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Abstract The authors study the Cauchy problem for the focusing nonlinear Kundu-
Eckhaus (KE for short) equation and construct the long time asymptotic expansion of
its solution in fixed space-time cone with C(x1, x2, v1, v2) = {(x, t) ∈ R

2 : x = x0 + vt,

x0 ∈ [x1, x2], v ∈ [v1, v2]}. By using the inverse scattering transform, Riemann-Hilbert
approach and ∂ steepest descent method, they obtain the lone time asymptotic behavior
of the solution, at the same time, they obtain the solitons in the cone compare with the

all N-soliton the residual error up to order O(t−
3
4 ).
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1 Introduction

We study the long time asymptotic behavior of the focusing nonlinear Kundu-Eckhaus (fKE

for short) equation on R× R+:

iqt + qxx + 2|q|2q + 4β2|q|4q − 4iβ(|q|)2xq = 0,

q(x, 0) = q0(x).
(1.1)

In the defocusing case with the sign of cubic term reversed and initial value q0(x) in Schwarz

space, it has known that (see [15]) as t→ ∞,

q(x, t) =

√
ν

2t
ei(4tk

2
0−ν(k0)log 8t)eiφ(k0)e

− 2
π
iβ

∫ ∞
k0

log(1−|r′(k′)|2)dk′

+ O(t−1log t), (1.2)

where

k0 = − x

4t
, ν(k0) = − 1

2π
log(1 − |r(k0)|2), (1.3)

φ(k0) =
1

π

∫ k0

−∞
log(k0 − k′)d log(1 − |r(k′)|2 +

π

4
− arg r(k0) + arg Γ(iν), (1.4)

where Γ is Gamma function, r(z) is the reflection coefficient. Recently [11] applied Riemann-

Hilbert approach to N -soliton solutions for the fKE equation (1.1) with nonzero boundary
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conditions. Wang et al. obtained long-time asymptotics of the fKE equation (1.2) with nonzero

boundary conditions (see [12]). In this paper, we consider a much weaker boundary condition

that supposes q0(x) in the weighted Sololev space

H1,1 = {f ∈ L2(R) : xf, f ′ ∈ L2(R)}. (1.5)

There exists a nonzero complex number ck called a norming constant associated with any point

in the simple discrete spectrum zk ∈ C+. Define reflection coefficient r : R → C (where in

the ZS-AKNS operator we know that the real axis is the continuous spectrum, and reflection

coefficient r may take any value in C in the focusing case (see [12]), if r has singularities along

the real line, call it spectral singularities. If there exist spectral singularties, it is possible that

infinite discrete spectrum accumulate at a spectral singularity (see [2]). In this paper, we only

consider that no spectral singularities exist so the discrete spectrum is finite.

If the spectrum consists of a single point σd = {(ξ+iη)}, the corresponding solution of (1.1)

the one soliton

qsol(x, t) = qsol(x, t; {ξ + iη}) = 2ia1eΩ1−Ω∗
1 (P−1)e8iβ

∫
|aeΩ1−Ω∗

1 (P−1)2|dx, (1.6)

v1 = e−iz1σ3x−2iz2
1σ3tvv10, (1.7)

ṽ1 = ṽ10eiz̃1σ3x+2iz̃2
1σ3tv, (1.8)

P =
ṽ1v1

z∗1 − z1
, (1.9)

where Ω1 = −iz1x − 2iz21t, a1 and z1 are complex constants and v10 is initial speed. Let

qsol(x, t;σd) stand for N -soliton solution with scattering data {r ≡ 0, σd = {(zk, ck)Nk=1}}.

Generally, the solution breaks apart into N independent one-soliton, each traveling at initial

speed vk (see [5]).

1.1 Main results and remark

In order to describe the asymptotic behavior of the solution of (1.1) as t → ∞, for generic

initial data q0 ∈ H1,1(R). Define the discrete scattering data {r, {(zk, ck)}Nk=1}. Let Z =

{zk}Nk=1 ⊂ C+. Define

κ(s) = − 1

2π
log(1 + |r(s)|2), (1.10)

and for any number ξ, let

△−
ξ = {k ∈ {1, 2, · · · , N} : Re zk < ξ},

△+
ξ = {k ∈ {1, 2, · · · , N} : Re zk > ξ}.

(1.11)

Given any real interval I = [a, b], let

I = |Z(I)|,
Z(I) = {zk ∈ Z : Re zk ∈ I},
Z−(I) = {zk ∈ Z : Re zk < a},
Z+(I) = {zk ∈ Z : Re zk > b}.

(1.12)
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For ξ ∈ I let

∆−
ξ = {k ∈ {1, 2, · · · , N} : a ≤ Re zk < ξ},

∆+
ξ = {k ∈ {1, 2, · · · , N} : ξ < Re zk ≤ b},
σ±
d = {(zk, c

±
k (I) : zk ∈ I)},

c±k = ck
∏

zj∈Z±(I)

( zk − zj

zk − z∗j

)2
exp
(
± 2i

∫ ∓∞

ξ

κ(s)

s− zk
ds
)
.

(1.13)

Finally, given pairs of velocities v1 ≤ v2 and points x1 ≤ x2, we define the cone

C(x1, x2, v1, v2) := {(x, t) ∈ R
2 : x = x0 + vt with x0 ∈ [x1, x2], v ∈ [v1, v2]}. (1.14)

Figure 1 Using soliton contained in the cone C associated with its reflectionless scattering data

to describe the asympototic behavior of q(x, t) as |t| → ∞. In the example here, we use 3-soliton

Z(I) = {z4, z6, z8} inside the cone C to asymptotically describe the discrete spectrum instead of

9-soliton.

Assumption 1.1 The initial data q0(x, t) for the Cauchy problem of fKE satisfies:

(1) Every zk ∈ C
+ satisfied a(zk) = 0 is simple, that is, the discrete spectrum is simple.

(2) There exists a constant c > 0 such that |a(z)| ≥ 0, that is, no spectral singularties exist.

According to above assumptions which guarantee that the discrete spectrum is finite.

Theorem 1.1 Let q(x, t) be the solution of (1.1) with initial data q0(x) ∈ H1,1(R) satisfying

Assumption 1.1 and generating the scattering data {r, {zk, ck}Nk=1}. Fix x1, x2, v1, v2 ∈ R with

x1 < x2 and v1 < v2. Let I =
[
− v2

2 ,−
v1
2

]
and ξ = − x

4t , when t → ±∞ with (x, t) ∈
C(x1, x2, v1, v2), which is defined in (1.14), we have

q(x, t) = (qsol(x, t;σ
±(I)) + t−

1
2 f±(x, t) +O(t−

3
4 ))e

−8iβ
∫ (x,t)

(−∞,t)
|m|2dx

+ O(t−
3
4 ), (1.15)

where

f±(x, t) = m11(ξ;x, t)2α(ξ,±)e
ix2

2t ∓iκ(ξ)log|4t|,
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+m12(ξ;x, t)2α(ξ,±)∗e−
ix2

2t ±iκ(ξ)log|4t|

with

|α(ξ,±)|2 = |κ(ξ)| (1.16)

satisfying

argα(ξ,±) = ±π
4
± arg Γ(iκ(ξ)) − arg r(ξ)

− 4
∑

k∈∆∓
ξ

arg(ξ − zk) ∓ 2

∫ ξ

∓∞
log|ξ − s|dsκ(s),

and

|m(x, t)|2 =
∣∣∣ 1

2i
(qsol(x, t;σ

±(I)) + t−
1
2 f±(x, t) + O(t−

3
4 ))
∣∣∣
2

, (1.17)

the coefficients m11(ξ;x, t) and m12(ξ;x, t) are the entries in the first row of the solution of

RHP A.2 with discrete scattering data σ±
d (I) and ∆ = ∆∓

ξ (I) evaluated at a = ξ.

1.2 Organization of the rest of the paper and notation

In Section 2 we construct the RHP 2.1 associated with initial-value problem (1.1), and then

we work out the steepest descent analysis of RHP 2.1 for t → ∞ from Section 3 to Section 7.

In Section 3 we introduce the matrix T (z) to separate the jump matrix defined in RHP 2.1 at

ξ = − x
4t . Section 4 introduces the ∂ analysis to define extensions of the jump matrix for the

non-linear steepest descent method. In Section 5 we construct a global model solution which

captures the leading order asymptotic behavior of the solution. Removing this component of

the solution results in a small norm ∂- problem which is analyzed in Section 6. The proof of

Theorem 1.1 is given in Section 7.

2 Results of Scattering Theory for Focusing KE

Our calculations are based on the Lax pair of the focusing KE equation (1.1),

ψx + izσ3ψ = Q1ψ, (2.1)

ψt + 2iz2σ3ψ = Q2ψ, (2.2)

where z is a spectral parameter and

Q =

(
0 q

−q 0

)
, σ3 =

(
1 0
0 −1

)
,

Q1 = Q− iβQ2σ3,

Q2 = 4iβ2Q4σ3 − 2βQ3 − iQ2σ3 + 2zQ− iQxσ3 + β(QxQ−QQx).

