If there are irreducible curves B; and positive integers b; > 2 fori=1,--- k

such that B = Zk: b;B;, G = Gp, ® Gp, and by and by are coprime, then for each i = 1,2,
j=3,-,k, wel_glet that b; and b; are coprime if (B; - B;) # 0.

Proof Let s € Gp, and t € Gp, be generators. By Theorem 2.5, the order of s is b; and
that of £ is by. Since G = G, ® GB,, there are integers u and v such that G, is generated by
s*ot?.

We assume that (B - B;) # 0 and b; and b; are not coprime. Since by and by are coprime,
there is an integer [ such that (s*ot?)! # idx and (s“o#V)! = s™ or t™. Since b; and b; are not
coprime, we assume that (s*ot?)! = s™. Then p~1(B;) and p~1(B;) are contained in Fix(s™).
By the fact that the fixed locus of an automorphism is a pairwise set of points and curves, this
is a contradiction.

By Theorem 2.5 and Lemma 3.11, the numerical class of B is not one of (6.34), (6.40),
(6.265), (6.266), (6.293), (6.294), (6.308), (6.309) of the list in Section 6.

We assume that the numerical class of B is (6.39) of the list in Section 6. We denote B
by 3B1,0 + 3B22 + 3By,1. By Theorem 2.5, G = Ga5. Since Ga 2 = Z/3Z, G has 1 subgroups
generated by a non-symplectic automorphism of order 3. Since (Bj g - Ba,2) # 0, G contains at
least 2 such a subgroup from Theorem 2.5. This is a contradiction.

Lemma 3.12 If there are irreducible curves By, Bo, B3 such that B = 2B1 + 2B + 2Bs,
and (B; - Bj) # 0 for 1 <i < j <3, then we get that Z5 € Pic(F,,) if (B1 - Bo) = 4.

Proof By Theorem 2.5, Gp, = Z/27Z for i =1,2,3. Since (B; - B;) # 0 for 1 <i < j <3,
by Theorem 2.5, G = GB1 D GB2 &) GB3.

We assume that (By - Bg) = 4. Then p~1(B;) Np~1(Bz) is a set of 8 points. Since the fixed
locus of a symplectic automorphism of order 2 is a set of 8 isolated points, X/Gp, @ Gp, is
smooth. Then there is a double cover X/Gp, ®Gp, — X/G = F,, whose branch divisor is 2Bs3.
Thus, £¢ € Pic(F,) for i = 1,2.
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By Lemma 3.12, the numerical class of B is not one of (6.41), (6.119), (6.122), (6.217) of
the list in Section 6.

Lemma 3.13 If there are irreducible curves By, Bo, By such that B = 2B; + 2B3 + 2Bs,
and (B; - B;j) #0 for 1 <i<j <3, then (B;-B;) <4 for1<i<j<3.

Proof By Theorem 2.5, Gp, = Z/27Z for i = 1,2,3 and G = Gp, ® Gp, ® Gp,. Let
s,t € G be generators of G, and Gp;, respectively, where 1 < i < j < 3. Then sot is a
symplectic automorphism of order 2 and p~!(B;) Np~!(B;) C Fix(sot). Since |G| = 8, we get
2(B; - B;) = [p~'(B;) Np~'(B;)|. Thus, we have that (B; - B;j) < 4.

By Lemma 3.13, the numerical class of B is not one of (6.42), (6.120) of the list in Section

Lemma 3.14 We assume that X/G = P! x PL. Then B # a1({q1} x P!) +az({ga} x P!) +
bC’ +c(P* x {q3}), where C" is an irreducible curve, C' = (nC +mF) in Pic(P! xP1), n,m > 0,
and ajas, b, c are even integers.

Proof We assume that B = a1 ({q1} x P!) +aa2({g2} x P*) +bC’ + ¢(P! x {g3}), where C" is
an irreducible curve, C' = (nC + mF), n,m > 0, and ayas, b, ¢ are even integers. By Theorem
2.5, G = G%_’O @® Ger. By ajas and b are even integers, the number of non-symplectic involution
of G is 2. Since (By - C’) # 0 and (Bo,1 - Bj o) # 0 for i = 1,2 and ¢ is an even integer, G
must have at least 3 non-symplectic involutions. This is a contradiction.

By Lemma 3.14, the numerical class of B is not one of (6.43), (6.44) of the list in Section 6.

Lemma 3.15 We assume that X/G = P* x PL. Then B # a1({q1} x P!) + b1C; + b2C5 +
az(P! x {q2}), where C; is an irreducible curve, C; = (n;C +m;F) in Pic(P! x P), n;,m; > 0
fori=1,2, and a1, as,b1bs are even integers.

Proof We assume that B = a1({q1} x P!) + b1Cy + b2Cs + az(P* x {g2}), where C; is
an irreducible curve, C' = (n;, m;) in Pic(P! x P'), n;,m; > 0 for i = 1,2, and a1, az, b1by are
even integers. By Theorem 2.5, G = G¢, @ G¢,. By bibs is an even integer, the number of
non-symplectic involutions of G is at most 2. Since (B - C;) # 0 and (B - C;) # 0 for
1 =1,2, and a1 and as are even integers, G must have at least 3 non-symplectic involutions.
This is a contradiction.

By Lemma 3.15, the numerical class of B is not one of (6.47)—(6.52) of the list in Section 6.

We assume that the numerical class of B is (6.53) of the list in Section 6. We denote
B by 3Bi1 + 2B}, + 6B}, + 3Bo1. By Theorem 2.5, G}, = Z/2Z and G}, = Z/6Z and
G= G%)l @ G%)l. Then the number of subgroups of G which is generated by a non-symplectic
automorphism of order 3 is 1. By Theorem 2.5 and (By - Bf ;) # 0, G must have at least 2
such subgroups. This is a contradiction.

We assume that the numerical class of B is (6.54) of the list in Section 6. We denote B by
3B1,0+3B} | +3B},4+3By,1. By Theorem 2.5, G} | 2 Z/3Z for i = 1,2, and G = G} ; & G7 .
Then the number of subgroups of G which is generated by a non-symplectic automorphism of
order 3 is 3. By Theorem 2.5, (By,o- B ;) # 0 and (B0 - Bo1) # 0, G must have at least 4
such subgroups. This is a contradiction.

We assume that the numerical class of B is (6.56) of the list in Section 6. We denote B
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by 2Bi 4 687 + 3B12 + 3Bo,1. By Theorem 2.5, G, = Z/2Z and G, = Z/3Z, and
G= G%,o @ G1,2. Then the number of subgroups of G which is generated by a non-symplectic
automorphism of order 3 is 1. By Theorem 2.5 and (B 1 - B1,2) # 0, G must have at least 2
such subgroups. This is a contradiction.

We assume that the numerical class of B is (6.58) of the list in Section 6. We denote B
by 2B1,0 + 2B} | + 2B} | + 2B} | +2By1. By Theorem 2.5, G| | = Z/2Z for i = 1,2,3. Since
(Bi, B{)#0for1<i<j<3andGi, 27Z/2Zfori=123G=Gl, &G, &GS,.
Then the number of non-symplectic involutions of G is 4. Since (B1,9-Bo1) # 0, (Bo1:Ci) #0
and (By - C;) # 0 for i = 1,2,3, G must have at least 5 non-symplectic involutions. This is a
contradiction.

i=1 =1
{q;}), where C" is an irreducible curve, {p;} x PNC" #0, CNP' x {g;} # 0, a;,c1,c2,b € N>,
then a1 = as and ¢1 = ca.

2 2
Lemma 3.16 We assume that X/G =P xPL. If B= 3" a;({p;} x P}) +bC" + > ¢;(P' x

Proof Let C,, be one of irreducible components of p*({p1} x P'). Since ({p1} x P* -
{p1} x PY) =0, Cp, is an elliptic curve. Let 7 : X — Y := X/G¢ be the quotient map, and
G' := G/G¢r be a finite Abelian subgroup of Aut(Y). Since {p;} x P* N C # (), the finite map
Tic,, : Cpy = Cp, i=m(Cyp, ) is a branched cover. Since Cp, is an elliptic curve, C}, is P* Since

2 2
the branch divisor of the quotient map 7’ : Y — Y/G' 2 P! x Pl is 3" a;{p;} x PL + 3 ¢;P* x
i=1 j=1

g;}, the branch divisor of 7cv : C! — p1 x Pl is ciq1 + c2g2. By Theorem 2.3, we get that
J P1 P1
c1 = co. In the same way, we obtain that a; = as.

By Lemma 3.16, the numerical class of B is not one of (6.61)—(6.64) of the list in Section 6.

We assume that the numerical class of B is one of (6.69)—(6.78) of the list in Section 6. By
Theorem 2.3, there are an Abelian surface and a finite group G such that A/G = P! x P! and
the branch divisor is B. By Theorem 2.2, there is a surjective morphism from a K3 surface to
an Abelian surface. This is a contradiction.

Lemma 3.17 If X/G = F,, where n > 1, then B # aC + bBs; + ¢By,» + dBo 1, where
a,d >0 are even integers, a =0 or a > 2, and b,c > 0 are even integers.

Proof We assume that B = aC + bB, + cB, , + dBp,1 where a,d > 0 are even integers,
a=0ora>2 and b,c > 0 are even integers. By Theorem 2.5 and (Bs; - Byw) # 0, we
get that G = G, ® Gy, Then the number of non-symplectic involution of G is 2. Since
(Bs,t - Bo,1) # 0 and (By, - Bo,1) # 0, G must have at least 3 non-symplectic involutions. This
is a contradiction.

By Lemma 3.17, the numerical class of B is not one of (6.104), (6.114), (6.115), (6.118),
(6.141), (6.148), (6.184), (6.185), (6.187), (6.232), (6.234), (6.245), (6.246), (6.259), (6.291) of
the list in Section 6.

k
Lemma 3.18 For the branch divisor B = Y b; B;, we get that %(Bi-Bi) s an even integer
i=1 @
for1 <i<k.

1
Proof Fori=1,--- ,k, weput p*B; = Y b;C; where Cj; is a smooth curve for j = 1,--- 1.
j=1
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!
By Theorem 2.5, C1, - - -, C; are pairwise disjoint. Then we get that ‘bG?‘ (B;-B;) = Zl(Cj -Cj).
j:

Since X is a K3 surface, (C; - C;) is an even integer, and hence %(BZ - B;) is an even integer.

By Lemma 3.18, the numerical class of B is not one of (6.106), (6.107), (6.140), (6.147),
(6.180), (6.183), (6.231), (6.233), (6.258) of the list in Section 6.

We assume that the numerical class of B is (6.110) of the list in Section 6. We denote
B by 2By + 4B} | + 4B}, 4+ 2Bo,1. By Theorem 2.5, G1» = Z/2Z and G} | = Z/4Z for
i = 1,2 Since (Byz - Bj ;) # 0 for i = 1,2, by Theorem 2.5, G = G12 ® G}, ® G}, and
hence |G| = 36. Let s € G152 and t € G7, be generators. Then s ot is a non-symplectic
automorphism of order 4 and p~' (B 2) Np~ ' (B} ;) C Fix(sot). Since G = G12,®G1, ® G,
and B = 2By + 4B} | + 4B} | 4+ 2B,1, by Theorem 2.5, Fix(s o t) does not contain a curve.
By [2, Proposition 1], the number of isolated points of Fix(s ot) is 4. Since (Bi2- B{ ;) = 2,
we get that [p~!(By2) - p~ (B} )| > 8. This is a contradiction.

We assume that the numerical class of B is (6.121) of the list in Section 6. We denote B
by 2By s + 2Bj; + 2B} | + 2Bo1. By Theorem 2.5, Go3 = Gi ; = Gf | = Z/2Z. Since an
intersection of two of By 3, B},l, Bil is not an empty set, by Theorem 2.5, G = G2 3®G] 1 8GT |,
and hence |G| = 8. Let s € G23 and t € Gp,1 be generators. Since s and ¢ are non-symplectic
involutions, Fix(s) and Fix(t) are sets of curves and Fix(s ot) is a set of 8 isolated points.
Since (Bas - Bo1) = 2, [p~'(B2s) Np~'(Bi,)| = 4. Since Fix(sot) D p~'(Ba3) Np~*(Bo,a),
X/(G2,3 ® Go,1) has 2 singular points, however, since the branch divisor of the double cover
X/(Ga3® Goy) = X/Gis 2B} ; + 2B} | and (B{ | - B ;) = 1, the number of singular points
of X/(G2,3 ® Go,1) must be 1. This is a contradiction.

As for the case of (6.121), the numerical class of B is not one of (6.191)—(6.192) of the list
in Section 6.

We assume that the numerical class of B is (6.123) of the list in Section 6. We denote B
by 2Bs o + 2B1 2+ 2B1,1 + 2By1. By Theorem 2.5, Goo = G112 = G111 = Z/27. Since an
intersection of two of By o, B1 2, B1,1 is not an empty set, by Theorem 2.5, G = G2 2®G1 205G 1.
Since (Ba2,2-B1,2) = 4, X/(G2,2®G1 2) is smooth. Then there is a double cover X/G22®G1 2 —
X/G = F, whose branch divisor is 2B11 + 2B1. Since 2227501 o pPic(F,), by Theorem 3.1,
this is a contradiction.

We assume that the numerical class of B is (6.125) of the list in Section 6. We denote
B by 2B, 4+ 2Bi, + 2Bi; + 2B?,. By Theorem 2.5, Gi, = G|, = Z/2Z for i = 1,2.
Since an intersection of two of B 5, Bf 5, Bf |, B} | is not an empty set, by Theorem 2.5, G =
Gl 28GT 2,8GT 1 8GT | or G = Gl ,8GY ;&G ;. We assume that G = G ,6G3 ,6GL 1 8GF .
Since |G| = 16 and (B}, - B ,) = 3, [p~ (Bl N Bi,)| > 12. Since the number of isolated
points of symplectic involution is 8, this is a contradiction. Therefore, G = G}, ® G3 , ® G ;.

