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The Inviscid Limit for the Steady Incompressible
Navier-Stokes Equations in the
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Abstract In this paper, the authors consider the zero-viscosity limit of the three dimen-
sional incompressible steady Navier-Stokes equations in a half space RT x R%. The result
shows that the solution of three dimensional incompressible steady Navier-Stokes equa-
tions converges to the solution of three dimensional incompressible steady Euler equations
in Sobolev space as the viscosity coefficient going to zero. The method is based on a new
weighted energy estimates and Nash-Moser iteration scheme.
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1 Introduction and Main Results

In this paper, we consider the vanishing viscosity limit of steady incompressible Navier-
Stokes equations:

(1.1)

—VvAU+U-VU+VP =g,
V-U=0,

where z € Q, and Q := RT xR? is a half space, U : R x Q — R? is the fluid velocity, and it is of
the form U(x) = (U1 (z), Us(z),Us(x)), P(z) : RT x  — R stands for the pressure in the fluid,
and the constant v is the viscosity. The vector field ¢g” is an external force and ¢”|,co0 = 0.
The divergence free condition in second equation of (1.1) guarantees the incompressibility of
the fluid.

We supplement the steady incompressible Navier-Stokes equations (1.1) with the boundary
condition

U(:C)|meag = 0, (1.2)
that is, for ¢ = 1,2, 3, in x; direction

Ui($)|r1:0 = 0, lim Ui(t,x) = O,

x1—+00
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and the vanishing boundary condition in T := (22, x3) direction

|ZT|—=+o0
The pressure takes the form
"\ U, U;
AP(x) = — L1 1.
o ijz'z:l Ox;j Oxi (13)

In particularly, when the viscosity coefficient v = 0 in (1.1), it is the steady equation of
incompressible three dimensional Euler equations

U-VU+VP=g", z€Q,
V.U =0, reqQ, (1.4)
Ulzean =0,

where the external force g” is the same with the force given in (1.1). One can check that there
exist two functions P(x) and ¢g” such that the following function is an exact solution of (1.4):

U(z) = (Ui(2),Ua(z), Us(x)), VoeRT xR?

where

2p+1 2p+1 —(2(P+D) 2(p+1) 2(p+1)
Ul(il') — x¢11x2p+ x3p+ e (7 +x5 +a; )’

m?(?+1)+$§(1)+1)+w§(p+1))

Us(x) = 2_1(1 —|—p)_1(q —2(p+ 1)x?(P+l)—q)x¢lz—1x§p+1e_( 7

Us(w) = —(1+p) " (g — 2p+ 1)a; "))~ Hagprtlem (A7 b,

An interesting problem in fluid mechanics is the study of the zero-viscosity limit in the pres-
ence of a boundary with certain boundary conditions, such as the non-slip boundary condition
and the Dirichlet boundary condition. A nature problem is to study the convergence of the
steady solution of 3-d incompressible Navier-Stokes equations (1.1) to the solution of steady
Euler equations (1.4) as the viscosity going to zero.

The relationship between the solution of Navier-Stokes equations and the solution of Euler
equations is a challenging problem due to the formation of a boundary layer whose thickness
is proportional to the square root of the viscosity. For the unsteady equations and in the
absence of the boundary, it has been proved that the Navier-Stokes equations converge to the
Euler equations in various functional settings (see [1, 3, 14, 28]). However, in the presence of
the boundary, the inviscid limit problem will become very complicated due to the appearance
of boundary layer. Masmoudi & Rousset [18] introduced the conormal functional space to
justify the limit from the incompressible Navier-Stokes equations to the incompressible Euler
equations for the Navier slip boundary condition. One can see [11-12, 19] for more results on
this boundary condition. For the non-slip boundary condition, Sammartino & Caflisch [26-27]
proved the inviscid limit of the incompressible Navier-Stokes equations for well-prepared data
with analytic regularity in the half-space. Wang, Wang & Zhang [32] developed an energy
method for the inviscid limit problem in the analytic setting to deal with the inviscid limit
problem in general domain. Nguyen & Nguyen [23] gave a direct proof of the inviscid limit for
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general analytic data without having to construct Prandtl’s boundary layer correctors. Very
recently, Kukavica, Vicol & Wang [15] obtained that the inviscid limit for the Navier-Stokes
equations in a half space, and they only required with initial datum that is analytic only close
to the boundary of the domain. Meanwhile, it has Sobolev regularity in the complement. We
refer to [4, 17, 24-25, 29-31, 33] and references therein for more relevant results.

For the two dimensional stationary equations, Iyer [13] considered the validity of the Prandtl
boundary layer theory for steady incompressible Navier-Stokes flows over a rotating disk. Guo &
Nguyen [9] constructed general boundary layer expansions to the steady Navier-Stokes equations
in a half plane, it required a positive Dirichlet datum for the horizontal velocity. Gerard-Varet
& Maekawa [7] gave the inviscid limit problem in Sobolev regularity (H!-regularity) for a non-
trivial class of steady two dimensional Navier-Stokes flows with no-slip boundary condition.
Recently, Li, Li & Yan [16] showed the vanishing viscosity limit for homogeneous axisymmetric
no-swirl solutions of stationary Navier-Stokes equations. To our knowledge, there is few result
on the three dimensional vanishing viscosity limit for the steady Navier-Stokes equations in
general case. In this paper, we will deal with this problem.