(2.3)

Specially, z ∈ R, then the eigenfunction ψ(x, t, z) is the Lax pair. Denote

Ψ = ψei(zx+2z2t)σ3 .
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We obtain the equivalent Lax pair

Ψx + iz[σ,Ψ] = Q1Ψ,

Ψt + 2iz2[σ3, ψ] = Q2Ψ,
(2.4)

its full derivative form is

dei(zx+2z2t)σ̂3
Ψ(x, , t, k)) = ei(zx+2z2t)σ̂3UΨ, (2.5)

U = Q1dx+Q2dt. (2.6)

Consider the form of solution (2.5),

Ψ = D +
Ψ1

z
+

Ψ2

z2
+O

( 1

z3

)
, z → ∞, (2.7)

where D,Ψ1,Ψ2 are independent of z, substituting above expansion into two equations of (2.4),

and comparing the same order of z′ frequency, we find the following equations

Dx = −iβQ2σ3D, (2.8)

Dt = β(qqx − qxq + 4iβ2|q|4)σ3D, (2.9)

we get (1.1) has the conservation law

(iβ|q|2)t = (β(qqx − qxq) + 4iβ2|q|4)x.

(2.8) and (2.9) for D are consistent and are both satisfied if we define

D(x, t) = e
i
∫ (+∞,t)

(x,t)
∆σ3 , (2.10)

where ∆ is

∆(x, t) = β|q|2dx+ (−iβ(qqx − qxq) + 4β2|q|4)dt. (2.11)

According to asymptotic analysis we introduce a new function µ by

Ψ(x, t, z) = e
−i

∫ (x,t)

(−∞,t)
∆σ̂
µ(x, t, z)D(x, t). (2.12)

Thus, we have

µ = I + O
(1

z

)
, z → ∞, (2.13)

and (2.5) becomes

d(ei(zx+2z2t)σ̂3µ(x, t, k)) = W (x, t, z) = ei(zx+2z2t)σ̂3V (x, t, z)µ, (2.14)

in which

V = V1dx+ V2dt (2.15)
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with

V1 =

(
2iβ|u|2 ue2i

∫ (x,t)

(−∞,t)
∆

−ue
−2i

∫ (x,t)

(−∞,t)
∆ −2iβ|u|2

)
, (2.16)

V2 =

(
i|u|2 (2βu|u|2 + 2zu+ iux)e

2iβ
∫ (x,t)

(−∞,t)
∆

(−2βu|u|2 − 2zu− iux)e
−2iβ

∫ (x,t)

(−∞,t)
∆ −i|u|2

)
. (2.17)

The Lax pair (2.3) can be changed into

µx + iz[σ3, µ] = V1µ,

µt + 2iz2[σ3, µ] = V2µ.
(2.18)

We assume that µ(x, t) is sufficiently smooth, we define two solutions of (2.14) by

µj(x, t, z) = I +

∫ (x,t)

(xj ,tj)

e−i(zx+2z2t)σ̂3W (y, τ, z)dy, j = 1, 2, (2.19)

where (x1, t1) = (−∞, t), (x2, t2) = (+∞, t), it follows that det Ψ(1,2) = detµ(1,2) ≡ 1, and it

satisfies

µx + iz[e
−i

∫ (+∞,t)

(x,t)
∆σ3σ3, µ] = Qµ, (2.20)

that is

µx + iz[D−1σ3, µ] = Qµ. (2.21)

Its Volterra type integral is

µ(1,2)(x, z) = I +

∫ x

±∞
eizD

−1(x−y)σ3Qµ(1,2)(y, z)e−izD−1(x−y)σ3dy. (2.22)

Also, if µ(x, z) is any solution of (2.18), then µ̃(x, z) = σ2µ(x, z)σ2 (complex conjugate but no

transpose) also solves (2.18). For z ∈ R, σ2µ(1,2)(x, z)σ2 also satisfies (2.18) and it follows that

Ψ(1,2)(x, z) = σ2Ψ(1,2)(x, z)σ2, z ∈ R. (2.23)

Since the eigenfunctions µ1(x, t, z) and µ2(x, t, z) satisfy both equations of the Lax pair (2.18),

there exists a continuous scattering matrix function S(z) satisfying

µ1(x, t, z) = µ2(x, t, z)e−i(zx+2z2t)σ̂3S(z), z ∈ R, (2.24)

where

S(z) =

(
a(z) −b(z)
b(z) a(z)

)
,

detS(z) = |a(z)|2 + |b(z)|2 = 1.

(2.25)

Define

µ1 = (µ
(1)
1 , µ

(2)
1 ) =

(
µ
(11)
1 µ

(12)
1

µ
(21)
1 µ

(22)
1

)
, µ2 = (µ

(1)
2 , µ

(2)
2 ) =

(
µ
(11)
2 µ

(12)
2

µ
(21)
2 µ

(22)
2

)
, (2.26)
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where µ1
j(x, t, z) and µ2

j(x, t, z) are the first and second columns of µj(x, t; z), j = 1, 2.

Remark 2.1 • µ(1)
1 , µ

(2)
2 and a(z) extend analytically to z ∈ C+ with continuous boundary

values on R, and µ
(1)
1 → e1, µ

(2)
2 → e2 and a(z) → 1 when z → ∞, similar consequences hold

for z ∈ C
−, however, b(z) is defined only for z ∈ R.

• The solutions Ψ
(1)
1 (x, zk)and Ψ

(2)
2 (x, zk) are linearly dependent when a(zk) = 0 for zk ∈ C.

So there exists a norming constant ck satisfying

Ψ
(1)
1 (x, zk) = ckΨ

(2)
2 (x, zk). (2.27)

The symmetry (2.20) implies that

Ψ
(1)
2 (x, z∗k) = c∗kΨ

(2)
1 (x, z∗k). (2.28)

• The reflection coefficient r and transmission coefficient τ are defined by

r(z) =
b(z)

a(z)
, τ =

1

a(z)
, (2.29)

and it follows from (2.22) that 1 + |r(z)|2 = |τ(z)|2 for each z ∈ R.

We construct the function

M(z) = M(z;x, t) :





[µ(1)
1 (x, t; z)

a(z)
µ
(2)
2 (x, t; z)

]
, z ∈ {z ∈ C | Im z > 0},

[
µ
(1)
2 (x, t; z)

µ
(2)
1 (x, t; z)

a(z)

]
, z ∈ {z ∈ C | Im z < 0}.

(2.30)

The matrix M defined above is the solution of the following Riemann-Hilbert problem.

Next, we consider the characteristic function µ
(1)
1 , µ

(2)
2 and analytic properties of spectral

matrix S(z). For the integral equation, let the integral variable y ≤ x. We calculate directly to
obtain:

e−i(zx+2z2t)σ̂3W (y, t, z)

=





2iβ|u|2 ue
2i

∫ (x,t)
(−∞,t)

∆
e2i(zx+2z2t)

−ue
−2i

∫ (x,t)
(−∞,t)

∆
e−2i(zx+2z2t) −2iβ|u|2



dx

+





i|u|2 (2βu|u|2 + 2zu+ iux)e
2iβ

∫ (x,t)

(−∞,t)
∆
e2i(zx+2z2t)

(−2βu|u|2 − 2zu− iux)e
−2iβ

∫ (x,t)
(−∞,t)

∆
e−2i(zx+2z2t) −i|u|2



 dt

and

e2i(zx+2z2t) = e4iz
2te2ixRe ze−2xIm z, e−2i(zx+2z2t) = e−4iz2te−2ixRe ze−2xIm z.

Therefore, the first and second columns of µ1 are analyzed separately in the upper half plane

C+ and lower half plane C−, and we record them as

µ1 = (µ+
1 , µ

−
1 ) =

(
µ
(11)
1 µ

(12)
1

µ
(21)
1 µ

(22)
1

)
.

The same can be proved, the first and second columns of µ2 are analyzed separately in C−
and C+, we record as

µ2 = (µ−
2 , µ

+
2 ) =

(
µ
(11)
2 µ

(12)
2

µ
(21)
2 µ

(22)
2

)
.
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Note that ψ1, ψ2 are the solutions of Lax (2.1)–(2.2), so, we obtain

tr(P − izσ3) = tr(Q− 2iz2σ3) = 0.

According to Abel formula, we have

(detψj)x = (detψj)t = 1. (2.31)

From the transformation (2.12), we get

detµj = detψj , det(e−i
∫ (x,t)

(−∞,t)
∆σ̂) = det Ψj = detψj .

Using Abel formula above, we obtain

(detµj)x = (detµj)x = 1.

This means detµj has no relationship with x, t. Then asymptoticaly µj → I as |x| → ∞.

Take the determinant on both sides of this relationship to get

detS(z) = 1.

