C^* -Isomorphisms Associated with Two Projections on a Hilbert C^* -Module*

Chunhong FU¹ Qingxiang XU² Guanjie YAN³

Abstract Motivated by two norm equations used to characterize the Friedrichs angle, this paper studies C^* -isomorphisms associated with two projections by introducing the matched triple and the semi-harmonious pair of projections. A triple (P, Q, H) is said to be matched if H is a Hilbert C^* -module, P and Q are projections on H such that their infimum $P \wedge Q$ exists as an element of $\mathcal{L}(H)$, where $\mathcal{L}(H)$ denotes the set of all adjointable operators on H. The C^* -subalgebras of $\mathcal{L}(H)$ generated by elements in $\{P - P \wedge Q, Q - P \wedge Q, I\}$ and $\{P, Q, P \wedge Q, I\}$ are denoted by i(P, Q, H) and o(P, Q, H), respectively. It is proved that each faithful representation (π, X) of o(P, Q, H) can induce a faithful representation $(\tilde{\pi}, X)$ of i(P, Q, H) such that

$$\widetilde{\pi}(P - P \wedge Q) = \pi(P) - \pi(P) \wedge \pi(Q),$$

$$\widetilde{\pi}(Q - P \wedge Q) = \pi(Q) - \pi(P) \wedge \pi(Q).$$

When (P, Q) is semi-harmonious, that is, $\overline{\mathcal{R}(P+Q)}$ and $\overline{\mathcal{R}(2I-P-Q)}$ are both orthogonally complemented in H, it is shown that i(P, Q, H) and i(I-Q, I-P, H) are unitarily equivalent via a unitary operator in $\mathcal{L}(H)$. A counterexample is constructed, which shows that the same may be not true when (P, Q) fails to be semi-harmonious. Likewise, a counterexample is constructed such that (P, Q) is semi-harmonious, whereas (P, I-Q) is not semi-harmonious. Some additional examples indicating new phenomena of adjointable operators acting on Hilbert C^* -modules are also provided.

Keywords Hilbert C^* -module, Projection, Orthogonal complementarity, C^* -Isomorphism 2000 MR Subject Classification 46L08, 47A05

1 Introduction

Let P and Q be two projections on a Hilbert space X. Their infimum $P \wedge Q$ is the projection from X onto $\mathcal{R}(P) \cap \mathcal{R}(Q)$, which can be obtained by taking the limit of $\{(PQP)^n\}_{n=1}^{\infty}$ in the strong operator topology (see [9, Lemma 22]). The cosine of the Friedrichs angle (see [4]) between $M = \mathcal{R}(P)$ and $N = \mathcal{R}(Q)$ is denoted by c(M, N), and can be calculated as

$$c(M,N) = \left\| (P - P \land Q)(Q - P \land Q) \right\|.$$

Manuscript received November 27, 2021. Revised September 11, 2022.

 $^{^1{\}rm Health}$ School Attached to Shanghai University of Medicine & Health Sciences, Shanghai 200237, China. E-mail: fchlixue@163.com

²Corresponding author. Department of Mathematics, Shanghai Normal University, Shanghai 200234, China. E-mail: qingxiang_xu@126.com

³Department of Basic Education, Shanghai Urban Construction Vocational College, Shanghai 201415, China. E-mail: m15578192102@163.com

^{*}This work was supported by the National Natural Science Foundation of China (No. 11971136) and the Science and Technology Commission of Shanghai Municipality (No. 18590745200).

The characterization of $c(M, N) = c(N^{\perp}, M^{\perp})$ given in [3, Section 2] yields

$$\|(P - P \land Q)(Q - P \land Q)\| = \|[I - Q - (I - Q) \land (I - P)][I - P - (I - Q) \land (I - P)]\|.$$
(1.1)

The Friedrichs angle has also been studied in the setting of C^* -algebras. To deal with the Friedrichs angle associated with two projections P and Q in a C^* -algebra \mathfrak{A} , one approach employed in [1] is to embed \mathfrak{A} into its enveloping von Neumann algebra \mathfrak{A}'' via the universal representation (π_u, H_u) of \mathfrak{A} , and then to use the universal property of \mathfrak{A}'' (see [11, Theorem 3.7.7]). By identifying \mathfrak{A} with $\pi_u(\mathfrak{A})$, $P \wedge Q$ can be obtained in \mathfrak{A}'' , and it is proved in [1, Proposition 2.4] that for every faithful representation (π, X) of \mathfrak{A} ,

$$\|(P - P \land Q)(Q - P \land Q)\| = \|[\pi(P) - \pi(P) \land \pi(Q)][\pi(Q) - \pi(P) \land \pi(Q)]\|.$$
(1.2)

Hilbert C^* -modules are natural generalizations of Hilbert spaces, and every C^* -algebra can be regarded as a Hilbert C^* -module over itself in a natural way. The purpose of this paper is, in the framework of Hilbert C^* -modules, to give a deeper understanding of (1.1)-(1.2) via algebraic systems rather than on products of finitely many operators.