Let the smooth function (U¢(z), P¢(x)) be a solution of the incompressible three dimen-
sional steady Euler equations (1.4) with the external force g” (see [5-6] for the existence of
smooth solutions of steady 3-d Euler equations). Here the smooth vector function U¢(z) =
(U(x),US(x),US(x)). Assume that

> I0F Ut L) S cor Vi j=1,2,3,
k=0

NU | e+2(0) S cos
aiiUeheaQ =0, 0<I<s

for a fixed positive constant cg.
We now state the main result in this paper.

Theorem 1.1 Let € be a small positive constant. Assume that (1.5) and the external force
9" |zcon = 0 and ||g||gs) < € hold. For any fived constant s > 1, the steady incompress-
ible Navier-Stokes equations (1.1) with the boundary conditions (1.2) admits Sobolev regular
solutions with finite energy of the form

where the reminder term w(z), P € H*(Q).
Moreover, it holds

[wl 20y ~ Ov),
[P ()| s ) ~ O(v)
for any x € Q.

Remark 1.1 Let the parameter \ satisfy 1 < max{r—!,¢o} < A < e~!. We will construct
the small Sobolev regular solutions of (1.1) by means of the explicit representation formula as
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follows

U (z) = U9 (z) + 0 (z) + i ™ (\z) = U9 (z) + O(v), (1.6)
m=1

where the function w(%) (z) satisfies the assumption

V- w®(x) =0,
Hw(O)HHs(Q) Se<vt2 oy, for0<v< 1, (1.7)
L w® (2)]peo0 =0, 0<I<s
and
- k., (0) < A
Z 07, w; 7 ()|l S €0 <&, Vi, j=1,2,3, (1.8)
k=0

and h™ (\z) (m = 1,2,3,---) is obtained by solving the linearized problem with the Dirichlet
boundary condition in Sobolev space H*(£2) with s > 1,

Llw™ ™ = B (),
Vv -h(™ =,
h™ (\z)|zeo0 =0,

and E(™=1(z) denotes the error term, the linear operator £[w™ 1|h{™ is defined in (2.9).
The index s of Sobolev regularity depends on the higher derivative estimate of solution for the
linearized equations. From (1.6), one can see the solution depends on the initial approximation
function w(®) (z) strongly. Our proof is based on Nash-Moser iteration scheme, it has been used

in [34-39]. For general Nash-Moser implict function theorem, one can see the celebrated work
of Nash [22], Moser [20-21], Hérmander [10].

Remark 1.2 When we deal with the higher regularity of linearized equations (2.28), we
should notice that h™(A\z) is an approximation function which will satisfy the boundary
condition aiih(m)(/\dfﬂzeag =0 with i =1,2,3 and a fixed integer s (> [ > 0). This is because
the external force (error term) E(™~Y(z) satisfies 9. E(™~1 (\z)|zco0 = 0. We give an exact
example to explain it. Let us consider the linear elliptic equation with an external force:

—Au= f(x) (1.9)
with the non-slip boundary condition (1.2). There exists an external force being of the form
D _9 2 2 2 g2
f(@) =i (plp— Doy " =4+ 4@y +23))e” 7", Vp>s>1,
such that the linear elliptic equation admits an exact solution

2 2
—Zy—I3

Pe ,

u*(x) = af
which satisfies the non-slip boundary condition (1.2). Moreover, it holds

aiiu*(x)lweaﬂ =0, VI<I<s.
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Notations Throughout this paper, let  := RT x R?, we denote the usual norm of L?(2)
and Sobolev space H*(Q2) by || - ||L2 and || - ||ms, respectively. The norm of Sobolev space
H*(Q) := (H*(Q))? is denoted by || - || z=. The symbol a < b means that there exists a positive
constant C such that a < Cb. (x1,22,23)T denotes the column vector in R?. The letter C' with
subscripts denoting dependencies stands for a positive constant that might change its value at
each occurrence.

The organization of this paper is as follows. In Section 2, we first give a class of initial
approximation functions, then the Carleman-type estimate of solution for the linearized equa-
tions about the initial approximation functions is shown. After that, we prove the existence
of Sobolev regular solutions for the linearized equations. In Section 3, we establish the gener-
al approximation step for the construction of Nash-Moser iteration scheme. This last section
shows the convergence of Nash-Moser iteration scheme.

2 The First Approximation Step

We denote the solution of the steady Euler equation (1.4) by (U¢(z), P¢(z)), and we set the
solution of incompressible steady Navier-Stokes equations (1.1) by

Ulx) =U%(2) +w(x), P(z)=P(2)+P(z),

then it holds

—vAw+ U -Vw+w-VU®+w-Vw+ VP = f¥,
V-w =0, (2.1)

w|zean =0,

where
ff=vAU®,

which satisfies V- f¥ =0 by V-U¢ = 0.
The pressure takes the form
P(x) = -A"'VU-Vw+w-VU® +w - Vuw). (2.2)
We introduce a family of smooth operators possessing the following properties.

Lemma 2.1 (see [2, 10]) There is a family {Ilp}g>1 of smoothing operators in the space
H5(Q) acting on the class of functions such that

MUl o1 () < COS "4 (|U | o)y V1, 82 >0,
MU — Ullgsr o) < CO* 22 ||Ul| o2y, 0 <81 < 89, (2.3)

d
Ay UH < COS =+ U oo i, V51, s3> 0,
Hdo O brer ) WU leze2 09, V1, 82 2

where C' is a positive constant and (s1 — $2)+ := max(0, s1 — s2).