By Theorem 3.1, there are the Galois covers p; : Y7 — F; and ps : Yo — Fy such that the
branch divisor of p is 2B{ 5 +2B5 5 and that of py is 2B} ; + 2B} ;. Let X’ := Yy Xg, Y5. Then
there is the Galois cover ¢ : X’ — F; whose branch divisor is 2B] , + 2Bi2 + 2B}, + 2B},
and Galois group is isomorphic to Z/2Z%? as a group. By Theorem 2.1, there is a symplectic
automorphism of order 2, s € G such that X’ = X/(s). Since s is symplectic, the minimal
resolution f : X/ — X’ is a K3 surface. Let ey, - ,eg be the exceptional divisors of f. We
set {p1,p2,p3} = Blo N Biy and {ps} := Bl ; N Bf,. Let 7 : Blow(y, 1, pe.pa3F1 — Fi be
the blow-up of P! x P! at points p1,p2, p3,ps, and E; := 7 1(p;) be an exceptional divisor
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of m for i = 1,2,3,4. Since the support of B is simple normal crossing, in the same way of
Proposition 3.6, there is a Galois cover ¢ : X, — Blowy,, ,, n. »,3F1 whose branch divisor is

2Ct, +2C7 5 + 201 | + 2CF, and Galois group is isomorphic to Z/2Z%? as a group, where

Ci4,C74,Ct 4, CF | are proper transforms of B ,, Bf 5, B 1, B} | by the birational map 7~ ! in

4 8
order. Notice that q*( > El) = Y e; and there is the commutative diagram:
i=1 j=1

X—

[
Xy — Blow(p, po.ps.patF1-
Furthermore, we put {z1,--,2s} := Fix(s). Then Blow(,, .. ., X/(s) = XJ,, the branch
divisor of the double cover Blowy, .. ;X — X/, is ZS: e;, and there is the commutative
diagram: o~
X— X' .

]

BlOW{wh,,, Js}X E— X,ln

In the same way of Proposition 3.6, we get that
. 3
S aEi=2roqy(C+ 5F) — 201, —2CL, in Pie(X,).
i=1

4
Zqu

S

Moo

4
Since Blow,, ... 23X and X, are smooth, and (X E) =

=1 7

e;, we get that -

1
Pix(X’ ), and hence £ € Pic(X" ).
m 2 m

: . +C?
Since C, NC7 5 is an empty set and M

€ Pic(Blowp,, py ps.paF1), by Theorem 3.1,
there is the Galois cover g : Z — BIOW{phm)ps)m}Fl such that Z is smooth, the branch divisor
is 2C1} ot 20% 5, and the Galois group is isomorphic to Z/27Z as a group. By Theorem 2.1, there
is a non-symplectic automorphism of order 2p of X/, such that X/, /(p) = Z. Let h: X], — Z
be the quotient Inap Then q = g o h, and hence % € Pic(X],)?. Since the degree of g is 2 and
(Cly £)=14 and 2 12 € Pic(Z), we get that g* £ ¢ Pic(Z). Recall that Cf | = C + F — ey
in Pic(Blow{pl)p%p&m}Fl) for i = 1,2. Since the branch divisor of h is 2g*C] ; + 2¢*C} 1,
we get that ¢*(3C + 3F — e4) € Pic(X],). By [2], Pic(X],)” is generated by h*Pic(Z) and
q*(%C + %F — 64) over Z. Since g*g ¢ Pic(Z) and 2q*(%C + %F — 64) € h*Pic(Z), we may
assume that there is @ € Pic(Z) such that
75 =h"a+q (2C—|— 2F 64).
* ~1

Then g*(5-C +e4) € Pic(Z). Since the degree of g is 2 and (Cf 5 5+C +e4) = 3 and gC% €
Pic(Z), we get that (£512 "Cia - 9" (FC +e4)) = 2. By the assumption that Cl 2 € Pic(2)
and g*(5C +eyq) € PIC( ), this is a contradiction. Therefore, the numerical class of B is not
(6.125) of the list in Section 6.
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We assume that the numerical class of B is (6.126) of the list in Section 6. We denote B
by 2B1,2 4+ 2B} | + 2B} | + 2B} | 4+ 2Bo 1. By Theorem 2.5, Gy 5 = G} | = Go,1 = Z/27Z where
i = 1,2,3. Since an intersection of two of By, Bi |, B} |, B} |, Bo1 is not an empty set, by
Theorem 2.5, G = G12® G, ® Gi; & G} ;. Let G, be the subgroup of G which consists
of symplectic automorphisms of G. Then G, = Z/2Z%3. By [16], the number of singular
points of X/G; is 14, however, since the branch divisor of the double cover X/G; — X/G is
B = 2Bi+ 2B}, + 2B}, + 2B} | + 2By and the support of B is simple normal crossing,
the number of singular points of X/G; is 13. This is a contradiction. Therefore, the numerical
class of B is not (6.126) of the list in Section 6.

Lemma 3.19 If X/G = F,, wheren > 1, then B # aC +bB, ¢+ cB,, ., where a,b,c > 0 are
even integers, and (C- Bgst) # 0 and (C - Byy) #0, i.e., s # 1t or u # v.

Proof We assume that B = aC' + bB;; + ¢B,,, where a,b,c > 0 are even integers, and
(C-Bsy) #0and (C- By,y) # 0 By Theorem 2.5 and (Bs,¢ - Byw) # 0, G = G5 @ Gy ». Then
the number of non-symplectic involutions of G is 2. Since (C' - By;) # 0 and (C- By,) #0, G
must have at least 3 non-symplectic involutions. This is a contradiction.

By Lemma 3.19, the numerical class of B is not one of (6.139), (6.181), (6.182), (6.244) of
the list in Section 6.

We assume that the numerical class of B is (6.189) of the list in Section 6. We denote B
by 2B1,0 + 2B1,4+ 2B} | + 2B} ;. By Theorem 2.5, Gy, = G4 = G} | = 7Z/27 where i = 1,2.
Since (Bi,4 - Bj ;) # 0 for i = 1,2, by Theorem 2.5, G = G14® G1 ; & GI,. Let s € G} ; and
te Gil be generators. Since the number of non-symplectic automorphisms of order 2 of G is 4
and Theorem 2.5, we may assume that Fix(s) is the support of p*B{ ;. Since the support of B
is simple normal crossing and (By,4 - B ;) = 4, X/(G1,4 ® G} ;) is smooth. Then there is the
Galois cover X/G14 @ G, — Fy such that the branch divisor is 2By o + 2B ; and the Galois

group is isomorphic to Z/27 as a group. Since BI’%B% ¢ Pic(FFy), this is a contradiction.

As for the case of (6.189), the numerical class of B does not (6.190) of the list in Section 6.

We assume that the numerical class of B is (6.228) of the list in Section 6. We denote B by
3B1,0+3B1,2+3B14. By Theorem 2.5 and (By2-B14) #0, G =G12®G1,4. Let s € Gi 4 be
a generator of Gy 4. Then the only curve of Fix(s) is C1 4. Since (By4 - B1,4) = 6, the genus
of C1.4 is 4. By [1,14], Fix(s) does not have isolated points, and hence X/G1 4 is smooth. Let
q: X/G1,4 — X/G be the quotient map. Then the degree of ¢ is 3, and the branch divisor of ¢
is 3B1,0 + 3B1 2. Since the degree of ¢ is 3 and X/G 4 is smooth, 3%(31,0 - By ) is an integer.
Since (Bi,o - B1o) = —2, 2 (B1,o - B1,0) = —2. This is a contradiction.

We assume that the numerical class of B is (6.229) of the list in Section 6. We denote
B by 3B1,0+ 3B12+ 3B1,3 + 3Bo1. By Theorem 2.5, G1g & Gi12 = G153 = Go1 =2 Z/3Z.
Since (Bi2 - B1,3) # 0, by Theorem 2.5, G = G2 ® G13. Let s,t € G be generators of
G12 and Gy 3 respectively such that s ot is a non-symplectic automorphism of order 3. Since
G = Gi2 @ G13, the number of subgroups of G which are generated by a non-symplectic
automorphism of order 3 is 3. Since (Bi2 - Bo1) # 0 and (By3 - Bo1) # 0, we get that
p~1(Bop,1) is contained in Fix(s o t), and hence p~!B; ¢ is contained in Fix(s). Since |G| = 9,
there is an elliptic curve Cp; on X such that p*Bp1 = 3Cp1. By [1,14], the number of
isolated points of Fix(s o t) is 3. Since (B1o - Bi3) = 1 and (Bi2 - B13) = 3, we have
|p~1(B1oU B12) Np~Y(B13)| = 4. Since p~1(B1,oU B12) C Fix(s) and p~(B13) C Fix(t),
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we get that p~!(B1,oU B12) Np~'(B13) C Fix(sot). By the fact that the number of isolated
points of Fix(s ot) is 3, this is a contradiction.

We assume that the numerical class of B is (6.243) of the list in Section 6. We denote B
by 2819+ 2B1,4 + 2B 4. By Theorem 2.5, G = G714 ® G24. Let s € G be a generator of
Gh,4. Since (B1o - B1,4) # 0 and (B1,4 - Ba4) # 0, the only curve of Fix(s) is C7 4. Since the
fixed locus of a non-symplectic involution does not have isolated points, X/G1 4 is smooth. Let
q:X/G1,4— X/G =Ty be the quotient map. The degree of ¢ is 2 and the branch divisor of ¢
is 2B1,0 + 2Bs2. Since % ¢ Pic(F2), by Theorem 3.1, this is a contradiction.

We assume that the numerical class of B is (6.249) of the list in Section 6. We denote B
by 2B1,0 + 2B} 34 2B} 3 + 2B1 5. By Theorem 2.5, G} 3 = G1,3 = Z/27 where i = 1,2. Since
an intersection of two of Bj 3, Bf 3, B2 is not an empty set, G = G} 3 ® G} 3@ Gy 5. Since
|G| =8and (B} 3-Bi3) =4,Y := X/(G] 3 ® G} 3) is smooth. Then there is the Galois cover
q 'Y — X/G such that the branch divisor is 2B ¢ + 2B; 2, and the Galois group is Z/27Z
as a group. Since the fixed locus of a non-symplectic automorphism of order 2 does not have
isolated points, X/G1] 5 is smooth, and there is the Galois cover ¢” : X/G] 3 — Y such that
the branch divisor of ¢” is 2¢* B} 3 and the Galois group of ¢” is Z/ZZ as a group. Since Y and

X /@1 3 are smooth, and the degree of ¢” is two, we get that 2 1 s e PIC( ). Recall that the

branch divisor of ¢ is 2B; g + 2812, and the degree of ¢ is two. Slnce M 1’2 € Pic(Y), we get

. * 1 *
that 2 F:qE;” qu € Pic(Y). Since (By,o- F) = 1, we get that (L5-2 B“’~¥):%. Since
1280 Bl % € Pic(Y) and 4 T € Pic(Y), this is a contradiction. Therefore, the numerical class of B

is not (6.249).

We assume that the numerical class of B is (6.250) of the list in Section 6. We denote
B by 2B1_]0 —+ 231)3 —+ 2B11)2 + 2B%72 —+ 230)1. By Theorem 25, Gl’g = Gl 9 = Z/ZZ where
i = 1,2. Since an intersection of two of B 3, B]]:727 BiQ is not an empty set, by Theorem 2.5,

G =Gi3®Gl,®GT, Let s € Gl, be a generator. Since the number of non-symplectic
automorphisms of order 2 of G is 4 and Theorem 2.5, we may assume that p~'(Bj 3) and
p~1(Bj o) are contained in Fix(s). Since the support of B is simple normal crossing and (B 3 -
Bio+Bl,) =4, X/(G13® G ,) is smooth and there is the Galois cover X/(G13® G} ) — Fs

such that the branch divisor is 2Bi2 + 2By; and the Galois group is Z/27Z as a group. Since

M & Pic(IF3), this is a contradiction.

We assume that the numerical class of B is (6.286) of the list in Section 6. We denote B
by 2By, + 3Bi, 4+ 6B} 4. By Theorem 2.5, G1o = Z/2Z, Gi , = Z/3Z, G}, = Z/6Z and
G = Gi,®Gi 4. Let s be a generator of Gy ;. Since (B}, - Bj ;) = 4, the genus of C, is
5 where p*Bi 4, = 3C1,. Since G1 = Z/2Z and (Bi 4 - B} ;) # 0, the only curve of Fix(s) is
C1 4. By [1,14], this is a contradiction.

We assume that the numerical class of B is (6.287) of the list in Section 6. We denote B
by 2B1, + 4Bj 4 + 4B} 4. By Theorem 2.5, Gi , = Z/4Z for i = 1,2. Since (Bi , - Bf,) # 0,
by Theorem 2.5, G = G}A ®Gi,y. Let s € G, and t € G7, be generators. Then non-
symplectic involutions of G' are s? and 2. By Theorem 2.5, we may assume that Fix(s?) =
p~'(Bio) Up (B} ,) and Fix(t*) = p~'(B} ;). For a symplectic involution s* o *, since X/G
is smooth, Fix(s® o t?) C Fix(s®) N Fix(t*). Since (C'- Bj,) = 0 and (Bj,- Bj 4) = 4, we get
that p~'(By1,0UBj ) Np~ (B} ,) are 4 points. By the fact that the fixed locus of a symplectic
involution of a K3 surface are 8 isolated points, this is a contradiction.
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We assume that the numerical class of B is (6.305) of the list in Section 6. We denote B by
3B1,0+ 2B} 4+ 6B 5. By Theorem 2.5 and (Bi - Big) #0, G =Gl ® G7 4. Let p1,p2 € G
be generators of Gp1 . and G2 o respectively. Then p3 is a non-symplectic automorphism of

order 3 and a generator of G . Since (C'-C) = —6 and |G| = 12, we get that p*C = Z 3C;

where Cj is a smooth rational curve. Then Cy,---,Cy4,C} ¢ C Fix(p3) where p*Bj s = 601 6
By [1,14], this is a contradiction.

We assume that the type of B is (6.45) of the list in Section 6. We denote B by 4B} (+4B7 o+
2B1,3+ 2By,1. We take the Galois cover ¢ : P! x P! — P! x P! whose branch divisor is 4B ; +
4B3 . Since the support of B is simple normal crossing, ¢*(2B1,3 + 2Bo,1) = 2Ba3 + 2Bo,1.
By Theorem 2.2, there is the Galois morphism g : X — P! x P! such that the branch divisor
is 2B4,3 + 2By 1 and the Galois group is Abelian. Since the numerical class of 2843 + 2By 1 is
(6.25), this is a contradiction.

