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Abstract In this paper, the authors systematically discuss orbit braids in M × I with
regards to orbit configuration space FG(M,n), whereM is a connected topological manifold
of dimension at least 2 with an effective action of a finite group G. These orbit braids form
a group, named orbit braid group, which enriches the theory of ordinary braids.

The authors analyze the substantial relations among various braid groups associated
to those configuration spaces FG(M,n), F (M/G,n) and F (M,n). They also consider the
presentations of orbit braid groups in terms of orbit braids as generators by choosing
M = C with typical actions of Zp and (Z2)

2.
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1 Introduction

Braid groups are fundamental objects in mathematics, which were first defined rigorously

and studied by Artin in 1925 (see [3–4]), although they already implicitly appeared in the

works of Hurwitz [18] in 1891 and Fricke-Klein [16] in 1897. The subject has continued to

further develop and flourish by extending ideas of braid groups or combining with various

ideas and theories from other research areas since then. For example, Fox and Neuwrith [14]

gave an alternative description of the classical braid groups by using the fundamental group

of (unordered) configuration spaces. Brieskorn [9] extended the notion to Artin groups or the

generalized braid groups by associating to all finite Coxeter groups.

Compatible with various points of view, the notion of braid groups was uniformly defined

by Vershinin [23] in a general way as follows: Choose a connected topological manifold M

admitting an action of a finite group G. Let YG be the subspace of M formed by all points of

free orbit type. So the action of G restricted to YG is free. Assume that YG is connected. Then

there is a fibration YG → XG with fiber G, which gives a short exact sequence:

1 → π1(YG) → π1(XG) → G → 1.

The fundamental group π1(XG) is called the braid group of the action of G on M, denoted by
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Br(M,G), and the fundamental group π1(YG) is called the pure braid group of the action of G

on M, denoted by P (M,G).

As an example of the notion above, for a connected topological manifold M of dimension

greater than one, take M = M×n (Cartesian product of n copies of M). Then there is a natural

action of the symmetric group G = Σn on M, defined by σ(x1, · · · , xn) = (xσ−1(1), · · · , xσ−1(n)),

σ ∈ Σn. So YΣn
will be the ordered configuration space

F (M,n) = {(x1, · · · , xn) ∈ M×n | xi 6= xj for i 6= j}

(introduced by Fadell and Neuwrith [15]) and XΣn
will be the unordered configuration space

F (M,n)/Σn. Thus, the braid group Br(M,Σn) is the fundamental group π1(F (M,n)/Σn),

also simply denoted by Bn(M), and the pure braid group P (M,Σn) is the fundamental group

π1(F (M,n)), also simply denoted by Pn(M).

Theory of braids considered as above (called ordinary or classical braids here) obviously

possesses the following basic theoretical features:

(F1) (Geometric feature) Each braid corresponds to a collection of strings in M × I, and

the equivalence relation between braids is isotopy equivalence;

(F2) (Homotopic feature) Each braid group is realized as the fundamental group of the orbit

space.

Such two theoretical features are based upon the restriction of free actions. Recently Allcock

and Basak in their series papers [1–2] studied the braid-like groups, regarded as the orbifold

fundamental groups of the spaces with non-free action of a discrete group, given by removing a

locally finite arrangement of complex hyperplanes in complex Euclidean space Cn, or complex

hyperbolic space CHn, or the Hermitian symmetric space for an orthogonal group O(2, n), they

gave homotopic generators of braid-like groups. This work implies that although above two

features are not applicable for non free actions case, the study of braids can also be carried out.

The objective of this paper is to extend braids from configuration spaces to orbit braids

from orbit configuration spaces in both geometric and homotopic views. In particular, funda-

mental group can be replaced by orbifold fundamental group in homotopic description and the

geometric orbit braids are quite different from ordinary ones—the equivalence of orbit braids

are no longer regarded as isotopy classes, because they contain singular points. Our strategy is

to combine the original idea of Artin and the theory of transformation groups together.

Compared with the homotopic fundamental group of transformation groups in [1–2, 19], we

give geometric definition of orbit braids and prove that they are isomorphism. Furthermore,

we discuss not only the geometric generators of orbit braid group, but also their relations.

Let M be a connected topological manifold of dimension at least two with an effective action

of a finite group G (the action of G on M is not assumed to be free), and FG(M,n) be the orbit

configuration space where n ≥ 2.

We use the paths in FG(M,n) to describe the braids in M × I. In the sense of Artin, an

orbit braid will be defined as the orbit of a braid in M × I under the action of G (see Definition

2.1), but generally it may not be the disjoint union of some ordinary strings.

However, equivariant isotopy classes of orbit braids will not work very well. Based upon the

nature of orbit braids, our approach is to detect whether there exist two isotopic ordinary braids
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compatible with the G-action in two orbit braids (see Definition 2.3). This equivalence relation

among orbit braids can also be described in terms of the homotopy of paths in FG(M,n) (see

Proposition 2.2). In this way, the key difficulty is overcome.

Moreover, we conclude that the set of the equivalence classes of all orbit braids at a fixed

orbit base point forms a group, called the orbit braid group, denoted by Borb
n (M,G).

On the other hand, we obtain a homotopy description of the orbit braid group Borb
n (M,G).

Theorem 1.1 (see Theorem 2.1) There is the following isomorphism:

Borb
n (M,G) ∼= πE

1 (FG(M,n),x,xorb),

where πE
1 (FG(M,n),x,xorb) is called the extended fundamental group 1.

The orbit braid group Borb
n (M,G) is large enough to contain some interesting subgroups

Porb
n (M,G), Bn(M,G) and Pn(M,G) (see Definition 2.4). Each class of Borb

n (M,G) determines

a unique pair (g, σ) ∈ G×n × Σn. This leads us to obtain an epimorphism

Φ : Borb
n (M,G) → G×n ⋊ Σn,

we can further analyze the relations among Borb
n (M,G) and its subgroups. Our result is stated

as follows.

Theorem 1.2 (see Theorem 2.2) There are five short exact sequences around Borb
n (M,G),

which form the following commutative diagram:

1

$$I
II

II
II

II
I 1

Porb
n (M,G) //

''OO
OO

OO
OO

OO
O

G×n

::uuuuuuuuuu

1 // Pn(M,G)

OO

��

// Borb
n (M,G)

88pppppppppppp
Φ //

''NN
NN

NN
NN

NN
NN

G×n ⋊ Σn

OO

//

��

1

Bn(M,G) //

77ooooooooooo
Σn

$$I
II

II
II

II
I

1

::tttttttttt
1.

Remark 1.1 If dimM > 2, then it is easy to see that Pn(M,G) ∼= π1(M
×n,x) and

Borb
n (M,G) ∼= πE

1 (M,x, G(x))×n ⋊ Σn. Thus Borb
n (M,G) makes sense only when dimM = 2.

Next we consider the geometric presentation of orbit braid groups. As is known to all, Artin

first studied braids on R2. Thus we will carry out our work from the cases of C ≈ R2 with the

following two typical actions.

The first one is Zp yφ1 C defined by (e
2kπi

p , z) 7→ e
2kπi

p z, which is non-free and fixes only

the origin of C, where p is a prime, and Zp is regarded as the subgroup {e 2kπi

p | 0 ≤ k < p}. If
1Golasiński Marek told us that the extended fundamental group is actually the fundamental group of a

transformation group in the sense of Rhodes in [21] and Looijenga in [19].
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the action φ1 is restricted to C× = C \ {0}, then the action Zp yφ1 C× is free. The other one

is (Z2)
2 yφ2 C defined by {

z 7→ z,

z 7→ −z,

which is the standard representation of (Z2)
2 on C ≈ R2, and this action is non-free.

We obtain the presentations of orbit braid groups Borb
n (C,Zp), Borb

n (C×,Zp) and part infor-

mation of Borb
n (C, (Z2)

2).

Proposition 1.1 (see Proposition 3.2) Borb
n (C,Zp) has a presentation, generated by bk

(1 ≤ k ≤ n− 1) and b, with relations:

(1) bp = e,

(2) (bb1)
2 = (b1b)

2,

(3) bkb = bbk (k > 1),

(4) bkbk+1bk = bk+1bkbk+1,

(5) bkbl = blbk (|k − l| > 1).

Proposition 1.2 (see Proposition 3.3) Borb
n (C×,Zp) has a presentation, generated by bk

(1 ≤ k ≤ n− 1) and b′, with relations:

(1) (b′b1)
2 = (b1b

′)2,

(2) bkb
′ = b′bk (k > 1),

(3) bkbk+1bk = bk+1bkbk+1,

(4) bkbl = blbk (|k − l| > 1).

Lemma 1.1 (see Lemma 3.2) Borb
n (C, (Z2)

2) is generated by bk (1 ≤ k ≤ n− 1), bx and

by, satisfying the relations

(1) (bx)2 = (by)2 = e,

(2) bxby = bybx,

(3) bxb1b
xb−1

1 = b1b
xb−1

1 bx, byb1b
yb−1

1 = b1b
yb−1

1 by,

(4) bkb
x = bxbk, bkb

y = bybk (k > 1),

(5) bkbk+1bk = bk+1bkbk+1,

(6) bkbl = blbk (|k − l| > 1).