In our iteration scheme, we set

9:Nm:N6n7 vm:07172a"'7
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where Ny is a fixed positive constant, then by (2.3), it holds
N, Ullaer @) S Nt 72U || gs2 (), V51 > s2. (2.4)
We consider the approximation problem of nonlinear equations (2.1) as follows
JU) = —vAw+1y, (U°-Vw+w- VU +w-Vw+VP) — f¥ (2.5)
with the boundary condition (1.2) and the incompressible condition

V-w=0.

2.1 The initial approximation function

Let s > 1 be a fixed finite constant and 0 < g9 < € < v*t2 <« 1. For any z € €2, we choose
the initial approximation functions

w® (@) = (W (2), w§ (z), w§” (z)) € H* ().
Meanwhile, we require

v . ’LU(O) (I‘) = 0,
||’u}(0)||I{S S 807 (26)
aiqzw(o) (x)|:v€8§2 =0, 0<I<s.

Moreover, for any fixed constant s > 1 and x € Q and 7, j = 1,2, 3, it also needs the condition
0 .
o110k w @)l S co, Vinj=1,2,3 (2.7)
k=0

and the initial error term

0L, B0 (z)|zco0 =0, 0<1<s, .
||E(O)||HS S €o, ’
where E(© denotes the error term taking the form

EO .— j(w(o))

with
PO(z) = —ATIV(U° - V' +w® . VU + 0w . V)

and
E© = (B{, B, E{").

2.2 A priori estimate of linearized equations

Let X be a positive constant, it satisfies

I<max{v™' c} <A<e ™t
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We now construct the first approximation solution denoted by w(x) of (2.5). The first
approximation step between the initial approximation function and first approximation solution
is denoted by

hY () = w®(z) — w®(2),

then we linearize nonlinear system (2.5) around w(® to get the linearized operators as follows

L’ h® = —pA2Ah®Y 4 Ty, M(w® + U€) - V)h
+ (10 V) +U®) + V(D0 PRV, (2.9)

where D, denotes the Fréchet derivatives on w(®), and by (2.2), it takes the form
V(Dyo P)hY .= —A-IYAUE + 0w @) - Vh®Y + hV . v(U° 4+ w®)). (2.10)
We now consider the linear system

Llw’h® =y, B©,
. h —0 (2.11)
and the boundary condition

hY(Az)|zea0 =0, (2.12)

from which, the solution of it gives the first approximation step of nonlinear equations (2.1).
Before we carry out some priori estimates, for j = 1,2, 3, we rewrite equations of (2.11) into
the following coupled system

3
—vX2ARY + Ay, Y (w” + Uf)d,, b

iy
i=1
+ Iy Z Y0, (wl” + UF) + My, s, (Do PYRY) = T1y, BI” (2.13)
=1
with the boundary condition
Y () seon = 0. (2.14)

The idea of following estimate of solution for the linear system (2.13) inspired by the
Carleman-type estimate.

Lemma 2.2 Let0 < v < 1. Assume that (1.5) holds, and the initial approzimation function
w© satisfies (2.6)~(2.8). Then the solution h'Y (\z) of the linear system (2.13) satisfies

3 3
ZZ/ 0, 1) dz + Ty, Z/ h{Y)2de < Ty, Z/ B\ (2.15)

j=1i=1

Proof Let 1)(x1) be a function defined in (0, 4+00) such that

0<k<y'(x))— (¥(21))? < 400, (2.16)
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and e~¥(#1) is bounded in (0, +00). The condition (2.16) implies ¥ (1) > &. In fact, there are
many functions can satisfy above conditions. For a simple example, we take the function as the

form
Y(z1) = —In|cos(Vkxr)|, x1 # 2im+ g for i € Z.

Multiplying both sides of equations in (2.13) by e_w(ﬂ”l)hg-l), respectively, then integrating
over €, by noticing the boundary condition (2.12), for j = 1,2, 3, it holds

VA2 Z/ a h 1) ml)dx
g [ @) = (@ (@) (RS e 0 da
Q

3
+ Ally, Z / (™ + U, h)h e da

+HNIZ/ (hV0,, (' + Ug))nDe vy
—|—HN1/ O2; ((Dyo) P)h 1))h§»1 e V@) g
:HleEj(.O h{Ve=v @) dg, (2.17)
Q

We sum up (2.17) from j = 1 to j = 3, then it holds

V/\QZZ/ (82, h\V)2e™ V@) dy

Jj=11i=1
A2 &
1 —(z
05 [ @) — 0 @) e s
j=1
+)\HleZ/ (0)+Ue mqh(l))h(l) _ (wl)d
Jj=11i=1
+HN122/ 1)6wL O)+U€))h(l) (wl)dx
j=11i=1

+HNIZ/ Dz, (Do PYh M)A e (@) dg

= Iy, / EOpVe v g, (2.18)
Q

On one hand, note that we have chosen the initial approximation function w(®) satisfying
(2.6)—(2.8). We integrate by parts to get

3
ZZ/ (W + U)dp, h)p e @) g

j=1i=1"7%

3 3
530 [ ol U e
Q

j=1i=1

l\D|>—~

~
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(2.19)

3 Z / ¥/ () (w” + UF) ()2 da,
since the initial approximation function w(®) satisfies V - (), inequality (2.19) is reduced into
3
S5l U e
j=1 =1

1
= 52/ W' (1) (w” + UF)(h{D)2e~ @) dz,
=179

and direct computation gives that

3 3

S5 [ 0 + Uph e s
j=1i=1"7%

3
Z/a 9+ U (hV)2e @ dy
j=1"%
+ZZ/h(1 o (0 + U emP@) dy
Jj=11i#j

and noticing the incompressible condition
v-h =,

it holds
3
> / Bz, (Do PYL M)A Ve ¥ @) dy
j=17%
3
_ _2 /Q (Dy PYhD)0,, hVe V@) dy