As for the case of (6.45), the numerical class of B is not one of (6.46), (6.55), (6.57), (6.59),
(6.60), (6.65), (6.66), (6.67), (6.68), (6.102), (6.105), (6.108), (6.111), (6.116), (6.124), (6.136),
(6.138), (6.142), (6.144, (6.149), (6.153), (6.178), (6.186), (6.221), (6.222), (6.226), (6.260),
(6.267) of the list in Section 6 by (6.25), (6.24), (6.27), (6.25), (6.37), (6.34), (6.40), (6.34),
(6.34), (6.212), (6.213), (6.214), (6.215), (6.216), (6.217), (6.286), (6.286), (6.287), (6.287),
(6.305), (6.228), (6.241), (6.243), (6.286), (6.287), (6.303), (6.305), (6.308) in order.

Therefore, we get Theorem 1.5.

4 Abelian Groups of K3 Surfaces with Smooth Quotient

In this section, first of all, we will show Theorems 1.1-1.2. Next, we will show Theorem 1.4.
By Section 3, we had that if X/G is P? or F,,, then G is one of AG as a group.

Proposition 4.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that
X/G is a smooth rational surface. For a birational morphism f : X/G — F,, we get that
0<n<12.

Proof Let f: X/G — F,, be a birational morphism, e; be the exceptional divisors for

k
i=1,---,m,and B = > b;B; be the branch divisor. Since X/G and F,, are smooth and f is

=1

m
a birational morphism, we get Pic(X/G) = f*Pic(F,,) € Ze; and there are positive integers a;
i=1

fori=1,---,m such that Kx,c = f*Kr, + > a;e;. By Theorem 2.4,
i=1

m k
0= f*Kr, + Zaiei + Z bib—__lBi-
i=1 i=1 g

m
Since Pic(X/G) = f*Pic(F,) € Ze;, at least one of By, -, By is not an exceptional divisor
i=1
of f. By rearranging if necessary, we assume that B; is not an exceptional divisor of f for
1 <7 < u, and Bj is an exceptional divisor of f for u 41 < j < k. Then f,B; is an irreducible
curve on [F,, for 1 < ¢ < u. Therefore, for 1 < i < wu, there are non-negative integers c;, d;, gj-
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such that

B = f"(¢;C+ d;F) — Zg;-ej in Pic(X/G),
j=1
where (¢;,d;) = (1,0), (0,1), or d; > ¢;n > 0. Since Ky, = —2C — (n + 2)F in Pic(F,,), by

Theorem 2.4, we get that 2 =" bibflci andn+2=>" bib_,ldl-. In the same way as Proposition
i ! i ‘

3.1, we get this proposition.

Let X be a K3 surface, G be a finite subgroup of Aut(X) such that X/G is smooth, and
f : X/G — F, be a birational morphism. By Proposition 4.1, we get 0 < n < 12. By
the proof of Proposition 4.1, the numerical class of f.B is one of the list on Section 3. Let

k !
B = > b;Bi+ Y. b;jBj, where B; is not an exceptional divisor of f for i = 1,---,k and
i=1 j=k+1

!
B; is an exceptional divisor of f for j = k+1,--- 1. Since (X/G)\ |J B, is isomorphic to
Jj=k+1

! 1
F,\ U f(Bj)and f(Bj)isapoint for j =k+1,---1, (X/G)\ U B;j is simply connected.
j=k+1 j=k+1
By Theorem 2.5, G is generated by Gy, - - - , Gi. Therefore, as for the case of Hirzebruch surface,

we will guess G from the numerical class of f,B. Recall that if G is Abelian, then G; is a cyclic
group, which is generated by a purely non-symplectic automorphism of order b;. If f,B; = C,
or I, then G is generated by Ga,- -+, G, and if (f«B1, f«B2) = (C, F), then G is generated by
Gy, ,Gy.

Recall that since X/G is a smooth rational, X/G is given by blowups of F,,. Next, we will
investigate the relationship between a branch divisor and exceptional divisors of blow-ups.

Lemma 4.1 Let X be a K3 surface, and G C Aut(X) a finite subgroup such that X/G
is a smooth rational surface, and B be the branch divisor of the quotient map p : X — X/G.
For a birational morphism h : X/G — T where T is a smooth projective surface, let e; be

the exceptional divisor of h for i = 1,--- . m. Then for i = 1,--- ,m we have that h(e;) €
Supp(h.B).

Proof Let ey, -, e, be the exceptional divisors of h. Since X/G and T are smooth and

h is birational, Pic(X/G) = h*Pic(T) @ Ze; and there are positive integers a; such that
j=1

KX/G =h"Kr + Zaiei.

=1

We assume that h(e;) ¢ Supp(h.B) for some 1 < i < m. For simply, we assume that i = 1,
i.e., h(e1) & Supp(h«B). Let By,---, By be irreducible components of B such that B; is not
an exceptional divisor of h for j = 1,---,k. Since h(e;) € Supp(h.B), there are integers c; s

m
such that B; = h*C;j + Y ¢j ses, where Cj is an irreducible curve in 7. By Theorem 2.4, we
s=2

get that

k m m
0= (h*KT + Zaiei) + Z bjb; ! (h*Cj + Z cj_yses) + leej in Pic(X/G),

s=2 7j=1




138 T. Hayashi

where I; = 0 or l; = i > 1,¢;,1 =0,1; >0 and

Pic(X/G) = h*Pic(T') @ Ze,, this is a contradiction.
j=1
Proposition 4.2 Let X be a K3 surface, G C Aut(X) be a finite subgroup such that the
quotient space X/G is smooth, and B be the branch divisor of the quotient morphism p : X —

X/G. Let f: X/G — T be a birational morphzsm where T is a smooth surface, e1,--- , e, be

the exceptional divisors of f, and f.B := E b; B where B is an wrreducible curves on U for
i=1

i=1,---,u. IfBi 18 smooth for each 1 < i < u, then for 1 < j<m thereare 1 <s<t<u

such that f(e;) € B, N B;.
Proof We set B = Z b;B; + Z b;B;, where B; is not an exceptional divisor of f for
=1 Jj=u+1
i=1,---,u, and Bj is an exceptional divisor of f for j =u+1,--- k. Then f.B = Z b;f«B
i=1
We assume that f.B; is a smooth curve for i = 1,--- ,u. By Lemma 4.1, f(e;) € supp(f«B) for
i=1,-,m
Let S:=X/G, Z :={f(e1), -+, flem)} :={z1, -+ , 2o} C T where

:l{f(el)a 7f(em)}|, (]ZBlOWZT—>T

be the blow-up, and E; := ¢~ '(z;) be the exceptional divisor of ¢ for 1 < i < v. Then there
is a birational morphism ¢ : S — BlowzT such that f = qo g, i.e., the following diagram is
commutative:

Blow,T ——T

17

S.
By changing the number if necessary, we assume that g(e;) = F; for 1 < i < v. Then the
v
exceptional divisors of g are e,41,- - , €y, Since Pic(BlowzT') = ¢*Pic(T') €@ ZE; and f = qog,
j=1

Pic(S) = ¢*Pic(Blow,T) é Ze; = (f*Plc @Zg E) EB Ze;.

j=v+1 j=v+1
v
Since KBlosz = q*KT + Z Ej,
j=1
m
Ks = g"Kplow,T + Z ae; = (f KT+ZQ E) + Z ajei,
1=v+1 1=v+1
where a is a positive integer for i = v +1,--- ,m.
We assume that for some 1 < i < m, f(e;) & f«BsN fuB; for each 1 < s < ¢t < u. Since
Z = {f(e1), -, f(ey)}, we assume that 1 < ¢ < v. For simplicity, we assume that i = 1.
In addition, since f(e;) € supp(f.B) for j = 1,--- ,m, by changing the number if necessary,

we assume that f(e1) € supp(f«B1), and f(e1) & supp(f«B;) for 2 < j < u. Recall that the
exceptional divisors of ¢ are E1,---, E,, the exceptional divisors of g are e,41, -+ ,€em, and
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gle;) = E; for 1 < i < w. Since f = gog, for j = 1,--- ,u there are non-negative integers
Cj,s, C;; such that

Bj = f*f.Bj — Z ¢s9 By — Z cjec i Pic(S).
s=1 t=v+1
Since f(e1) & f.B; for 2 < j < u, we get that ¢;; = 0 for 2 < j < u. Since f.B; is smooth,

v m k
11 =1 Since Kg= f*Kr+ > ¢*E;+ >, ale;and 0=Kg+ > b'iblei in Pic(9),
j=1 i=v+1 i=1

0= (f*KT + Zg*Ei + Z a;ei)
=1

1=v+1
+ Z bib__ ! (f*f*Bj - ch7sg*Es - Z c;-7tet)
i=1 ? s=1 t=v+1

k
>
j=ut+1 7

b; —

LB, i Pic(S).

From the coefficient of g*FE;, we get that 1 = blbjl. Since b; > 2, this is a contradiction.

Let X be a K3 surface, G be a finite subgroup of Aut(X) such that X/G is a smooth rational
surface, and B be the branch divisor of the quotient map p : X — X/G. Let h: X/G — T be a

birational morphism where T is a smooth projective surface, and ey, - - - , e, be the exceptional
divisors of h. We set h,B := Zl: bjB}. We write B = Zl: b;B; + Zk: b; B; such that h.B; = Bj
fori =1,---,l. Then B; is](;;e of the exceptional Zi?\iisor of jh:lfJ(; j=14+1,--- k, and for
it =1,---,1 there are non-negative integers ¢; 1,-- - , ¢;,m such that B; = h*_lBg — til Ci tCt.

Remark 4.1 In the above situation, for e, and e, where 1 < u < v < m and h(e,) = h(ey),
we get that ¢; , = 0 if and only if ¢; , = 0.

Remark 4.2 In the situation of Proposition 4.2, we assume that T" = F,,. Then there are
m

positive integers ay,- - - , ay, such that Ky, = h*Kr, + > ase;. By the proof of Proposition
i=1
4.2, we get that a; = --- =a, = 1 and
Bi—1 ~b;—1
1+ 2 = <~ fori=1,--- u,
Bi ; bj J

where 8; = 1 if e; is not an irreducible component of B, and f; is the ramification index at e;
if e; is an irreducible component of B.
Furthermore, we assume that X/G # Blow{n(e,),.- ,h(ew)}Fn- For the birational morphis-

m g : X/G — Blow{p(e,),... \h(en)}Fn in the proof of Proposition 4.2, we rearrange the order

so that {g(eu+1), -, 9(eurv)t = {g(eut1), -, g(em)}, where v := [{g(eu+1), -, g(em)}].
Like the proof of Proposition 4.2, by considering the blow-up of Blow s(c,),... n(e,)}Fn at

{g(eus1)," ,g(€uts)}, we get that ay+1 = -+ = ayqo = 2 and
k
Bi —1 b —1 .
2+ = c; fori=u+1,--- utwv,
Bi Z bj 1,3

j=1
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where 8; = 1 if e; is not an irreducible component of B, and (; is the ramification index at e;
if e; is an irreducible component of B.

Recall that by Theorem 2.5, Gp, is generated by a non-symplectic automorphism of order
b;. As a corollary of Theorem 2.5 and Proposition 4.2, we get the following Theorem 4.1.

Theorem 4.1 Let X be a K3 surface, G be a finite subgroup of Aut(X) such that X/G is
smooth, and B be the branch divisor of the quotient map p: X — X/G. Let f:X — S be the

birational morphism where S is minimal rational surface. We put fu B := Z b; B; where B; is

an irreducible curve for i = 1,--- k. We denote by Gy the subgroup of G whzch consists of
symplectic automorphisms of G, and b the least common multiple of by,--- ,bx. Then there is
a purely non-symplectic automorphism g € G of order b such that G is the semidirect product

Gs ¥ (g) of G5 and (g).

Proof Since G, is a normal subgroup of G and G/G; is a cyclic group, in order to show
Theorem 4.1, we only show that there is a purely non-symplectic automorphism g € G of order
b.

k
First of all, we assume that X/G = P2. We put B := Z b; B; where B; is an irreducible

1=

curve for ¢ = 1,--- k. By Theorem 2.4, 0 = Z by _1degB + deg Kp2, in which Kp2 is the
i=1

canonical line bundle of P?. Since the degree of Kp2 is —3 and 2 5 < _T < 1 for any positive

k k
integer [, we get that 4 < > degB; < 6. If > degB; = 6, then b; = --- = by = 2. By Theorem
i=1 i=1
k
2.5, in this case the statement of theorem is established. We assume that Z degB; < 5. By
[15, Theorem 2], b = b; for some 1 < i < k or b = l.e.m(b;, b;) for i < j. By Theorem 2.5, in
the former case, we get this theorem.

For the latter, i.e., if b # b; for 1 <i <k, then B is one of (i) 3Ly +3La+3Ls+2L4+ 2Ls5,
where L3 passes through the points L1 N Ly and LyN L5 (see [15, pp. 408]), (ii) 3L1+3La+3L3s+
2@Q, where L1, Lo are the tangent to () and L3 is in general position with respect to L1 ULy UQ
(see [15, pp. 408]), and (iii) 2L1 + 2Ls 4+ 3L3 + 3Q, where Ly, Lo, L3 are three distinct tangent
lines to @ (see [15, pp- 410]). Here, L; and Q are smooth curves on P? with degL; = 1 and
deg@Q =2fori=1,---,5. Then there are 1 < i < j < k such that b = l.c.m(b;,b;), B; + B, is
simple normal crossing, and (B; N B;)\ |J Bs is not an empty set. For clarity, we may assume

sF4,J
that i = 1, j = 2. We take one point y € (B1 N Ba)\ U B;. Let x € p~1(y). By the assumption
i=3
for 4 and Theorem 2.1, there are open subset V C P? and U C X such that y € V, = € U,
pjv : U — V is isomorphic to {z € C? : |z] <1} 3 (21,22) — (20,2 e {zeC?: 2| < 1},
and hence G, :={g € G| g(x) =2} X Z/01Z® Z/b3Z. Since b = l.c.m(by, by), there is a purely
non-symplectic automorphism g € G with order b.