For p = 2, since (Z2)
n ⋊ Σn is isomorphic to the finite Coxeter group Bn and the action

Z2 yφ1 C× is free, Borb
n (C×,Z2) is exactly isomorphic to the generalized braid group Br(Bn)

defined by Brieskorn. In addition, we will see that the generalized braid group Br(Dn) is

isomorphic to a subgroup of Borb
n (C,Z2).

It should be pointed out that although the group G is assumed to be finite, many aspects

of our work do not need this restriction.

The paper is organized as follows. Section 2 is the main part of this paper, where we will

discuss how to establish the theoretical framework of orbit braids. We give the definitions

of the orbit braid group, and show that such group can be described in terms of homotopy

(i.e., Theorem 1.1). Furthermore, we introduce some subgroups of orbit braid group and study

various possible relations among orbit braid group and its subgroups. In Section 3, we present

the orbit braid groups of two typical actions on C, from which we see that the generalized
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braid group Br(Bn) actually agrees with the orbit braid group Borb
n (C×,Z2) and Br(Dn) is a

subgroup of the orbit braid group Borb
n (C,Z2). In Section 4, we give the notion of extended

fundamental groups and state some properties in a general way in the category of topology,

which were essentially due to Rhodes in [21].

2 Orbit Braids from Orbit Configuration Space

Given a topological group G and a topological space X . Assume that X admits an effective

G-action. Then the orbit configuration space of the G-space X is defined by

FG(X,n) = {(x1, · · · , xn) ∈ X×n | G(xi) ∩G(xj) = ∅ for i 6= j}

with subspace topology, where n ≥ 2 and G(x) denotes the orbit of x. In the case where G acts

trivially on X , the space FG(X,n) is the classical configuration space F (X,n).

The action of G on X induces a natural action of G×n on FG(X,n). In addition, FG(X,n)

also admits a canonical free action of the symmetric group Σn. However, generally these two

actions do not commutative. There is a natural homomorphism ϕ : Σn → Aut(G×n) defined

by ϕ(σ)(g) = gσ for σ ∈ Σn and g = (g1, · · · , gn) ∈ G×n, where gσ = (gσ(1), · · · , gσ(n)). Then

we may obtain a semidirect product G×n ⋊ϕ Σn via ϕ, on which the operation “ · ” is given by

(g, σ) · (h, τ) = (ghσ, στ)

for (g, σ), (h, τ) ∈ G×n ⋊ϕ Σn. Now we see that FG(X,n) admits the action of G×n ⋊ϕ Σn,

given by

((g, σ), x) 7→ gxσ,

where gxσ = (g1xσ(1), · · · , gnxσ(n)) for x = (x1, · · · , xn) ∈ FG(X,n).

Remark 2.1 The notion of orbit configuration space was introduced by Xicoténcatl in the

thesis [24] of his Ph.D. Since then, the study of the algebraic topology (especially cohomology)

and relevant topics of orbit configuration spaces has been further developed.

This equivariant case is quite different from the classical case. In particular, if the action

of G on X is non-free, then the singular points (i.e., points of non-free orbit type) in X will

bring difficulty to our study. An effective approach to deal with this difficulty is to throw out

all singular points from X (see [5]). Another approach is to choose nice behaved equivariant

manifolds. For example, in [10], for two kinds of equivariant manifolds with non-free actions

introduced by Davis and Januszkiewicz [12], the combinatorial structures of the orbit spaces of

the equivariant manifolds can determine all singular points, so that an explicit formula of Euler

characteristic for orbit configuration spaces can be obtained in terms of combinatorics.

In the following, we shall pay more attention to the case in whichX is a connected topological

manifold M of dimension greater than one, and G is a finite group. In this case FG(M,n) is

connected. Here we shall focus on the relation between orbit braids in M × I and paths in

FG(M,n). Actually, no matter the paths are closed or unclosed, by endowing an operation,

one can always form various kinds of groups. This extends the notion of ordinary fundamental

groups to the equivariant ones, as seen in the work of Rhodes in [21] (also see Looijenga’s paper

[19]).



170 F. L. Li, H. Li and Z. Lü

2.1 Notions and properties of orbit braids

A path

α = (α1, · · · , αn) : I → FG(M,n)

uniquely determines a configuration c(α) = {c(α1), · · · , c(αn)} of n strings in M ×I, where I =

[0, 1] admits a trivial action of G and each string c(αi) = {(αi(s), s) | s ∈ I} is homeomorphic to

I. For each s ∈ I, since α(s) = (α1(s), · · · , αn(s)) ∈ FG(M,n), it follows that the intersection

of any two different c(αi) and c(αj) is empty, so we may write c(α) =
n∐

i=1

c(αi), which is

naturally an unordered disjoint union of n intervals. Furthermore, it is easy to see that c(α)

can determine n! paths ασ = (ασ(1), · · · , ασ(n)), σ ∈ Σn in FG(M,n) such that c(ασ) = c(α).

For the path α satisfying that α(0) = (x1, · · · , xn) and α(1) = (xσ(1), · · · , xσ(n)) for some

σ ∈ Σn. if we consider the action of G on M , c(α) would be different from the classical Artin

braid, see the following examples.

Example 2.1 Consider the orbit configuration space FZ2(C, n) where the action of Z2 on

C is given by z 7→ −z, so this action is non-free and fixes only the origin of C. In the case of

n = 2, let us see two closed paths α, β : I → FZ2(C, 2) at the point x = (1, 2) such that their

corresponding configurations c(α) and c(β) are as shown below:

.，

If we forget the action of Z2 on C, then clearly c(α) and c(β) are isotopic relative to endpoints

in C× I. However, under the condition that C admits the action of Z2, c(α) and c(β) are even

not homotopic relative to endpoints in C × I, since the first string of c(α) cannot go through

the orbit of the second string of c(α), as we can see from the following picture:

.，
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For a path α = (α1, · · · , αn) : I → FG(M,n), since M admits an action of G, we may define

the orbit of α as follows:

G×n(α) := {gα = (g1α1, · · · , gnαn) | g = (g1, · · · , gn) ∈ G×n},

a collection of |G|n paths in FG(M,n). Then the corresponding configuration c(α) = {c(α1), · · · ,
c(αn)} in M × I with trivial action of G on I gives its orbit configuration

c̃(α) = {c̃(α1), · · · , c̃(αn)},

where each orbit string c̃(αi) = {hc(αi) | h ∈ G} is the orbit of the string c(αi) under the

action of G, consisting of |G| strings. We shall note that the |G| strings in each orbit string

c̃(αi) may intersect with each other, but the intersection of any two different orbit strings

c̃(αi) and c̃(αj) must be empty since gα(s) = (g1α1(s), · · · , gnαn(s)) ∈ FG(M,n) for any

g = (g1, · · · , gn) ∈ G×n. On the other hand, for two paths α and α′, if c̃(α) = c̃(α′), then there

must be g ∈ G×n and σ ∈ Σn such that α = gα′
σ.

Now we are going to give the definition of orbit braids. Choose a point x = (x1, · · · , xn)

in FG(M,n) such that for each 1 ≤ i ≤ n, the orbit G(xi) is of free type. Here and here-

after, x stands for the base point. Given σ ∈ Σn, g = (g1, · · · , gn) ∈ G×n, we denote

(g1xσ(1), · · · , gnxσ(n)) by gxσ.

Definition 2.1 Let α = (α1, · · · , αn) : I → FG(M,n) be a path such that α(0) = x and

α(1) = gxσ for some (g, σ) ∈ G×n × Σn. Then c̃(α) is called an orbit braid in M × I.

Remark 2.2 Without loss of generality we may assume that α(0) = x. In fact, if α(0) 6= x,

we may write α(0) = hxτ where h ∈ G×n and τ ∈ Σn. We can construct path α′ = h−1
τ−1ατ−1

such that α′(0) = x and c̃(α′) = c̃(α).

Obviously, each orbit braid c̃(α) has the property that c̃(α)|s=0 and c̃(α)|s=1 are home-

omorphic to an unordered collection of the orbits of n coordinates of x under the action of

G,

c̃(x) = {G(x1), · · · ., G(xn)}.
Namely, two endpoints of each orbit braid c̃(α) are the same. Here we also call c̃(x) the

(unordered) orbit base point.

Remark 2.3 In the theory of classical braids (see [4, 6]), it is easy to see that for two paths

α, β : I → F (M,n) with the same endpoints, α and β are homotopic relative to ∂I (also write

α ≃ β rel ∂I) if and only if c(α) and c(β) are isotopic relative to endpoints in M × I2.

Since we are working on the case of M with an effective G-action, naturally we wonder

whether the equivalence of homotopy and isotopy in Remark 2.3 still holds in equivariant case.

The answer is no, see the following example.