+ / ¥ (21) (Do PYRP)AM e @) d
Q

- / ¥ (21)(Dyyior PYR D) VeV () da,
Q

(2.20)

(2.21)

(2.22)

furthermore, from (2.10), using the standard Calderon-Zygmund theory and Young’s inequality,

it holds
}/w/(xl)((’DM(O)P)h(l))hgl)e—w(m)dx
3 3
:‘A 122/#}' 896]hz 8 O, ( +U€)+8r( (O—FUe)a h(l) 1)_ b g
1=1 j=1
3

+1§:§:/ 10 (21)] (10, (W + U)| (0, h{M)?
2 Q v J J i

i=1 j=1

1900, 0 +09) + 05, () + U B eV
Q
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102, () + U9 (05, 1V)?)e

On the other hand, by Young’s inequality, we derive

ZZ/ WY 0,, (Wl + UfhPe v g

J=1i#j

ZZ/ |6$L 0)+Ue)|((h£1))2+(h§l))2)e—1/1(m1)dx7

J=1i#j

and (¢”(z1))~! being bounded in RT, it holds
Z / EOpVe vy < Z / (BOY + [ ()| (h)?)e @D da.

Thus we substitute (2.19)—(2.25) into (2.18) to get

3 3 A2 )\ / a (O) Ue
ZZ/Q(V = S [ @)[(190; (w5 + U]

j=11i=1

102, (0 + US))) (85, h V)2V da:+Hle/A )(ASV)2em ¥ @ g

3
,S 1w, Z/ |(1/)//($1))—1|(E§0))2e—w(zl)d$’
j=1"9

where the coefficients
A2

Ar(w) = L@ ) — (8 (@0))?) — 0" ()]

(W + U (21) + O, (w” + UF)

3
SN W (@1) (0, (W + US) + 8, (wl” + UF))]

J=1i#j
v 2
Ax(a) = " ) — (' @n))?) — 5G] + 5 @l + UE) (o)
0+ U5) — 5 303100, + Uf))
J=1 i#j
As(a) 1= 2@ ) — (@ @)%) 5|¢”<sfs )+ 5w+ UDY ()

Since the weighted funtion ¢ (z1) satisfies (2.16), the main term of A;(x) (i =1,2,3,---

is

2 ) — (8 (a))?) — (o))

(2.23)

(2.24)

(2.25)

(2.26)

77’L)
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Thus, by noticing (1.5) and the term w§0> + Uy decay faster than the function ¢ (x;), there
exists a sufficient big constant A > max{r~—!, ¢} > 1 such that

A2 1 A
Ar(w) = (0" (1) = (' (@0)?) = 50" @)l = S @l + UP) e o
/\ 3 3
102, (i + Ul = 5 2 D 19/ @)l (105, (w” + U)
=1 j=1

e 0 €
+ 1105, (w0 +Uf)llu) —ZZH% » 4 U
J=11i#£j
> 25 /" o ! 2 _1 " o
R 5 @ (@1) = (¥'(21))7) = 519" (21)] = 3(0 + <o),
from which and (2.16) and A > max{r~!,co} > 1, one can see that there exists a positive

constant C,, depending on v such that

A2 vRNZ

Ar(r) 2 7(1/)”(331) — (¢ (21))?) — 3(e0 + o) >

— 3(60 + CO) >C, >0,
where k € ( ) Similarly, it holds
As(x), As(x) 2 Cy,

and
A € €
N = 210 @)|(10s, (wf” + U] + 105, (wy” + U Z Co

Thus it follows from (2.26) that

ST, - [ () Ve da, (2.27)

Furthermore, we derive the higher order derivatives estimates of elliptic equations. For a
fixed constant s > 1, we apply D} := d; (Vi =1,2,3) to both sides of (2.13), it holds

—vA2ADRY + ALy, Z ) £ U0, DR + Ty, ZDlh Vo, (w® + Uf)
+ Iy, Oz, D5 (Do P)h( >) =F; forj=1,2,3---,n (2.28)
with the boundary condition

Dﬁh§l)(Ax)lmeaQ =0, (2.29)
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where the constant 1 <[ < s, and

3
Fj — HNl DfEJ(O) _ HN1 Z Z Dfl (wz(O) + Uf)aquf2h§1)

s1+s2=s, 0<s2<s—11i=1

Oy, Y ZDS%” (D30, (w\” + US)).

s1+s2=s5 i=1
0<s2<s—1

Here it should be noticed that we denote Df(h;l)()\x)) by thg»l) for convenience.

Remark 2.1 It should notice that we will construct the first approximation step hg-l)(/\x)
satisfying the boundary condition (2.29). It depends on the initial approximation function
w® (z) satisfying

8iiw(0) (2)|zecon =0 for 0<1<s.

Next we derive higher derivative estimate of solution for (2.13).

Lemma 2.3 Let0 < v < 1. Assume that (1.5) holds, and the initial approzimation function
w© satisfying (2.6)~(2.8). Then the solution h'V(\x) of the linear system (2.13) satisfies
3 3
22/ (02, D31V dx+anzzf (D3h{")?