So µ1, µ2 are reversible, and their inverse matrix is the corresponding adjoint matrix. In

addition, it is based on the analyticity of the column vector of µ1, µ2. It can be deduced that

the first and second lines of µ−1
1 are analyzed separately in C− and C+ and are recorded as

µ−1
2 =

(
µ
(22)
2 −µ(12)

2

−µ(21)
2 µ

(22)
2

)
=

(
µ̂+
2

µ̂−
2

)
.

It can be seen that the spectral function is analytical

e−i(zx+2z2t)σ̂3S(z) = µ−1
2 µ1 =

(
µ̂+
2

µ̂−
2

)(
µ+
1 µ−

1

)
=

(
µ̂+
2 µ

+
1 µ̂+

2 µ
−
1

µ̂−
2 µ

+
1 µ̂−

2 µ
−
1

)
.

We get that C+ is analyzed in the C+, s22(z) is analyzed in the C−, s12(z) and s21(z) are

not analyzed in the lower half plane, but are continuous to the real axis R.

Lemma 2.1 The characteristic function µ1, µ2 constructed above and spectral function S(z)

have the following symmetry

µH
j (x, t, z) = µ−1

j (x, t, z), j = 1, 2,

SH(z) = S−1(z).

Here, the superscript H represents the conjugate transpose of the matrix.

Proof Because of

µj,x(x, t, z) + iz[D−1σ3, µj(x, t, z)] = Qµj(x, t, z), j = 1, 2.

Replace z with z and then take the conjugate transpose of the equation to obtain

µH
j,x(x, t, z) + iz[σH

3 (D−1)H , µH
j (x, t, z)] = µH

j (x, t, z)QH , j = 1, 2.
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Note that Q is an inverse Hermite matrix, that is PH = −P , so

µH
j,x(x, t, z) + iz[σH

3 (D−1)H , µH
j (x, t, z)] = −µH

j (x, t, z)Q, j = 1, 2.

In addition, the derivative of uj(x, t, z)µ−1
J (x, t, z) = I with respect to x implies

µ−1
j,x(x, t, z) = −µ−1

j (x, t, z)µj,x(x, t, z)µ−1
j (x, t, z), j = 1, 2.

Bring the equation into the above formula to obtain:

µ−1
j,x(x, t, z) = −µ−1

j (x, t, z)(Qµj(x, t, z) − iz[D−1σ3, µj(x, t, z)])µ−1
j (x, t, z)

= −µ−1
j (x, t, z)Q− iz[D−1σ3, µ

−1
j (x, t, z)], j = 1, 2,

that is

µ−1
j,x(x, t, z) + iz[D−1σ3, µj(x, t, z)]µ−1

j (x, t, z) = −µ−1
j (x, t, z)Q.

µj satisfy the same differential equation and have the same asymptotic behavior:

µH
j (x, t, z), µ−1

j (x, t, z) → I, |x| → ∞.

So the two are equal, and we get a symmetric relationship

µH
j (x, t, z) = µ−1

j (x, t, z), j = 1, 2.

Consider the symmetry of S(z), we have

S(z) = ei(zx+2z2t)σ̂3 [µ−1
2 (x, t, z)µ1(x, t, z)],

then from zx+ 2z2t = zx+ 2z2t, we get

S(z)H = [ei(zx+2z2t)σ3 [µ−1
2 (x, t, z)µ1(x, t, z)]ei(zx+2z2t)σ3 ]H

= ei(zx+2z2t)σ3([µH
1 (x, t, z)µ−1

2 (x, t, z)])Hei(zx+2z2t)σ3

= ei(zx+2z2t)σ3([µ−1
1 (x, t, z)µ2(x, t, z)])Hei(zx+2z2t)σ3

= S−1(z).

Comparing the corresponding elements of the matrix on both sides, we obtain

s11(z) = s22(z), s12(z) = −s21(z).

Riemann-Hilbert Problem 2.1 Find an analytic function M : C\(R∪Z∪Z∗) → SL2(C)

with the following properties

(1) M(z) = I +O(z−1) as z → ∞.

(2) The continuous boundary valuesM±(z) satisfy the jump relationM+(x, t, z) = M−(x, t, z),

· · · , J(x, t, z), z ∈ R, where

J(z) =

(
1 + |r(z)|2 r∗(z)e−2itθ(z)

r(z)e2itθ(z) 1

)
, (2.32)

θ(z) := 2z2 + z
x

t
= 2(z − ξ)2 − 2ξ2, ξ = − x

4t
. (2.33)
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(3) M(z) has simple poles at each zk ∈ R and z∗k ∈ R
∗ at which

Res
zk

M = lim
z→zk

M

(
0 0

cke2itθ 0

)
,

Res
z∗
k

M = lim
z→z∗

k

M

(
0 −c∗ke−2itθ

0 0

)
.

(2.34)

Consider (2.7), we get Ψ1 = i
2QDσ3, i[σ3,Ψ1] = QD. The existence of solutions of RHP 2.1 for

all (x, t) ∈ R2 follows by means of expanding this solution as z → ∞,M = I+ M(1)(x,t)
z

+o(z−1),

one finds that

q(x, t) = lim
z→∞

(2izM(x, t, z))12e
−2i

∫ (x,t)

(−∞,t)
∆

= 2im(x, t)e
−2i

∫ (x,t)

(−∞,t)
∆
, (2.35)

where

m(x, t) = lim
z→∞

(zM(x, t, z))12 (2.36)

and

µ = I +
µ(1)

z
+
µ(2)

z2
+ O

( 1

z3

)
, z → ∞ (2.37)

is the corresponding solution of (2.14) related to Ψ via (2.12), moreover, from its complex

conjugate, we obtain

|q|2 = 4|m|2,

uux − uxu = 4(mmx −mmx) + 64iβ|m|4.

Thus, we are able to express the one-form ∆ defined in (2.35) in terms of m as

∆ = 4β|m|2dx+ [4iβ(mmx −mmx) + 128β2|m|4]dt. (2.38)

3 Conjugation

In this section, we introduce the function T (z) to renormalize the Riemann-Hilbert problem

with ξ fixed

T (z) = T (z, ξ) =
∏

k∈△−
ξ

(z − z∗k
z − zk

)
exp
(

i

∫ ξ

−∞

κ(s)

s− z
ds
)
,

κ(s) = − 1

2π
log(1 + |r(s)|2),

(3.1)

we can also get the standard result of the transmission coefficient

1

a(z)
=

N∏

k=1

(z − z∗k
z − zk

)
exp
(

i

∫ ∞

−∞

κ(s)

s− z
ds
)
, (3.2)

and we can find T (z; ξ) → 1
a(z) when ξ → ∞.

Proposition 3.1 The function T (z) defined by (3.1) has the following properities :
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(a) T is nonzero and meromorhpic in C \ (−∞, ξ]. For each k in ∆−
ξ , T (z) has a simple

pole at zk and a simple zero at zk.

(b) For z ∈ C \ (−∞, ξ], T (z) = 1
T (z) .

(c) For z ∈ (−∞, ξ], the boundary values T± satisfy

T+(z)

T−(z)
= 1 + |r(z)|2, z ∈ (−∞, ξ). (3.3)

(d) As |z| → ∞ with |arg(z)| ≤ c ≤ π,

T (z) = 1 +
i

z

[
2
∑

k∈∆−
ξ

Im zk −
∫ ξ

−∞
κ(s)ds

]
+ O(z2). (3.4)

(e) As z → ξ along any ray ξ + eiφR+ with |φ| ≤ c ≤ π (see [1]),

|T (z, ξ) − T0(ξ)(z − ξ)iκ(ξ)| ≤ C‖r‖H1(R)|z − ξ| 12 , (3.5)

where T0(ξ) is the complex unit

T0(ξ) =
∏

k∈∆−
ξ

(ξ − z∗k
ξ − zk

)
eiβ(ξ,ξ) = exp

[
i
(
β(ξ, ξ) − 2

∑

k∈∆−
ξ

arg(ξ − zk)
)]
,

β(z, ξ) = −κ(ξ)log(z − ξ + 1) +

∫ ξ

−∞

κ(s) − χ(s)κ(ξ)

s− z
ds,

and χ(s) is the characteristic function of the interval (ξ − 1, ξ) and the logarithm is principally

branched along (−∞, ξ − 1].

Proof For parts (a)–(d) we can prove them directly by using the definition and the

Sokhotski-Plemelj formula (see [7, 14]). For part (e) we write

T (z, ξ) =
∏

k∈∆−
ξ

(z − z∗k
z − zk

)
exp
(

i

∫ ξ

ξ−1

κ(ξ)

s− z
ds+ i

∫ ξ

−∞

κ(s) − χ(s)κ(ξ)

s− z
ds
)

=
∏

k∈∆−
ξ

(z − z∗k
z − zk

)
(z − ξ)iκ(ξ)exp(iβ(z, ξ)). (3.6)

The result then follows from the facts that

|(z − ξ)iκ(ξ)| ≤ e−πκ(ξ) =
√

1 + |r(ξ)|2, (3.7)

and using [3, Lemma 23.3],

|β(z, ξ) − β(ξ, ξ)| ≤ C‖r‖H1(ℜ)|z − ξ| 12 . (3.8)

Define a new function M (1),

M (1)(z) = M(z)T (z)−σ3, (3.9)

we can prove the function M (1) satisfies the following Riemann-Hilbert problem 3.1.
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Riemann-Hilbert Problem 3.1 Find an analysis function M (1) : C \ (R ∪ Z ∪ Z∗) →
SL2(C) with the following properties:

(1) M (1)(z) = I +O(z−1) as z → ∞.

