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Abstract In this paper, the authors consider the range of a certain class of ASH algebras
in [An, Q., Elliott, G. A., Li, Z. and Liu, Z., The classification of certain ASH C*-algebras
of real rank zero, J. Topol. Anal., 14(1), 2022, 183–202], which is under the scheme of the
Elliott program in the setting of real rank zero C*-algebras. As a reduction theorem, they
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1 Introduction

The history of the classification of amenable C*-algebras, begins with the UHF algebras of

Glimm (see [7, 15]), and the AF algebras of Bratteli ([4] by diagrams, and also Elliott [11] by

dimension group). And later, a very tidy result was given as Effros-Handelman-Shen Theorem

(see [8]), which showed that all the unperforated Riesz groups just coincide with all dimension

groups of AF algebras. Such studies can be the consideration of the question in the case of real

rank zero. A C*-algebra is said to have real rank zero, if the set of invertible self-adjoint elements

is dense in the set of self-adjoint elements. This was also the setting for the classification of

AT algebras considered in [12]. Particularly, we wish to mention the exciting breakthrough

that all simple separable unital Z-stable C*-algebras can be classified by the Elliott invariant

provided the universal coefficient theorem (UCT for short) holds (see [13, 17–18, 25]). So the

direction to consider the real rank zero setting, which are not necessarily simple is the next

natural restriction in the classification theory.

In a number of articles [5–6, 9, 12, 14], particular attention has been given to the case of

inductive limits of dimension drop interval algebras (they called them AD algebras). The case

of ordinary interval “no dimension drops” is easy, since a real rank zero inductive limit of such
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algebras must be an AF algebra. These papers consider the case of what might be known

as classical dimension drop interval algebras with the same dimension drop at both ends of

the interval. More recent papers (see [19, 20, 23–24]) go further, establish classification in the

simple case for inductive limits of (finite direct sums of) generalized dimension drop interval

algebras (possibly different dimension drops at the two endpoints). And recently, the authors,

Elliott and Li classified such inductive limits (we call them AJS algebras) in the sense of real

rank zero (see [2]), which seems larger than the class considered in [6] (the AD algebras above).

But there is no evidence that the new class is really larger than the classical one.

It was shown in [10] (see also [26]) that an AJS algebra of real rank zero with trivial K1-

group is an AF algebra and its invariant stays in the range of Effros-Handelman-Shen Theorem

(see [8]). Then how about those AJS algebras with non-trivial torsion K1-groups, which are

of course not AF or AT algebras?

In this paper, we point out that a generalized dimension drop algebra is always KK-

equivalent to a classical dimension drop algebra, and hence, they have same K-theoretical

invariant as group; however, they may have different Dadalat-Loring orders (see [6]). And we

develop a series of reduction tricks, which shows that after composing a “large” map, the differ-

ences of the orders disappear. That is to say, we prove that an AJS algebra of real rank zero

is always an AD algebra and such two classes of algebras have the same range of invariants.

2 Notations and Preliminaries

In this section, we collect some necessary definitions and set up notations for the convenience

of readers.

Definition 2.1 (see [12]) The classical dimension drop interval algebra refers to the C*-

algebra

Ip = {f ∈ Mp(C0(0, 1]) : f(1) = λ · 1p, 1p is the identity of Mp},

and the C*-algebra Ĩp obtained by adjoining a unit to Ip.

We use gcd(m0,m1) to denote the greatest common divisor of m0 and m1.

Definition 2.2 (see [19]) A Jiang-Su block, denoted by I[m0,m,m1], is the unital C∗-

algebra

I[m0,m,m1] = {f ∈ Mm(C([0, 1])) : f(0) = a0 ⊗ 1m/m0
, f(1) = a1 ⊗ 1m/m1

},

where gcd(m0,m1) = 1, m0, m1 divide m, a0 and a1 (for a given f) belong to Mm0
and Mm1

,

respectively, and 1m/m0
and 1m/m1

are the identity elements of Mm/m0
and Mm/m1

, respectively.