It is notable that a closed submodule of a Hilbert C^* -module may fail to be orthogonally complemented. In this paper much attention has been paid on this aspect. Let $\mathcal{L}(H)$ be the set of all adjointable operators on a Hilbert C^* -module H. For two projections $P, Q \in \mathcal{L}(H)$, let

$$\mathcal{R} = \mathcal{R}(Q) \cap \mathcal{R}(P) \quad \text{and} \quad \mathcal{N} = \mathcal{N}(Q) \cap \mathcal{N}(P).$$
 (1.3)

To check the validity of the Halmos' two projections theorem in the Hilbert C^* -module case, the term of the harmonious pair of projections is introduced in [7, Section 4], and it is shown later in [12, Theorem 3.3] that for every pair (P, Q) of projections, the Halmos' two projections theorem is valid if and only if (P, Q) is harmonious. In view of the conditions stated in [7, Lemma 5.4] and [12, Theorem 3.3], we make a definition as follows.

Definition 1.1 <u>A pair (P,Q) of projections on a Hilbert C^* -module H is said to be semiharmonious if both $\overline{\mathcal{R}(P+Q)}$ and $\overline{\mathcal{R}(2I-P-Q)}$ are orthogonally complemented in H. If (P,Q) and (P,I-Q) are both semi-harmonious, then (P,Q) is said to be harmonious.</u>

Let \mathcal{R} and \mathcal{N} be defined by (1.3) for projections P and Q on a Hilbert C^* -module H. Since $\overline{\mathcal{R}(2I-P-Q)}^{\perp} = \mathcal{R}$ and $\overline{\mathcal{R}(P+Q)}^{\perp} = \mathcal{N}$, a condition weaker than the semi-harmony of (P,Q) turns out to be the orthogonal complementarity of \mathcal{R} and \mathcal{N} , which is necessary and sufficient to make use of the notations $P_{\mathcal{R}}$ and $P_{\mathcal{N}}$ (the projections from H onto \mathcal{R} and \mathcal{N} , respectively). The example constructed in [7, Section 3] (see also the proof of Theorem 2.2) shows that there exist projections P and Q on certain Hilbert C^* -module such that $\mathcal{R} = \mathcal{N} = \{0\}$, whereas (P,Q) is not semi-harmonious. So, generally the meaningfulness of $P_{\mathcal{R}}$ and $P_{\mathcal{N}}$ does not imply the semi-harmony of (P,Q).

Next, we introduce the matched triple as follows.

Definition 1.2 A triple (P,Q,H) is said to be matched if H is a Hilbert C^* -module, Pand Q are projections on H such that \mathcal{R} defined by (1.3) is orthogonally complemented in H. In this case, the projection $P_{\mathcal{R}}$ is denoted by $P \wedge Q$. The C^* -subalgebras of $\mathcal{L}(H)$ generated by elements in $\{P - P \wedge Q, Q - P \wedge Q, I\}$ and $\{P, Q, P \wedge Q, I\}$ are denoted by i(P,Q,H) and o(P,Q,H), and are called the inner algebra and the outer algebra, respectively.

C*-Isomorphisms Associated with Two Projections

Definition 1.3 Two matched triple (P_i, Q_i, H_i) (i = 1, 2) are said to be innerly unitarily equivalent if there exists a unitary operator $U : H_1 \to H_2$ such that

$$U(P_1 - P_1 \land Q_1)U^* = P_2 - P_2 \land Q_2,$$

$$U(Q_1 - P_1 \land Q_1)U^* = Q_2 - P_2 \land Q_2.$$

Recall that a pair (π, X) is said to be a representation of a C^* -algebra \mathfrak{A} if X is a Hilbert space and $\pi : \mathfrak{A} \to \mathbb{B}(X)$ is a C^* -morphism, where $\mathbb{B}(X)$ denotes the set of all bounded linear operators on X.

Definition 1.4 Let (P, Q, H) be a matched triple. A representation (π, X) of o(P, Q, H) is called an outer representation of (P, Q, H). If furthermore a C^* -morphism $\tilde{\pi} : i(P, Q, H) \to \mathbb{B}(X)$ can be induced such that $\tilde{\pi}(I) = \pi(I)$, and

$$\widetilde{\pi}(P - P \wedge Q) = \pi(P) - \pi(P) \wedge \pi(Q),$$

$$\widetilde{\pi}(Q - P \wedge Q) = \pi(Q) - \pi(P) \wedge \pi(Q),$$

then (π, X) is called an inner-outer representation of (P, Q, H). When both π and $\tilde{\pi}$ are faithful, (π, X) is called a faithful inner-outer representation of (P, Q, H).

Remark 1.1 Let (π, X) be an inner-outer representation of (P, Q, H). It is notable that generally $\pi(P) \wedge \pi(Q)$ is taken in the von Neumann algebra $[\pi[o(P, Q, H)]]''$ rather than in the C^* -algebra $\pi[o(P, Q, H)]$, so it may happen that $\pi(P \wedge Q) \neq \pi(P) \wedge \pi(Q)$.

With the terms given as above, we list the main results of this paper as follows:

(1) There exist projections P and Q on certain Hilbert C^* -module H such that (P, Q) is semi-harmonious, whereas it fails to be harmonious (see Theorem 2.2).

(2) For every semi-harmonious pair (P,Q) of projections on a Hilbert C^* -module H, the matched triples (P,Q,H) and (I-Q,I-P,H) are innerly unitarily equivalent (see Theorem 3.1).

(3) There exist projections P and Q on certain Hilbert C^* -module H such that the triples (P, Q, H) and (I - Q, I - P, H) are both matched, whereas they are not innerly unitarily equivalent (see Theorem 3.2).

(4) Every faithful outer representation of a matched triple is a faithful inner-outer representation (see Theorem 4.1).