(2) For each z ∈ R, the boundary values M
(1)
± (z) satisfy the jump relationship M

(1)
+ (z) =

M
(1)
− (z)J (1)(z) where

J (1)(z) =





(
1 r∗(z)T (z)2e−2itθ

0 1

)(
1 0

r(z)T (z)−2e2itθ 1

)
, z ∈ (ξ,∞),

(
1 0

r(z)T−(z)−2

1+|r(z)|2| e2itθ 1

)(
1 r∗(z)T+(z)2

1+|r(z)|2| e−2itθ

0 1

)
, z ∈ (−∞, ξ).

(3.10)

(3) M (1)(z) has simple poles at each zk ∈ R and z∗k ∈ R∗ at which

Res
zk

M (1) =





lim
z→zk

M (1)

(
0 c−1

k ( 1
T

)′(zk)−2e−2itθ

0 0

)
, k ∈ ∆−

ξ ,

lim
z→zk

M (1)

(
0 0

c−1
k T (zk)−2e2itθ 0

)
, k ∈ ∆+

ξ ,

Res
z∗
k

M (1) =





lim
z→z∗

k

M (1)

(
0 0

−(c∗k)−1T ′(z∗k)−2e−2itθ 0

)
, k ∈ ∆−

ξ ,

lim
z→z∗

k

M (1)

(
0 −c∗kT (z∗k)2e−2itθ

0 0

)
, k ∈ ∆+

ξ .

(3.11)

Proof From above definition, we can get that M (1) is unimodular, analytic in C \ (R∪Z ∪
Z∗), and approaches identity as z → ∞ and we factorize jump (3.10) as following

J (1)(z)

=





T (z)σs

(
1 r∗(z)e−2itθ

0 1

)(
1 0

r(z)e2itθ 1

)
T (z)−σ3 , z ∈ (ξ,∞),

T−(z)σ3

(
1 0

r(z)
1+|r(z)|2|e

2itθ 1

)(T+(z)

T−(z)

)σ3

(
1 r∗(z)

1+|r(z)|2|e
−2itθ

0 1

)
, z ∈ (−∞, ξ).

(3.12)

For k ∈ ∆+
ξ , T (z) has zero at z∗k and a pole at zk, so that M

(1)
1 = M1(z)T (z)−1 has a removable

singularity at zk and a pole at z∗k. For M
(1)
2 the situation is reversed; we have

M
(1)
1 (zk) = lim

z→zk
M1(z)T (z)−1 = Res

zk
M1(z)

( 1

T

)′
(zk) = cke2itθkM2(zk)

( 1

T

)′
(zk);

Res
zk

M
(1)
2 (z) = Res

z=zk
M2(zk)T (z) = M2(zk)

[( 1

T

)′
(zk)

]−1

= c−1
k

[( 1

T

)′
(zk)

]−2

e−2itθM
(1)
1 (zk), (3.13)

from which the first formula in (3.11) clearly follows. The computation of the residue at z∗k for

k ∈ ∆−
ξ is similar.
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4 Introducing ∂ Extensions of Jump Factorization

In these section, our work is to extend the jump matrix off the real axis to new contours

whose factors satisfy continuous, decaying but not analytic, we define an unknown non-analytic

transformation increasing nonzero ∂ derivatives insides the regions.

Define the new contours

∑

k

= ξ + ei(2k−1) π
4 R+, k = 1, 2, 3, 4. (4.1)

Additionally, let

ΣR = R ∪ Σ1 ∪ Σ2 ∪ Σ3 ∪ Σ4, (4.2)

ρ =
1

2
min

λ,µ∈Z∪Z∪Z∗,λ6=µ
|λ− µ|. (4.3)

According to our assumption, there is no pole lying on the real axis and all poles are in

conjugate pairs. We have ρ ≤ dist(Z,R), define χZ ∈ C∞
0 (C, [0, 1]) as characteristic function:

χZ(z) =





1, dist(z,Z ∪ Z∗) <
ρ

3
,

0, dist(z,Z ∪ Z∗) >
2ρ

3
.

(4.4)

Lemma 4.1 Define function Rj → C, j = 1, 3, 4, 6 with boundary values satisfying

R1(z) =

{
r(z)T (z)−2, z ∈ (ξ,∞);

r(ξ)T0(ξ)−2(z − ξ)−2iκ(ξ)(1 − χZ(z)), z ∈ Σ1;
(4.5)

R3(z) =





r(z)∗

1 + |r(z)|2 T+(z)2, z ∈ (−∞, ξ);

r(ξ)∗

1 + |r(ξ)|2 T
2
0 (ξ)2(z − ξ)2iκ(ξ)(1 − χZ(z)), z ∈ Σ2;

(4.6)

R4(z) =





r(z)

1 + |r(z)|2 T−(z)−2, z ∈ (−∞, ξ);

r(ξ)

1 + |r(ξ)|2 T
−2
0 (ξ)2(z − ξ)−2iκ(ξ)(1 − χZ(z)), z ∈ Σ3;

(4.7)

R6(z) =

{
r(z)∗T (z)2, z ∈ (ξ,∞);

r(ξ)∗T0(ξ)2(z − ξ)2iκ(ξ)(1 − χZ(z)), z ∈ Σ4,
(4.8)

such that for a fixed constant c1 = c1(q0), and a characteristic function χZ ∈ C∞
0 (C, [0, 1])

satisfying (4.4), we have

|Rj(z)| ≤ c1sin2(arg(z − ξ)) + c1〈Re z〉− 1
2 ,

|∂Rj(z)| ≤ c1∂χZ(z) + c1|r′(Re z)| + c1|z − ξ|− 1
2 ,

∂Rj(z) = 0 if dist(z,Z ∪ Z∗) ≤ ρ

3
.

(4.9)
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Moreover, if we set R : (C \
∑

R
) → C by R(z)|z∈Ωj

= Rj(z) (with R2(z) = R5(z) = 0), the

extension can be made such that R(z) = R(z).

Next we construct the M (2) which is continuous to the real axis and deform its jump matrix

into the Σk, let

M (2)(z) = M (1)(z)R(2)(z), (4.10)

R(2)(z) =





(
1 0

−R1(z)e2itθ 1

)
, z ∈ Ω1,

(
1 −R3(z)e−2itθ

0 1

)
, z ∈ Ω3,

(
1 0

−R4(z)e2itθ 1

)
, z ∈ Ω4,

(
1 −R6(z)e−2itθ

0 1

)
, z ∈ Ω6,

(
1 0

0 1

)
, z ∈ Ω2 ∪ Ω5.

(4.11)

Let Σ(2) =
4⋃

j=1

Σk. Then M (2) satisfies the following ∂-Riemann-Hilbert problem.

∂-Riemann-Hilbert Problem 4.1 Find a function M (2) : C \ (Σ(2) ∪Z ∪Z∗) → SL2(C)

with the following properties.

(1) M (2) is continuous and its first derivatives is sectionally continuous in C\(Σ(2)∪Z∪Z∗).

(2) M (2)(z) = I +O(z−1) as z → ∞.

(3) For each z ∈∑(2), the boundary values satisfy the jump relationship M
(2)
+ (z) = M

(2)
− (z)

J (2)(z) where

J (2)(z) = I + (1 − χZ(z))δJ (2),

δJ (2)(z) =





(
0 0

r(ξ)T0(ξ)
−2

(z − ξ)−2iκ(ξ)e2itθ 0

)
, z ∈ Σ1,

(
0 r(ξ)∗T0(ξ)

2

1+|r(ξ)|2 (z − ξ)2iκ(ξ)e−2itθ

0 0

)
, z ∈ Σ2,

(
0 0

r(ξ)T0(ξ)
−2

1+|r(ξ)|2 (z − ξ)−2iκ(ξ)e2itθ 0

)
, z ∈ Σ3,

(
0 r(ξ)∗T0(ξ)2(z − ξ)2iκ(ξ)e−2itθ

0 0

)
, z ∈ Σ4.

(4.12)
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(4) For C \ (Σ(2)
⋃
Z
⋃
Z∗) we have ∂M (2) = M (2)∂R(2)(z), where

∂R(2)(z) =





(
0 0

∂R1(z)e2itθ 0

)
, z ∈ Ω1,

(
0 ∂R3(z)e−2itθ

0 0

)
, z ∈ Ω3,

(
0 0

∂R4(z)e2itθ 0

)
, z ∈ Ω4,

(
0 ∂R6(z)e−2itθ

0 0

)
, z ∈ Ω6,

0, elsewhere.