For convenience, we denote by D the class of all matrix algebras and all Mr(Ĩp) and at the

same time, denote by JS the class of all matrix algebras and all Mr(I[m0,m,m1]) (generalized

dimension drop algebra). Denote the inductive limit algebras of direct-sums in D and JS

by AD algebras and AJS algebras, respectively. Note that Ĩp = I[1, p, 1], which means AD

algebras are always AJS algebras. Note that every algebra in the classes AD and AJS is not

necessarily simple.
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Remark 2.1 The K-theoretic information in a generalized dimension drop interval algebra

is summarized as follows. For I[m0,m,m1], one has the short exact sequence

0 → Mm(C0(0, 1))
ι
−→ I[m0,m,m1]

π0⊕π1−−−−→ Mm/m0
⊕Mm/m1

→ 0,

where ι is the embedding map.

Then we have the six-term exact sequence

0 → K0(I[m0,m,m1])
(π0⊕π1)∗
−−−−−−→ Z⊕ Z

( m
m0

,− m
m1

)
−−−−−−−→ Z

ι∗−→ K1(I[m0,m,m1]) → 0.

Hence

K0(I[m0,m,m1]) = Z, K1(I[m0,m,m1]) = Zp,

where p =gcd
(
m
m0
, mm1

)
.

Definition 2.3 Let A = I[m0,m,m1], B = I[n0, n, n1]. Denote by C(A,B) the set of all

the commutative diagrams:

0 // K0(A)

λ0∗

��

(π0⊕π1)∗
// Z⊕ Z

λ0

��

( m
m0

,− m
m1

)
// Z

λ1

��

ι∗
// K1(A)

λ1∗

��

// 0

0 // K0(B)
(π′

0⊕π
′

1)∗

// Z⊕ Z
( n
n0
,− n

n1
)
// Z

ι′
∗

// K1(B) // 0

(λ0, λ1 are 2× 2 matrix and integer, respectively) and by M(A,B) the subset of C(A,B) of all

the commutative diagrams:

0 // K0(A)

0

��

(π0⊕π1)∗
// Z⊕ Z

µ0

��

( m
m0

,− m
m1

)
// Z

µ1

��

ι∗
// K1(A)

0

��

// 0

0 // K0(B)
(π′

0⊕π
′

1)∗

// Z⊕ Z
( n
n0
,− n

n1
)
// Z

ι′
∗

// K1(B) // 0 ,

such that there exists µ ∈ Hom(K1(SMm),K0(Mn0
⊕Mn1

)) satisfying µ0 = µ ◦
(
m
m0
,− m

m1

)
,

µ1 =
(
n
n0
,− n

n1

)
◦ µ.

In particular, we point out that C(A,B) is an Abelian group and M(A,B) is its subgroup.

We quote the following result from [1] (see the notations and more details there). This is

our technical tool for calculating.

Theorem 2.1 (see [1, Theorem 2.9]) Given two Elliott-Thomsen algebras A and B. Then

we have a natural isomorphism of groups:

KK(A,B) ∼= C(A,B)/M(A,B).

In fact, for elements λ ∈ C(A,B) and η ∈ C(B,E), there is also an natural product

λ× η ∈ C(A,E), which induces the Karsparov-product on the quotient groups.

For two matrices S and T , we say S ≥ T , if S − T has no negative entry.
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Definition 2.4 Given two Elliott-Thomsen algebras A and B. Let λ ∈ C(A,B) be the

following diagram:

0 // K0(A)

λ0∗

��

π∗
// K0(F1)

λ0

��

α−β
// K1(SF2)

λ1

��

ι∗
// K1(A)

λ1∗

��

// 0

0 // K0(B)
π′

∗

// K0(F
′
1)

α′
−β′

// K1(SF
′
2)

ι′
∗

// K1(B) // 0 .

Let us say that λ is positive or λ ≥ 0 if λ0 ≥ 0, i.e., λ0 has no negative entry.

By Theorem 2.1, we denote KK(λ) by the KK-class corresponding to the diagram λ.

Theorem 2.2 (see [1, Theorem 3.8, 2, Proposition 4.3]) Let A,B ∈ JS. A diagram

λ ∈ C(A,B) can be lifted to a homomorphism if and only if λ is positive.

Furthermore, if λ is postive and

KK(λ)([1A]) ≤ [1B],

then λ can be lifted to a homomorphism from A to B; if

KK(λ)([1A]) = [1B],

then we can lift λ to a unital homomorphism.

3 Main Result

In this section, we will prove that an AJS algebra of real rank zero is an AD algebra, the

main result is Theorem 3.1, a reduction theorem (In fact, even in the simple case, the reduction

theorem also plays an important role (see [16])).