Example 2.2 Let the action of Z2 on C be the same as that in Example 2.1. Consider the

orbit configuration space FZ2(C, n). In the case of n = 2, take two closed paths α(s) = (e2sπi, 2)

and β(s) = (1, 2), their corresponding ordinary braids c(α) and c(β) are shown as follows:

2Here the equivalence of c(α) and c(β) up to isotopy is compatible with the Definition 3 of Artin’s paper [4]
since c(α) and c(β) are given by two paths in F (M,n).
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.，

Clearly, α ≃ β in FZ2(C, 2). However, c̃(α) and c̃(β) are not equivariant isotopic.

.，

Definition 2.2 Let α, β : I → FG(M,n) be two paths with the same endpoints. We say that

c(α) and c(β) are isotopic with respect to the G-action relative to endpoints in M × I, denoted

by c(α) ∼G
iso c(β), if there exist n homotopy maps Fi : I × I → M , i = 1, · · · , n, which induce

F̂i : I × I → M × I given by F̂i(s, t) = (Fi(s, t), s), such that

(1)
n∐

i=1

F̂i(s, 0) = c(α) and
n∐

i=1

F̂i(s, 1) = c(β).

(2)
n∐

i=1

F̂i(0, t) = c(α)|s=0 = c(β)|s=0 and
n∐

i=1

F̂i(1, t) = c(α)|s=1 = c(β)|s=1.

(3) For any (s, t) ∈ I × I, if i 6= j then G(Fi(s, t)) ∩G(Fj(s, t)) = ∅.

With this understanding, we have the following result.

Proposition 2.1 Let α, β : I → FG(M,n) be two paths with the same endpoints. Then

α ≃ β rel∂I if and only if c(α) ∼G
iso c(β).

Proof Assume that F = (F1, · · · , Fn) : I × I → FG(M,n) is a homotopy relative to ∂I

from α to β. Then we can use F to define n homotopy maps

F̂i : I × I → M × I

by F̂i(s, t) = (Fi(s, t), s), i = 1, · · · , n, satisfying (1)–(3) of Definition 2.2. Thus, c(α) ∼G
iso c(β).

Conversely, suppose that c(α) ∼G
iso c(β). Then there are n homotopy maps

F̂i : I × I → M × I
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given by F̂i(s, t) = (Fi(s, t), s), i = 1, · · · , n, satisfying (1)–(3) of Definition 2.2. These Fi give

a map F = (F1, · · · , Fn) : I×I → FG(M,n), which is exactly the homotopy relative to ∂I from

α to β.

Based upon this observation, we define the following equivalence relation among orbit braids.

Definition 2.3 Let α and β be two paths in FG(M,n) such that α(0) = β(0) = x and

α(1) = gxσ, β(1) = hxτ for some (g, σ), (h, τ) ∈ G×n ×Σn. We say that orbit braids c̃(α) and

c̃(β) are equivalent, denoted by c̃(α) ∼ c̃(β), if c(α) ∼G
iso c(β).

Remark 2.4 It should be pointed out that if the action of G on M is free, then c̃(α) ∼ c̃(β)

if and only if c̃(α) and c̃(β) are equivariantly isotopic relative to endpoints. However, if the

action of G on M is not free, then generally c̃(α) and c̃(β) are not equivariantly isotopic even

if c̃(α) ∼ c̃(β), as seen in Example 2.2.

Proposition 2.2 c̃(α) ∼ c̃(β) if and only if there are two paths α′ = gασ, β
′ = hβτ , such

that α′(0) = β′(0) = x and α′ is homotopic to β′ relative to ∂I.

Proof This is a consequence of Proposition 2.1 and Definition 2.3.

Using the equivalence relation in Definition 2.3, we define Borb
n (M,G) as the set consisting

of the equivalence classes of all orbit braids at the orbit base point c̃(x) in M × I.

Lemma 2.1 Each class [c̃(α)] in Borb
n (M,G) determines a unique pair (g, σ) ∈ G×n ×Σn.

Proof By Remark 2.2, we may write α(0) = x = (x1, · · · , xn). Next let us look at the

ending point α(1) of α. There must be g ∈ G×n and permutation σ ∈ Σn such that α(1) = gxσ.

Consider a path α′ such that c̃(α′) ∼ c̃(α). Then there exists a pair (h, τ) ∈ G×n×Σn such that

α′ is homotopic to hατ relative to ∂I. So α′(0) = hατ (0) = hxτ and α′(1) = hατ (1) = h(gxσ)τ .

We can use h and τ to change the endpoints of α′ such that

h−1
τ−1α

′
τ−1(0) = h−1

τ−1(hxτ )τ−1 = x h−1
τ−1α

′
τ−1(1) = gxσ.

Since c̃(α′) = ˜c(h−1
τ−1α′

τ−1), we obtain that c̃(α′) also determines the pair (g, σ), this implies

that (g, σ) does not depend upon the choice of representatives of [c̃(α)].

Let πE
1 (FG(M,n),x, (G×n ⋊ Σn)(x)) denote the set consisting of the homotopy classes rel-

ative to ∂I of all paths α : I → FG(M,n) with α(0) = x and α(1) ∈ xorb, where xorb = {gxσ |
g ∈ G×n, σ ∈ Σn}——the orbit at x under action of G×n ⋊Σn. From Proposition 2.2, we have

Corollary 2.1 Borb
n (M,G) bijectively corresponds to πE

1 (FG(M,n),x, (G×n ⋊ Σn)(x)) as

sets.

Remark 2.5 Given σ ∈ Σn and g ∈ G×n, we see easily that πE
1 (FG(M,n),x, (G×n ⋊ Σn)

(x)) bijectively corresponds to πE
1 (FG(M,n), gxσ, (G

×n ⋊ Σn)(x)) by mapping [α] to [gασ], so

πE
1 (FG(M,n), gxσ, (G

×n ⋊ Σn)(x)) also bijectively corresponds to Borb
n (M,G).

2.2 Groups of orbit braids and their homotopy descriptions

Let [c̃(α)] and [c̃(β)] be two classes in Borb
n (M,G).
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First let us consider the operation between c̃(α) and c̃(β) in an intuitive way. Since two

orbit braids have the same endpoints, intuitively we can obtain a new orbit braid c̃(α) ◦ c̃(β)
by gluing the starting points of c̃(β) to the ending points of c̃(α). More precisely,

c̃(α) ◦ c̃(β)(s) =





c̃(α)(2s), if s ∈
[
0,

1

2

]
,

c̃(β)(2s− 1), if s ∈
[1
2
, 1
]
.

Clearly this operation ◦ is well-defined, but not associative. By Corollary 2.1, this new orbit

braid c̃(α) ◦ c̃(β) should be determined by a path γ : I → FG(M,n) with γ(0) = x and

γ(1) ∈ xorb. Such a path γ can be constructed as follows:

By Lemma 2.1, there exists a unique pair (g, σ), (h, τ) ∈ G×n ⋊ Σn such that α(1) = gxσ,

β(1) = hxτ . Consider β̂ = gβσ, since β(0) = x, we have that β̂(0) = α(1) = gxσ, and we know

from previous discussion c̃(β) = c̃(β̂). Then we can construct a new path

γ(s) = α ◦ β̂(s) =





α(2s), if s ∈
[
0,

1

2

]
,

β̂(2s− 1), if s ∈
[1
2
, 1
]

with γ(0) = x and γ(1) = gβσ(1) = g(hxτ )σ = ghσxστ , as desired.

Remark 2.6 In the above construction of γ, we see that two pairs (g, σ) and (h, τ) actually

produce a new pair (ghσ, στ) = (g, σ) · (h, τ), which is compatible with [c̃(α) ◦ c̃(β)] = [c̃(γ)].

Now we define an operation ∗ on Borb
n (M,G) by

[c̃(α)] ∗ [c̃(β)] = [c̃(α) ◦ c̃(β)].

We claim that the operation ∗ is well-defined and associative. It suffices to show that for any

α′ ∈ [α] and any β′ ∈ [β],

[c̃(α′)] ∗ [c̃(β′)] = [c̃(α′) ◦ c̃(β′)] = [c̃(α) ◦ c̃(β)] = [c̃(α)] ∗ [c̃(β)].

Since α(i) = α′(i) and β(i) = β′(i) for i = 0, 1, we have that gβ′
σ(0) = α(1) and c̃(β′) = c̃(gβ′

σ).

In a similar way to the construction of γ as above, we may define γ′ = α′ ◦ (gβ′
σ). Furthermore,

homotopy theory (see [22]) tells us that γ′ = α′ ◦ (gβ′
σ) is homotopic to γ = α ◦ (gβσ) relative

to ∂I, By Corollary 2.1, this implies the operation ∗ is well-defined. Since the operation ∗ is

essentially reduced to the operation on the homotopy classes of paths, it is also associative.

Proposition 2.3 Borb
n (M,G) forms a group under the operation ∗, called the orbit braid

group of the G-manifold M .