An application of Theorems 3.1 and 4.1 will be illustrated in Corollary 4.3. Another application, as has been mentioned earlier, concerns a new insight into (1.1)-(1.2). Let P and Q be two projections on a Hilbert C^* -module H such that \mathcal{R} and \mathcal{N} defined by (1.3) are orthogonally complemented in H. By Theorem 4.1, we will see that each faithful unital representation (π, X) of $\mathcal{L}(H)$ can induce unital C^* -isomorphisms $\tilde{\pi}_1 : i(P, Q, H) \to i(\pi(P), \pi(Q), X)$ and $\tilde{\pi}_2 : i(I - Q, I - P, H) \to i(I - \pi(Q), I - \pi(P), X)$ such that

$$\begin{aligned} \widetilde{\pi}_1(P - P \wedge Q) &= \pi(P) - \pi(P) \wedge \pi(Q), \\ \widetilde{\pi}_1(Q - P \wedge Q) &= \pi(Q) - \pi(P) \wedge \pi(Q), \\ \widetilde{\pi}_2[I - Q - (I - Q) \wedge (I - P)] &= I - \pi(Q) - \pi(I - Q) \wedge \pi(I - P), \\ \widetilde{\pi}_2[I - P - (I - Q) \wedge (I - P)] &= I - \pi(P) - \pi(I - Q) \wedge \pi(I - P). \end{aligned}$$

Thus, $\|\tilde{\pi}_1(x)\| = \|x\|$ for every $x \in i(P, Q, H)$. Specifically, if we put $x = (P - P \land Q)(Q - P \land Q)$, then (1.2) is obtained.

Note that $(\pi(P), \pi(Q))$ is a pair of projections acting on a Hilbert space, so it is harmonious. Hence, by Theorem 3.1 there exists a unitary operator $U \in \mathbb{B}(X)$ such that

$$U[\pi(P) - \pi(P) \wedge \pi(Q)]U^* = I - \pi(Q) - \pi(I - Q) \wedge \pi(I - P),$$

$$U[\pi(Q) - \pi(P) \wedge \pi(Q)]U^* = I - \pi(P) - \pi(I - Q) \wedge \pi(I - P).$$

Thus, a C*-isomorphism $\rho: i(P,Q,H) \to i(I-Q,I-P,H)$ can be constructed as

$$\rho(x) = (\widetilde{\pi}_2)^{-1} U \widetilde{\pi}_1(x) U^*, \quad \forall x \in i(P, Q, H).$$

Therefore, $\|\rho(x)\| = \|x\|$ for every $x \in i(P, Q, H)$. Likewise, if we take $x = (P - P \land Q)(Q - P \land Q)$, then (1.1) is obtained. So, a substantive generalization of (1.1)–(1.2) has been made.

The paper is organized as follows. The main purpose of Section 2 is to construct two projections P and Q such that (P, Q) is semi-harmonious, whereas it fails to be harmonious. Section 3 focuses on the construction of the unitary operator U satisfying (3.3)–(3.4). Section 4 is devoted to the study of the faithful inner-outer representation of a matched triple.

2 Semi-Harmonious Pairs of Projections

Throughout the rest of this paper, \mathbb{N} , \mathbb{Z}_+ and \mathbb{C} are the sets of all positive integers, nonnegative integers and complex numbers, respectively. Unless otherwise specified, \mathfrak{A} is a C^* algebra, E, H and K are Hilbert \mathfrak{A} -modules (see [5, 10]). The set of all adjointable operators from H to K is denoted by $\mathcal{L}(H, K)$. Given $A \in \mathcal{L}(H, K)$, the adjoint operator, the range and the null space of A are denoted by A^* , $\mathcal{R}(A)$ and $\mathcal{N}(A)$, respectively. Let |A| designate the square root of A^*A . In case H = K, $\mathcal{L}(H, K)$ is abbreviated to $\mathcal{L}(H)$, whose subset consisting of all positive elements is denoted by $\mathcal{L}(H)_+$. The unit of $\mathcal{L}(H)$ (namely, the identity operator on H) is denoted by I_H , or simply by I when no ambiguity arises. An operator $P \in \mathcal{L}(H)$ is said to be a projection if $P = P^* = P^2$. The set of all projections on H is denoted by $\mathcal{P}(H)$.

Let M be a closed submodule of H. Clearly, there exists at most a projection in $\mathcal{L}(H)$, written P_M , such that $\mathcal{R}(P_M) = M$. It can be easily verified that P_M exists if and only if $H = M + M^{\perp}$, where

$$M^{\perp} = \{ x \in H : \langle x, y \rangle = 0, \forall y \in M \}.$$

In this case, M is said to be orthogonally complemented in H.

To construct semi-harmonious pairs of projections, we need a couple of lemmas.

Lemma 2.1 (see [6, Proposition 2.9]) For every $T \in \mathcal{L}(H)_+$ and $\alpha > 0$, we have $\overline{\mathcal{R}(T)} = \overline{\mathcal{R}(T^{\alpha})}$.

Lemma 2.2 (see [5, Proposition 3.7]) For every $T \in \mathcal{L}(H, K)$, we have $\overline{\mathcal{R}(T)} = \overline{\mathcal{R}(TT^*)}$.

Lemma 2.3 (see [6, Proposition 2.7]) Let $B, C \in \mathcal{L}(E, H)$ be such that $\overline{\mathcal{R}(B)} = \overline{\mathcal{R}(C)}$. Then for every $A \in \mathcal{L}(H, K)$, we have $\overline{\mathcal{R}(AB)} = \overline{\mathcal{R}(AC)}$.