Next, we assume that X/G = F,,. By the list of the numerical class of B in Section 6, if the
numerical class of B is not one of (6.65), (6.70), (6.73), (6.77), (6.83), (6.92), (6.102), (6.127),
(6.128), (6.132), (6.136), (6.143), (6.153), (6.154), (6.170), (6.235), (6.251), (6.252), (6.253),
then b = b; for some 1 < i < k. Therefore, by Theorem 2.5, we get this theorem. If the numerical
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class of B is one of (6.65), (6.70), (6.73), (6.77), (6.92), (6.127), (6.128), (6.132), (6.136), (6.143),
(6.153), (6.154), (6.170), (6.235), (6.251), (6.252), (6.253), then there are 1 < i < j < k such
that b = l.c.m(b;, b;), B; + Bj is simple normal crossing, and (B; NB;)\ |J Bs is not an empty
set. As for the case of P?, we get this theorem. "

We assume that the numerical class of B is (6.83). We write B = 3B3 3 + 2B3)1 + 23371.
Since Bj ;N Bj ;| is an empty set, if B3 3N B | is not one point, then by (Bss- Bj ;) = 3, there
isapoint y € B33 ﬂBé)l such that the support of B is simple normal crossing at y. Since b = 6
by Theorem 2.5, we get this theorem. Therefore, we assume that Bz 3N Bj, and Bs3 N Bj,
are one point. Let ¢ : X/Gs — X/G be the quotient map. Then the singular locus of X/Gy is
¢ '(BssNBj,)Uq ' (BssNBg,). Since the Galois group of ¢ is G/Gy = Z/6Z, the branch
divisor of ¢ is B, and Bs3 N By, and Bz N Bj, are one point, X/G, has just two singular
point. By [16, Theorem 3|, this is a contradiction. Therefore, if the numerical class of B is
(6.83), then we get this theorem. As for the case of (6.83), we get this theorem for (6.102).

Finally, we assume that X/G is not P? or IF,,. We take a birational morphism f : X/G — F"
where 0 < n. Let ey, -+ , e, be the exceptional divisors of f. In the same way of the case where
X/G = P? or F,, we only consider the case that the numerical class of f.B is one of (6.65),
(6.70), (6.73), (6.77), (6.83), (6.92), (6.102), (6.127), (6.128), (6.132), (6.136), (6.143), (6.153),
(6.154), (6.170), (6.235), (6.251), (6.252), (6.253).

We assume that the numerical class of f.B is (6.65). By Remark 4.2, there are positive
integers aq, - -- ,as,b such that

1—|—b_—1 = 2al—|—§ag—|—l(zg—i-iu:—i-§a5.
b 3 6 2 4 4

Since the numerical class of f,B is (6.65), we may assume that a; or as is 0, and either a4 or
as is 0. However, there are not such positive integers. Therefore, the numerical class of f.B
is not (6.65). As for the case of (6.65), the numerical class of B is not one of (6.73), (6.77),
(6.128), (6.132), (6.170), (6.235), (6.251), (6.253).

We assume that the numerical class of f,B is (6.70). By Remark 4.2, there are positive
integers ay,- - , ag, b such that

LIS R RN S OIS SUNNE SRS
R R R R Rk
Since the numerical class of f,B is (6.70), we may assume that two of a1, as and ag are 0, and

two of a4, as and ag are 0. The integers satisfying the above conditions is only (ai,- - ,a6,b) =
(1,0,0,1,0,0,12). Therefore, for B := Z B;Bj, b; = 12 for some 1 < i < [. By Theorem 2.5,

if the numerical class of f.B is (6.65), then we get this theorem. As for the case of (6.70), if
the numerical class of B is one of (6.136), (6.143), then we get this theorem.
We assume that the numerical class of B is (6.83). By Remark 4.2, there are positive integers

ay,--- ,ag,b such that

gtz 1l
b —3&1 2&2 2&3.

Since the numerical class of f. B is (6.83), we may assume that either as or as is 0. The integers
satisfying the above conditions is (a1, as,as,b) = (2,1,0,6) or (2,0,1,6). Therefore, we get
this of theorem. As for the case of (6.83), if the numerical class of B is one of (6.92), (6.102),
(6.127), (6.153), (6.154), (6.252), then we get this theorem.
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Theorem 4.2 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that X/G
is smooth. For a birational morphism f : X/G — F,, where 0 < n, we get that n is not one of
5,7,9,10,11.

Proof Let p: X — X/G be the quotient map, and B := Z b; B; be the branch divisor of

p. Let f : X/G — T,, be a birational morphism where 0 < n, and €1, ,€m be the exceptional
divisors of f.

First we will show this theorem for the cases where f is an isomorphism, i.e., X/G = F,,.
By Theorem 2.4, n = 0,1,2,3,4,5,6,7,8,9 or 12. We assume that n = 5,7 or 9. Then the
numerical class of B is one of (6.296), (6.297), (6.298), (6.299), (6.300), (6.301), (6.310), (6.314),
(6.315) of the list in Section 6.

We assume that the numerical class of B is (6.296). We denote B by 4By, +2B; 5+ 4B 6.

Let p*By o = Z 4C; where C; is a smooth curve for ¢ = 1,---,m. Since (By - B1,) < 0,

(Ci-Cy) <. Slnce X is a K3 surface, and C; is irreducible, we get that (C; - C;) = —2. Since

the degree of p is |G| and (By - B1,o) = —5, we get that 5|G| =-2m+2 > (C;-Cy),
1<i<j<m

!
and hence % <m. Let p*By = > 4C} where C] is a smooth curve for j =1,--- ,l. Since

=1

! !
(Bio - Big) = 1, ‘13 = m(Cy -j; Cf). Since (Cy -j; Cf) > 1, we get that m < S

1

5|G| < m and m < |16|, we get that the numerical class of B is not (6.296). As for the case
of (6.296), the numerical class of f.B is not one of (6.297), (6.298), (6.299), (6.300), (6.301),
(6.310), (6.314), (6.315). Therefore, if X/G = F,,, then n #5,7,9,10, 11.

Next, we assume that f is not an isomorphism, i.e., X/G is not a Hirzebruch surface F,.
By the proof of Proposition 4.1, the numerical class of f.B is one of the list in Section 6. As a
result, n = 0,1,2,3,4,5,6,7,8,9 or 12. We assume that n = 5,7 or 9. The numerical class of

J.B is one of (6.296), (6.297), (6.298), (6.299), (6.300), (6.301), (6:310), (6:314), (6.315).

We assume that the numerical class of f.B is (6.296). Let p*Byo = 4 Z C;, where C; is
=1
a smooth curve for ¢ = 1,---,m. Since the degree of p is |G|, by (C - F) = 1, we get that

|G| = 4m(Cy - p* f*F), and hence |G| is a multiple of 4m. Since f.B1o = C, (B1,0,B1,0) <
(C-C)=-5 By &(Bio-Big)=—-2m+2 Y (C;-Cj)), we get that m = €\, Since the

1<i<j<m
numerical class of f.B is (6.296), there must be positive integers a1, az, as, b such that
b—1 3 1 3
14+ ——=-a1+ —as + —as,

b 4 2 4

and either a; or as is 0. The integers satisfying the above conditions are only (aj,as,as,b) =
(1,0,1,2), and hence f(e;) € fuB15N fuB1e for each i =1,--- 1. Since (f.B15 - f«B1) = 1,
f«B15N fiBi 6 is one point. We put x := f, By 5N f«B1,6. Let ¢ : Blow,Fs — F5 be the blow-up
of F5 at x. Then there is a birational morphism g : X/G — Blow,F5 such that f = gog. Let
C’ := g.B1o. Let E be the exceptional divisor of ¢. Since f(e;) = z for each ¢ = 1,--- 1,
g(e;) € E for each i = 1,--- 1. Since g.B = 4C" + 2¢9.B15 + 49.B1,6 + 2E, if g is not an
isomorphism, then there must be integers a1, as, as, a4, b such that
b—1 3

2+ o304 ]
—— =-—a;+ zaz2+ —-az3 + -a
b 4T YT T gt
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and if a1 is not 0, then either as = a3 = 0. However, there are not such positive integers.
Therefore, ¢ is an isomorphism, i.e., X/G = Blow,Fs5, and hence B = 4B ¢+2B; 5+4B1 6+2E

and (Bio - E) =1. We put p*E' =2 3 C} where C] is a smooth curve for j = 1,--- ,u. Since
j=1

=3, 5 =|G|(Cy - Y Cf). This is a contradiction. Therefore, the numerical class of B is
i=1
not (6.296). As for the case of (6.296), the numerical class of B is not one of (6.310), (6.314).

We assume that the numerical class of f.B is (6.297). Then there must be integers a1, as, as,
a4, b such that

14 b—1 3 n 1 n 3 n 3
—— =-a1+ -as+ —az + -a
S R R R
and if a; is not zero, then as = az = 0. The integers satisfying the above condition is

(a1, as2,a3,a4,b) = (1,0,0,1,2) or (0,0,1,1,2). Therefore, for each i = 1,--- I, we get that
f(ei) S f*Bl)me*BQJ or f(el) S f*BIQ,5 mf*BQ71. If f(el) S f*B12,5 mf*BQJ foralli=1,---,1,
then (B1,0-Bi1,0) = =5 and (B1,0- Bo,1) = 1. However, as for the case of X/G = F,,, we can see
that such things can not happen. Therefore, f(e;) € f«Bi1,oN f«Bo1 for some i =1,---,l. By
using the blow-up of F5 at  := f,B1,0N f+«Bo,1, as for the case of (6.296), this is a contradiction.
Therefore, the numerical class of B is not (6.297). As for the case of (6.297), the numerical
class of B is not (6.315).

We assume that the numerical class of f. B is (6.298). Then there must be integers a1, ag, as, b
such that

b—1 5 1

14+ —=— Z Zaa.
+ b 6a1+2a2+3a3

The integers satisfying the above condition are only (a1, as, as,b) = (1,0, 1, 2), and hence f(e;) €
f«Bi1s5N fiBig for each i =1,--- 1. Since (f«B15- f«Bi1e) =1, f«B1,5 N f+B1,6 is one point.
We put 2 := f.B1 5N fiB1,6. Let ¢ : Blow,F5 — 5 be the blow-up of F5 at x. As for the case
of (6.296), since there are no integers ay, as, as, as, b such that

b—1 3

2+ = +1 +3 +1
b _4a1 2a2 4a3 2a4,

we get that X/G = Blow,F5, and hence B = 6By, + 2B1,6 + 3B1,6 + 2E, and (B1 - E) = 1.

u
We put p*E =2 3 C}, where C} is a smooth curve for j = 1,--- ,u. Since (E-E) = —1, we
j=1

get that u = % + 1<§.< (Cf - C%), and hence u > %. Since (B, - F) =1, % is a multiple
<i<j<u
of u. This is a contradiction. Therefore, the numerical class of B is not (6.298).

We assume that the numerical class of f. B is (6.299). Then there must be positive integers

ay,as,as, as, b such that
14 b—1 5 n 1 n 2 n 2
I A R

and ajas = 0. The integers satisfying the above conditions are (a1, az,as, as,b) = (1,0,0,1,2)
or (0,1,1,1,6). Therefore, for each i = 1,--- 1, we get that f(e;) € fuB1,0N f+Bo,1 or f(e;) €
J«B1,6Nf«B1sNf«Bo1. If f(e;) € fuB1,6NfiB1,5NfiBo, foralli=1,--- 1, then (By,o-Bi,) =
—5and (By,0- Bo1) = 1. We get that this is not established in the same way as in the case of
X/G = TF,. By using the blow-up of F5 at « := f.B1 0N f«Bo 1, as for the case of (6.298), we
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get that there is no case where f(e;) € f.B1o N fiBo1 for some ¢ = 1,---,l. Therefore, the
numerical class of B is not (6.299). As for the case of (6.299), the numerical class of B is not
one of (6.300)—(6.301).

Corollary 4.1 Let X be a K3 surface and G be a finite subgroup of Aut(X) such that
X/G is smooth. If there is a birational morphism f : X/G — F,, from the quotient space X/G
to a Hirzebruch surface F,, where n = 6,8 or 12, then f is an isomorphism, i.e., X/G is a
Hirzebruch surface.

Proof Letn > 1and C_,, C FF,, be the unique irreducible curve such that (C_,,-C_,) = —n.
Since for x € F,,, if v € C_,,, then Blow,F, = Blow,[F,, ;1 where y € F,,;1\C_(,41), and if
x ¢ C_p, then Blow,[F,, = Blow,F, 1 wherey € C_(,_1), by Theorem 4.2, we get this corollary.

Theorem 4.3 Let X be a K3 surface and G be a finite Abelian subgroup of Aut(X). If
X/G is smooth, then G is isomorphic to one of AG as groups.

Proof Since X/G is smooth, the quotient space X/G is an Enriques surface or a rational
surface. If X/G is Enriques, then G = Z/27Z as a group and Z/27Z € AG. By Section 3, if
X/G = F,, then G is isomorphic to one of AG as a group. By [15], if X/G = P2, then G is
isomorphic to one of AG as a group. Therefore, we assume that X/G is rational, and X /G # P?
or IF,,.

Let f : X/G — F,, be a birational morphism where 0 < n < 12, and B be the branch divisor
of G. By Theorem 4.2 and Corollary 4.1, we may assume that 0 < n < 4. By the proof of
Proposition 4.1, the numerical class of f.B is one of the list in Section 6.

We assume that the numerical class of f.B is one of (6.4), (6.5), (6.6), (6.10), (6.11), (6.12),
(6.14), (6.15), (6.16), (6.19), (6.20), (6.25), (6.26), (6.27), (6.28), (6.32), (6.33), (6.36), (6.37),
(6.38), (6.41), (6.42), (6.46), (6.51), (6.52), (6.57), (6.58), (6.59), (6.60), (6.79), (6.80), (6.81),
(6.82), (6.85), (6.87), (6.88), (6.89), (6.91), (6.94), (6.96), (6.98), (6.112), (6.113), (6.114),
(6.115), (6.116), (6.117), (6.118), (6.119), (6.120), (6.121), (6.122), (6.123), (6.124), (6.125),
(6.126), (6.176), (6.177), (6.178), (6.180), (6.181), (6.182), (6.183), (6.184), (6.185), (6.186),
(6.187), (6.189), (6.190), (6.191), (6.192), (6.195), (6.196), (6.197), (6.199), (6.200), (6.202),
(6.203), (6.206), (6.216), (6.217), (6.241), (6.242), (6.243), (6.244), (6.245), (6.246), (6.249),
(6.250), (6.270), (6.271), (6.272), (6.273), (6.274), (6.275), (6.276), (6.277), (6.279), (6.282) of
the list in Section 6. By Theorem 2.5, G is generated by automorphisms ¢, -, gm,, where
1 <'m <5 and the order of g; is two for i = 1,--- ,m. Therefore, G is Z/2Z%% where 1 < a <5
as a group.