Lemma 3.1 Let A =Mr(I[m0,m,m1]) and let λ ∈ C(A, Ĩq) be the following diagram:

0 // K0(A)

λ0∗

��

π∗
// Z⊕ Z

λ0

��

( m
m0

,− m
m1

)
// Z

λ1

��

ι∗
// K1(A)

λ1∗

��

// 0

0 // K0(B)
π′

∗

// Z⊕ Z
(q,−q)

// Z
ι′
∗

// K1(B) // 0.

Suppose that

λ0
(
m0

m1

)
≥

(
2m
2m

)
,

then there exists a homomorphism γ : A → Ms(Ĩq) for some integer s such that KK(γ) =

KK(λ).

Proof Write λ0 =
(
a b
c d

)
, then by assumption, we have

(
a b
c d

)(
m0

m1

)
≥

(
2m
2m

)
.
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Set

k0 =
[ bm1 − am0

2m

]
and k1 =

[dm1 − cm0

2m

]
,

where [x] is the largest integer smaller than x, then

(
a b
c d

)
+

(
k0
k1

)( m

m0
,−

m

m1

)
≥ 0.

Let ζ be the following diagram in C(A, Ĩq),

0 // K0(A)

ζ0∗

��

π∗
// Z⊕ Z

ζ0

��

( m
m0

,− m
m1

)
// Z

ζ1

��

ι∗
// K1(A)

ζ1∗

��

// 0

0 // K0(B)
π′

∗

// Z⊕ Z
(q,−q)

// Z
ι′
∗

// K1(B) // 0,

where

ζ0 =

(
a b
c d

)
+

(
k0
k1

)( m

m0
,−

m

m1

)

and

ζ1 = λ1 + k0q − k1q.

It is easy to check that ζ−λ ∈M(A, Ĩq). By Theorems 2.1–2.2, we can lift ζ to a homomorphism

γ : A→Ms(Ĩq) for some integer s. Then we have KK(γ) = KK(ζ) = KK(λ).

Lemma 3.2 Let A =Mr(I[m0,m,m1]), B =Ms(I[n0, n, n1]). Suppose that ψ : A→ B is

a homomorphism satisfying that

[ψ(1A)] ≥ 2mr

(
n0

n1

)
in K0(B).

Then there exists an algebra E in class D such that ψ can be factored through E in the sense

of KK, i.e., there exist homomorphisms γ : A→ E and ι : E → B such that

KK(γ)×KK(ι) = KK(ψ).

Proof Let q =gcd( nn0
, nn1

) and ρ ∈ C(Ĩq , B) be the positive diagram:

0 // K0(Ĩq)

��

π∗
// Z⊕ Z

(x y

z t

)

��

(q,−q)
// Z

1

��

ι∗
// K1(Ĩq)

��

// 0

0 // K0(B)
π′

∗

// Z⊕ Z
( n
n0
,− n

n1
)
// Z

ι′
∗

// K1(B) // 0,

where x, y, z, t ≥ 0 satisfy that

x ·
n

n0
− z ·

n

n1
= q, y ·

n

n0
− t ·

n

n1
= −q

and (
x
z

)
+

(
y
t

)
=

(
n0

n1

)
.
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Then we have

xt− zy = x(z + t)− z(x+ y) = xn1 − zn0 = 1,

hence

det

(
x y
z t

)
= 1 and

(
x y
z t

)−1 (
n0

n1

)
=

(
1
1

)
.

By Theorem 2.2, ρ can be lifted to a unital homomorphism embedding map ι from Ms(Ĩq)

to B such that

K0(ι)

(
1
1

)
=

(
n0

n1

)
in K0(B).

In particular, the embedding map ι is of the following form

Ms(Ĩq) ∋ f(t)
ι

7−→ u · diag{f(t), f(0), · · · , f(0)︸ ︷︷ ︸
z· n

n1

, f(1), · · · , f(1︸ ︷︷ ︸
y· n

n0

)} · u∗ ∈ B,

where u is a certain unitary in Msn(C[0, 1]) (one can see more details in [1, Lemma 3.6]).