(4.13)

(5) M (2) has simple poles at each zk ∈ R and z∗k ∈ R∗ at which

Res
zk

M (2) =





lim
z→zk

M (2)

(
0 c−1

k

(
1
T

)′
(zk)−2e−2itθ

0 0

)
, k ∈ ∆−

ξ ,

lim
z→zk

M (2)

(
0 0

c−1
k T (zk)−2e2itθ 0

)
, k ∈ ∆+

ξ ,

Res
z∗
k

M (2) =





lim
z→z∗

k

M (2)

(
0 0

−(c∗k)−1T ′(z∗k)−2e−2itθ 0

)
, k ∈ ∆−

ξ ,

lim
z→z∗

k

M (2)

(
0 −c∗kT (z∗k)2e−2itθ

0 0

)
, k ∈ ∆+

ξ .

(4.14)

Remark 4.1 Considering the ∂-RHP for M (2) above, though (4.13) suggests that M (2)

is non-analytic near the small neighborhoods at each point of discrete spectrum, we consider

M (2) is analytic in C as its ∂-derivative vanishes in small neighborhoods of the each point of

the discrete spectrum. And we also get its jump matrices approach identity point-wise. The

final two sections construct the solution M (2) as follows:

(1) We prove the existence of the solution of the pure Riemann-Hilbert problem which the

∂ component of nonanalytic ∂-RHP 4.1 is ignored and compute its asymptotic expansion.

(2) We consider the existence of the solution of the ∂ problem and prove that the solution

is bounded.

5 Removing the Riemann-Hilbert Component of the Solution and

Analysis of the Remaining ∂-Problem

In this section, we define M
(2)
RHP as the pure Riemann-Hilbert problem of ∂-RHP 4.1 when

∂R(2) ≡ 0, we will prove that the solution of M
(2)
RHP exists and construct its asympotic expansion

for large t, and we will prove when reducing M
(2)
RHP the ∂-RHP 4.1 becomes a pure ∂ problem.
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Proposition 5.1 Suppose that M
(2)
RHP is a solution of pure Riemann-Hilbert problem.

Define a continuously differentiable function

M (3)(z) := M (2)(z)M
(2)
RHP (z)−1 (5.1)

satisfying the following ∂-problem.

∂ Problem 5.1 Find a function M (3) : C → SL2(C) with the following properties:

(1) M (3) is continuous and its first derivative is sectionally continuous in C \ (R ∪ Σ(2)),

(2) M (3) = I + O(z−1),

(3) for z ∈ C, we have

∂M (3) = M (3)(z)W (3), (5.2)

where W (3) := M
(2)
RHP (z)∂R2(z)M

(2)
RHP

−1
and ∂R(2) is defined above.

Proof From (5.1) we know that the properties of M (3) inherit from M (2) and M
(2)
RHP , both

of them are continuously differentiable in C\Σ(2), unimodular and approach identity as z → ∞
according to jump relationship

M
(3)
−

−1
M

(3)
+ = M

(2)
(RHP−)(z)M

(2)
− (z)−1M

(2)
+ (z)M

(2)
RHP+(z)−1

= M
(2)
(RHP−)(z)J (2)(z)(M

(2)
RHP−(z)J (2)(z))−1 = I. (5.3)

As both M (2) and M
(2)
RHP can be regarded as analytic function when deleting neighborhood

of each point of discrete spectrum zk and they satisfy the residue relation (4.14), we denote

constant nilpotent matrix Nk then get the Laurent expansions

M (2)(z) = C0

[ Nk

z − zk
+ I
]

+ O(z − zk),

M
(2)
RHP (z)−1 =

[ −Nk

z − zk
+ I
]
Ĉ0 + O(z − zk),

(5.4)

where C0 and Ĉ0 are the constant terms, this implies that

M (2)(z)M
(2)
RHP (z)−1 = O(1), (5.5)

we know that M (3) has only removable singularities at each zk,

∂M (3)(z) = ∂M (2)(z)M
(2)
RHP (z)−1 = M (2)∂R(2)M

(2)
RHP (z)−1 = M (3)W (3)(z). (5.6)

The existence of M (3)(z) is proved in the next section, so ∂-Problem 5.1 is equivalent to the

integral equation

M (3)(z) = I − 1

π

∫∫

C

∂M (3)(s)

s− z
dA(s) = I − 1

π

∫∫

C

M (3)(s)W (3)(s)

s− z
dA(s), (5.7)
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where dA(s) is Lebesgue measure.

Using operator notation, (5.7) can be written as

(1 − S)[M (3)(z)] = I, (5.8)

where S is the solid Cauchy operator

S[f ](z) = − 1

π

∫∫

C

f(s)W (3)(s)

s− z
dA(s). (5.9)

In the next we will show that when t is sufficiently large, S is a small-norm operator, so (1−S)−1

exists and can be expressed as a Neumann series.

Proposition 5.2 There exists a constant C such that for all t > 0, the operator (5.9)

satisfies the inequality

‖S‖L∞→L∞ ≤ Ct−
1
4 . (5.10)

Proof We only discuss the matrix function in the region Ω1. Let A ∈ L∞(Ω1) and s = u+iv,

|S[A](z)| ≤
∫∫

Ω1

|A(s)M
(2)
RHP (s)W (2)(s)M

(2)
RHP (s)−1|

|s− z| dA(s),

≤ ‖A‖L∞(Ω1)‖M
(2)
RHP ‖L∞(Ω′

1)

∫∫

Ω1

|∂R1(s)||e−4tv(u−ξ)|
|s− z| dA(s), (5.11)

where Ω′
1 := Ω1 ∩ (1 − χZ) is bounded away from the poles zk of M

(2)
RHP , so that

‖(M
(2)
RHP )±1‖L∞(Ω′

1)

are finite. Using the Appendix B we get:

‖S‖L∞→L∞ ≤ C(I1 + I2 + I3) ≤ Ct−
1
4 , (5.12)

where

I1 =

∫∫

Ω1

|χZ(s)||e−4tv(u−ξ)|
|s− z| dA(s),

I2 =

∫∫

Ω1

|r′(u)||e−4tv(u−ξ)|
|s− z| dA(s),

I3 =

∫∫

Ω1

|s− ξ|− 1
2 |e−4tv(u−ξ)|
|s− z| dA(s).

(5.13)

Given z−1 in the laurent expansion of M (3) at infinity, we consider the asymptotic behavior

of q(x, t),

M (3) = I − 1

π

∫∫

C

M (3)(s)W (3)(s)

s− z
dA(s) = I +

M1

z
+

1

π

∫∫

C

sM (3)(s)W (3)(s)

z(s− z)
dA(s), (5.14)
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where

M
(3)
1 =

1

π

∫∫

C

M (3)W (3)(s)dA(s). (5.15)

Proposition 5.3 For all t > 0, there exists a constant c such that

|M (3)
1 | ≤ ct−

3
4 . (5.16)

Proof of Proposition 5.2 is detailed in Appendix B.

6 Existence of the Pure Riemann-Hilbert Problem

6.1 Constructing the model problems

In this section, recall the definition of ρ, we restrict the N -soliton in C \ Uξ,

Uξ =
{
z : |z − ξ| < ρ

2

}
, (6.1)

and construct solution of the form:

M
(2)
RHP (z) =





E(z)M (out)(z), |z − ξ| > ρ

2
,

E(z)M (ξ)(z), |z − ξ| < ρ

2
,

(6.2)

where M (out) is the solution of RHP which only concerns the N -soliton, the error E(z) is a

small-norm Riemann-Hilbert problem. M (ξ) concerns the jump relation between M (out)(z) and

M
(2)
RHP (z).

6.1.1 The outer model: An N-soliton potential

The matrix M
(2)
RHP is pure-RHP, it is meromorphic away from the contour Σ(2), and its

boundary values satisfy the jump relation (4.12) on Σ(2), moreover, the jump is uniformly near

identity at any distance from ξ, and the norm

‖J (2) − I‖L∞(Σ(2)) = O(ρ−2e−4t|z−ξ|2) (6.3)

shows the jump is exponentially small outside Uξ, so we construct the model outside Uξ which

ignores the jump completely.

Riemann-Hilbert Problem 6.1 Find an analytic function M (out) : (C \ R
⋃
R∗) →

SL2(C) such that

(1) M (out)(z) = I +O(z−1) as z → ∞.

(2) M (out) has simple poles at each zk ∈ R and z∗k ∈ R∗ satisfying the residue relations in

(4.13) with M (out)(z) replacing M (2)(z).
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Proposition 6.1 There exists a unique solution M (out)of RHP 6.1, specifically,

M (out)(z) = m△−
ξ (z|σout

d ), (6.4)

where m△−
ξ is the solution of RHP A.2 with △ = △−

ξ and σ
(out)
d := {zk, c̃k(ξ)}Nk=1 with

c̃k(ξ) = ckexp
( i

π

∫ ξ

−∞
log(1 + |r(s)|2)

ds

s− zk

)
. (6.5)

Moreover,

lim
z→∞

2izM
(out)
12 (z;x, t) = qsol(x, t;σ

out
d ),

where qsol(x, t;σ
out
d ) is the N -soliton solution of (1.1) corresponding to the discrete scattering

data σ
(out)
d .