Jj=11i=1 =1 j=1

HleZj:

j=1i

S

> / (Dl BY)2da. (2.30)

Proof This proof is based on the induction. Let s = 1, by (2.28), it holds

3
—vA2ADHY + Ay, Y (w® + Uf)d,, DI + Ty ZD W8, (w'® + U$)

i=1

+TIn, 0, D} (Do P)h™Y) + ATy Z D w® +Ua,, htY

[rs 9

+ 10y, Zh(l D}, (w\” + US) =Ty, DIE  for j=1,2,3 (2.31)

=1
with the boundary condition
D! ()| zeon = 0. (2.32)

Let us choose the weighted function that satisfies (2.16). We multiply both sides of (2.31)
by D} h;l)e_w(ﬂ”l)7 then integrate over Q by noticing (2.32), and sum up those equalities from
7 =1%o j =3, it holds

VAQZZ/ (02, IR 2e ¥ dy

glzl

2
/A Z / W' @) = (@' (@) ) (D)2 e da
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Sy 3y / O 4 UE)(0, DAY (DAY ) da

Jj=11i=1

+HNIZZ/Dzh 1)6 0)+U6)D h(l) —w(wl)dx
j=11i=1

+1y, Z/ 3szil((Dw<0)P)h(l))D}hg,l)e—w(wl)dz

3
1 3 1o =0, (2.33)
a=1
where
oL © D 1y
0) e 1) 1) —ap(z
L=2Y " [ D}w!” + Uf)d,,n\V DEnVe @ da,
=1 i=1"%
3 3
Tp:=> /h Ypla, (w 0)+U€)D h<1> ~¥(@1) g
j=1i=17%
3

Z / D!EY DM e v dx.

We now estimate each terms in (2.33). On one hand, since we have chosen the initial
approximation function w(®) satisfying (2.6)—(2.8), using the similar method of getting (2.19)—
(2.22), we get

Jj=11i=1
3
1
= 52/ V(1) (wi” + UF)(DHRSY) eV de, (2.34)
j=1"9
3
ZZ/Dhl)a (0 +U€)Dhl)— wl)d:z:
j=1i=1"9
3
=Z/8 () +UD)(Di RSPV dx
j:1 @
+ZZ / B, (w” + US) (DR (DR e o) de, (2.35)
J=1i#j

and by the incompressible condition V- h = 0, we integrate by parts to get
3
Z/ aijil((Dw(o)P)h(l))D%hg'l)e_w(wl)dx

— / ¢ (21)DL((Dyoy PYRD) (DR e #) dg, (2.36)
Q
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from which, we use the standard Calderon-Zygmund theory and Young’s inequality to derive

‘/ ¥/(21) Dy ((Duior PR )(Dihﬁ”)e‘“mdx‘
—}ZZ/w D0, h V0, (w0 + U?)
i=1 j=1

0, (w® + UF)0,, b7 (DI e~ da

3
S%ZZ [ (1) D, (@ + UF) + 0, (wf® + UF) + 0, D} (wf” + UF)

3
1
522/ ¥/ @101z, (w)” + Up)I(0s, DI

4105, (w® + U2, DIRY)2)e= v 4o

3 3
1
+2ZZ/ ¥/ (21)](102, D (w'” + U£)|(9s, h{V)?
=1 j=1
+ 100, D} wi” + US)|(Dr, h§)2)e ¥ d, (2.37)

and

ZZ/ O, (w” + US)(DH ) (DA™ ) de

J=1i#]

3
ZZ / 100, (0 + U (DM 4+ (DIRSY)2)e =)

LiAj

l\DI)—l

On the other hand, it holds

> /Q D} (w!” + Ug)(DE{V)2e ¥ @) dz, (2.38)
(Z D20, + U9)) () e ) da

V1 U)]) (DIhSV)2e ) da

/N
Fﬂ
ISl
:9

3
5 (VO +CO) /(h;l))ze_w(zl)dz
j=179
3 3
+> / (D2 1D0s, ) + U ) (DI 2e Ve da, (2.39)
=172 =1

3
<330 [ (DB 4 ) (D) 240
=1
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Thus summing up (2.33) from i =1 to ¢ = 3, we use (2.34)—(2.40) to derive

3 2Ly (0)

j=1i=1

+ |81.(w1(0) + U@)D) (asz1h(_1))Qe—¢(ml)dx

J

+HMZZ/A (DR{V)2Ze~ v g

jlll

3 3
SUDY E /S2(Di1E§O))Ze_w(ml)dCL‘+ (0 +c0) /Q(hg”)?e—w(m)dx
j=1i=1 =

" HNIZZ [ 1 @nlo, Dl + 0710, 1)

=1 j=1

+ 182, DEw!” + UE) (95, 1Y) ?)e V@) da,

ZTq ]

where

O LU (1) + 05y (wl” + UF)
3

ZZW(xl)(a (@' + U$) + 0, (w® +UF)

O+ US) + 0., DHw® + UP))

Ly (0) Lo
—52 0n, (w;” + US| = 514" ()]

3
+3 " DHw” + Uf) - Z|Dazl O+,

- Vl/\:2 " 2 A 0)
Ay(r) = = (0" (1) = (W' (@1))%) + F(@r” + U (1) + Oz, (w)” +Us)
3
B %ZZ 0, (™ +UP)| = 514" (@1)]
J=1i#j

A

As(w) = =~ (0 (1) - (w’<x1>>2> + §<w§0> + U (1) + 0, (w5” + Uf)

1 & e 1 "

) ZZ 0, (w” +U)| = 514" (1)

3
+3 " DHw” + Uf) - Z|D B, (w” + US).

i=1
We notice that the main term of A;(z) (i = 1,2,3) is also the following terms

P ) — ()P — (o))

223

(2.41)
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which combining with the assumption (2.7) gives that

A V)\2 " / 2 1 "

() 2 L () — @ @0)?) = 310" @] — (o + <o),
from which and (2.16), one can see that there exists a positive constant C, ., depending on
v,€q such that

A2

Ai(z) 2 T(W'(xl) — (¢ (21))%) = (20 + c0) = Cuey >0,

where k € ( ) Similarly, it holds

and
2 = 10 @), 0 + U] + [0, () + U 2 Co.