An approach to construct semi-harmonious pairs of projections reads as follows.

Theorem 2.1 For every $P, Q \in \mathcal{P}(H)$, let $M \subseteq H$ be defined by

$$M = \overline{\mathcal{R}[(P+Q)(2I-P-Q)]}.$$
(2.1)

Then $P|_M$ and $Q|_M$ are projections on M such that $(P|_M, Q|_M)$ is semi-harmonious, where $P|_M$ and $Q|_M$ are the restrictions of P and Q on M, respectively.

C^* -Isomorphisms Associated with Two Projections

Proof To simplify the notation, we put

$$A = P + Q \quad \text{and} \quad G = \mathcal{R}[A(2I - A)]. \tag{2.2}$$

Since G defined as above is the range of an adjointable operator, its closure M is a Hilbert \mathfrak{A} -module.

For every $T \in \mathcal{L}(H)$ and $X \subseteq H$, let $TX = \{Tx : x \in X\}$. Then $TX = \mathcal{R}(T|_X)$, and the boundedness of T gives $\overline{TX} = \overline{TX}$. Hence

$$\overline{AM} = \overline{AG}$$
 and $\overline{(2I-A)M} = \overline{(2I-A)G}$. (2.3)

Since A and 2I - A are positive and commutative, we may combine (2.2)–(2.3) with Lemmas 2.1 and 2.3 to get

$$\overline{\mathcal{R}(P|_M + Q|_M)} = \overline{AM} = \overline{AG} = \overline{\mathcal{R}[(2I - A)A^2]}$$
$$= \overline{\mathcal{R}[(2I - A)A]} = M.$$
(2.4)

Similarly,

$$\overline{\mathcal{R}(2I_M - P|_M - Q|_M)} = \overline{(2I - A)M} = \overline{(2I - A)G} = \overline{\mathcal{R}[A(2I - A)^2]}$$
$$= \overline{\mathcal{R}[A(2I - A)]} = M.$$
(2.5)

Furthermore, direct computations yield

$$P(2I - A)A = P(I - Q)P = A(2I - A)P,$$

 $Q(2I - A)A = Q(I - P)Q = A(2I - A)Q,$

which lead clearly to $PM \subseteq M$ and $QM \subseteq M$. Consequently, $P|_M$ and $Q|_M$ are projections on M. In view of (2.4)–(2.5), we conclude that $(P|_M, Q|_M)$ is semi-harmonious.

Theorem 2.2 There exist projections P and Q on certain Hilbert C^* -module such that (P, Q) is semi-harmonious, whereas it fails to be harmonious.

Proof We follow the line initiated in [8, Section 3] and modified in [7, Section 3]. Let $M_2(\mathbb{C})$ and I_2 be the set of all 2×2 complex matrices and the identity matrix in $M_2(\mathbb{C})$, respectively. Denote by $\|\cdot\|$ the operator norm on $M_2(\mathbb{C})$. Let $\mathfrak{A} = C([0,1]; M_2(\mathbb{C}))$ be the set of all continuous matrix-valued functions from [0,1] to $M_2(\mathbb{C})$. For $x \in \mathfrak{A}$ and $t \in [0,1]$, we put

$$x^*(t) = (x(t))^*$$
 and $||x|| = \max_{0 \le s \le 1} ||x(s)||.$

With the *-operation as above and the usual algebraic operations, \mathfrak{A} is a unital C^* -algebra, which is also a Hilbert \mathfrak{A} -module with the inner-product given by

$$\langle x, y \rangle = x^* y \quad \text{for } x, y \in \mathfrak{A}.$$

Let e be the unit of \mathfrak{A} , that is, $e(t) = I_2$ for every $t \in [0, 1]$. It is known that $\mathfrak{A} \cong \mathcal{L}(\mathfrak{A})$ via $a \to L_a$ (see [7, Section 3]), where $L_a(x) = ax$ for $a, x \in \mathfrak{A}$. For simplicity, we identify $\mathcal{L}(\mathfrak{A})$ with \mathfrak{A} and set

$$c_t = \cos\frac{\pi}{2}t$$
 and $s_t = \sin\frac{\pi}{2}t$ for $t \in [0, 1]$. (2.6)

C. H. Fu, Q. X. Xu and G. J. Yan

Let $P,Q\in\mathfrak{A}$ be projections determined by the matrix-valued functions

$$P(t) \equiv \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad Q(t) = \begin{pmatrix} c_t^2 & s_t c_t \\ s_t c_t & s_t^2 \end{pmatrix} \quad \text{for } t \in [0, 1].$$

$$(2.7)$$

It is shown in [7, Section 3] that

$$\mathcal{R}(P) \cap \mathcal{R}(Q) = \mathcal{R}(P) \cap \mathcal{N}(Q) = \mathcal{N}(P) \cap \mathcal{R}(Q) = \mathcal{N}(P) \cap \mathcal{N}(Q) = \{0\}.$$
 (2.8)

Now, let $H = \mathfrak{A}$ and M be defined by (2.1). According to Theorem 2.1, $(P|_M, Q|_M)$ is semi-harmonious. In what follows, we prove that $(P|_M, Q|_M)$ is not harmonious.