Denote ρ−1 ∈ C(B, Ĩq) to be the following diagram:

0 // K0(B)

��

π′

∗
// Z⊕ Z

(

x y

z t

)

−1

��

( n
n0
,− n

n1
)
// Z

1

��

ι′
∗

// K1(B)

��

// 0

0 // K0(Ĩq) // Z⊕ Z
(q,−q)

// Z // K1(Ĩq) // 0,

which may not be a positive diagram, while ρ× ρ−1 is

0 // K0(Ĩq)

��

// Z⊕ Z

(

1

1

)

��

(q,−q)
// Z

1

��

// K1(Ĩq)

��

// 0

0 // K0(Ĩq) // Z⊕ Z
(q,−q)

// Z // K1(Ĩq) // 0.

By Theorem 2.1, there is a diagram λ ∈ C(A,B)/M(A,B) inducing the KK class of ψ:

0 // K0(A)

λ0∗

��

π∗
// Z⊕ Z

λ0

��

( m
m0

,− m
m1

)
// Z

λ1

��

ι∗
// K1(A)

λ1∗

��

// 0

0 // K0(B)
π′

∗

// Z⊕ Z
( n
n0
,− n

n1
)
// Z

ι′
∗

// K1(B) // 0.

By assumption,

r · λ0
(
m0

m1

)
= kr

(
n0

n1

)
≥ 2mr

(
n0

n1

)
.

Then we have k ≥ 2m and

(
x y
z t

)−1

λ0
(
m0

m1

)
= k

(
x y
z t

)−1 (
n0

n1

)
=

(
k
k

)
≥

(
2m
2m

)
.
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By Lemma 3.1, the KK class induced by λ× ρ−1 ∈ C(A, Ĩq) can be lifted as a homomorphism

γ : A→Ms(Ĩq), and now we have

KK(γ)×KK(ι) = KK(ψ).

Let E =Ms(Ĩq), we achieve the proof.

The following lemma is [3, Corollary 4.3].

Lemma 3.3 Let A be a semiprojective C∗-algebra generated by a finite or countable set

G = {x1, x2, · · · } with lim
j→∞

‖xj‖ = 0 if G is infinite. Then there is a δ > 0 such that, whenever

B is a C∗-algebra, and φ0 and φ1 are homomorphisms from A to B with ‖φ0(xj)−φ1(xj)‖ < δ

for all j, then φ0 and φ1 are homotopic.

We will need the decomposition theorem (see [2, Theorem 3.8, 21]).

Lemma 3.4 Let A,B ∈ JS, F ⊂ A be a finite set, ε > 0, L be a positive integer, there

exists a finite set G ⊂ Asa such that if a homomorphism ψ : A→ B satisfies that

ψ(G) ⊂1/6 {f ∈ B | f has finite spectrum},

then there exists a projection p ∈ B and a homomorphism ν : A → (1 − p)B(1 − p) with finite

dimensional image such that

(1) [ν(1A)] ≥ L · [p] in K0(B),

(2) ‖ψ(f)− pψ(f)p− ν(f)‖ < ε, ∀ f ∈ F .

Lemma 3.5 Let A = Mr(I[m0,m,m1]), B = Ms(I[n0, n, n1]). Then there exists a finite

set G ⊂ Asa such that if a homomorphism ψ : A→ B satisfies that

ψ(G) ⊂1/6 {f ∈ B | f has finite spectrum},

then there exists an algebra E in D such that ψ can be factored through E in the sense of KK.

Proof Let F be a finite set which generates A. Since A is semiprojective (see [22]), we

choose δ as in Lemma 3.3 and a finite set G as in Lemma 3.4. Set L = 2mr, by Lemma 3.4,

there exists a projection p ∈ B and a homomorphism ν : A → (1 − p)B(1 − p) with finite

dimensional image such that

(1) [ν(1A)] ≥ 2mr · [p] in K0(B),

(2) ‖ψ(f)− pψ(f)p− ν(f)‖ < δ, ∀ f ∈ F .

If p = 0, by Lemma 3.3, ψ and ν are homotopic, then ψ can be factored through a finite

dimensional algebra in the sense of KK.

If p 6= 0, we have

[ψ(1A)] ≥ [ν(1A)] ≥ 2mr · [p] ≥ 2mr

(
n0

n1

)
.

By Lemma 3.2, there exists an algebra E in D such that ψ can be factored through E in the

sense of KK.