Proof Obviously, the class [c̃(cx)] is just the unit element, where cx is the constant path

with cx(s) = x, s ∈ I.

Let [c̃(α)] be an element in Borb
n (M,G). Consider the inverse path α of α, i.e., α(s) = α(1−s).

It is well-known in homotopy theory that α ◦ α is homotopic to cx. Thus,

[c̃(α)] ∗ [c̃(α)] = [c̃(α) ◦ c̃(α)] = [c̃(cx)]
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gives that [c̃(α)]−1 = [c̃(α)].

When the action of G on M is trivial, Borb
n (M,G) will degenerate into the ordinary braid

group Bn(M). Thus the notion of orbit braid group is a generalization for ordinary braid

groups.

Putting some restrictions on endpoints of orbit braids, we may define some subgroups of

Borb
n (M,G) as follows.

Definition 2.4 (Subgroups of Borb
n (M,G))

(1) Those classes [c̃(α)] with α(1) ∈ G×n(x) of Borb
n (M,G) form a subgroup of Borb

n (M,G),

which is called the pure orbit braid group, denoted by Porb
n (M,G).

(2) Those classes [c̃(α)] with α(1) ∈ Σn(x) = {xσ | σ ∈ Σn} of Borb
n (M,G) form a subgroup

of Borb
n (M,G), which is called the braid group, denoted by Bn(M,G).

(3) Those classes [c̃(α)] with α(1) = x of Borb
n (M,G) form a subgroup of Borb

n (M,G), which

is called the pure braid group, denoted by Pn(M,G).

The group structure on Borb
n (M,G) gives us an insight to

πE
1 (FG(M,n),x, (G×n ⋊ Σn)(x)),

on which we can also endow an operation • defined by

[α] • [β] = [α ◦ (gβσ)], (2.1)

where (g, σ) ∈ G×n × Σn is the unique pair determined by [c̃(α)]. Then it is easy to see that

πE
1 (FG(M,n),x, (G×n ⋊ Σn)(x)) becomes a group under this operation. Indeed, this group

exactly agrees with the fundamental group of transformation group in the sense of Rhodes in

[21].

Now from Corollary 2.1, we have the following result.

Theorem 2.1 The map

Λ : πE
1 (FG(M,n),x, (G×n ⋊ Σn)(x)) → Borb

n (M,G)

given by [α] 7→ [c̃(α)] is an isomorphism.

Similarly, those subgroups defined above of Borb
n (M,G) can also be described in terms of

the homotopy classes of paths in FG(M,n).

Corollary 2.2 Homotopy descriptions of subgroups Porb
n (M,G), Bn(M,G) and Pn(M,G):

(1) Porb
n (M,G) ∼= πE

1 (FG(M,n),x, G×n(x));

(2) Bn(M,G) ∼= πE
1 (FG(M,n),x,Σn(x));

(3) Pn(M,G) ∼= π1(FG(M,n),x).

Remark 2.7 The above viewpoint can also be used in the theory of ordinary braids. Con-

sider the case in which G = {e}. Then Borb
n (M,G) degenerates into the ordinary braid group

Bn(M), which is isomorphic to the group πE
1 (F (M,n),x,Σn(x)). In this case, there is the

following short exact sequence

1 → π1(F (M,n),x) → πE
1 (F (M,n),x,Σn(x)) → Σn → 1,
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from which we see that πE
1 (F (M,n),x,Σn(x)) is actually the fundamental group of the un-

ordered configuration space F (M,n)/Σn.

Corollary 2.2 tells us that, as in the theory of ordinary braids, the pure braid group

Pn(M,G) can be realized as the fundamental group π1(FG(M,n),x). Later on, we will show

that Bn(M,G) can be realized as the fundamental group of FG(M,n)/Σn, and we shall see

much more information on Borb
n (M,G) and Porb

n (M,G).

2.3 Short exact sequences

Consider the semidirect product G×n⋊ϕΣn defined at the beginning of Section 2. Then by

Lemma 2.1 and Remark 2.6, we can define a homomorphism

Φ : Borb
n (M,G) → G×n ⋊ϕ Σn

by Φ([c̃(α)]) = (g, σ), where (g, σ) is the unique pair determined by [c̃(α)].

Lemma 2.2 The homomorphism

Φ : Borb
n (M,G) → G×n ⋊ϕ Σn

is an epimorphism.

Proof Given a pair (g, σ) in G×n ⋊ϕ Σn, since FG(M,n) is path-connected, there must be

a path α : I → FG(M,n) such that α(0) = x and α(1) = gxσ, which gives Φ([c̃(α)]) = (g, σ).

Thus Φ is an epimorphism.

Based upon the Definition 2.4, when Φ is restricted to Porb
n (M,G), each class [c̃(α)] will

uniquely determine the pair (g, eΣn
), where eΣn

is the unit element of Σn. Thus, Φ induces a

homomorphism

ΦG : Porb
n (M,G) → G×n

given by ΦG([c̃(α)]) = g, which is an epimorphism.

When Φ is restricted to Bn(M,G), each class [c̃(α)] will uniquely determine the pair (eG×n , σ),

where eG×n is the unit element of G×n. So Φ induces a homomorphism

ΦΣ : Bn(M,G) → Σn,

which is also an epimorphism.

We can observe that Ker Φ, Ker ΦG and Ker ΦΣ are exactly the pure braid group Pn(M,G).

On the other hand, there are two natural projections p|Σ : G×n ⋊ϕ Σn → Σn and p|G :

G×n ⋊ϕ Σn → G×n, which give two maps

p|Σ ◦ Φ : Borb
n (M,G) → Σn

and

p|G ◦ Φ : Borb
n (M,G) → G×n.

We see by Lemma 2.2 that such two maps are still surjective. In addition, it is easy to see that

Ker(p|Σ ◦Φ) = Porb
n (M,G) and Ker(p|G ◦Φ) = Bn(M,G). However, we note that p|G ◦Φ is not
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a group homomorphism since p|G is not a group homomorphism, and p|Σ ◦ Φ is still a group

homomorphism.

Together with all arguments above, we have the following result.

Theorem 2.2 The following diagram commutes and contains five short exact sequences:

1

$$I
II

II
II

II
I 1

Porb
n (M,G)

ΦG //

''NN
NN

NN
NN

NN
N

G×n

::tttttttttt

1 // Pn(M,G)

OO

��

// Borb
n (M,G)

77pppppppppppp
Φ //

''OO
OO

OO
OO

OO
OO

O
G×n ⋊ϕ Σn

p|G

OO

//

p|Σ

��

1

Bn(M,G)
ΦΣ //

77ooooooooooo
Σn

%%JJ
JJ

JJ
JJ

JJ
J

1

::tttttttttt
1.

Remark 2.8 We note that because the map p|G ◦ Φ : Borb
n (M,G) → G×n is not a group

homomorphism,

1 → Bn(M,G) → Borb
n (M,G) → G×n → 1

is not an exact sequence in the sense that all maps must be group homomorphisms. However,

it can still be regarded as an exact sequence in the sense of Switzer [22] for topological spaces.

Lemma 2.3 The braid group Bn(M,G) is isomorphic to π1(FG(M,n)/Σn, pΣ(x)).

Proof We see from Corollary 2.2 that Bn(M,G) ∼= πE
1 (FG(M,n),x,Σn(x)), and the action

of Σn on FG(M,n) is free, then the required result follows.

Remark 2.9 Corollary 2.2 and Lemma 2.3 tell us that the short exact sequence in Theorem

2.2,

1 → Pn(M,G) → Bn(M,G) → Σn → 1

geometrically corresponds to the short exact sequence

1 → π1(FG(M,n),x) → π1(FG(M,n)/Σn, pΣ(x)) → Σn → 1

given by the fibration FG(M,n) → FG(M,n)/Σn with fiber Σn.

2.4 Liftings of paths

For the projection pG : FG(M,n) → F (M/G, n), write pG = (pG1 , · · · , pGn ) and x = pG(x).

Consider the path α = (α1, · · · , αn) : I → F (M/G, n) from x to xσ = pG(xσ), σ ∈ Σn, and we

have

(pG)−1(α(I)) = ((pG1 )
−1(α1(I)), · · · , (pGn )−1(αn(I))).
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Since G is finite, we see easily that there must be at least |G|n path liftings α : I → FG(M,n)

FG(M,n)

pG

��
I

α

99sssssssssss α // F (M/G, n)

such that

G×n(α(I)) = (pG)−1(α(I)) = ((pG1 )
−1(α1(I)), · · · , (pGn )−1(αn(I))).

In particular, there must be at least one path lifting α with α(0) = x.

Then we have the following result.

Lemma 2.4 The projection pG : FG(M,n) → F (M/G, n) induces an epimorphism

pG∗ : πE
1 (FG(M,n),x, (G×n ⋊ Σn)(x)) → πE

1 (F (M/G, n),x,Σn(x))

by pG∗ ([α]) = [pG(α)].