3 3 3

- — —

),
),
),
),

T — —

We assume that the numerical class of f. B is one of (6.1), (6.2), (6.3), (6.17), (6.18), (6.22),
(6.23), (6.24), (6.39), (6.54), (6.55), (6.194), (6.198), (6.201), (6.204), (6.205), (6.212), (6.218),
(6.219), (6.228), (6.229), (6.284), (6.285), (6.289), (6.290) of the list in Section 6. By Theorem
2.5, G is generated by automorphisms g1, - - - , gm, where 1 < m < 3 and the order of g; is 3 for
i=1,---,m. Therefore, G is Z/3Z%" where 1 < b < 3 as a group.

We assume that the numerical class of f.B is one of (6.29), (6.34), (6.40), (6.44), (6.49),
(6.50), (6.53), (6.56), (6.62), (6.63), (6.64), (6.66), (6.67), (6.68), (6.69), (6.71), (6.77), (6.83),
(6.84), (6.92), (6.93), (6.102), (6.106), (6.107),(6.108), (6.127), (6.128), (6.133), (6.134), (6.135),
(6.137), (6.138), (6.145), (6.146), (6.147), (6.148), (6.149), (6.151), (6.153), (6.154), (6.163),
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6.164), (6.165), (6.166), (6.167), (6.168), (6.169), (6.174), (6.175), (6.179), ), (6.193)
6.211), (6.214), (6.220), (6.221), (6.223), (6.224), (6.225), (6.226), (6.227), (6.230), (6.236),
(6.239) ), ( (6.251), (6.252), (6.254), (6.256) ), (6.259)

( ) ) 6.188), (6.193),
( ) )

(6.237), (6.238), (6.239), (6.240), (6.248), (6.251), (6.252), (6.254), (6.256), (6.258), (6.259),
( ) )

( )

)
)

3

T — — —
A~ Y~
A~~~
~ o~ o~ o~

6.260), (6.265), (6.266), (6.267), (6.268), (6.269), (6.283), (6.286), (6.288), (6.292), (6.293),
6.294), (6.295) of the list in Section 6. By Theorem 2.5, G is generated by automorphisms
Gis' ' s Gm, h1y - hyp, where 1 <m < 3,1 <n < 2, the order of g; is 2 for i = 1,--- ,m, and
the order of h; is 3 for j = 1,--- ,n. Therefore, G is Z/2Z%¢ & 7./37.%¢, where (d,e) = (1,1),
(1,2), (1,3), (2,1), (2,2), (3,1), (3,2) as a group.

We assume that the numerical class of f.B is one of (6.7), (6.8), (6.9), (6.13), (6.21),
(6.30), (6.31), (6.35), (6.43), (6.45), (6.47), (6.48), (6.61), (6.86), (6.90), (6.97), (6.99), (6.100
(6.103), (6.104), (6.105), (6.109), (6.110), (6.130), (6.131), (6.139), (6.140), (6.141), (6.142
(6.155), (6.156), (6.157), (6.158), (6.161), (6.162), (6.207), (6.208), (6.209), (6.210), (6.213),
(6.215) ) ) (

(

3

)
);
)7 )7 )7
); ); )

A~ Y~~~

6.215), (6.222), (6.231), (6.232), (6.233), (6.234), (6.255), (6.257), (6.261), (6.262), (6.263),
6.264), (6.278), (6.280), (6.281), (6.287), (6.291) of the list in Section 6. By Theorem 2.5, G is
generated by automorphisms g;, - , gm, b1, -+, hy, where the order of g; is 2 for i = 1,--- |, m,
the order of hj is 4 for j =1,--- ,n, and (n,m) is one of (0,1), (0,2), (0,3), (1,1), (1,2), (2,1),
(3,1). Therefore, G is Z/2Z%1 © Z./AZ®9, where (f,g) = (0,1), (0,2), (0,3), (1,1), (1,2), (2,1),
(3,1) as a group.

We assume that the numerical class of f,B is (6.65) of the list in Section 6. We denote

l . .
B by 3Bi+6B7,+ 2By + 4B}, +4B5, + > b;B], where f.B}, = (1,0), f.B}, = (0,1)
j=1

K2 27

in Pic(P* x P'), and Bj is an exceptional divisor of f for j = 1,---,I. By Theorem 2.5,
G=27/22% @ 7)3LHL/AZ where i =0 or 1. If G 2 Z/2Z.®7/37.& Z/AZ, then G is one of AG
as a group. We assume that G = Z/37Z @& Z/4Z. By Remark 4.2, there are integers 3,a; > 0
such that

-1 5 1 2 11 11

1+ —=- — - — —as.
+ 3 6@1 + 2a2+ 3a3+ 12a4+ 12(15

Since G 2 Z/3Z. & Z/AZ, =1, 2, 3, 4, 6 or 12. Since f,.B = 3(1,0)+6(1,0)+2(1,1)+4(0,1) +
4(0, 1), the support of f.B is simple normal crossing. Since each irreducible component of f,.B
is smooth, a; = 0 or 1 for each 1 < j < 5. Since f,.B = 3(1,0)+6(1,0)+2(1,1)+4(0,1)+4(0,1),
the non-zero element of {a1, as} is just one, and the non-zero element of {ay4, a5} is just one. The
integers which satisfy the above condition are (5, a1, az2,a3) = (12,1,0,1) and (a4, as) = (1,0)
or (0,1). Therefore, f(e;) & feB7g for i = 1,---,1. By the fact that f.B7, = (1,0) and
f«Bi1 = (1,1) in Pic(P' x P') and the fact that f(e;) ¢ f.Bf, for i = 1,---,1, we get
that B} ;N By, is not an empty set, and hence p~! (B} () Np~!(By,1) is an empty set. Since
G = 7/37 & Z/AZ, the number of subgroup of G which is generated by a non-symplectic
automorphism of order 2 is one. Since each ramification index of Bio and By ; is divided by 2, by
Theorem 2.5, there is a non-symplectic automorphism g of order 2 such that Fix(g) D f~'B7
and Fix(g) D f~'Bi,1. Since p~ (B} o) Np~!(B1,1) # 0, this is a contradiction. Therefore, if
the numerical class of f,B is (6.65), then G is one of AG as a group.

As for the case of (6.65), if the numerical class of f.B is one of (6.95), (6.136), (6.150),
(6.159), (6.235), (6.247), (6.253) of the list in Section 6, then G is one of AG as a group.

We assume that the numerical class of f.B is (6.70) of the list in Section 6. We denote B by

l . .
2B} (+3B3 ,+6B3 (+2Bj  +4B5 | +4Bj |+ Zlb’.B’. where f. B} o = (1,0), f. B, = (0,1), and
j:

K2 79
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Bj is an exceptional divisor of f for j =1, ,1. By Theorem 2.5, G = Z)2Z% ©Z/3L O L/AL
where ¢ = 0,1 or 2. There are some integers 3, a; such that
1—i—E = lal—l—2(124—§(13—|—1(144—%(15—1—§aﬁ.
R R R A R S

Since G = Z/27% © 7/37 @ Z/4Z where i = 0,1 or 2, we get B=1, 2, 3, 4, 6 or 12. Since
f«B =2(1,0)43(1,0) +6(1,0) +2(0,1) +4(0, 1) + 4(0, 1), the support of f,B is simple normal
crossing. Since each irreducible component of f.B is smooth, a; = 0 or 1 for each 1 < j <
6, and by Proposition 4.2 the non-zero element of {a1,as,a3} is just one, and the non-zero
element of {ay4,as,ag} is just one. From the above, (8, a1, a2, as, b1, ba,b3) = (1,1,0,0,1,0,0).
Therefore, f(e;) € f.(Bio) N f«(Bg,) for j =1,---,1. Since ((1,0) - (1,0)) = 0, we get that
(p*Bi o -p*Biy) =0 for i = 2,3. Since X is a K3 surface, the support of p*Bj ; is a union of
elliptic curves for i = 2, 3. Since G = Z/2Z% ©Z/37 & Z./AZ where i = 0, 1 or 2, the number of
subgroups of G which are generated by a non-symplectic automorphism of order 3 is one, and
hence there is a non-symplectic automorphism g of order 3 such that Fix(g) has at least two
elliptic curves. By [1,14], this is a contradiction. Therefore, the numerical class of f.B is not
(6.70).

As for the case of (6.70), the numerical class of f,B is not one of (6.75), (6.143) of the list
in Section 6.

If the numerical class of f,B is (6.72) of the list in Section 6, then by Theorem 2.5, G =
7.)27.%" @ 7.JAZ®7 where (i, j) is one of (0,1), (0,2), (1,1), (1,2), (2,1), (2,2), (3,1). We assume
that G = Z/27%% @ 7./AZ%2. Since G is generated by non-symplectic automorphism of order
2 and 4, Gy := {g € G : g is symplectic} = Z/2Z%2 @ Z/4Z. By the classification of finite
symplectic groups (see [13, 10, 16]), we see that there is no G where G, = Z/27%% @ 7./4Z.
Therefore, G = 7/27%" @ 7./JAZ®7 where (i,j) is one of (0,1), (0,2), (1,1), (1,2), (2,1), (3,1),
and if the numerical class of f.B is (6.72), then G is one of AG as a group.

As for the case of (6.72), if the numerical class of f.B one of (6.74), (6.78), (6.111), (6.144)
of the list in Section 6, then G is one of AG as a group.

We assume that the numerical class of f.B is (6.73) of the list in Section 6. We denote B
l .
by 2Bi, +4B%, + 4B}, + 3B}, + 3B3, + 3B3, + Y b;B, By Theorem 2.5, G = Z/2Z%" &
j=1
Z/37 & Z/AZ where i = 0,1 or 2. As for the case of (6.68), there are integers 3, a; such that

1+Ezla1+§a2+§a3+ga4+ga5+ga6
3 2 4 4 3 3 376
and aj =0or 1 foreach 1 <j <6, =1,2,3,4,6 or 12, the non-zero element of {a1,as,as} is
only one, and the non-zero element of {a4,as,ag} is only one, however, integers which satisfy
the above condition do not exist. Therefore, the numerical class of f,. B is not (6.73).
As for the case of (6.73), the numerical class of f.B is not one of (6.101), (6.129), (6.132),

(6.152), (6.160), (6.170), (6.171), (6.172), (6.173) of the list in Section 6.

We assume that the numerical class of f,B is (6.76) of the list in Section 6. We denote
B by 2B} + 4B} + 4B} o+ 2B}, + 2B3 | + 2B | + 2Bi, + Y. b B}, where f,B], = (1,0),

240
i=1

feBjy = (0,1) in Pic(P! x P') and f.B] = 0. By Theorem 2.5, G = Z/22% @ Z/4Z, where
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i =0,1,2,3 or 4. We assume that G = Z/2Z%* @ Z/4Z. By Theorem 2.5, G = Gi , ® G7 ;&
G @Gy 1 BGY 1. As for the case of (6.70), we get that f(e;) € B%)OﬂBg)l foreachi=1,---,m
where j = 1,2,3,4. Therefore, we get (B - Bé,l) = 1. Let s € G} be a generator. Since
G=GidGl®dGh,®GE, @G}, by Theorem 2.5, there is a non-symplectic automorphism
te Gé)l for some j = 1,2,3 such that Fix(¢ o s) does not have a curve. Since (B - Bg)l) =1
and |G| = 234, we get that [p~(Bi,) ﬂp‘1(33)1)| = 8. By [2, Proposition 1], the number of
isolated points of Fix(¢ o s) is 4. This is a contradiction. Therefore, if the numerical class of
f«Bis (6.76), then G = Z/27Z%" & 7,/AZ where i = 0,1,2 or 3, and hence G is one of AG as a
group.

We assume that the numerical class of f,B is (6.150) of the list in Section 6. We denote B

!

by 3B1o+ 2B}, + 6B}, +4Bj, + 12B§ ; + > b;B] where f.B., = sC + tF in Pic(F,), and
i=1
B is an exceptional divisor of f for j = 1,---,1. By Theorem 2.5, G = Z)2Z2% ©Z/3L D L/AL

where ¢ = 0 or 1. Then the number of subgroup of G which is generated by a non-symplectic
automorphism of order 3 is one. By the above, for e;, there are integers 3,a; > 0 such that
1+E:2a1+1a2+§a3+§a4+ﬂa5.
154 3 2 6 4 12

Since G = 7,/3Z.& Z,/AZ, B=1, 2, 3, 4, 6 or 12. Since f.B = 3(1,0)+6(1,0)+2(1,1)+4(0,1) +
4(0, 1), the support of f.B is simple normal crossing. Since each irreducible component of f,B
is smooth, a; = 0 or 1 for each 1 < j < 5. The integers which satisfy the above condition
are (8, a1,az2,a3,a4,as5) = (4,0,0,1,0,1). Therefore, f(e;) & fuBio N fuBg, fori =1,---,1
and hence p~!(Bi1,0) Np~ (B ,) is not an empty set. Since G = Z/3Z, G§, = Z/12Z, and
p ' (Bi,o) Np~H(BG,) is not an empty set, we get that the number of subgroup of G which is
generated by a non-symplectic automorphism of order 3 is at least two. This is a contradiction.
Therefore, the numerical class of f.B is not (6.150).

As for the case of (6.150), the numerical class of f.B is not (6.159) of the list in Section 6.

5 Abelian Groups of Enriques Surfaces with Smooth Quotient

Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E) such that E/H
is smooth. Let X be the K3-cover of E, and G := {s € Aut(X) : s is a lift of some h € H}.
Then G is a finite Abelian group, G has a non-symplectic involution whose fixed locus is empty,
X/G = E/H, and the branch divisor of G is that of H.