Direct computation yields

$$(P+Q)(2I - P - Q) = P + Q - PQ - QP = (P - Q)(P - Q)^*,$$

which leads by (2.1) and Lemma 2.2 to

$$M = \overline{\mathcal{R}(P-Q)}.$$
(2.9)

Utilizing (2.7) we obtain P - Q = au, where $a, u \in H$ are determined by

$$a(t) = \begin{pmatrix} s_t & 0\\ 0 & s_t \end{pmatrix}, \quad u(t) = \begin{pmatrix} s_t & -c_t\\ -c_t & -s_t \end{pmatrix}, \quad t \in [0, 1].$$

Since u is a unitary and M can be represented by (2.9), we have $M = \overline{\mathcal{R}(a)}$. Specifically,

$$a = ae \in M, \quad \overline{\mathcal{R}(P|_M + I_M - Q|_M)} = \overline{\mathcal{R}(T)},$$

where $T = (P + I - Q)a \in H$. For any $x \in H$ with $x(t) = (x_{ij}(t))_{1 \le i,j \le 2}$, it is easy to verify that

$$(Tx)(1) = \begin{pmatrix} 2x_{11}(1) & 2x_{12}(1) \\ 0 & 0 \end{pmatrix},$$

hence

$$||Tx - a|| \ge ||(Tx)(1) - a(1)|| = \left\| \begin{pmatrix} 2x_{11}(1) - 1 & 2x_{12}(1) \\ 0 & -1 \end{pmatrix} \right\| \ge 1,$$

which implies that $a \notin \overline{\mathcal{R}(T)}$. Furthermore, by (2.8) we have

$$\overline{\mathcal{R}(P|_M + I_M - Q|_M)}^{\perp} = \mathcal{N}(P|_M) \cap \mathcal{R}(Q|_M) \subseteq \mathcal{N}(P) \cap \mathcal{R}(Q) = \{0\}.$$

This shows

$$a \notin \overline{\mathcal{R}(P|_M + I_M - Q|_M)} + \overline{\mathcal{R}(P|_M + I_M - Q|_M)}^{\perp}$$

whereas $a \in M$. So $\overline{\mathcal{R}(P|_M + I_M - Q|_M)}$ is not orthogonally complemented in M.

Remark 2.1 It is notable that there exist projections P and Q such that $\overline{\mathcal{R}(P+Q)}$ is orthogonally complemented, whereas $\overline{\mathcal{R}(2I-P-Q)}$ fails to be orthogonally complemented. We provide such an example as follows.

Example 2.1 Let $\mathfrak{A} = H = C([0,1]; M_2(\mathbb{C}))$ and $P, Q \in \mathcal{P}(H)$ be as in the proof of Theorem 2.2. Put $H_0 = \overline{\mathcal{R}(P+Q)}$, $P_0 = P|_{H_0}$ and $Q_0 = Q|_{H_0}$. From [7, Lemma 2.3] we have

 $H_0 = \overline{\mathcal{R}(P) + \mathcal{R}(Q)}$, which means that $\mathcal{R}(P) \subseteq H_0$, hence $P_0 H_0 \subseteq H_0$. Consequently, P_0 is a projection on H_0 . Similarly, we have $Q_0 \in \mathcal{P}(H_0)$. In view of (2.8), we get

$$\mathcal{R}(P_0) \cap \mathcal{R}(Q_0) = \mathcal{N}(P_0) \cap \mathcal{N}(Q_0) = \{0\}.$$
(2.10)

According to Lemma 2.1, we have

$$H_0 = \overline{\mathcal{R}[(P+Q)^2]} \subseteq \overline{\mathcal{R}(P_0+Q_0)} \subseteq H_0.$$

As a result, we arrive at

$$H_0 = \overline{\mathcal{R}(P_0 + Q_0)} = \overline{\mathcal{R}(P_0 + Q_0)} + \mathcal{N}(P_0) \cap \mathcal{N}(Q_0).$$

This shows the orthogonal complementarity of $\overline{\mathcal{R}(P_0 + Q_0)}$ in H_0 .

Let F = (2I - P - Q)(P + Q). Clearly, F = (I - P)Q + (I - Q)P, so by (2.7) we have

$$F(t) = \begin{pmatrix} s_t^2 & \\ & s_t^2 \end{pmatrix}, \quad \forall t \in [0, 1],$$

which implies that for every $x \in \mathfrak{A}$, $(Fx)(0) = F(0)x(0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Hence

$$||P - Fx|| \ge ||P(0) - F(0)x(0)|| = \left\| \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix} \right\| = 1.$$

Due to the definition of F and the observation of (2.10), we conclude that

$$P \notin \overline{\mathcal{R}(F)} = \overline{\mathcal{R}(2I_{H_0} - P_0 - Q_0)} + \mathcal{R}(P_0) \cap \mathcal{R}(Q_0).$$

On the other hand, $P = PI \in \mathcal{R}(P) \subseteq H_0$. Therefore, $\overline{\mathcal{R}(2I_{H_0} - P_0 - Q_0)}$ is not orthogonally complemented in H_0 .

3 Unitary Equivalences Associated with Two Projections

In this section, we deal with unitary equivalences associated with two projections. We begin with a known result as follows.

Lemma 3.1 (see [7, Lemma 4.1]) Let $P, Q \in \mathcal{P}(H)$ be such that $\overline{\mathcal{R}(I-Q+P)}$ is orthogonally complemented in H. Then $\overline{\mathcal{R}(QP)}$ is also orthogonally complemented in H such that $P_{\overline{\mathcal{R}(QP)}} = Q - P_{\mathcal{R}(Q) \cap \mathcal{N}(P)}$.