Remark 2.10 pG∗ may not be injective in general. In fact, because of the existence of non-

free orbit point, it is possible that there exist two path liftings α, α′ of α such that α(0) = α′(0)

but α 6≃ α′ rel ∂I, so [c̃(α)] 6= [c̃(α′)].

In a similar way as Lemma 2.3, we have that

πE
1 (F (M/G, n),x,Σn(x)) ∼= π1(F (M/G, n)/Σn, x̂) = Bn(M/G),

where x̂ is the image of x under the projection F (M/G, n) → F (M/G, n)/Σn. Furthermore,

together with Corollary 2.2, Lemma 2.4 and Theorem 2.2, we conclude that

Proposition 2.4 There is an epimorphism between two short exact sequences:

1 −−−−→ Porb
n (M,G) −−−−→ Borb

n (M,G) −−−−→ Σn −−−−→ 1
y

y =

y

1 −−−−→ Pn(M/G) −−−−→ Bn(M/G) −−−−→ Σn −−−−→ 1.

Now let us consider the case in which the action of G on M is free. In this case, the

projection pG : FG(M,n) → F (M/G, n) becomes a fibration with fiber G×n.

Lemma 2.5 The following statements are equivalent.

(1) The action of G on M is free.

(2) For any path α : I → F (M/G, n), there are exactly |G|n path liftings of α.

(3) For any path α : I → F (M/G, n) and any two path liftings α′ and α′′ of α, c̃(α′) = c̃(α′′).

Proof The equivalence of (1) and (2) is obvious. Assume that there are exactly |G|n path

liftings of α. Then we see that for each 1 ≤ i ≤ n, (pG)−1αi consists of |G| path liftings of αi,

all of which do not intersect to each other. Furthermore, we have that for any two path liftings

α′ and α′′ of α, there is some g ∈ G×n such that α′ = gα′′, so c̃(α′) = c̃(α′′).

Conversely, let α′ and α′′ be two path liftings of α, and assume that c̃(α′) = c̃(α′′). Then

there must be g ∈ G×n and σ ∈ Σn such that α′ = gα′′
σ. Since pG(α′) = pG(α′′), we know that
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σ must be the unit. This implies that {gα′ | g ∈ G×n} gives all different path liftings of α,

which consist of exactly |G|n path liftings.

Remark 2.11 Lemma 2.5 tells us that if the action of G on M is non-free, then there must

be some path α : I → F (M/G, n) and two different path liftings α′ and α′′ of α such that

c̃(α′) 6= c̃(α′′). In fact, since the action of G on M is non-free, we may assume that there is

some s ∈ I such that (pG)−1(α(s)) is not the free orbit in FG(M,n). Furthermore, there would

be more than |G|n path liftings of α since we have more choices of path liftings via those points

of non-free orbit in (pG)−1(α(s)).

Corollary 2.3 If the action of G on M is free, then

(1) Porb
n (M,G) ∼= Pn(M/G), so Porb

n (M,G) is realizable as π1(F (M/G, n),x).

(2) Borb
n (M,G) ∼= Bn(M/G), so Borb

n (M,G) is realizable as π1(F (M/G, n)/Σn, x̂).

Proof It is a consequence of Lemma 2.5 and Proposition 2.4.

Remark 2.12 In the viewpoint of the theory of covering spaces, generally FG(M,n) is not

the covering space of F (M/G, n). However, paths and the homotopies between two paths in

F (M/G, n) can still be lifted to FG(M,n) but liftings with the same starting point may not be

unique. Thus, if the action of G on M is non-free, then the homomorphism

pG∗ : Pn(M,G) → Pn(M/G)

induced by the projection pG : FG(M,n) → F (M/G, n) is no longer injective. Actually, pG∗ is

the composition of a monomorphism and an epimorphism

Pn(M,G)  Porb
n (M,G) ։ Pn(M/G).

2.5 Relation between orbit configuraiton space and ordinary
configuraiton space

There is a natural embedding i : FG(M,n) →֒ F (M,n) from orbit configuration space to its

corresponding ordinary configuration space.

Lemma 2.6 The induced homomorphism i∗ : π1(FG(M,n),x) → π1(F (M,n),x) is an

epimorphism.

Proof Take an element [α] in π1(F (M,n),x). If for any s ∈ I, α(s) ∈ FG(M,n), then [α]

is also an element of π1(FG(M,n),x).

Now assume that there is some s ∈ I (possibly s can be any point of the whole (0, 1))

such that α(s) 6∈ FG(M,n). This means that there are at least two i, j with i 6= j such that

G(αi(s)) = G(αj(s)), where α = (α1, · · · , αn). Clearly, αi(s) or αj(s) is not a G-fixed point

since αi(s) 6= αj(s). So there exists some g 6= e in G such that αi(s) = gαj(s). Since G is

finite, there exists a G-invariant open neighborhood N of αi(s) which is a disjoint union of some

connected open subsets in F (M,n) such that for a small enough connected open neighborhood

Ns ⊂ I of s, αi(Ns) ∩N and αj(Ns) ∩ N lie in two different components of N . Then we can

always do a slight homotopy deformation on αi in N , changing αi into α′
i, such that α′

i(Ns)∩N
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never meets with the orbits of other αk(Ns), k 6= i. This gives a change on a small open arc of

the path αi up to homotopy.

As long as there are also finitely or infinitely many points s in I such that αi(s) meets some

orbit of αk(s), k 6= i, since αi(I) is compact, we can perform the above approach finite times,

so that αi can be finally changed into a new path α′
i such that αi ≃ α′

i rel ∂I in F (M,n),

and for any s ∈ I and any k 6= i, G(α′
i(s)) ∩ G(αk(s)) = ∅. This procedure only does change

the component path αi, so α is changed into (α1, · · · , αi−1, α
′
i, αi+1, · · · , αn), denoted by α′.

Clearly, α ≃ α′ rel ∂I in F (M,n).

If α′ is not a path in FG(M,n) yet, then we will perform the above procedure on other

component paths αk, k 6= i. Since c(α) only contains n strings, we can end our procedure until

we obtain a path β such that for any s ∈ I, β(s) ∈ FG(M,n) and α ≃ β rel ∂I in F (M,n).

Thus, [α] is in the image of i∗. This completes the proof.

In a similar way as above, we can show that the following homomorphism induced by the

embedding i : FG(M,n) →֒ F (M,n):

πE
1 (FG(M,n),x,Σn(x)) → πE

1 (F (M,n),Σn(x))

is also an epimorphism. Therefore we have

Proposition 2.5 There is an epimorphism between two short exact sequences:

1 −−−−→ Pn(M,G) −−−−→ Bn(M,G) −−−−→ Σn −−−−→ 1
y

y =

y

1 −−−−→ Pn(M) −−−−→ Bn(M) −−−−→ Σn −−−−→ 1.

3 Presentations of Orbit Braid Groups of Two Typical Actions on C

The geometric presentation of classical braid group Bn(R
2) in R2 × I (see [4, 6]) motivates

us to present orbit braid groups. We begin with our work from the case of C ≈ R2 with the

following two typical actions:

(I) The action Zp yφ1 C defined by (e
2kπi

p , z) 7→ e
2kπi

p z, which is non-free and fixes only the

origin of C, where p is a prime, and Zp is regarded as the group {e 2kπi

p | 0 ≤ k < p}. If the

action φ1 is restricted to C× = C \ {0}, then the action Zp yφ1 C× is free.

(II) Non-free action (Z2)
2 yφ2 C defined by

{
z 7→ z,

z 7→ −z.

This action is just the standard representation of (Z2)
2 on C ≈ R2.

Throughout this section, fix

z = (1 + i, 2 + 2i, · · · , n+ ni)

as the base point in FZp
(C, n), FZp

(C×, n) and F(Z2)2(C, n), where i =
√
−1. Clearly, each

coordinate of z is free orbit point in above actions. For convenience, we denote l + li by l̂, so

z = (1 + i, 2 + 2i, · · · , n+ ni) = (1̂, 2̂, · · · , n̂).
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3.1 Orbit braid group B
orb
n

(C,Zp)

For a path α = (α1, · · · , αn) in FZp
(C, n) with α(0) = z and α(1) = gzσ where (g, σ) ∈

(Zp)
n ⋊ Σn, it is easy to see that the corresponding orbit braid c̃(α) =

n∐
i=1

c̃(αi),

c̃(αi) =
{
(αi(s), s),

(
e

2πi

p αi(s), s
)
, · · · ,

(
e

2(p−1)πi

p αi(s), s
)
| s ∈ I

}
.

is symmetric with respect to the line O = {0} × I in C× I.

First let us consider the case p = 2. To describe Borb
n (C,Z2), we construct a family of basic

“bricks” bk, k = 1, · · · , n− 1, and b, where each orbit braid bk is chosen as the class [c̃(α(k))]

given by the path

α(k)(s) =
(
1 + i, · · · , k + (k + 1)i+ e−

π
2 i(1−s), (k + 1) + ki+ ie

π
2 is, · · · , n+ ni

)
(3.1)

as shown in the following picture

and b is chosen as the class [c̃(α)] given by the path

α(s) = ((1 + i)(1− 2s), 2 + 2i, · · · , n+ ni) (3.2)

as shown in the following picture

.