Thus, it holds

3 3
/(6 D hl))Z —p(x1 dx+CV€0HleZ/ D hl) 2,.— (ml)d
j=1i=1"% j=1i=1
3 3
Sl Y3 [ (DL e 1 (e 4 z e veas
=1 i=1 Q
+HNIZZ/ (D, BEV)? + (02, B5D))e ™ da, (2.42)
=1 j=1

furthermore, one can see the last two terms in the right-hand side of (2.42) can be controlled
by using (2.15), thus, it holds

3 3 3 3
ZZ/(@I]D h(l )2 - zl)di?"'HNlZZ/ D h 1))2 (1) 4
j=11i=1"9 j=1i=1"%
3 3 3
SHMZZ/(D3E§O))2e_¢(r1)dx+ﬂzv12/(E;O))Qe_w(”“)d:z:. (2.43)
j=1i=1"% j=1"¢

Assume that the 2 <[ < s — 1 derivative case holds, i.e.,

3 3
ZZ/ 6wJDih§1)) P(z1 dx+HleZ/ .D h 1) 2 _ wl)d

Q =1 j=1
HNIZZZ/ (Dl B)2e= (@) dy, (2.44)

We now prove the sth derivative case holds. Multiplying both sides of equations (2.28) by
Dsh(l) —%(*1) " then integrating over { by using boundary condition (2.29), and summing up
those equalities from j = 1 to j = n, it holds

VXZZZ/ (82, D3hV)2e @0 g

Jj=11i=1
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2 3
9 Z /Q(W/(ﬂfl) - (¢I(x1))2)(th§_1))2e—w(ml)dx

+)\HNIZZ/ O)+U€ 8 ,thgl))(thgl))e_w(wl)dx

Jj=11i=1

+ I, ZZ/ D; h(l )—I—Ue)Dsh(l —(@1) g

Jj=11i=1
+HN1 Z/ 813]Dzs((Dw(O)P)h(l))thgl)e_w(:Cl)dz

(2.45)

3
S [ monpess
=179

‘We notice that
\/ Wl‘l)Df((Dw<o>P)h“))<th§1>>e—w<zl>dx\

ZZ/U’ D} (02,0, (wf” + U)

i=1 j=1
- (w) (0) + Uy h 1))(D h(l)) (zl)dx‘

= ‘ZZ/le(xl) Z (Djzam]hfl D]16 ( J(-O)"FU;)
_w(””)dx‘

Z/ WJ 21 (8 DJl( (0)+UG)—|—8 Djl( (0)+Ue))|(Dsh(1 )2 —1/;(gc1)dx

3 3
1 .
+5ZZ 2 / [ (@) l(102, D (wy® + US| (D, DIV

i=1 j=1 ji+ja2=s
0<ja<s—1

+ |am] Dzl (wz(O) + Uf)|(5lefz h(l))Z)e—w(wl)dx

3

3
1
+ QZZ/ [0 (21)] (10, (w'” + US|, D3 hM)?
7j=1

=1

102, (w” + US| (D2, D;HSD))e ™ ) dg (2.46)

+

and

3 3
S5 [ D ul? + 050, DR DEn e
81+82 s j=11i=1 Q

0<s2<s—1

3 3
= ZZ/DSl 0)+Ue)(8m1D82h 1))D hl) _ wl)d:zj

S1 -1‘52:.97 j=11i=1
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3

(33 [ P e,

j=11i=1
thus, similar to get (2.41), we can obtain

3

S0 [ (o = F 10 f? + U

j=11i=1

+ |04, (U’EO) + Ue)|)) (31]-D35h(.1))2e_w(w1)dx

+HNIZZ/C )(D3hD eV dg

=1 =1

3 3
SHNlZZ/ (Ds Eo) 26— 0(@1) gy

Jj=11i=1

+ Iy, Z Z/ Dslawb( 0)+Ue))(Dszh(1))2 —¥(=1) 4y

s1t+s2=s 1=1
0<s2<s—1

3
1 .
+5ZZ > [ W @olo. D ) + U@, DY)

i=1 j=1 ji+j2=s
0<j2<s—1

102, DI (0l + UD)|(0r, DY) e dr

<.

where
A2 A
Ci(2) = - (" (@1) = (@' (@1))?) + S + U (a1)
3
+ 00, (0 + US) + 3 DHw” + UF)
i=1
3
%Z (22)(02, D (0, +UF) + 00, DI (w]” + UF))|
J1=1
e |Z|D2 %+ Ug)]
__ZZ|6$L 0)+Ue)| " x1|_ZZ|DJawq +Ue)|
Jj=11i#j i=1 j=1
A2 A
Ca(a) :=%<¢"<x1>—<w'<x1>>2>+2( wl® + U (21)

+ O, (w3 + US) +ZD1 © 1 ey
i=1

3
—%ZZW O L U] - 2 (an)| — 1 1 D2 ® + )

J=11i#j 1=1

(2.47)

(2.48)
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A2 A
Cs(x) :=%<¢"<x1>—<w'<x1>>2>+2( Wl + U)W (21)
+ O, (wl” + US) +ZD1 © 4 ey
=1
1 3
—5 2 2 lon(w? + U - 5 |”(x1>|——|¢ mzuﬂ 0 4 ey
Jj=1i# =1
3 3 ’
=YD IDIs (w + US)l.
1=1 j=