6.1.2 Local model near the saddle point z = ξ

According to the analysis of the jump relation (4.13), it shows that at any distance from the

saddle point z = ξ, the jump is uniformly near identity, so we construct M (out) only considering

its N solitons without any jump. Considering (6.3), it shows when z ∈ Uξ, the bound gives a

point-wise, but not uniform on the decay of the jump J (2) to identity. In order to make the

jump uniformly, we introduce the function E(z). At first, we introduce M (ξ) to make M
(out)
RHP

math the jump on Σ(2) ∩ Uξ.

In order to use the jumps of the parabolic cylinder model problem (C.3), We define ζ = ζ(z),

ζ = ζ(z) = 2
√
t(z − ξ) ⇒ 2tθ =

ζ2

2
− 2tξ2, (6.6)

which maps Uξ to an expanding neighborhood of ζ = 0. Additionally, let

rξ = r(ξ)T0(ξ)−2e2iκ(ξ)log(2
√
t−tξ2). (6.7)

Since 1 − χR(z) ≡ 1 for z ∈ Uξ, the jumps of M
(2)
RHP in Uξ can be expressed as

J (2)

z∈Uξ

=





(
1 0

rξζ(z)−2iκ(ξ)e
iζ(z)2

2 1

)
, z ∈ Σ1,

(
1

r∗ξ
1+|rξ|2 ζ(z)2iκ(ξ)e−

iζ(z)2

2

0 1

)
, z ∈ Σ2,

(
1 0

rξ
1+|rξ|2 ζ(z)−2iκ(ξ)e

iζ(z)2

2 1

)
, z ∈ Σ3,

(
1 r∗ξζ(z)2iκ(ξ)e−

iζ(z)2

2

0 1

)
, z ∈ Σ4.

(6.8)
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We calculate the solution in Appendix C, and define the local model M (ξ) in (6.2) by

M ξ(z) = M (out)(z)M (PC)(ζ(z), rξ), z ∈ Uξ. (6.9)

Then we know that M (out) is an analytic and bounded function in Uξ so that M (ξ) inherits the

jump J (2) of M
(2)
RHP .

6.2 The small-norm Riemann-Hilbert problem for E(z)

Recall the definition of (6.2), the unknown function E(z) is analytic in C \ Σ(E),

Σ(E) = ∂Uξ ∪ (Σ(2)\Uξ), (6.10)

where we orient ∂Uξ in clockwise and E(z) satisfies the following small-norm Riemann-Hilbert

problem.

Riemann-Hilbert Problem 6.2 Find a holomorphic function E : C \ Σ(E) → SL2(C)

with the following properties:

(1) E(z) = I + O(z−1) as z → ∞.

(2) For each z ∈ Σ(E), the boundary values E±(z) satisfy E+(z) = E−(z)J (E)(z) where

J (E) =

{
M (out)(z)J (2)(z)M (out)(z)−1, z ∈ Σ(2) \ Uξ,

M (out)(z)J (2)(z)M (PC)(ζ(z), rξ)M (out)(z)−1, z ∈ ∂Uξ,
(6.11)

and we can find its uniformly vanishing bound on JE − I as

|JE(z) − I| =

{
O(ρ−2e−4t|z−ξ|2), z ∈ Σ(E) \ Uξ;

O(t−
1
2 ), z ∈ ∂Uξ.

(6.12)

Then

‖〈·〉k(JE − I)‖Lp(ΣE) = O(t−
1
2 ), p ∈ [1,+∞], k ≥ 0. (6.13)

The RHP 6.2 as a small-norm Riemann-Hilbert problem has a well known existence and

uniqueness theorem, we may write

E(z) = I +
1

2πi

∫

ΣE

(I + η(s))(JE(s) − I)

s− z
ds, (6.14)

where η ∈  L2(Σ(E)) is the unique solution of

(I − CJ(E))η = CJ(E)I. (6.15)

Define CV (E) =: L2(Σ(E)) → L2(Σ(E)) by

CJ(E)f = C−(f(JE − I)), (6.16)

C−f(z) = lim
z→Σ

(E)
−

1

2πi

∫

Σ(E)

f(s)
ds

s− z
, (6.17)



Long Time Asymptotics Behavior of the Focusing Nonlinear Kundu-Eckhaus Equation 255

where C− is the Cauchy operator, then we know that

‖CV (E)‖L2
op(Σ

(E)) . ‖C−‖L2
op(Σ

(E))‖V (E) − I‖L∞(Σ(E)) . O(t−
1
2 ). (6.18)

The operator (1 − CV (E))−1 guarantees the existence of both η and E, so it is reasonable to

define M
(2)
RHP (z) given by (6.2), and we can solve Proposition 5.1 to an unknown M (3) which

satisfies the pure ∂-Problem 5.1.

We analyse the asymptotic behavior for large z of the solution of RHP 2.1, we construct the

function E(z) of the form

E(z) = I + z−1E1 + O(z−2), (6.19)

where

E1 = − 1

2πi

∫

Σ(E)

(I + η(s))(V (E) − I)ds, (6.20)

E1 = − 1

2πi

∮

∂Uξ

(V E(s) − I)ds+O(t−1), (6.21)

E1(x, t) =
1

2i
√
t
M (out)(ξ;x, t)

(
0 β12(rξ)

−β12(rξ) 0

)
M (out)(ξ;x, t)−1 +O(t−1). (6.22)

We have

β12(rξ) = β21(rξ)∗ = α(ξ,+)ei
x2

2t −iκ(ξ)log|4t|, (6.23)

here

|α(ξ,+)|2 = |κ(ξ)|, (6.24)

argα(ξ,+) =
π

4
+ arg Γ(iκ(ξ)) − arg r(ξ) − 4

∑

k∈∆−
ξ

arg(ξ − zk)

− 2

∫ ξ

−∞
log|ξ − s|dsκ(s). (6.25)

7 Long Time Asymptotics for Focusing KE

In this section, we will give the details of the proof for Theorem 1.1 as t→ +∞.

Proof of Theorem 1.1 According to transformations, we know that the solution of (1.1)

can be expressed as

M(z) = M (3)(z)E(z)M (out)(z)R(2)(z)T (z)σ3 , z ∈ C \ Uξ. (7.1)

Let z → ∞ eventually z ∈ Ω2 so that R(2) = I, we have

T (z)σ3 = I +
T1σ3

z
+ O(z−2), T1 = 2

∑

∆−

Im zk −
∫ ξ

−∞
κ(s)ds. (7.2)



256 R. H. Ma and E. G. Fan

Now

M =
(
I +

M
(3)
1

z
+ · · ·

)(
I +

E1

z
+ · · ·

)(
I +

M
(out)
1

z
+ · · ·

)(
I +

T1σ3

z
+ · · ·

)
, (7.3)

the coefficient of the z−1 in the Laurent expansion of M is

M1 = M
(3)
1 + E1 +M

(out)
1 + O(t−

3
4 ). (7.4)

We know that

q(x, t) = 2i(M
(out)
1 )12 + 2i(E1)12 + O(t−

3
4 ). (7.5)

Applying Proposition 6.1 to the first term and using (6.20)–(6.25) to evaluate the second term

we have

q(x, t) = qsol(x, t;σ
out
d ) + t−

1
2 f+(x, t) + O(t−

3
4 ). (7.6)

We know that qsol(x, t;σ
out
d ) is the solution of N -soliton generated from Proposition 6.2, we

will give the relationship concerning qsol(x, t;σ
out
d ) with qsol(x, t;σ

+
d (I)) which are contained

in the cone C(x1, x2, v1, v2) as defined in Theorem 1.1. Using the appendix A, we know that

replacing qsol(x, t;σ
out
d ) with qsol(x, t;σ

+
d (I)) there exist exponential errors which are absorbed

into the O(t−
3
4 ) term.

The long-time asymptotics As t→ ∞ such that |ξ| =
∣∣− x

4t

∣∣ < M,

2im(x, t) = (qsol(x, t;σ
±(I)) + t−

1
2 f±(x, t) + O(t−

3
4 )), (7.7)

where qsol and f± are shown above. In order to get the asymptotics of q(x, t), we also need to

calculate e
−2i

∫ (x,t)

(−∞,t)
∆
.