Remark 3.1 In the above picture for c̃(α), we see that the first string and its orbit can

exactly intersect at O. This can happen because the origin in C is just a fixed point of Z2-action.
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Furthermore, even if the first string and its orbit do not intersect, then the corresponding orbit

braid can still be equivalent to c̃(α). In fact, we can choose the following path

β(s) = ((1 + i)eπis, 2 + 2i, · · · , n+ ni), (3.3)

which never goes through the origin, but [c̃(α)] = [c̃(β)]. Thus, [c̃(β)] can also be chosen as b.

In addition, we note that there are also other typical orbit braids c̃(γ) in which the i-th

string c(γi) connects î and −̂i, other strings remain constant, where i = 2, · · · , n. However,

these orbit braids are not basic “bricks”. In fact, we see easily that for each i, [c̃(γ)] can be

represented as a composition b−1
i−1 · · ·b−1

1 bb1 · · ·bi−1. The following two pictures illustrate the

case of i = 2.

and

.

Lemma 3.1 Borb
n (C,Z2) has a presentation, generated by bk (1 ≤ k ≤ n − 1) and b,

satisfying the following relations :

R1 : b2 = e,

R2 : bb1bb1 = b1bb1b,

R3 : bkb = bbk (k > 1),

R4 : bkbk+1bk = bk+1bkbk+1,

R5 : bkbl = blbk (|k − l| > 1).
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Proof First, every class in Borb
n (C,Z2) can be reduced into the composition of bk and b

because each crossing of two adjacent orbit strings just decide a basic “brick”.

Each bk has a symmetric structure with respect to O and its half part is used as a generator

of classical braid group Bn(R
2). Thus, the relations R4 and R5 follow from the theory of

classical braid groups (see [6]).

We can construct homotopy deformation maps that connect both sides of the equations in

relations R1, R2 and R3. Actually, we can see this intuitively. Let us look at the pictures of

orbit braids in both sides of relation R2, as shown below.

.

Since we can always do a slight homotopy deformation on b near O such that the first string

and its orbit do not intersect at O as stated in Remark 3.1, the intersection of second string

and its orbit is equivalent to the orbit of second string over second string in the above picture.

This illustrates the equivalence of two orbit braids.

We can also use a similar way to prove relations R1 and R3. We would like to leave them

as exercises to the reader.

Proposition 3.1 Borb
n (C,Z2) ∼= 〈b1, · · · ,bn−1,b | R1, R2, R3, R4, R5〉, where R1–R5 are

the relations stated in Lemma 3.1.

Proof It suffices to prove the completeness of relations R1–R5, i.e., there doesn’t exist any

extra relation in Borb
n (C,Z2).

Assume that B̃orb
n (C,Z2) is the pure algebraic presentation group as follows:

B̃orb
n (C,Z2) =

〈
a1, · · · , an−1, a

∣∣∣
(1) a2 = e; (2) aa1aa1 = a1aa1a; (3) aka = aak (k > 1);

(4) akak+1ak = ak+1akak+1; (5) akal = alak (|k − l| > 1)

〉
.

Then there is an epimorphism

φn : B̃orb
n (C,Z2) → Borb

n (C,Z2)

defined by φn(ak) = bk (1 ≤ k ≤ n− 1) and φn(a) = b.
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Consider the homomorphism Φ̃ : B̃orb
n (C,Z2) → (Z2)

n ⋊ϕ Σn as a composition of φn and

Φ : Borb
n (C,Z2) → (Z2)

n ⋊ϕ Σn, where (Z2)
n ⋊ϕ Σn is regarded as the symmetric group of

permutations of 2n numbers ±1, · · · ,±n preserving the action of Z2. Follow the idea of Chow

in [11], let B̃o,orb
n (C,Z2) be the subgroup consisting of those elements in B̃orb

n (C,Z2) whose

images as permutations under Φ̃ all leave the numbers ±n invariant. The index of B̃o,orb
n (C,Z2)

in B̃orb
n (C,Z2) is obviously 2n, and the representatives of 2n right cosets can be chosen as

M0 = e, Mi = an−1 · · · ai+1ai, i = 1, · · · , n− 1

and

M−1 = an−1 · · · a1a, M−i = an−1 · · · a1aa−1
1 · · · a−1

i−2a
−1
i−1, i = 2, · · · , n.

The application of the well-known Reidemeister-Schreier method to B̃o,orb
n (C,Z2) gives its (3n−

3) generators:

a1, · · · , an−2, a, τi = Mia
2
iM

−1
i , τ−i = M−ia

2
iM

−1
−i , i = 1, · · · , n− 1,

where τiτ−i = τ−iτi. Then we can define a homomorphism p̃n : B̃o,orb
n (C,Z2) → B̃orb

n−1(C,Z2) by

assigning to each τ±i the identity. Obviously, G̃n = ker p̃n is generated by τ±i, i = 1, · · · , n− 1.

Geometrically, it is easy to see that Bo,orb
n (C,Z2) = {α ∈ Borb

n (C,Z2) | αn(0) = αn(1)}
is exactly the image φn(B̃o,orb

n (C,Z2)). Let Gn denote the kernel of the homomorphism pn :

Bo,orb
n (C,Z2) → Borb

n−1(C,Z2) defined by removing the n-th string. Then we have the following

commutative diagram:

1 −−−−→ G̃n −−−−→ B̃o,orb
n (C,Z2)

p̃n−−−−→ B̃orb
n−1(C,Z2) −−−−→ 1

φn

y φn

y φn−1

y

1 −−−−→ Gn −−−−→ Bo,orb
n (C,Z2)

pn−−−−→ Borb
n−1(C,Z2) −−−−→ 1.

Now, to complete the proof, it needs to show that φn : B̃orb
n (C,Z2) → Borb

n (C,Z2) is an

isomorphism. We perform an induction on n.

When n = 1, this is trivial.

When n < k, assume inductively that φn : B̃orb
n (C,Z2) → Borb

n (C,Z2) is an isomorphism.

When n = k, we see easily from the above commutative diagram that φk : G̃k → Gk is an

epimorphism, so Gk is generated by φk(τi), φk(τ−i), i = 1, · · · , k−1. Of course, φk(τ−i)φk(τi) =

φk(τi)φk(τ−i). Take a word ω ∈ B̃orb
k (C,Z2) such that φk(ω) = e ∈ Borb

k (C,Z2). Then ω ∈
B̃o, orb
k (C,Z2). Since φk−1 is an isomorphism by induction assumption, p̃k(ω) = e so ω ∈ G̃k

and φk(ω) ∈ Gk. Write ω = τ ǫ1j1 · · · τ ǫljl where for each 1 ≤ u ≤ l, ǫu = 0 or 1 and ju ∈
{−k + 1, · · · ,−1, 1, · · · , k − 1}. Then φk(ω) = φk(τj1 )

ǫ1 · · ·φk(τjl )
ǫl = e in Gk.

On the other hand, we see easily that Gk is also the kernel of the homomorphism p′k :

Pk(C,Z2) → Pk−1(C,Z2) by removing the k-th string. Thus φn(ω) = e gives a relation in

Pk(C,Z2) = π1(FZ2(C, k)). Now we see that FZ2(C, k) is actually the complement space of

n(n+ 1) hyperplanes H±
ij , 1 ≤ i < j ≤ k in Ck as follows:

FZ2(C, k) = Ck \
⋃

i<j

H±
ij ,
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where H±
ij = {(z1, · · · , zn) ∈ Ck | zi = ±zj}. Randell [20] gave a nice description of the

fundamental group of the complement space of the complexication of real arrangements. Thus

we can apply this description of Randell to read out π1(FZ2(C, n)) whose generators exactly

correspond to those hyperplanesH±
ij and whose all relations correspond to codim-2 intersections

of those hyperplanes H±
ij . It is easy to see that all codim-2 intersections are of the following

three types:

{zi = ±zj ; zu = ±zv}, {zi = zj = 0}, {zi = ±zj = ±zu}.

Each codim-2 intersection of the first and second types is just the intersection of some two

hyperplanes, so the corresponding relation must be of the form ab = ba, where a, b denote

the conjugate classes of the generators corresponding to those two hyperplanes. Each codim-2

intersection of the third type is the intersection of some three hyperplanes, so the corresponding

relation must be of the form abc = bca = cab, where a, b, c denote the conjugate classes of the

generators corresponding to those three hyperplanes.

A careful check shows that for 1 ≤ i ≤ k − 1, φk(τi) corresponds to hyperplane H+
ik,

and φk(τ−i) corresponds to hyperplane H−
ik, so φk(ω) is the word formed by those generators

corresponding to all H±
ik. Thus, φk(ω) = e means that the possible relations for generators

φk(τ±i) must be of φk(τ−i)φk(τi) = φk(τi)φk(τ−i) which corresponds to codim-2 intersections

{zi = zk = 0}. Therefore, φk(ω) = e ⇔ ω is a composition of those τ−iτiτ
−1
−i τ

−1
i and their

conjugate classes. This implies that ω = e in B̃orb
k (C,Z2) so φk is an isomorphism.