1
By asssumptions of (2.6)—(2.7), one can see that the coefficients C;(x) (i = 1,2, 3) have the

same main terms with A;(z), and it holds
/\2

Cr(a) 2 W (@) — (0 (@0))?) — 5" ()|~ (eo + o),

from which and (2.16), one can see that there exists a positive constant C, ., depending on

v, ep such that
2

Cr(2) 2 (@) ~ 9/ @)]) = (0 +0) = Crpey >,

where k € ( ) Similarly, it holds
C2(z), C3(z) 2 Cueq-

Thus, we can reduce (2.48) into

3 3
Z ‘/Q(aijfh;l))Ze—w(zl)dx + CV750HN1 Z /Q(th;l))Qe_w(ml)dx
i=1 J=1

SHNI/(DZ-SEJ(.O))Qe_“’(“)dx

+1y, Y Z / (D320, (wf” + UD))(D* (V) %e ) da

s1+s2=s5 i=1
0<s2<s—1

3 3
1 e 2
#322 X[ Wenln D +upie, FA)’

i=1 j=1 ji+j2=s
0<j2<s—1

j (O) € j2 7 (1)\2 —(x
Hence, similarly to get (2.43) we use (2.44) to derive

ZZ/ (00, D3RV )2e V(e
+HMZZ/ DshV)2e e dg

i=1 j=1

S

3 3
My, )Y Z/ DY EY)2e= @) dy,
j=1i=1lr=0

which combining with e=¥(®1) bounded gives (2.30).
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2.3 The existence of first approximation step
Based on above priori estimates, we are ready to prove the existence of first approximation

step by the classic theory of elliptic equations [8, 30].

Proposition 2.1 Let 0 < v < 1. Assume that (1.5) holds, and the initial approximation
function w(® satisfies (2.6)—(2.8). Then the linearized elliptic system
L] =TIy, EO©),
v-hY =0,
BY(\z)|rean =0

admits Sobolev regular solutions K™Y (\z) € H*(%).
Moreover, it holds

1R S TN, EO)., VE>0 (2.50)
and
3. BV (\z)|zea0 = 0. (2.51)

Proof Let P the Leray projector onto the space of divergence free functions. We apply the
Leray projector to equations (2.11), it holds

—vA2ARY 4 PITy, A (0@ + U€) - V)R + (Y . 9)(w @ + U] = PIIy, E@.  (2.52)
By (2.15) in Lemma 2.2 and (2.30) in Lemma 2.3, we can get the uniform bound estimate
R 3 S 1T, B3

From the standard theory of elliptic equations of the general order [8, 30], the linear elliptic
equations (2.52) admit a unique weak solution ' € H' if E®) ¢ H!. Since the error term
EO ¢ H5(Q) for s > 1, we obtain the solution h") € H*(Q).

Noticing that

8«§;LE(O) ($)|2¢€3Q =0,
it holds
0%, b ()[ze00 = 0.
Remark 2.2 To see the boundary condition (2.51), we first use the idea of getting L2-

estimate of solutions in Lemma 2.2 to show that the linear elliptic operator can generate a
Green function Sp(z) in L? space, then we get the solution

hY(\z) = So(z)PILy, E©.

which satisfies the non-slip boundary condition h™(z)|,cs0 = 0, then by the first condition
(2.8), it is straightforward to get

Bw h(l) (/\;C)|meag =0.

i

Using this condition, we follow the method given in Lemma 2.3 to derive H'-estimate of solu-
tions. Furthermore, by above steps, one can obtain H*-estimate of solutions and the boundary
condition (2.51).
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3 The m-th Approximation Step
We define
B. = {w®(z) : |[w®| g <e <1} (3.1)

with the integer 2 < k < m — 1 and the constant s > 1.
Assume that the m-th approximation solutions of (2.5) is denoted by h'™ (A\z) with m =
2,3,--. Let
h™ (Az) := w™ (\z) — w™ D (\z),
then we have .
w™ (z) = w® (z) + h (\z) + Z h (\z).
i=2

We linearize nonlinear equations (2.5) around w1 (z) to get the following boundary value

problem
Llw™ 1 (h™) =TIy, B,
fe 10 o
with the boundary conditions
h™ (Az)|zco0 = 0, (3.3)
where the error term
B = ™ (2)] = R(W"™ (\x)), (3.4)
and
RM™) = 7™V + h™) = 7(w™ V) = Llw™ D] (h™)
=Ty, (AR™ . Vh(™ 4 v pim), (3.5)
where

oh;"™ Oh;
P(m) _ QA_l E AU J )
A al'j Bxi

i,j=1

It is also the nonlinear term in approximation problem (2.5) at w(™~1(x). The following result
is to show how to construct the m-th approximation solution.