Proposition 7.1 As t→ ∞,

e
−2i

∫ (x,t)

(−∞,t)
∆

= e−2iβ
∫

x

−∞
|q(x′,t)|2dx′

= e
−8iβ

∫ (x,t)

(−∞,t)
|m(x′,t)2|dx′

+ O(t−
3
2 ), (7.8)

where

|m(x, t)|2 =
1

2
|(qsol(x, t;σ±(I)) + t−

1
2 f±(x, t) + O(t−

3
4 ))|2. (7.9)

A Appendix: Meromorphic Solutions of the Focusing KE Riemann-

Hilbert Problem

In this section, we consider the unknown meromorphic function (with the reflection coeffi-

cient r(z) ≡ 0) only has a finite discrete spectrum, we will prove the existence and uniqueness

of this problem and discuss its asymptotic behavior as t→ ∞.
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Riemann-Hilbert Problem A.1 Given discrete data σd = {(zk, ck)}Nk=1 ∈ C
+ × C∗,

let Z = {zk}Nk=1. Find an analytic function m : C \ (Z ∪ Z∗) → SL2(C) with the following

properties:

1. m(z;x, t|σd) = I +O(z−1) as z → ∞.

2. Each point of Z ∪Z∗ is a simple pole of m(z;x, t|σd). They satisfy the residue conditions

Res
z=z∗

k

m(z;x, t|σd) = lim
z=z∗

k

m(z;x, t|σd)σ2n
∗
kσ2,

Res
z=zk

m(z;x, t|σd) = lim
z=zk

m(z;x, t|σd)nk,
(A.1)

where nk is the nilpotent matrix,

nk =

(
0 0

γk(x, t) 0

)
, γk(x, t) := ckexp(2i(tz2k + xzk)). (A.2)

Using the Liouville’s theorem to get the uniqueness of the solution and we can prove the

symmetry m(z|σd) = σ2m(z∗|σd)∗σ2. It follows that any solution of RHP A.1 has the solution

of the following form:

m(z;x, t|σd) = I +

N∑

k=1

1

z − zk

(
αk(x, t) 0
βk(x, t) 0

)
+

1

z − z∗k

(
0 −βk(x, t)∗

0 αk(x, t)∗

)
(A.3)

for coefficients αk(x, t), βk(x, t) to be determined.

Proposition A.1 Given data σd = {(zk, ck)}Nk=1 ∈ C × C∗ such that zj 6= zk for j 6= k,

there exists a unique solution of RHP B.1 for each (x, t) ∈ R2.

Proof The proof can be found in [4].

A.1 Renormalizations of the reflectionless Riemann-Hilbert problem

Define the N -soliton solutions of RHP A.1 with r(z) = 0, and 1
a(z) being the transmission

coefficient of the reflectionless initial data

m(z;x, t|σd) =
[φ(−)

1 (x, t; z)

a(z)

∣∣∣φ(+)
2 (x, t; z)

]
ei(tz

2+xz)σ3 , a(z) =

N∏

k=1

(z − zk

z − z∗k

)
. (A.4)

Let ∆ ⊂ {1, 2, · · · , N} and ▽ = ∆c = {1, · · · , N} \ ∆. Define

a∆(z) =
∏

k∈∆

(z − zk

z − z∗k

)
and a▽(z) =

a(z)

z∆(z)
=
∏

k∈▽

(z − zk

z − z∗k

)
. (A.5)

The renormalization

m∆(z|σd) = m(z|σd)a∆(z)σ3 =
[φ(−)

1 (x, t; z)

a▽(z)

∣∣∣φ
±
2 (x, t; z)

a∆(z)

]
ei(tz

2+xz)σ3 , (A.6)

it is obvious that by choice of ∆ we split the poles between the columns, and m∆ satisfies the

followed modified discrete Riemann-Hilbert problem.
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Riemann-Hilbert Problem A.2 Given discrete data σd = {(zk, ck)}Nk=1 ⊂ C
+ ×C∗ and

∆ ⊂ {1, · · · , N}. Find an analytic function m∆ : C \ (Z ∪ Z∗) → SL2(C) with the following

properties:

1. m∆(z;x, t|σd) = I +O(z−1), z → ∞.

2. Each point of Z∪Z∗ is a simple pole of m∆(z;x, t|σd), they satisfy the residue conditions

Res
z=zk

m∆(z;x, t|σd) = lim
z=zk

m∆(z;x, t|σd)n∆
k ,

Res
z=z∗

k

m∆(z;x, t|σd) = lim
z=z∗

k

m∆(z;x, t|σd)σ2(n∆
k )∗σ2,

(A.7)

where nk is the nilpotent matrix,

n∆
k =





(
0 0

γk(x, t)a∆(zk)2 0

)
,

(
0 γk(x, t)−1a′∆(zk)−2

0 0

)
,

γk(x, t) := ckexp(2i(tz2k + xzk)) (A.8)

and a∆ is defined in (A.5).

When the poles zk ∈ R are distinct, we know that the RHP B.2 has a unique solution because

it is a transformation of m(z;x, t|σd), the advantage of this method we will prove above that

by choosing the ∆ correctly, other soliton asymptotic behavior are under better control when

t→ ∞,− x
4t = ξ.

A.2 Long time behavior of the soliton solutions

If there is only a single solution σd = {(ξ + iη, c1)}, we know that

qsol(x, t) = qsol(x, t; {ξ + iη}) = 2ia1e
Ω1−Ω∗

1 (P−1)e8iβ
∫
|aeΩ1−Ω∗

1 (P−1)2|dx. (A.9)

When there are N -solitons (N > 1), we know that the N -solitons asymptotically separate into

N single-soliton as t→ ∞.

Define

µ = µ(I) = min
zk∈Z\Z(I)

{Im(zk)dist(Re zk, I)}. (A.10)

Proposition A.2 Given discrete scattering data σd = {(zk, ck)}Nk=1 ⊂ C+ × (C \ {0}), fix

x1, x2, v1, v2 ∈ R with x1 ≤ x2 and v1 ≤ v2. Let I =
[
− v2

2 ,−
v1
2

]
. Then, as t → ±∞ with

(x, t) ∈ C(x1, x2, v1, v2), we have

m∆∓
ξ (z;x, t|σd) = (I + O(e−4µ|t|))m∆∓

ξ
(I)(z;x, t|σ±

d (I)) (A.11)

for all z bounded away from Z ∪ Z∗.
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Here σ±
d (I) is the scattering data for the N(I) ≤ N soliton given by

σ±
d (I) = {(zk, c

±
k (I)) : zk ∈ Z(I)}, c±k (I) = ck

∏

zj∈Z∓(I)

( zk − zj

zk − z∗j

)2
. (A.12)

Corollary A.3 Let qsol(x, t;σd) be the N -soliton of the fKE equation (1.1) with its discrete

scattering data σd = {(zk, ck)}Nk=1 ∈ C+ × (C \ {0}) and let I, C(x1, x2, v1, v2) and σ±
d (I) be as

given in Proposition A.2. Then as t→ ±∞ with (x, t) ∈ C(x1, x2, v1, v2),

qsol(x, t;σd) = qsol(x, t;σ
±
d (I)) + O(e−4µt), (A.13)

where qsol(x, t;σ
±
d (I)) is the solution of the fKE with N(I)-soliton and its scatttering data is

σ±
d (I).

Proof of Proposition A.2 Observe that

|γk(x0 + vt, t)| = |ck||exp[−2x0Im(zk)]exp
[
− 4tIm(zk)Re

(
zk +

v

2

)]
. (A.14)

The choice of normalization ∆ = ∆∓
ξ in RHP A.2 ensures when |t| → ∞ with (x, t) ∈

C(x1, x2, v1, v2) that

‖n∆∓
ξ

k ‖ =

{
O(1), zk ∈ Z(I),
O(exp(−4µ|t|)), zk ∈ Z \ Z(I).

(A.15)

This suggests that the residues with zk ∈ Z\Z(I) contribute to the solutionm∆±
ξ insignificantly.

Around each zk ∈ Z \ Z(I) we trade its residue for a near identity jump by introducing small

disk Dk whose radii are chosen sufficiently small that they are non-overlapping. We make the

change of variables

m∆∓
ξ (z|σd) =





m̂∆∓
ξ (z)

(
I +

nk

z − zk

)
, z ∈ Dk,

m̂∆∓
ξ (z)

(
I +

σ2n
∗
kσ2

z − z∗k

)
, z ∈ D∗

k,

m̂∆∓
ξ (z), elsewhere.

(A.16)

The new unknown m̂∆∓
ξ (z) has jumps across each disk boundary which, by (A.15), satisfy

m̂
∆∓

ξ

+ (z) = m∆∓
ξ (z)v̂(z), z ∈ ∂Dk ∪ ∂D∗

k (A.17)

with

‖v̂ − I‖ = O(exp(−4µ|t|)), z ∈ ∂Dk ∪ ∂D∗
k. (A.18)

The m∆∓
ξ
(I)(z|σ±

d (I)) has the same poles as m̂∆∓
ξ
(I)(z|σ) with the same residue conditions,

that

e(z) = m̂∆∓
ξ (z|σd)[m∆∓

ξ
(I)(z|σ±

d (I))]−1 (A.19)
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has no poles, and its jumps satisfy estimates identically to (A.18).