Next, we provide a useful lemma as follows.

Lemma 3.2 For every $P, Q \in \mathcal{P}(H)$, we have

$$|P(I-Q)| + |(I-P)Q| = |(I-Q)P| + |Q(I-P)|.$$
(3.1)

Proof For simplicity, we put

$$T_1 = P(I - Q)$$
 and $T_2 = (I - P)Q.$ (3.2)

It is clear that

$$T_1^*T_1 = (I - Q)T_1^*T_1(I - Q)$$
 and $T_2^*T_2 = QT_2^*T_2Q$,

 \mathbf{SO}

332

$$|T_1| = (I - Q)|T_1|(I - Q)$$
 and $|T_2| = Q|T_2|Q$

hence $|T_1| \cdot |T_2| = 0$. Similarly, $|T_1^*| \cdot |T_2^*| = 0$. As a result,

$$(|T_1| + |T_2|)^2 = T_1^* T_1 + T_2^* T_2 = P + Q - PQ - QP = T_1 T_1^* + T_2 T_2^*$$

= $(|T_1^*| + |T_2^*|)^2$,

which gives (3.1) by taking the square roots of positive operators.

Now, we are in the position to provide the main result of this section.

Theorem 3.1 Let $P, Q \in \mathcal{P}(H)$ be such that (P, Q) is semi-harmonious. Then there exists a unitary $U \in \mathcal{L}(H)$ such that

$$U(Q - P_{\mathcal{R}})U^* = I - P - P_{\mathcal{N}},\tag{3.3}$$

$$U(P - P_{\mathcal{R}})U^* = I - Q - P_{\mathcal{N}},\tag{3.4}$$

where \mathcal{R} and \mathcal{N} are defined by (1.3).

Proof Let T_1 and T_2 be defined by (3.2). Since $\overline{\mathcal{R}(P+Q)}$ is orthogonally complemented in H, by Lemma 3.1 both $\overline{\mathcal{R}(T_1^*)}$ and $\overline{\mathcal{R}(T_2)}$ are orthogonally complemented in H. Similarly, the orthogonal complementarity of $\overline{\mathcal{R}(2I-P-Q)}$ leads to that of $\overline{\mathcal{R}(T_1)}$ and $\overline{\mathcal{R}(T_2^*)}$. So for i = 1, 2, the notations $P_{\overline{\mathcal{R}(T_i)}}$ and $P_{\overline{\mathcal{R}(T_i^*)}}$ are meaningful. The point is, these projections can be used to obtain the canonical forms of T_1 and T_2 (see [2]). In fact, in view of (3.2) we have

$$\overline{\mathcal{R}(T_1)} \subseteq \mathcal{R}(P) \text{ and } \overline{\mathcal{R}(T_1^*)} \subseteq \mathcal{R}(I-Q),$$

hence

$$P_{\overline{\mathcal{R}}(T_1)}P = P_{\overline{\mathcal{R}}(T_1)}$$
 and $(I-Q)P_{\overline{\mathcal{R}}(T_1^*)} = P_{\overline{\mathcal{R}}(T_1^*)}$

which lead to

$$T_1 = P_{\overline{\mathcal{R}}(T_1)} T_1 P_{\overline{\mathcal{R}}(T_1^*)} = P_{\overline{\mathcal{R}}(T_1)} P_{\overline{\mathcal{R}}(T_1^*)}.$$
(3.5)

Replacing P and Q with I - P and I - Q, respectively, we obtain

$$T_2 = P_{\overline{\mathcal{R}}(T_2)} P_{\overline{\mathcal{R}}(T_2^*)}.$$
(3.6)

Taking *-operation, from (3.5)-(3.6) we arrive at

$$T_1^* = P_{\overline{\mathcal{R}}(T_1^*)} P_{\overline{\mathcal{R}}(T_1)} \quad \text{and} \quad T_2^* = P_{\overline{\mathcal{R}}(T_2^*)} P_{\overline{\mathcal{R}}(T_2)}.$$
(3.7)

To make use of (3.1), we need the polar decompositions of T_1 and T_2 . For i = 1, 2, as $\mathcal{R}(T_i)$ and $\overline{\mathcal{R}(T_i^*)}$ are both orthogonally complemented in H, by [6, Lemma 3.6 and Theorem 3.8] there exists a unique partial isometry $V_i \in \mathcal{L}(H)$ such that

$$T_{i} = V_{i}|T_{i}|, \quad T_{i}^{*} = V_{i}^{*}|T_{i}^{*}|, \quad V_{i}^{*}V_{i} = P_{\overline{\mathcal{R}(T_{i}^{*})}}, \quad V_{i}V_{i}^{*} = P_{\overline{\mathcal{R}(T_{i})}}.$$
(3.8)

Combining the last two equations in (3.8) with (3.5)-(3.7), we obtain

$$T_i = V_i V_i^* V_i^* V_i$$
 and $T_i^* = V_i^* V_i V_i V_i^*$.