Theorem 5.1 Let E be an Enriques surface and H be a finite subgroup of Aut(E). We
assume that the quotient space E/H is smooth and there is a birational morphism from E/H
to a Hirzebruch surface F,,, where 0 <n. Then 0 <n < 4.

k

Proof Let f: E/H — T, be a birational morphism, and B := > b;B; be the branch
i=1

divisor of the quotient map E — E/H. Since the canonical line bundle of an Enriques surface

is numerically trivial, by Theorem 2.4, the numerical class of f,B is one of Section 3. By
[11, Proposition 4.5], G does not have a non-symplectic automorphism whose order is odd.
Therefore, b; is even number for each ¢ = 1,--- |k by Theorem 2.5. By the list of the numerical
class of Section 3, we get the claim.
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Theorem 5.2 For each numerical classes (6.6), (6.8), (6.9), (6.11), (6.12), (6.13), (6.16),
(6.89), (6.90), (6.91), (6.94), (6.96), (6.97), (6.98), (6.101), (6.203), (6.206), (6.209), (6.210),
(6.281) of the list in Section 6, there is an Enriques surface E and a finite Abelian subgroup
H of Aut(E) such that E/H is a Hirzebruch surface F,, and the numerical class of the branch
divisor B of the quotient map E — E/H is (6.6), (6.8), (6.9), (6.11), (6.12), (6.13), (6.16),
(6.89), (6.90), (6.91), (6.94), (6.96), (6.97), (6.98), (6.101), (6.203), (6.206), (6.209), (6.210),
(6.281).

Furthermore, for a pair (E,H) of an Enriques surface E and a finite Abelian subgroup H
of Aut(E), if E/H = F,, and the numerical class of the branch divisor B of the quotient map
E — E/H is (6.6), (6.8), (6.9), (6.11), (6.12), (6.13), (6.16), (6.89), (6.90), (6.91), (6.94),
(6.96), (6.97), (6.98), (6.101), (6.203, (6.206), (6.209), (6.210), (6.281), then H is 7Z/27.%2,
ZJAT®?, 7)2Z & L)AL, T)22%4, 7)2233, 7./22%2 & Z/AZ, T./2293, 7.)22°?, 7.)27 & Z./AZ,
Z)22%3, 7.)27%3, 7./]27.%93, 7.)2L22 © L/ AZ, 7.]27°%, 7JALSL/8Z, 7./]27.%2, 7.)22.%3, 7./ AZ®?,
7)27°2 © ZJAL, 7.JAZ & 7./8Z, in order, as a group.

Proof Let X be the K3-cover of E, G := {s € Aut(X) : s is a lift of some h € H}, and
p: X = X/G be the quotient map. Then G is a finite Abelian group, X/G = F,,, and the
branch divisor of p is B. Since b; is power of two for each i = 1,--- [k, G = Z/27%° DL /AL ®
Z/8Z%" where s,t,u > 0. By Theorem 2.5, and the assumption that G has a non-symplectic
automorphism of order 2 such that whose fixed locus is an empty set, we get s +¢+u > 3, and
hence the numerical class of B is one of (6.6), (6.8), (6.9), (6.10), (6.11), (6.12), (6.13), (6.15),
(6.16), (6.19), (6.20), (6.81), (6.82), (6.87), (6.88), (6.89), (6.90), (6.91), (6.94), (6.96), (6.97),
(6.98), (6.100), (6.101), (6.199), (6.200), (6.203), (6.206), (6.208), (6.209), (6.210), (6.281),
(6.282) of the list in Section 6.

We assume that the numerical class of B is (6.6). We denote B by 2B}, + 2B}, +2B5 . +
2Bj, + 2B§,. By Proposition 3.3, G = Gi o @ Ga2 ® G§ = Z/2Z%3. Let s,t,u,e G be
generators of G o, Gg; and Ga 2, respectively. Then the non-symplectic automorphisms of G
are s, t, u, and sotou.

From here, we will show that Fix(s ot ow) is an empty set. We assume that the curves of
Fix(s) are only p‘l(B%)O). Since s is a non-symplectic automorphism of order 2, the quotient
space X/(s) is a smooth rational surface. The quotient map ¢ : X/(s) — X/G = P! x P! is the
Galois cover such that the branch divisor is 2B ; +2Bz 2+ 2B | + 2B |, and the Galois group
is isomorphic to Z/2Z%? as a group. By Theorem 3.1, there is the Galois cover g : Y — X/G
whose branch divisor is 2B 2 + 285, + 2B§ ; and Galois group is isomorphic to Z/2Z%? as a
group. Since Fix(s) is not an empty set and the order of s is 2, X/(s) is a smooth rational
surface. By Theorem 2.2, there is the Galois cover h : X/(s) — Y such that ¢ = g o h. Since
the degree of ¢ is 4 and that of ¢ is 4, h is an isomorphism. Since the branch divisor of ¢ is not
that of g, this is a contradiction. Therefore, Fix(s) is p~'(Bi o) Up~! (B} ). In the same way,
Fix(t) is p~'(Bg,) Up~ (B ;). Therefore, by Theorem 2.5, Fix(s o o u) is an empty set, and
hence F := X/(sotou) is an Enriques surface. Let H := G/(sotou). Then E/H = P! x P!,
H = 7./27%%, and the branch divisor of H is B. It is easy to show that for an Enriques surface
E and a finite Abelian subgroup H of Aut(E) such that E/H = P! x P! if the numerical class
of H is (6.6), then H =2 7,/27.%2.

As for the case of (6.6), the claim is established for (6.89).

We assume that the numerical class of B is (6.8). We denote B by 4B} + 4B}, +2B1,1 +
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4Bj, +4Bg ;. By Proposition 3.3, G = G1 o ® G110 ® G = Z/22 & L/AZ?. Let s,t,u € G
be generators of G}ﬁo, G(l))1 and G 1, respectively. By Theorem 2.5, s and ¢ are non-symplectic
automorphism of order 4 and w is a non-symplectic automorphism of order 2. By Theorem 2.5,
G3 () is generated by s o t** o u¥ where x,y = 0 or 2. Since (s 0 t** o u¥)?* = s* for 2,y = 0 or
2, we get that Fix(s?) is p~(Bf ) Up~'(Bi). As for the case of (6.6), we get the claim for
(6.8).

As for the case of (6.8), the claim is established for (6.101).

We assume that the numerical class of B is (6.9). We denote B by 4Bj o + 4B}, + 2By 2 +
2B, + 2B; ;. By Proposition 3.3, G = Gi o ® G12 ® G, = Z/22%5* & 7./4Z. Let s, t,u € G
be generators of G} o, G§; and G1,2, respectively. As for the case of (6.6), Fix(t) is p~!(Bj ;) U
p~'(B§,). As for the case of (6.8), Fix(s) is the support of p~!(B} o) Up~' (B} ). As for the
case of (6.6), we get the claim for (6.101).

We assume that the numerical class of B is (6.10). We denote B by 23},0 +2Bi,+2B}  +
2By 4. Let s1,52,t € G be generators of G o, GF ; and G 4, respectively. By Proposition 3.3,
G=Giy®Gly® G4 =Z/22%3. Then the non-symplectic involutions of G are s1, s2,¢ and
S10890t.

We assume that Fix(s;) is p~' (B o) Up~' (B} ;). Then X/(s;) is a smooth rational surface,
and the quotient map ¢ : X/(s1) — X/G = P! x P! is the Galois cover such that the branch
divisor is 23371 + 2B 4, and the Galois group is isomorphic to Z/2Z%% as a group. Since
P! x P'\B7 is simply connected, in the same way of the proof of Theorem 2.5, this is a
contradiction. Therefore, Fix(s;) is p~' (B] () for i = 1,2, and hence Fix(sy 0sy0t) is p~' (B ).
There is not an Enriques surface E and a finite Abelian subgroup H of Aut(F) such that
E/H = P! x P! and the numerical class of the branch divisor of H is (6.10).

As for the case of (6.10), we get the claim for (6.87), (6.100).

We assume that the numerical class of B is (6.11). We denote B by 2Bj 4+ 2B, +2B7 o+
2B1,1 + 2B}, +2Bj, + 2B ;. By Proposition 3.3, G = @7_,G ; ® G1,1 ®;_; G} 1, and hence
the number of non-symplectic automorphisms of order 2 of G is 16. By Theorem 2.5, G has a
non-symplectic automorphism of order 2 whose fixed locus is an empty set. Furthermore, it is
easy to show that for an Enriques surface E and a finite Abelian subgroup H of Aut(E) such
that E/H = P! x P! if the numerical class of H is (6.11), then H = Z/27%.

As for the case of (6.11), the claim is established for (6.12), (6.13), (6.16), (6.91), (6.94),
(6.96), (6.97), (6.98), (6.206), 6.210).

We assume that the numerical class of B is (6.15). We denote B by 2B] o+ 2B, +2Bj 5 +
2B} ,. By Proposition 3.4, G = G}, ® G} , ® GF . Let s,t,u € G be generators of G , G ,
and G%)z, respectively. Then the non-symplectic automorphisms of order 2 of G are s, ¢, u and
sotou. We assume that Fix(s ot ou) is an empty set. Since (Bj - B{)2) #0fori,j =12,
Fix(s) is p~' (B} ) Up~ 1 (B ). Since (Bf o+ B} o Bi,) =4, X/(G] @ G1 5) is smooth. Since
G =Gy ®Gi,y @ GY,, the branch divisor of the quotient map X/(Gi o & Gi 5) = X/G = F,
is 2B7 ; and its degree is 2. Since Bg’o ¢ Pic(P' x P') and X/(G1 (@ G} ) is smooth, this is a
contradiction. Therefore, there is not an Enriques surface E and a finite Abelian subgroup H
of Aut(F) such that E/H = F; and the numerical class of branch divisor of H is (6.15).

As for the case of (6.15), we get that there is not an Enriques surface F and a finite Abelian
subgroup H of Aut(F) such that E/H = F, and the numerical class of the branch divisor of
H is (6.88).




150 T. Hayashi

We assume that the numerical class of B is (6.19). We denote B by 2B11)1 + 2B12)1 + 23%71 +
2B} ;. By Proposition 3.6, G = G}, & G, ® G} . Let s; € G | be a generator of G} | for
i=1,2,3,4. By Theorem 2.5, Fix(s;) is not an empty set for i = 1,2,3,4. Since G = Z/27%3,
sS4 = S1 0 89 0 s3, and hence G does not have a non-symplectic automorphism of order 2 whose
fixed locus is an empty set. Therefore, there is not an Enriques surface F and a finite Abelian
subgroup H of Aut(F) such that E/H = F; and the numerical class of the branch divisor of
H is (6.19).

As for the case of (6.19), we get that there is not an Enriques surface F and a finite Abelian
subgroup H of Aut(F) such that E/H = F, and the numerical class of the branch divisor of
H is (6.19), (6.20), (6.81), (6.82), (6.200).

We assume that the numerical class of B is (6.90). We denote B by 2B ¢+ 2B1,1+ 2B 2+
4Bj, + 4B ,. By Corollary 3.3, G = G1,1 ® Ga22 ® G§ ;. Let ¢ : X/(G10,G11,Ga2) —
X/G = F; be the quotient map. Then the branch divisor of ¢ is 48§, + 4B3 ;. By Theorem
2.2, X/(G1,0,G11,G22) = Fy, and the branch divisor of (G1,0,G1,1,G2,2) is 2B10+ 2¢*B1,1 +
2¢*Ba 5. Let s,t,u € G be generators of Gy 1, G22 and G(l)yl, respectively. Then Fix(s) is the
support of p*Bj o and that of p*Bi 1. Then as for the case of (6.6), we get the claim.

As for the case of (6.90), the claim is established for (6.203), (6.209), (6.281).

We assume that the numerical class of B is (6.199). We denote B by 2B; o+ 2B1.4+ 23%72 +
2Bi2. By Corollary 3.5, G = G1,4® G} , & GT 5. Let s,t,u € G be generators of G 4, Gi , and
G%)g, respectively. Then the non-symplectic automorphisms of G are s, ¢, u and sotowu. Since
each fixed locus of s, t and u is not an empty set, by Theorem 2.5, if G has a non-symplectic
automorphism of order 2 whose fixed locus is an empty set, then that is sotou. We assume that
Fix(sotowu) is an empty set. Then we may assume that Fix(t) is p~'(By,0) Up~' (B ). Since
(Bi,o+ Bl - Bia) =6, we get [p~!(B1,0UBj ) Np~'(B1,4)| = 12. Since s ot is a symplectic
automorphism of order 2 and p~!(By,0 U B 5) Np~'(By4) is contained in Fix(s o ), this is a
contradiction. Therefore, there is not an Enriques surface E and a finite Abelian subgroup H
of Aut(F) such that E/H = F; and the numerical class of the branch divisor of H is (6.199).

We assume that the numerical class of B is (6.208). We denote B by 4B; o+ 2B1,3+4B1 2+
2B;, + 2Bj . By Proposition 3.8, G = G13® G12 ® Gg;. Let s,t,u € G be generators of
Gi3,t€Grzand u e G%ma respectively. Then the non-symplectic automorphisms of G are s,
t?, wand sot?owu. Since each fixed locus of s, t and u is not an empty set by Theorem 2.5, if
G has a non-symplectic automorphism of order 2 whose fixed locus is an empty set, then that
is s 0 t? o .

We assume that Fix(s o t? o u) is an empty set. Then Fix(¢?) is p~1(B1,0) Up~1(Bi2) and
Fix(u) is p~'(Bi ) Up~'(B7). Since (Bis- Bj, + Bg,) = 4, we get that X/(G13® Gf ;)
is smooth, and the branch divisor of the quotient map f : X/(G13 ® G§ ;) - X/G = Fy
is 4B1,0 + 4B 2, and the Galois group is Z/47Z, which is induced by ¢. Furthermore, since
(Bis - Bio+ Bi2) = 4 and (Bis- Bj, + Bj,) = 4, G/(s,t?,u) is smooth, and the branch
divisor of the quotient map g : X/(s,t?,u) — X/G = Fy is 2By + 2B; 2, and the Galois
group is isomorphic to Z/2Z as a group. Let Ejo and Ej 2 be the support of ¢*B; o and
g*Bi,2, respectively. Then ¢*Bq o = 2F1,0 and g* By > = 2E; 5. Moreover, by Theorem 3.1,
there is the double cover h : X/(G13 ® Gg,) — X/(s,1*,u) such that f = goh and the
branch divisor is 21 o + 2E1 2. Since X/(G13 ® Gg ;) and X/(s,t?,u) are smooth, we get
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ProtBia ¢ pic(X/(s,12,u)). Since g*By o = g* By + 29" F in Pic(X/ (s, t2
P 5 u)). 9"B12 =g B0+ 2g"F in Pic(X/(s,t%, u)),
2E1 9 =2E 0 +2¢*F in Pic(X/(s,t?,u)).