For the general prime p, we first need to modify the path α in (3.2) or β in (3.3) into the

general form

α(s) =
(
(1 + i)

(
1 +

(
e

2πi

p − 1
)
s
)
, 2 + 2i, · · · , n+ ni

)
(3.4)

or

β(s) =
(
(1 + i)e

2πis
p , 2 + 2i, · · · , n+ ni

)
. (3.5)

Then we can use the paths α(k) in (3.1) and α in (3.4) (or β in (3.5)) to construct the required

basic “bricks” bk = [c̃(α(k))] for 1 ≤ k ≤ n − 1 and b = [c̃(α)] or [c̃(β)], each of which would

consist of p symmetric parts with respect to the line O.

It is not difficult to see that each class in Borb
n (C,Zp) is also a composition of bk (1 ≤ k ≤

n− 1) and b.

To get the presentation of Borb
n (C,Zp), an easy observation shows that we merely need to

change the relations R1 in Proposition 3.1 into bp = e. Any tangle of the first orbit string

surround the line O can be untangled since the origin of C is a fixed point of the action, this

illustrates bp = e. As for relation R2 in Proposition 3.1, both sides represent the orbit braid of

path γ(s) = ((1 + i)(1 + (e
2πi

p − 1)s), (2 + 2i)(1 + (e
2πi

p − 1)s), · · · , n + ni). Thus we have the

following proposition.

Proposition 3.2 Borb
n (C,Zp) has a presentation, generated by bk (1 ≤ k ≤ n− 1) and b,

with relations

(1) bp = e,
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(2) (bb1)
2 = (b1b)

2,

(3) bkb = bbk (k > 1),

(4) bkbk+1bk = bk+1bkbk+1,

(5) bkbl = blbk (|k − l| > 1).

The completeness of relations in Borb
n (C,Zp) can be proved in the similar way as in Propo-

sition 3.1. We just point out main differences. First, (Zp)
n ⋊ϕ Σn can be regarded as the sym-

metric group formed by those permutations of pn symmetric numbers e
2kπi

p 1, · · · , e 2kπi

p n, k =

0, · · · , p − 1. So the corresponding G̃n is generated by p(n − 1) generators τk1 , · · · , τkn−1, k =

0, · · · , p − 1; second, FZp
(C, n) can still be regarded as the complement space of complex hy-

perplane arrangement in Cn as follows:

FZp
(C, n) = Cn \

⋃

i<j

Hk
ij ,

where Hk
ij = {(z1, · · · , zn) ∈ Cn | zi = e

2kπi

p zj}. In this case, each codim-2 intersection

{zi = zn = 0} will be the intersection of p hyperplanes Hk
in, and the corresponding relation will

be of the form a1 · · · ap = a2 · · ·apa1 = apa1 · · · ap−1, where a1, · · · , ap denote the conjugate

classes of the generators corresponding to those p hyperplanes Hk
in.

3.2 Orbit braid group B
orb
n

(C×
,Zp)

In the similar way to the case of Borb
n (C,Zp), we can describe Borb

n (C×,Zp). In this case,

a family of basic “bricks” named after bk and b′ can also be constructed by the paths α(k) in

(3.1) and β in (3.5). Here we make sure that p ordinary strings of the first orbit string in c̃(β)

do not intersect because Zp acts freely on C×, as shown in the following picture for the case of

p = 2:

.

Since we are working on the case of C× with a free Zp-action, this means that we cannot

untangle any tangle surround the line O of the first orbit string of b′, so b′ in Borb
n (C×,Zp) is an

element of infinite order. Actually, the only difference between Borb
n (C×,Zp) and Borb

n (C,Zp)

is the order of b′. Indeed, on bk, we see that there is not any direct twine among p symmetric

parts with respect to O in c̃(α(k)), and only thing that happens is that two strings within each

symmetric part do an exchange of ending points. So bk in Borb
n (C,Zp) has the same property

as in Borb
n (C×,Zp). Thus we have that
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Proposition 3.3 Borb
n (C×,Zp) has a presentation, generated by bk (1 ≤ k ≤ n− 1) and b′,

with relations :

(1) (b′b1)
2 = (b1b

′)2,

(2) bkb
′ = b′bk (k > 1),

(3) bkbk+1bk = bk+1bkbk+1,

(4) bkbl = blbk (|k − l| > 1).

Proof Since Zp acts on C× freely, the completeness of relations in Borb
n (C×,Zp) can

be verified in several ways. Here we give the simplest one. Actually, by Corollary 2.3,

Borb
n (C×,Zp) ∼= Bn(C

×) ∼= Borb
n (C×,Z2). As we will see in Section 3.4, Borb

n (C×,Z2) ∼= Br(Bn),

where Br(Bn) denotes the generalized braid group corresponding to the finite Coxeter group Bn

(see [23]), and in particular, Br(Bn) consists of the same generators with four type of relations

exactly listed as in Proposition 3.3.

3.3 Orbit braid group B
orb
n

(C, (Z2)
2)

Identify C with R2, the action (Z2)
2 yφ2 (Z2)

2 is just the standard (Z2)
2-representation,

where (Z2)
2 is generated by two reflections gx and gy with respect to x-axis and y-axis. For a

path α = (α1, · · · , αn) in F(Z2)2(C, n) with α(0) = z and α(1) = gzσ, the correspoding orbit

braid c̃(α) =
n∐

i=1

c̃(αi) is symmetric with respect to the line O, real axis×I and imaginary

axis×I in C× I, where

c̃(αi) = {(αi(s), s), (−αi(s), s), (αi(s), s), (−αi(s), s) | s ∈ I}

and αi(s) means the conjugacy of αi(s).

Based upon the symmetries of the orbit braids in Borb
n (C, (Z2)

2), we construct a family of

basic “bricks” named after bk, b
x and by as follows:

(1) bk is chosen as [c̃(α(k))] where α(k) is the path in (3.1),

(2) bx is chosen as [c̃(αx)] where αx is the path given by

αx(s) = (1 + (1− 2s)i, 2 + 2i, · · · , n+ ni)

such that αx
1 and αx

1 intersect at real axis×I,

(3) by is chosen as [c̃(αy)] where αy is the path given by

αy(s) = ((1− 2s) + i, 2 + 2i, · · · , n+ ni)

such that αy
1 and −αy

1 intersect at imaginary axis×I.

We can read six classes of relations among these basic “bricks” in the same way as previous

two examples.

Lemma 3.2 Borb
n (C, (Z2)

2) is generated by bk (1 ≤ k ≤ n − 1), bx and by, satisfying the

relations

(1) (bx)2 = (by)2 = e,

(2) bxby = bybx,

(3) bxb1b
xb−1

1 = b1b
xb−1

1 bx, byb1b
yb−1

1 = b1b
yb−1

1 by,

(4) bkb
x = bxbk, bkb

y = bybk (k > 1),



188 F. L. Li, H. Li and Z. Lü

(5) bkbk+1bk = bk+1bkbk+1,

(6) bkbl = blbk (|k − l| > 1).

We shall emphasis here that we failed to find a way to prove the completeness of six relations

in Borb
n (C,Z2

2) although we believe it is correct. The obstacles lie in two points: First the

action of (Z2)
2 on C is non free, so that we cannot use known techniques about ordinary braid

groups; second F(Z2)2(C, n) is a real arrangement. As far as we know, it seems that there is

not an effective approach to deal with the fundamental group of the complement space of real

arrangements yet.

3.4 Compare with generalized braid groups (Artin groups)

Recall homomorphism Φ : Borb
n (M,G) → G×n ⋊ϕ Σn, here we consider two kinds of group

actions—Z2 yφ1 C and Z2 yφ1 C×. An easy argument shows that Zn
2 ⋊ϕ Σn is exactly

isomorphic to finite Coxeter group Bn. Then we have the following short exact sequences from

Theorem 2.2:

1 → Pn(C,Z2) → Borb
n (C,Z2) → Bn → 1 (3.6)

and

1 → Pn(C
×,Z2) → Borb

n (C×,Z2) → Bn → 1. (3.7)

Here we pay our attention to the relations between the orbit braid groups Borb
n (C,Z2),

Borb
n (C×,Z2) and the generalised braid groups Br(Dn), Br(Bn) (for the concept of generalized

braid group or Artin group, see Appendix A)

It was known in [17] that two orbit configuration spaces FZ2(C, n) and FZ2(C
×, n) are

classifying space of two generalized pure braid groups P (Dn) and P (Bn). Moreover the actions

of Dn and Bn on FZ2(C, n) and FZ2(C
×, n) respectively are free. From this viewpoint, we have

the following two short exact sequences:

1 → P (Dn) → Br(Dn) → Dn → 1 (3.8)

and

1 → P (Bn) → Br(Bn) → Bn → 1. (3.9)

In addition, we also have that

Pn(C,Z2) ∼= P (Dn) ∼= π1(FZ2(C, n), z)

and

Pn(C
×,Z2) ∼= P (Bn) ∼= π1(FZ2(C

×, n), z).