We show that e(z) exists and that e(z) = I +O(e−4µ|t|) for all sufficiently large |t| by using

the small-norm Riemann-Hilbert problems. From (A.16) and (A.19) that m∆∓
ξ (z;x, t|σd) =

e(z)mσ
∓
ξ
(I)(z;x, t|σ±

d (I)) for z outside each dist Dk and D∗
k, the result follows immediately.

B Appendix: Detail of Calculations for the ∂ Problem

Proposition B.1 There exist constants c1, c2 and c3 such that for all t > 0, the integrals

Ij , j = 1, 2, 3, defined by (6.7)–(6.8) satisfy the bound

|Ij | ≤
cj

t
1
4

, j = 1, 2, 3. (B.1)

Proof Our proof follows [3]. Let s = u+ iv and z = α+ iβ. We use the elementary fact

∥∥∥ 1

s− z

∥∥∥
2

L2
u(v+ξ,∞)

=
(∫ ∞

v+ξ

1

(u− α)2 + (v − β)2
ds
) 1

2 ≤
∫

R

1

u2 + (v − β)2
du =

π

v − β

to show that

|I1| ≤
∫ ∞

0

∫ ∞

v+ξ

|χZ(s)|
s− z

e−4tv(u−ξ)dudv ≤
∫ ∞

0

e−4tv2

∫ ∞

v+ξ

|χZ(s)|
|s− z| dudv

≤
∫ ∞

0

e−4tv2‖χZ(s)‖L2
u(v+ξ,∞)

∥∥∥ 1

s− z

∥∥∥
L2

u(v+ξ,∞)
dv

≤ c1

∫ ∞

0

e−4tv2

|v − β| 12
dv ≤ c1t

− 1
4

∫

R

e−4(w+
√
tβ)2

|w| 12
≤ c1t

− 1
4

∫

R

e−4w2

|w| 12
≤ c1t

− 1
4 . (B.2)

The bound for I2 is similar to I1. Recalling that r ∈ H1,1(R),

|I2| ≤
∫ ∞

0

e−4tv2

∫ ∞

v+ξ

|r′(u)|
|s− z|dudv

≤ ‖r′(u)‖L2(R)

∫ ∞

0

e−4tv2
∥∥∥ 1

s− z

∥∥∥
L

q
u(v+ξ,∞)

dv ≤ c2

t
1
4

. (B.3)

For I3, choose p > 2 and q Hölder conjugate to p, then

|I3| ≤
∫ ∞

0

e−4tv2‖(s− ξ)−
1
2 ‖Lp

u(v+ξ,∞)‖(s− z)−1‖Lq
u(v+ξ,∞)dv

≤ cp

∫ ∞

0

e−4tv2

v
1
p
− 1

2 |v − β| 1q−1dv. (B.4)

To bound this last integral, we observe that

∫ β

0

e−tv2

v
1
p
− 1

2 (β − v)
1
q
−1dv =

∫ 1

0

β
1
2 e−tβ2w2

w
1
p
− 1

2 (1 − w)
1
q
−1dw

≤ ct−
1
4

∫ 1

0

∫ 1

0

w
1
p
−1(1 − w)

1
q
−1dw ≤ Ct−

1
4 , (B.5)



Long Time Asymptotics Behavior of the Focusing Nonlinear Kundu-Eckhaus Equation 261

where we used the bound e−m ≤ m− 1
4 for m ≥ 0 to replace the exponential factor in the second

integral. Finally

∫ ∞

β

e−tv2

v
1
p
− 1

2 (v − β)
1
q
−1dv ≤

∫ ∞

0

e−tw2

w− 1
2 dw ≤ Ct−

1
4 . (B.6)

The resilt is confirmed.

Proposition B.2 For all t > 0, there exists a constant c such that

|M (3)
1 | ≤ ct−

3
4 . (B.7)

Proof The proof given here follows calculations that can be found in [2, 10]. Recalling that

the set Ω′
1 = Ω1 ∪ supp(1 − χZ) is bounded away from the poles of M

(2)
RHP , we have

|M (3)
1 | ≤

∫∫

Ω1

|M (3)(s)M
(2)
RHP (s)M

(2)
RHP (s)−1|dA

≤ 1

π
‖M (3)‖L∞(Ω)‖M (2)

RHP ‖L∞(Ω′)

∫∫

Ω

|∂R1e2itθ|dA

≤ C
( ∫∫

Ω1

|χZ(s)|e−4tv(u−ξ)dA+

∫∫

Ω1

|r′(u)|e−4tv(u−ξ)dA

+

∫∫

Ω1

1

|s− ξ|

1
2

e−4tv(u−ξ)dA
)

≤ C(I4 + I5 + I6). (B.8)

We bound I4 by applying the Cauchy-Schwarz inquality

|I4| ≤
∫ ∞

0

‖χZ‖L2
u(u+ξ,∞)

(∫ ∞

v

e−8uvds
) 1

2

dv

≤ ct−
1
2

∫ ∞

0

e−4tv2

√
v

dv ≤
∫ ∞

0

e−4tv2

√
w

dw ≤ ct−
3
4 . (B.9)

For 2 < p < 4,

|I6| ≤ c

∫ ∞

0

v
1
p
− 1

2

(∫ ∞

v

e−4qtuvdu
) 1

q

dv ≤ ct−
1
q

∫ ∞

0

v
1
p
− 3

2 e−4tv2

dv

≤ ct−
3
4

∫ ∞

0

w
2
p
− 3

2 e−4w2

dw ≤ ct−
3
4 , (B.10)

where we have used the substitution w = t
1
2 and the fact that −1 < 2

p
− 3

2 < − 1
2 .

C Appendix: The Parabolic Cylinder Model Problem

In this section we describe the long-time asymptotic calculations of the integrable nonlinear

waves of the parabolic cylinder model problem (see [9]). Define

Σj =
{
ζ ∈ C

∣∣∣ arg ζ =
2j − 1

4
π
}
, j = 1, · · · , 4. (C.1)
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Fix r ∈ C and define

κ = κ(r) := − 1

2π
log(1 + |r|2). (C.2)

And we define six connected open sectors in C \ (Σ(PC) ∪ R), the sequence of region is in a

counterclockwise.

Parabolic Cylinder Model Riemann-Hilbert Problem A.1 The analytic function

M (PC)(·, r) : C \Σ(PC) → SL2(C), where r ∈ C is fixed, satisfies

(1) M (PC)(ζ, r) = I + M(PC)(r)
ζ

+O(ζ−2).

(2) For ζ ∈ Σ(PC), the continuous boundary values M
(PC)
± (ζ, r) satisfy the jump relation

M
(PC)
+ (ζ, r) = M

(PC)
+ (ζ, r)V (PC)(ζ, r), where

V (PC)(ζ, r) =





(
1 0

rζ−2iκei
ζ2

2 1

)
, arg ζ =

π

4
,

(
1 r∗ζ2iκe−i ζ

2

2

0 1

)
, arg ζ = −π

4
,

(
1 0

r∗

1+|r|2 ζ
2iκe−i ζ

2

2 1

)
, arg ζ =

3π

4
,

(
1 0

r
1+|r|2 ζ

−2iκei
ζ2

2 1

)
, arg ζ = −3π

4
.

(C.3)

According to the solutions of the parabolic cylinder equation
(

∂2

∂z2 +
(
1
2 − z2

2 + a
))
Da(z) = 0

(see [1, 10]), we have an explicit solution of the M (PC)(ζ, r):

M (PC)(ζ, r) = Φ(ζ, r)P(ζ, r)ei
ζ2σ3

4 ζ−iκσ3 , (C.4)
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where

P(ζ, r) =





(
1 0
−r 1

)
, ζ ∈ Ω1,

(
1 −r∗

1+|r|2
0 1

)
, ζ ∈ Ω3,

(
1 0
r

1+|r|2 1

)
, ζ ∈ Ω4,

(
1 r∗

0 1

)
, ζ ∈ Ω6

(C.5)

and

Φ(ζ, r) =





(
e−

3πκ
4 Diκ(e−

3iπ
4 ζ) −iβ12e

π
4D−iκ−1(e−

iπ
4 ζ)

iβ21e−
3π
4 D−iκ+1(e−

iπ
4 ζ) e

πκ
4 D−iκ(e−

−iπ
4 ζ)

)
, ζ ∈ C+,

(
e

πκ
4 Diκ(e

−iπ
4 ζ) −iβ12e−

3π
4 (κ−i)D−iκ−1(e

3iπ
4 ζ)

iβ21e
π
4 (κ+i)Diκ−1(e

iπ
4 ζ) e−

3πκ
4 D−iκ(e

3iπ
4 ζ)

)
, ζ ∈ C−,

(C.6)

in which β12 and β21 are the complex constants

β12 = β12(r) =

√
2πei

π
4 e−

πκ
2

rΓ(−iκ)
, β21 = β21(r) =

−
√

2πe−iπ4 e−
πκ
2

r∗Γ(iκ)
. (C.7)

We use the result given in [6] and get the result as

M (PC)(ζ, r) = I +
1

ζ

(
0 −iβ12(r)

iβ21(r) 0

)
+O(ζ−2). (C.8)
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