Since X/(s,t%, u) is a smooth rational surface, Pic(X/(G1,3 ® G§ ,)) is torsion free. Therefore,
we get
Eio=Eio+g*F in Pic(X/(s,t* u)),

and hence
Eio+FEi0=2F+ g*F in PiC(X/<S, t2, u>)

Since % € Pic(X/(s,t?,u)), we get

*

g F

€ Pic(X/ (s, 1%, u)).

Since (B1,0-F) = 1, the degree of g is two, 9*21‘0 and Q*TF are elements of Pic(X/(s,t? u)), this
is a contradiction. Therefore, there is not an Enriques surface E and a finite Abelian subgroup
H of Aut(FE) such that E/H = F; and the numerical class of the branch divisor of H is (6.208).

We assume that the numerical class of B is (6.282). We denote B by 2B; o+ 23%74 + 23%74 +
2B} . By Corollary 3.5, G = ®2_,G} ;. Let s; € G ; be a generator for i = 1,2,3. Then the
non-symplectic automorphisms of G are s; and s o s9 0 s3 where i = 1,2,3. Since each fixed
locus of s; is not an empty set for each ¢ = 1,2,3 by Theorem 2.5, if G has a non-symplectic
automorphism of order 2 whose fixed locus is an empty set, then that is s 0 s50s3. We assume
that Fix(s;0sp0s3) is an empty set. Then we may assume that Fix(s1) is p~' (B1,0)Up~ ' (B] ).
Since (B1,0+ Bi 4 - B1,4) = 4, we get that X/(G1 , ® G7 ) is smooth, and the branch divisor of
the quotient map X/(Gi, ® Gi ,) — X/G =Fy4 is 2B} ;. This is a contradiction as the degree
of the quotient map is 2. Therefore, there is not an Enriques surface E' and a finite Abelian
subgroup H of Aut(F) such that E/H = F4 and the numerical class of the branch divisor of
H is (6.282).

By Theorem 5.2, we get Theorem 1.7.

Theorem 5.3 Let E be an Enriques surface and H be a finite Abelian subgroup of Aut(E).
If E/H is smooth, then H is isomorphic to one of AG(E) as a group.

Proof Let X be the K3-cover of E, G := {s € Aut(X) : s is a lift of some h € H},
and p : X — X/G be the quotient map. Then G is a finite Abelian group, X/G = E/H,
and the branch divisor of p is B. We classified H for the case of E/H = F, in Theorem
5.2. From here, we assume that E/H is smooth and E/H % F, or P2. Since G does not
have a non-symplectic automorphism whose order is odd (see [11]), by Theorems 2.5 and 1.4,
G = 7)27%° @ LJAZ® & 7 /875" where s,t,u > 0. By the assumption that G has a non-
symplectic automorphism of order 2 such that whose fixed locus is an empty set, and the fact
that G is generated by non-symplectic automorphisms whose fixed locus have a curve, we get
s+t +u > 3. Therefore, G is one of the following as a group:

(2)22.9°, 7.)A7%3, 7.)27%) © 7./A7%9, 7.)27. & 7./AZ & 7./87 :

3<a<h, (fv g) = (la 2)7 (25 1)7 (35 1)}
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If G is one of
{z.)22%°, 7.)27%7 @ 7.JA7%9 : 3 < a <5, (f,9) = (1,2),(2,1),(3,1)}
as a group, then quotient group G/K of G by a subgroup K = Z/2Z is one of
(2,)22%°, 7.JA7%%, 7.)27%F & 7./JAZ o = 2,3,4 f = 1,2} C AG(E)

as a group. Let f : X/G — F, be the birational morphism. We assume that G = Z/4Z%3.
By the assumption that G = Z/4Z%3 and Theorem 2.5, the numerical class of f.B is only

(6.142). We denote B by 2B1,0+ 4B}, + 4B} , + 4B} | + 4B, + Y VBl where f.B1o = C,

= K2 27
f«Bi, = C+A4F, f.B}, = F and f,B] = 0 in Pic(F4). Since G = Z/4Z%3, by Theorem 2.5, we
get that G = G} , & GT ,® G . Let s € G}A, t e Gf , and u € G§; be generators respectively.
27 t2

The non-symplectic involutions of G are s2, 2, u? and s2 o t2 ou?. Since each fixed locus of s2,

t2 and u? is not an empty set, if G has a non-symplectic automorphism of order 2 whose fixed

2 is an empty set,

locus is an empty set, then that is s2 o t2 o u2. If the fixed locus of s2 0 t? o u
then the fixed locus of s ot o wu is an empty set. By [2], this is a contradiction. Therefore, G is
not Z/47Z%3 as a group.

We assume that G 2 7 /27 & 7./47 & 7./87Z. By Theorem 2.5, the numerical class of f. B is
only (6.101). By the proof of Theorem 4.3, f is an isomorphism, i.e., X/G = F;. By Theorem

5.2, we get the claim.

By Theorems 5.2-5.3, we get Theorem 1.8.

6 The List of a Numerical Class

k
Here, we will give the list of a numerical class of an effective divisor B = Y b;B; on F,,
i=1
k
such that B; is a smooth curve for each i =1,--- .k and Kp, + Y biblei = 0 in Pic(F,,).
i=1
If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fy 2 P* x P!,

then by Theorem 2.4 the numerical class of B is one of the following:

3(3C +3F) Z/3Z

3C +3C +3(C +3F) 7/32%?

3C +3C+3(C+F)+3F+3F 7/32%

2(4C +4F) 727

2C +2C +2(2C + 4F) 7./27.%*

2C + 20 +2(2C + 2F) + 2F + 2F 7/22%3

4C +4C +2(C +4F) 7Z/2Z. @ 7.JAZ

4C 4+ 4C +2(CH+ F) +4F +4F 7)27 & 7./]47%*
4C +4C +2(C +2F) +2F +2F Z/27%? @ 7./AZ
2C +2C +2C + 2(C + 4F) 7./27%3

2C +2C +2C +2(C + F) + 2F + 2F + 2F 7/22%
2C +2C +2C 4 2(C + 2F) + 2F + 2F 7/27%*

O A i i it
T T T = T S S T

M~ Y Y Y~ Y Y~ N~

—~

A
o o O~ o~ o~ o~ o~ o~ o~ o~ —
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2C 420 +2C + 2(C + F) + AF +4F Z/27%° & Z/AZ

2(2C + 2F) 4+ 2(2C + 2F) 7./27%?

2C +2C +2(C + 2F) +2(C + 2F) 7/22%3
2C +20 +2(C + F)+2(C +F)+2F +2F 7/22%*

3(C+F)+3(C+F)+3(C+F)

3C +3(C+F)+3(C+2F)
20C+F)+2(C+F)+2(C+F)+2(C+F) 2/22%3

2C 4+ 2(C + F) +2(C + F) +2(C + 2F)

(

7/32%*
7./37%2

7./27.%3
2(C + F) +4(2C +2F
3(C+ F)+3(2C +2F
3(C+2F)+32C+F

3C +3(20 + 3F

2C +2(3C + 4F

2(C + F) +2(3C + 3F

2(C 4+ 2F) +2(3C + 2F
2(C+3F)+2(3C+F
20C+F)+3(C+F)+6(C+F
2(C+F)+4(C+F)+4(C+F
2C +4(2C 4 2F) + 2F

4C +2(2C 4 2F) + 4F

2C +2(3C + 3F) + 2F

3C +6C +2(C +4F)

4C +2(C + F) + 4(C + 2F)

2C +2(C + F) +2(2C + 3F)

)

)

M N T T T N~

2C +2(C + 2F) + 2(2C + 2F
2C +2(C +3F) +2(2C + F
3C +3(2C + 2F) + 3F
2C + 6C + 3(C + 3F)

2(C + F) +2(C + F) 4 2(2C + 2F)
2(C +2F) +2(C + F) +2(2C + F)

2C +4C + 4(C + 2F) + 2F
3C +6C +2(C + 3F) + 2F
AC +4C + 2(C + 3F) + 2F
2C +2C + 2(2C + 3F) + 2F
2C +4(C + F) + 4(C + F) + 2F
AC +2(C + F) + 4(C + F) + 4F
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204+3C+6C+2F +2F +2F +2F
20 4+4C +4C +2F +2F + 2F + 2F
3C+3C+3CH+2F +2F +2F +2F
20 +2C +2C +2C +2F +2F +2F + 2F.

2C +3(C + F) +6(C + F) + 2F (6.49)

6C +2(C+F)+3(C + F) +6F (6.50)

2C +2(C + F) + 2(2C + 2F) 4 2F (6.51)
2C +2(C + 2F) + 2(2C + F) 4 2F (6.52)
3C +2(C+F)+6(C+F)+3F (6.53)

3C +3(C+F)+3(C+F)+3F (6.54)

3C +3C +3(C +2F) + 3F (6.55)

2C + 6C + 3(C + 2F) + 3F (6.56)

2C +2C +2(C + F) +2(C + 3F) (6.57)
2C +2(C + F) +2(C + F) + 2(C + F) + 2F (6.58)
2C +2C 4 2C + 2(C + 3F) + 2F (6.59)

2C 4 2C 4 2(C + F) + 2(C + 2F) 4 2F (6.60)
2C +4C + 4(C + F) + 2F + 4F (6.61)

2C +3C +6(C + F) +2F 4+ 3F (6.62)

2C + 6C + 3(C + F) + 2F + 6F (6.63)
3C4+6C +2(C + F) +3F +6F (6.64)

3C 4 6C +2(C + F) + 4F + 4F (6.65)

2C +6C + 3(C + F) + 3F 4+ 3F (6.66)

3C 4 6C +2(C + 2F) + 2F + 2F (6.67)

3C +6C +2(C + F) + 2F + 2F 4+ 2F (6.68)
2C +3C + 6C + 2F + 3F 4+ 6F (6.69)

2C +3C +6C + 2F + 4F + 4F (6.70)

2C + 3C + 6C + 3F + 3F 4 3F (6.71)

2C +4C + 4C + 2F + 4F 4+ 4F (6.72)

2C +4C +4C + 3F + 3F 4+ 3F (6.73)

3C +3C +3C + 3F + 3F 4+ 3F (6.74)
(6.75)

(6.76)

(6.77)

(6.78)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fy, then by
Theorem 2.4 the numerical class of B is one of the following:

2(4C + 6F) Z/27 (6.79)

2(2C + 4F) 4 2(2C + 2F) 7./27.%? (6.80)

2C +2(C + 2F) 4+ 2(C + 2F) + 2(C + 2F) 7Z/27%3 (6.81)
20C+3F)+2(C+F)+2(C+F)+2(C+F) 7/22%3 (6.82)
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3(3C+3F)+2F +2F Z/2Z®ZL/3L

3C 4 3(2C +2F) +6F +6F 7/27® 7./37%2

2(4C + 4F) 4+ 2F + 2F 7./27.%>

2C +2(3C 4+ 3F) + 4F + AF 7)27.® 7./AZ

20 +2(3C + 3F) + 2F + 2F + 2F 7./27%3

2C +2(C + F) +2(2C + 3F) + 2F + 2F 7Z/27%*

2(2C + 2F) + 2(2C + 2F) + 2F + 2F 7./27%3

2C +2(C + F) +2(2C 4+ 2F) + AF + AF 7)27%* © Z,/AZ

2C +2(C + F) +2(2C + 2F) + 2F + 2F + 2F 7/22%*
3(C+F)+3(C+F)+3(C+F)+2F +2F 727 & 7/37%*
3C+3(C+F)+3(C+F)+6F+6F Z/2Z® 737

2C +2(C +2F) +2(C + F) + 2(C + F) + 2F + 2F 7/27%*

6C +2(C+ F)+3(C+F)+12F +12F Z/2Z & 7/37%% © 7./AZ
20C+F)+2(C+ F)+2(C+ F)+2(C+ F) +2F +2F 7/27%*
2C +2(C+ F)+2(C+F)+2(C+F)+4F +4F 7/2Z%3 & 7/A7
2C +2(C+ F)+2(C+ F)+2(C+ F)+2F +2F + 2F 7/22%°
2C +4(2C + 2F) + AF + AF 7Z/AZ®?