First let us look at the case of FZ2(C
×, n). It can be seen from Corollary 2.3 that two

short exact sequences (3.7) and (3.9) are essentially the same—both come from fibration from

FZ2(C
×, n) to FZ2(C

×, n)/Bn. Thus we have that

Proposition 3.4 Borb
n (C×,Z2) is isomorphic to the generalized braid group Br(Bn).
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As for the case of FZ2(C, n), compare two short exact sequences (3.6) and (3.8), we see that

Pn(C,Z2) ∼= P (Dn) but Bn 6∼= Dn, so Borb
n (C,Z2) and Br(Dn) are not isomorphic. Next let us

analyze the connection between Borb
n (C,Z2) and Br(Dn).

It is well-known that the finite Coxeter group Dn is generated by s, σ1, · · · , σn−1 with

relations:

(1) s2 = σ2
i = e,

(2) (σiσi+1)
3 = e,

(3) (sσ2)
3 = e,

(4) (sσi)
2 = e (i 6= 2),

(5) (σiσj)
2 = e (|i− j| > 1).

And the corresponding generalized braid group Br(Dn) is generated by s, σ1, · · · , σn−1 with

relations:

(1) σiσi+1σi = σi+1σiσi+1,

(2) sσ2s = σ2sσ2,

(3) sσi = σis (i 6= 2),

(4) σiσj = σjσi (|i − j| > 1).

Remark 3.2 We can observe how Dn acts freely on FZ2(C, n) in terms of σi and s. For

each (z1, · · · , zn) ∈ FZ2(C, n),

σi(z1, · · · , zi−1, zi, zi+1, zi+2, · · · , zn) = (z1, · · · , zi−1, zi+1, zi, zi+2, · · · , zn)

(i.e., σi only permutes i-th and (i+ 1)-th coordinates of z) and

s(z1, z2, z3, · · · , zn) = (−z2,−z1, z3, · · · , zn)

(i.e., s just transfers z1 to −z2 and z2 to −z1), we can verify easily that these transformations

exactly satisfy the relations (1)–(5) in Dn.

Now by Remark 3.2, the generator s in Br(Dn) can be regarded as the class bb1b in

Borb
n (C,Z2), and each σi can be regarded as the class bi in Borb

n (C,Z2). Thus, we can define a

homomorphism

f : Br(Dn) → Borb
n (C,Z2)

by f(s) = bb1b and f(σi) = bi. A direct check shows that f is a monomorphism.

Proposition 3.5 Br(Dn) is isomorphic to a subgroup of Borb
n (C,Z2).

4 Extended Fundamental Groups of Topological Spaces

As noted before, the extended fundamental group used as the homotopy description of orbit

braid group is actually the fundamental group of a transformation group in the sense of Rhodes

in [21]. In this section, we give the notion of extended fundamental groups and state some

properties in a general way in the category of topology, which are essentially due to Rhodes in

[21].

Let X be a path-connected topological space and let Home(X) be the group given by all

homeomorphisms from X to itself. Here we write Home(X) as G(X) for a convenience. When
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X is a connected smooth manifold, we may consider the group given by all diffeomorphisms

from X to itself.

Let H be a subgroup of G(X). Fix a point x0 in X as base point. Let Ω(X, x0, H) consist

of all pairs (α, hα) with hα ∈ H , where α : I → X is a path in X such that α(0) = x0 and

α(1) = hαx0 are in the orbit H(x0) at x0.

There is a natural operation ◦ : Ω(X, x0, H)× Ω(X, x0, H) → Ω(X, x0, H) defined by map-

ping ((α, hα), (β, hβ)) to (α ◦ (hαβ), hαhβ), where

α ◦ (hαβ)(s) =





α(2s), if s ∈
[
0,

1

2

]
,

hαβ(2s− 1), if s ∈
[1
2
, 1
]
.

In addition, there is also an equivalence relation ∼ on Ω(X, x0, H) as follows: For two pairs

(α, hα) and (β, hβ),

(α, hα) ∼ (β, hβ) ⇔
{
hα = hβ,

α ≃ β rel ∂I.

Furthermore, there is an induced operation • on the quotient set Ω(X, x0, H))/ ∼ given by

[α, hα] • [β, hβ ] = [α ◦ (hαβ), hαhβ].

Rhodes showed in [21] that Ω(X, x0, H(x0))/ ∼ forms a group under the operation •. Here we

call this group the extended fundamental group or the equivariant fundamental group, denoted

by πE
1 (X, x0, H) or πH

1 (X, x0).

Remark 4.1 Generally, two classes [α, hα] and [α, h′
α] with hα 6= h′

α are distinct even if

hαx0 = h′
αx0. Indeed, choose a point x in the orbit H(x0), we know from [7] that there exists

a coset hHx0 ∈ H/Hx0 such that for any h′ ∈ hHx0 , x = h′x0, where Hx0 is the isotropy

subgroup at x0. If x0 is of free orbit type, then Hx0 = {e}, so in this case, for two h 6= h′ in H ,

hx0 6= h′x0 and πE
1 (X, x0, H) may also be written as πE

1 (X, x0, H(x0)), as used in Section 2.

When H is exactly the trivial group {e}, πE
1 (X, x0, H) degenerates into the ordinary fun-

damental group π1(X, x0).

The following results are due to Rhodes [21].

Theorem 4.1 Let X be a path-connected topological space and let H be a subgroup of G(X).

Then

(1) (see [21, Theorems 1–2]) up to isomorphism, πH
1 (X, x0) does not depend upon the choice

of the base point x0,

(2) (see [21, Theorem 3]) πH
1 (X, x0) is homotopy invariant of X with H-action,

(3) (see [21, §8, p644]) there is the following short exact sequence

1 → π1(X, x0) → πH
1 (X, x0) → H → 1.

The map ∆ : πH
1 (X, x0) → H/Hx0 defined by [α, hα] 7→ hαHx0 is surjective, and the

preimage of Hx0 is exactly the group π
Hx0

1 (X, x0). Thus we have that

Corollary 4.1 There is the following short exact sequence

1 → π
Hx0
1 (X, x0) → πH

1 (X, x0) → H/Hx0 → 1.



A Theory of Orbit Braids 191

Finally, based upon the arguments in Section 2, we end this section with the following

properties:

(A) If H is finite, then the projection p : X → X/H induces an epimorphism

p∗ : πH
1 (X, x0) → π1(X/H, p(x0)).

(B) If H is finite and the action of H on X is free, then the projection p : X → X/H induces

an isomorphism

πH
1 (X, x0) ∼= π1(X/H, p(x0)).

(C) If x0 is of free orbit type under the action of G(X), then X gives a direct system

{πH
1 (X, x0) | H ≤ G(X)}

such that the limit of this direct system is exactly π
G(X)
1 (X, x0).

A Generalized Braid Group

Generalized braid groups, with respect to all finite Coxeter groups, were introduced by

Brieskorn [9] in the 1970’s. They are also Artin groups.

Following the terminology and notation of the paper by Vershinin [23], let V be an n-

dimensional real vector space and let W be a finite subgroup of GL(V ) generated by reflections.

Let M be the set of hyperplanes such that W is generated by the orthogonal reflections in the

M ∈ M. For any w ∈ W and any M ∈ M we assume that w(M) belongs to M. Consider the

complexification VC of the space V and the complexification MC of M ∈ M. Set

YW = VC −
⋃

M∈M

MC.

Then W acts freely on YW , and the orbit space of this action is denoted by XW = YW /W .

Then the fundamental group π1(XW ) is called the braid group of action of W on V , denoted

by Br(V,W ). The fundamental group π1(YW ) is called the pure braid group of action of W on

V , denoted by P (V,W ).

For a finite Coxeter group

W = 〈w1, · · · ,wk | w2
i = e, (wiwj)

mi,j = e,mi,j = mj,i〉,

the generalized braid groupBr(W ) ofW is defined as the group with generators wi and relations

prod(mi,j ;wi,wj) = prod(mj,i;wj ,wi),

where the symbol prod(m;x, y) stands for the product xyxy · · · with m factors. By adding

the relation w2
i = e to the above presentation we obtain a presentation of W . The following

theorem is due to Brieskorn [8] and Deligne [13].

Theorem A.1 (see [8, 13])

(1) The fundamental group π1(XW ) is isomorphic to the generalized braid group Br(W ).

(2) The universal covering of XW is contractible, and hence XW is a space of K(π; 1).

This theorem means that XW is the classifying space of the generalized braid group Br(W ).

In addition, it is easy to see that YW is also a space of K(π; 1), so YW is the classifying space

of the generalized pure braid group P (W ) of W.



192 F. L. Li, H. Li and Z. Lü
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