Proposition 3.1 Let 0 < v < 1 and a fized constant s > 1. Assume that (1.5) holds, and
m—1 .
the initial approzimation function w® satisfies (2.6)~(2.8), w™ Y (z) € B, and . AV |%.
i=1

< &2. Then the linearized problem (3.2) with the boundary condition (3.3) admits Sobolev reqular
solutions K™ (\z) € H(Q), it satisfies

1B 13 < T, B3, WE >0, (3.6)

and
h(m)(/\x”aceﬁﬂ =0,

where the error term satisfies

1Bz = [R(A™) 7 < N+ N2 R (3.7)
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Proof Direct computation gives that

m—1
0o,V (@) = 85w ” () + 205, B (Az) + A Y 8,00 (a). (3.8)
1=2

m—1 .
By the assumption Y. [h¥[%. < &2 and 1 < A < e™!, it is easy to see
i=1

9, 0!V () ~ 0y, w (2) + O(2),

i ] Ti g

thus, note that w(® () satisfies (2.6)—(2.8), by small modification of 8ziw§»0) (z), it holds

€T J

S My, 08wV (@) e S e Vi j=1,2,3. (3.9)
k=0

Moreover, we notice that the (m — 1)-th approximation solution is

m—1
w(m_l)(az) = w©® (x) + h(l)()\x) + Z h(i)()\x)
i=2

and
thus, it holds
V() =0,
[wm=D s Se,
(%iw(m_l)(x”weaﬂ =0, 0<I<s.
Then we will find the m-th (m > 2) approximation solution w(™) (x), which is equivalent to
find h(™ (x) such that

w™ (z) = w™ D (z) + h™ (\z). (3.10)
Substituting (3.10) into (2.5), it holds
J(w'™) = 7 (w™ ) + Llw™ Dh™ £ R(L™).

Set
Lw™ D™ = — 7(wm=V) = —pm-1),

we supplement it with the boundary conditions (3.3).

Since we assume w(™~ Y (z) € B., there is the same structure between the linear system
(2.11) and the linear system of m-th approximation solutions. Thus by means of the same proof
process in Proposition 2.1, we can show above problem admits a solution h™ (\z) € H*(1).
Here we should use (2.4). Furthermore, similar to (2.50), we can use (3.8)—(3.9) to derive

I3 S IBT Vg, VE>0

and
h™ (A\2)|pean =0,
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where one can see the (m — 1)-th error term E(™~1) such that
B = 7 (wmV) = R(h™).
Moreover, by (3.5) and the standard Calderon-Zygmund theory, it holds

1|+ = X[, (0™ - Th"™ + VP | e < X F2NZ (IR0,

4 Convergence of the Approximation Scheme

Our target is to prove that w(®)(z) is a global solution of nonlinear equations (1.1). It is

m )
equivalent to show the series > h”(z) is convergence.
i=1

For a fixed constant s > 1, let 1 < s = k< ko <k and

BNl

k —

b =k +——, koo =k,
+ om +

k—k
Um41 = km - km—i—l = Wa
which gives that

ko >k > >kp > kmyr > (4.1)

Proposition 4.1 Let 0 < v < 1. Assume that (1.5) holds, and the initial approzimation
function w®) satisfies (2.6)—(2.8). Then there exists a small positive constant ¢ < v**2 such
that the nonlinear problem (2.1) admits global Sobolev solutions

w®) (z) = w® (z) + i R () € H*().

m=1
Moreover, it holds
[w e S < vt
Proof The proof is based on the induction. Note that IV, = Ny* with Ny > 1. For any
m=1,2,---, we claim that there exists a sufficient small positive constant ¢ such that

2711—1

Hh(m)HH’“m—l Se )

IE™| ppy S 27, (42)
w™ € B..

For the case of m = 1, we recall that the assumptions (2.6)~(2.8) on the initial approximation
function w(® (z). By (2.50), let 0 < go < A~CHIN;ETFR 2 1 it derives

B0 S NEQ o < €0 <€
Moreover, by (3.7) and the above estimate, it holds

IED | r0 S IRMD) 00 S AFNERD 7, S €2
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and
WM re S N0l gre + B[ gm0 S e,

which means that w®) € B..
Assume that the case of (m — 1) holds, i.e.,

2m—2

D g < &2

2711—1

IE™ D i < 2™, (4.3)
wm=1 ¢ B,

then we prove the case of m holds. Using (2.4), (3.6) and the second inequality of (4.3), we
derive

B g S T, B i
S N IIET Y| g,

2m—2

<e . (4.4)
which combining with (2.4), (3.7) and (4.1), it holds

1B | S AN IR [,

~

< /\2(s+2)]\]31+0‘m+1 (||E(m_1) [pra )?
2

(/\s—i-ZNO)(2+o¢m+1)m+2(2+o¢m+g)(m—l) (H E(m—2) || S )

AN AN N 2

AF2NG B e, )" (4.5)
We choose a sufficient small positive constant £¢ such that
0< AS+2N§+k_E||E(O)||Hg <e? for afixed s > 1.

Thus, by (4.5) we have
1B | i S 2"

and
+oo
277 0.

< T (m) < (\$+2 N 8+k—F || 1(0)
0< tim B, S 2N EO |, )
So the error term goes to 0 as m — oo, that is,
lim [|E"™)| gin = 0.
m—00

On the other hand, note that N,,, = NJ", by (4.3)—(4.4), it holds

o™ gt S N0 gt + 1B e

Se+N3e?" <e.

This means that w(™) € B.. Hence we conclude that (4.2) holds.
Therefore, the nonlinear problem (2.1) admits global solutions

w® (z) = w® (z) + i W™ () = w® (2) + O(2),

m=1
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from which, one can see the solution depends on the initial approximation function w(® (x)
strongly. For two different w(®) (z), one can obtain two different Sobolev regular solutions
w(®) (z). This gives the non-uniqueness of Sobolev regular solutions for equations (2.1).

At last, by (1.3) and the standard Calderon-Zygmund theory, i.e., for Riesz operator R,
there is ||Rw|Ls0 < ||w]

Lo With 1 < sp < 0o, we obtain
[Pllas S e
This completes the proof.

Acknowledgement Both of authors express their sincere thanks to anonymous referees
for their comments.
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