The following result combines [2, Corollary 3.7, Theorem 5.8].
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Lemma 3.6 Let A ∈ JS, B = lim−→(Bn, νn,m) be an AJS algebra of real rank zero. Suppose

that φ, ψ : A → Bn are two homomorphisms with [φ] = [ψ] in KK(A,Bn), then for any finite

set F ⊂ A and ε > 0, there exists r ≥ n and a unitary u ∈ Br such that

‖u · νn,r ◦ φ(f) · u
∗ − νn,r ◦ ψ(f)‖ < 30ε, ∀f ∈ F.

Theorem 3.1 Let A = lim(An, ψn,m) be an AJS algebra of real rank zero, then A is an

AD algebra of real rank zero.

Proof We will prove the theorem by the intertwining argument.

Let εn = 1
2n . Let B1 = A1, n1 = 1 and ι1 : B1 → A1 be the identity map. Choose a finite

set G1 ⊂ (An1
)sa as in Lemma 3.5.

Since A has real rank zero, there exists k1 > n1 such that ψn1,k1 satisfies that

ψn1,k1(G1) ⊂1/6 {f ∈ Ak1 | f has finite spectrum}.

As both An1
and Ak1 are direct sums of blocks in JS, the homomorphism ψn1,k1 is also of

the form as a direct sum of homomorphisms. We write ψi,jn1,k1
as the map induced by ψn1,k1

from the ith copy Ain1
of An1

to the jth copy Ajk1 of Ak1 . Then for each i, j, we still have

ψi,jn1,k1
(G1) ⊂1/6 {f ∈ Ajk1 | f has finite spectrum}.

By Lemma 3.5, there exists a B2 (a direct sum of blocks in D), a homomorphism γ1,2 : A1 → B2

and a homomorphism ι : B2 → Ak1 such that KK(ψn1,k1) = KK(γ1,2)×KK(ι).

Set φ1,2 = γ1,2 ◦ ι1, then the following diagram commutes in the sense of KK

An1

ψn1,k1−−−−→ Ak1

↑ ι1 ց γ1,2 ↑ ι

B1
φ1,2

−−→ B2.

Choose finite sets F1 ⊂ A1 and G1 ⊂ B1 such that F1 generates A1, G1 generates B1 and

ι1(G1) ⊂ F1, by Lemma 3.6, there exists n2 ≥ k1 and u ∈ An2
such that

‖ψk1,n2
◦ ψn1,k1(f)− u(ψk1,n2

◦ ι ◦ γ1,2(f))u
∗‖ < 30ε1

for any f ∈ F1.

Set ι2 = ψk1,n2
◦ ι, then the following diagram:

An1

ψn1,n2−−−−→ An2

ց γ1,2 ↑ ι2

B2,

almost commutes on F1 to within 30ε1.

Now we choose a finite set G2 ⊂ (An2
)sa as in Lemma 3.5, F2 ⊂ An2

, G2 ⊂ B2 such that F2

generates An2
, G2 generates B2 and

γ1,2(F1) ⊂ G2, ψn1,n2
(F1) ∪ ι(G2) ⊂ F2,
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then we can find B3 (a direct sum of blocks in D), γ2,3 : An2
→ B3 and ι3 : B3 → An3

.

In general, we obtain the diagram:

An1

ψn1,n2−−−−→ An2

ψn2,n3−−−−→ An3
→ · · · A

↑ ι1 ց γ1,2 ↑ ι2 ց γ2,3 ↑ ι3 ↑

B1
φ1,2

−−→ B2
φ2,3

−−→ B3 → · · · B

with the following properties:

(i) γk,k+1(Fk) ⊂ Gk+1, and ψnk,nk+1
(Fk) ∪ ιk+1(Gk+1) ⊂ Fk+1;

(ii) Fk generates Ank
, and Gk generates Bk;

(iii) φk,k+1 = γk,k+1 ◦ ιk holds for every k;

(iv) For each k, there exists a unitary uk+1 ∈ Ank+1
such that

‖ψk,k+1(f)− uk+1(ιk ◦ γk,k+1(f))u
∗

k+1‖ < 30εk, ∀f ∈ Fk.

Then by [12, 2.1–2.2], the above diagram defines an isomorphism from B to A. This ends

the proof.

Combining the reduction theorem with the classification of AD algebra [6], we get a new

proof of the following result.

Corollary 3.1 (see [2]) Let A,B be two unital AJS algebras of real rank zero. Then A is

isomorphic to B, if and only if

(K(A),K+(A),ΣA) ∼= (K(B),K+(B),ΣB).
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