These two equations together with (3.8), Lemmas 2.1–2.2 yield

$$(V_i^*)^2 V_i = V_i^* (V_i V_i^* V_i^* V_i) = V_i^* T_i = V_i^* V_i |T_i| = |T_i|_{\mathcal{I}_i}$$

which gives

$$(V_i^*)^2 V_i = |T_i| = V_i^* V_i^2$$

by taking *-operation. Similarly, we have

$$V_i^2 V_i^* = |T_i^*| = V_i (V_i^*)^2$$

Consequently, (3.1) turns out to be

$$V_1^* V_1^2 + V_2^* V_2^2 = V_1^2 V_1^* + V_2^2 V_2^*.$$
(3.9)

Now, we are ready to construct the desired unitary operator. Let

$$U_1 = V_1 + P_{\mathcal{R}}, \quad U_2 = V_2 + P_{\mathcal{N}}, \quad U = U_1 - U_2,$$
 (3.10)

where \mathcal{R} and \mathcal{N} are defined by (1.3). Then by Lemma 3.1, (3.2) and (3.8), we have

$$P = V_1 V_1^* + P_{\mathcal{R}}, \quad I - P = V_2 V_2^* + P_{\mathcal{N}}, \tag{3.11}$$

$$Q = V_2^* V_2 + P_{\mathcal{R}}, \quad I - Q = V_1^* V_1 + P_{\mathcal{N}}.$$
(3.12)

It follows from (3.11) that

$$V_1 V_1^* P_{\mathcal{R}} = V_2 V_2^* P_{\mathcal{N}} = V_1 V_1^* V_2 V_2^* = V_1 V_1^* P_{\mathcal{N}} = P_{\mathcal{R}} V_2 V_2^* = P_{\mathcal{R}} P_{\mathcal{N}} = 0,$$

or equivalently,

$$V_1^* P_{\mathcal{R}} = V_2^* P_{\mathcal{N}} = V_1^* V_2 = V_1^* P_{\mathcal{N}} = P_{\mathcal{R}} V_2 = P_{\mathcal{R}} P_{\mathcal{N}} = 0.$$
(3.13)

Similarly, it can be inferred from (3.12) that

$$V_2 P_{\mathcal{R}} = V_1 P_{\mathcal{N}} = V_2 V_1^* = V_2 P_{\mathcal{N}} = P_{\mathcal{R}} V_1^* = 0.$$
(3.14)

It follows from (3.10)-(3.14) that

$$U_1 U_2^* = U_1^* U_2 = 0, \quad U_1 U_1^* = P, \quad U_2 U_2^* = I - P,$$

$$U_1^* U_1 + U_2^* U_2 = V_1^* V_1 + P_{\mathcal{R}} + V_2^* V_2 + P_{\mathcal{N}} = Q + I - Q = I.$$

Therefore $UU^* = U^*U = I$, so the operator U defined by (3.10) is a unitary.

Finally, we check the validity of (3.3)–(3.4). According to (3.11)–(3.12), we have

$$Q - P_{\mathcal{R}} = V_2^* V_2, \quad I - P - P_{\mathcal{N}} = V_2 V_2^*, P - P_{\mathcal{R}} = V_1 V_1^*, \quad I - Q - P_{\mathcal{N}} = V_1^* V_1,$$

and thus

$$V_1V_1^* + V_2V_2^* = I - P_{\mathcal{R}} - P_{\mathcal{N}} = V_1^*V_1 + V_2^*V_2$$

The above equations together with (3.9)-(3.10) and (3.13)-(3.14) yield

$$U(Q - P_{\mathcal{R}}) = (U_1 - U_2)V_2^*V_2 = (V_1 + P_{\mathcal{R}} - V_2 - P_{\mathcal{N}})V_2^*V_2 = -V_2$$

$$\begin{split} &= V_2 V_2^* (V_1 + P_{\mathcal{R}} - V_2 - P_{\mathcal{N}}) = (I - P - P_{\mathcal{N}})U, \\ &U(P - P_{\mathcal{R}}) = (V_1 + P_{\mathcal{R}} - V_2 - P_{\mathcal{N}})V_1V_1^* = V_1^2V_1^* - V_2V_1V_1^* \\ &= V_1^2V_1^* - V_2(I - P_{\mathcal{R}} - P_{\mathcal{N}} - V_2V_2^*) = V_1^2V_1^* + V_2^2V_2^* - V_2 \\ &= V_1^*V_1^2 + V_2^*V_2^2 - V_2 = V_1^*V_1^2 + (I - P_{\mathcal{R}} - P_{\mathcal{N}} - V_1^*V_1)V_2 - V_2 \\ &= V_1^*V_1^2 - V_1^*V_1V_2 = V_1^*V_1(V_1 + P_{\mathcal{R}} - V_2 - P_{\mathcal{N}}) \\ &= (I - Q - P_{\mathcal{N}})U. \end{split}$$

Therefore, (3.3)–(3.4) are satisfied.

Remark 3.1 Let $P, Q \in \mathcal{P}(H)$ be such that (P, Q) is harmonious. In this case, the Halmos' two projections theorem (see [12, Theorem 3.3]) indicates that up to unitary equivalence, P and Q have the block matrix forms

$$P = \begin{pmatrix} I_{H_1} & & & \\ & I_{H_2} & & & \\ & & 0 & & \\ & & & 0 & \\ & & & I_{H_5} & \\ & & & & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} I_{H_1} & & & & \\ & 0 & & & \\ & & I_{H_3} & & \\ & & & 0 & \\ & & & & Q_0 \end{pmatrix},$$

where

$$H_{1} = \mathcal{R}, \quad H_{2} = \mathcal{R}(P) \cap \mathcal{N}(Q), \quad H_{3} = \mathcal{N}(P) \cap \mathcal{R}(Q), \quad H_{4} = \mathcal{N},$$