2C + 4(2C + 2F) + 2F + 2F + 2F 7/2Z%* © Z/4AZ

4C+2(C+ F)+4(C+ F)+8F +8F Z/2Z®Z/AZ ®Z/8Z
3(2C +2F) + 3(C + F) + 2F + 2F

4(2C + 2F) +2(C + 3F)

4(2C + 2F) + 2(C + 2F) 4 2F

4(2C +2F) +2(C + F) + 2F +2F
2(C+3F)+3(C+F)+6(C+F)

2(C+2F)+3(C+ F)+6(C+F)+2F
20C+F)+3(C+F)+6(C+F)+2F +2F

2(C+3F)+4(C+ F)+4(C + F)

2(C+2F)+4(C+ F)+4(C+ F)+2F
2(C+F)+4(C+F)+4(C+ F) 4+ 2F 4+ 2F

2(4C + 5F) + 2F

23C+aF)+2(C+ (6 —-a)F),a>3

2(3C +4F) +2(C + F) + 2F

2(3C 4 3F) +2(C + 2F) 4 2F

2(3C +3F) +2(C + F) + 2F + 2F

2(2C 4+ 3F) +2(2C + 3F)

2(2C 4 3F) + 2(2C 4 2F) + 2F
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2(2C + 4F) +2(C + F) +2(C + F)

2(2C + 3F) +2(C + 2F) + 2(C + F)

2(2C 4 3F) +2(C + F) + 2(C + F) + 2F
2(2C + 2F) + 2(C + 2F) + 2(C + 2F)

2(2C + 2F) +2(C + 2F) +2(C + F) 4 2F
2(2C 4 2F) +2(C + F) + 2(C + F) + 2F + 2F
2(C +2F) +2(C +2F) + 2(C 4+ F) + 2(C + F)
2C +2F)+2(C+F)+2(C+F)+2(C+ F) 4 2F
3C + 3(2C + 3F) + 2F + 2F

3C +3(2C + 2F) + 2F + 2F 4 3F

3C +3(2C + 2F) + 4F + 12F

2C + 4(2C + 4F)

2C + 4(2C + 3F) + 4F

2C + 4(2C + 2F) + 3F + 6F

2C + 3(C + 2F) + 6(C + 2F)

2C +3(C + 2F) + 6(C + F) 4+ 6F

2C +3(C + F) +6(C + 2F) + 3F

2C +3(C + F) + 6(C + F) + 4F + AF

2C +3(C+ F)+6(C + F) + 3F + 6F

2C 4+ 3(C + F) +6(C + F) + 2F 4+ 2F 4+ 2F
2C + 4(C + 2F) + 4(C + 2F)

2C + 4(C + F) + 4(C + 3F)

2C + 4(C + F) + 4(C + 2F) + 4F

2C +4(C + F) + 4(C + F) + 4F + AF

2C +4(C + F) + 4(C + F) + 3F + 6F

2C +4(C + F) +4(C + F) + 2F + 2F 4 2F
3C +2(C +3F) +6(C + F) + 3F

3C +2(C +2F) +6(C + F) + 2F 4 3F

3C +2(C + F) + 6(C + 3F)

3C 4 2(C + F) +6(C + 2F) 4 6F

3C +2(C+F)+6(C+F)+6F+6F

3C +2(C+F)+6(C+F)+4F 4 12F

3C +2(C+F)+6(C+F)+2F +2F + 3F
3C+3(C+F)+3(C+F)+4F + 12F

3C +3(C+2F)+3(C + F) +2F + 2F

3C +3(C+F)+3(C+F)+2F +2F 4 3F
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AC 4 2(C + 3F) + 4(C + 2F)

AC +2(C +3F) + 4(C + F) + 4F

AC +2(C +2F) + 4(C + 2F) + 2F

AC +2(C +2F) +4(C + F) + 2F + 4F
AC +2(C+ F)+4(C + F) + 6F + 12F
AC +2(C + F) + 4(C + F) + 5F + 20F
AC +2(C + F) + 4(C + 2F) + 2F 4+ 2F
AC +2(C + F) + 4(C + F) + 2F + 2F + 4F
6C +2(C +3F) +3(C + F) +6F

6C + 2(C + 2F) + 3(C + 3F)

6C +2(C + 2F) + 3(C + 2F) + 3F

6C +2(C +2F) +3(C + F) + 3F + 3F
6C 4 2(C + 2F) + 3(C + F) 4+ 2F 4+ 6F
6C 4 2(C + F) +3(C + 3F) 4 2F

6C +2(C + F) +3(C + 2F) + 2F 4+ 3F
6C +2(C + F) +3(C + F) + 10F 4+ 15F
6C +2(C + F) +3(C + F) + 9F + 18F
6C +2(C + F) +3(C + F) + 8F + 24F
6C +2(C+F)+3(C+F)+T7F +42F
6C +2(C + F) +3(C + F) + 2F 4+ 3F 4+ 3F
6C +2(C + F) +3(C + F) + 2F + 2F + 6F
2C +2(3C + 6F)

2C +2(3C + 5F) + 2F

2C +2(3C + 4F) + 2F + 2F

2C +2(3C + 3F) + 3F + 6F

2C + 2(C + 4F) + 2(2C + 2F)

2C +2(C + 3F) +2(2C + 3F)

2C + 2(C + 2F) + 2(2C + 4F)

2C +2(C + F) + 2(2C + 5F)

2C + 2(C + 3F) + 2(2C + 2F) 4 2F

20 + 2(C + 2F) + 2(2C + 3F) 4 2F

2C +2(C + 2F) + 2(2C + 2F) + 2F + 2F
2C +2(C + F) + 2(2C + 4F) 4 2F

2C +2(C + F) + 2(2C + 2F) + 3F 4+ 6F
2C + 2(C + 4F) + 2(C + F) + 2(C + F)
2C +2(C + 3F) + 2(C + 2F) + 2(C + F)

(
(
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2C +2(C +3F) +2(C + F) +2(C + F) 4+ 2F
2C +2(C +2F) + 2(C +2F) +2(C + F) 4+ 2F
2C +2(C + F) +2(C + F) +2(C + F) + 3F + 6F.

T. Hayashi

(6.191)
(6.192)
(6.193)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fa, then by

Theorem 2.4 the numerical class of B is one of the following:

3(3C +6F) Z/3Z

2(4C + 8F) Z./27

2(2C + 4F) 4 2(2C + 4F) 7.)27.%2

20 +2(C + 2F) +2(2C 4 6F) 7./27%*

3(C +2F) +3(C +2F) 4+ 3(C +2F) 7/37%2

2C +2(C + 4F) 4+ 2(C + 2F) + 2(C + 2F) 7/27Z%3

2(C 4 2F) +2(C +2F) + 2(C + 2F) +2(C + 2F) 7/22%3
3C +3(20 +4F) + 3F +3F 7/37%*

2C +2(3C + 6F) + 2F + 2F 7/272%*

2C 4 2(C + 2F) +2(2C + 4F) + 2F + 2F 7/22%*

3C +3(C +3F) +3(C +3F) 7/37%*

3C +3(C +2F)+3(C +2F)+3F +3F 7/32%°

2C +2(C +2F) + 2(C + 2F) + 2(C + 2F) + 2F + 2F 7/27%*
2C + 4(2C +4F) 4+ 2F + 2F 727 @® 7./AZ

4C +2(C +3F) + 4(C + 2F) + 2F + 2F 7/27%* ® 7/AZ
40 +2(C +2F) + 4(C + 2F) + AF + AF 7/27 ® 7./4Z%>
4C +2(C +2F) + 4(C + 2F) + 2F + 2F + 2F Z/27%* © 7./AZL
6C +2(C +2F) + 3(C + 2F) + 6F + 6F 7/22%* © 7/37.%?
3(C 4 2F) + 3(2C + 4F)

2(C' 4 2F) +4(2C + 4F)

2(C' 4+ 2F) +3(C +2F) + 6(C + 2F)

2(C +2F) +4(C 4+ 2F) + 4(C + 2F)

)

)

)

)
)
)
)

2(3C + 6F) +2(C + 2F
2(2C + 4F) +2(C + 2F) + 2(C + 2F
3C 4 3(2C + 6F
3C +3(2C + 5F) + 3F
3C + 3(2C + AF) + 2F + 6F
2C + 3(C + 2F) + 6(C + 2F) + 2F 4 2F
2C + 4(C + 2F) + 4(C + 2F) 4 2F + 2F
3C +2(C + 3F) + 6(C + 3F)
3C +2(C +3F) +6(C +2F) + 6F

6.194
6.195
6.196
6.197
6.198
6.199
6.200
6.201
6.202
6.203
6.204
6.205
6.206
6.207
6.208
6.209
6.210
6.211
6.212
6.213
6.214
6.215
6.216
6.217
6.218
6.219
6.220
6.221
6.222
6.223
6.224

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~~~ o~ o~~~ o~~~ o~ o~ o~~~ o~~~ o~~~
D T e N i N N s s N N N
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3C +2(C + 2F) + 6(C + 3F) 4+ 2F

3C +2(C + 2F) + 6(C + 2F) + 3F 4 3F
3C +2(C + 2F) + 6(C + 2F) + 2F 4 6F
3C 4 3(C + 2F) + 3(C + 4F)

3C +3(C + 2F) + 3(C + 3F) 4 3F

3C +3(C + 2F) + 3(C + 2F) + 2F 4 6F
AC +2(C + 5F) + 4(C + 2F)

AC +2(C + 4F) + 4(C + 2F) + 2F

AC +2(C + 2F) + 4(C + AF)

AC +2(C + 2F) + 4(C + 3F) + 4F

AC +2(C + 2F) + 4(C + 2F) + 3F + 6F
6C +2(C + 4F) + 3(C + 3F)

6C +2(C + 4F) + 3(C + 2F) 4 3F

6C +2(C + 3F) +3(C + 3F) 4+ 2F

6C +2(C + 3F) +3(C + 2F) + 2F 4+ 3F
6C +2(C +2F) + 3(C + 3F) + 2F 4 2F
2C + 2(3C + 8F)

2C +2(3C + TF) + 2F

2C +2(C + 4F) + 2(2C + 4F)

2C +2(C + 3F) + 2(2C + 5F)

2C 4 2(C + 3F) + 2(2C + 4F) 4 2F

2C 4 2(C + 2F) + 2(2C + 5F) 4 2F

6C +2(C + 2F) + 3(C + 2F) + 4F + 12F
6C +2(C + 2F) + 3(C + 2F) + 2F 4+ 2F + 3F
2C + 2(C + 3F) + 2(C + 3F) + 2(C + 2F)
2C +2(C + 3F) +2(C + 2F) + 2(C 4 2F) 4 2F.

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = F3, then by

Theorem 2.4 the numerical class of B is one of the following:

3C +3(2C 4 6F) + 2F + 2F 7)27.® 7./37.

3C +3(C+3F)+3(C +3F)+2F + 2F 7/27 ® Z/37%>

6C +2(C +3F)+3(C+3F) +4F +4F Z/27. & 7Z/37 ® Z/AZ
6C +2(C +3F) 4 3(C +3F) +2F +2F + 2F 7/22%3 & 7./37
2C +4(2C + 6F) + 2F

2C +3(C +3F)+6(C +3F) + 2F

2C +4(C +3F) 4+ 4(C + 3F) + 2F

3C +2(C +5F) 4+ 6(C + 3F)
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3C +2(C + 4F) + 6(C + 3F) 4 2F

3C +2(C + 3F) + 6(C + 3F) + 2F 4 2F
AC +2(C + 4F) + 4(C + AF)

AC +2(C + 4F) + 4(C + 3F) + 4F

AC +2(C + 3F) + 4(C + 4F) + 2F

AC +2(C + 3F) + 4(C + 3F) + 2F + 4F
6C +2(C + 6F) + 3(C + 3F)

6C +2(C + 5F) + 3(C + 3F) 4 2F

6C +2(C + 4F) + 3(C + 3F) + 2F 4 2F
6C +2(C + 3F) +3(C + 4F) + 6F

6C +2(C + 3F) +3(C + 3F) + 3F + 6F
2C +2(3C + 10F)

2C +2(3C + 9F) + 2F

2C +2(C + 4F) + 2(2C + 6F)

2C +2(C + 3F) + 2(2C + 7F)

2C + 2(C + 3F) +2(2C + 6F) 4 2F

2C + 2(C + 4F) + 2(C + 3F) + 2(C + 3F)
2C +2(C + 3F) +2(C + 3F) + 2(C 4 3F) 4 2F.

T. Hayashi

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fy, then by

Theorem 2.4 the numerical class of B is one of the following:

2C +2(3C + 12F) Z/2Z

2C +4(2C + 8F) Z/AZ

2C +2(C + 4F) 4+ 2(2C + 8F) 7Z/27%>

4C +2(C +6F) +4(C +4F) 7/2Z & 7./AZ

40 +2(C +4F) + 4(C + 4F) + 2F + 2F 7/22%* & 7./AZ
2C +2(C + 4F) 4 2(C + 4F) + 2(C + 4F) 7)27Z%3

6C +2(C +4F) +3(C +4F) + 3F + 3F Z/27 ® Z/37%>
3C +3(2C + 9F)

3C +3(2C + 8F) + 3F

2C + 3(C + 4F) + 6(C + 4F)

2C + 4(C + 4F) + 4(C + 4F)

3C +2(C +4F) + 6(C +4F) + 3F

3C +3(C +4F) 4+ 3(C +5)

3C +3(C +4F)+3(C +4F) + 3F

4C +2(C +5F) + 4(C + 4F) + 2F

) )
6C +2(C +5F) +3(C +4F) + 6F
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6C +2(C + 4F) + 3(C + 6F) (6.293)
6C +2(C +4F) +3(C +5F) 4+ 3F (6.294)
6C + 2(C + 4F) + 3(C + 4F) + 2F + 6F. (6.295)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = F5, then by
Theorem 2.4 the numerical class of B is one of the following:

AC +2(C + 5F) + 4(C + 6F) (6.296)

AC 4 2(C + 5F) + 4(C + 5F) + 4F (6.297)
6C +2(C + 6F) + 3(C + 6F) (6.298)

6C +2(C + 6F) + 3(C + 5F) + 3F (6.299)

6C +2(C +5F) +3(C +6F) + 2F (6.300)

6C +2(C + 5F) + 3(C + 5F) + 2F + 3F. (6.301)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fg, then by
Theorem 2.4 the numerical class of B is one of the following:

3C 4 3(2C +12F) Z/3Z (6.302)

3C 4 3(C + 6F) + 3(C + 6F) 7/37%> (6.303)

6C + 2(C + 6F) + 3(C + 6F) + 2F + 2F 7/27.9? & 7./37 (6.304)
3C +2(C + 6F) + 6(C + 6F) (6.305)

AC +2(C + TF) + 4(C + 6F) (6.306)

4C 4 2(C + 6F) + 4(C + 6F) 4 2F (6.307)

6C +2(C + 8F) + 3(C + 6F) (6.308)

6C +2(C + TF) + 3(C + 6F) + 2F. (6.309)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fy, then by
Theorem 2.4 the numerical class of B is one of the following:

6C +2(C + TF) + 3(C + 7F) + 6F. (6.310)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fg, then by
Theorem 2.4 the numerical class of B is one of the following:

AC +2(C + 8F) + 4(C + 8F) 727 ® 7./AZ (6.311)
6C + 2(C + 8F) + 3(C + 9F) (6.312)
6C +2(C + 8F) + 3(C + 8F) + 3F. (6.313)

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fg, then by
Theorem 2.4 the numerical class of B is one of the following:

6C + 2(C + 10F) + 3(C + 9F) (6.314)
6C + 2(C + 9F) + 3(C + 9F) + 2F. (6.315)
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T. Hayashi

By Theorem 2.4 there is not a K3 surface X and a finite subgroup G of Aut(X) such that
X/G = F, for | =10,11.

If there is a K3 surface X and a finite subgroup G of Aut(X) such that X/G = Fis, then
by Theorem 2.4 the numerical class of B is the following:

6C + 2(C + 12F) + 3(C + 12F) Z/2Z & Z/3Z. (6.316)
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