$$H_{5} = \mathcal{R}(P) \ominus (H_{1} \oplus H_{2}), \quad H_{6} = \mathcal{N}(P) \ominus (H_{3} \oplus H_{4}),$$

$$Q_{0} = \begin{pmatrix} A & A^{\frac{1}{2}} (I_{H_{5}} - A)^{\frac{1}{2}} U_{0}^{*} \\ U_{0} A^{\frac{1}{2}} (I_{H_{5}} - A)^{\frac{1}{2}} & U_{0} (I_{H_{5}} - A) U_{0}^{*} \end{pmatrix} \in \mathcal{L}(H_{5} \oplus H_{6}), \quad (3.15)$$

in which $U_0 \in \mathcal{L}(H_5, H_6)$ is a unitary, $A \in \mathcal{L}(H_5)$ is a positive contraction such that both Aand $I_{H_5} - A$ are injective and $\overline{\mathcal{R}(A - A^2)} = H_5$, which implies that

$$\overline{\mathcal{R}(A)} = \overline{\mathcal{R}(I_{H_5} - A)} = H_5.$$

With the notations as above and that in the proof of Theorem 3.1, we have

$$\begin{aligned} P_{\mathcal{R}} &= I_{H_1} \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0, \\ P_{\mathcal{N}} &= 0 \oplus 0 \oplus 0 \oplus I_{H_4} \oplus 0 \oplus 0, \\ T_1 &= 0 \oplus I_{H_2} \oplus 0 \oplus 0 \oplus S_1, \quad V_1 &= 0 \oplus I_{H_2} \oplus 0 \oplus 0 \oplus S_2, \\ T_2 &= 0 \oplus 0 \oplus I_{H_3} \oplus 0 \oplus S_3, \quad V_2 &= 0 \oplus 0 \oplus I_{H_3} \oplus 0 \oplus S_4, \end{aligned}$$

where

$$S_{1} = \begin{pmatrix} I_{H_{5}} - A & -A^{\frac{1}{2}} (I_{H_{5}} - A)^{\frac{1}{2}} U_{0}^{*} \\ 0 & 0 \end{pmatrix},$$
$$S_{2} = \begin{pmatrix} (I_{H_{5}} - A)^{\frac{1}{2}} & -A^{\frac{1}{2}} U_{0}^{*} \\ 0 & 0 \end{pmatrix},$$

 C^* -Isomorphisms Associated with Two Projections

$$S_{3} = \begin{pmatrix} 0 & 0 \\ U_{0}A^{\frac{1}{2}}(I_{H_{5}} - A)^{\frac{1}{2}} & U_{0}(I_{H_{5}} - A)U_{0}^{*} \end{pmatrix},$$

$$S_{4} = \begin{pmatrix} 0 & 0 \\ U_{0}A^{\frac{1}{2}} & U_{0}(I_{H_{5}} - A)^{\frac{1}{2}}U_{0}^{*} \end{pmatrix}.$$

In virtue of (3.10), we have

$$U = V_1 + P_{\mathcal{R}} - V_2 - P_{\mathcal{N}} = \operatorname{diag}(X, Y),$$

where $X = \text{diag}(I_{H_1}, I_{H_2}, -I_{H_3}, -I_{H_4})$ and

$$Y = S_2 - S_4 = \begin{pmatrix} (I_{H_5} - A)^{\frac{1}{2}} & -A^{\frac{1}{2}}U_0^* \\ -U_0A^{\frac{1}{2}} & -U_0(I_{H_5} - A)^{\frac{1}{2}}U_0^* \end{pmatrix}.$$

This gives the block matrix form of the unitary operator U satisfying (3.3)–(3.4).

Remark 3.2 Since every closed linear subspace of a Hilbert space is orthogonally complemented, Theorem 3.1 is therefore always applicable to every pair of projections on a Hilbert space.

Theorem 3.2 There exist projections P and Q on certain Hilbert C^* -module such that $\mathcal{R} = \mathcal{N} = \{0\}$, whereas (3.3)–(3.4) have no common unitary operator solution.

Proof Following [8, Section 3], we put $\mathfrak{B} = C([0,1]; M_2(\mathbb{C}))$ and set

$$\mathfrak{A} = \{ f \in \mathfrak{B} : f(0) \text{ and } f(1) \text{ are both diagonal} \}.$$
(3.16)

As is shown in the proof of Theorem 2.2, \mathfrak{A} itself is a Hilbert \mathfrak{A} -module, and we can identify $\mathcal{L}(\mathfrak{A})$ with \mathfrak{A} . Let $H = \mathfrak{A}$ and $Q \in \mathcal{P}(H)$ be determined by (2.7), and let $P \in \mathcal{P}(H)$ be changed to

$$P(t) = \begin{pmatrix} c_t^2 & -s_t c_t \\ -s_t c_t & s_t^2 \end{pmatrix} \quad \text{for } t \in [0, 1],$$

where c_t and s_t are defined by (2.6).

Let \mathcal{R} and \mathcal{N} be defined by (1.3), and suppose that $x \in \mathcal{N}$ is determined by $x(t) = (x_{ij}(t))_{1 \leq i,j \leq 2}$ for $t \in [0,1]$. Utilizing

$$P(t) + Q(t) = \begin{pmatrix} 2c_t^2 & 0\\ 0 & 2s_t^2 \end{pmatrix} \text{ and } [P(t) + Q(t)]x(t) = 0$$
(3.17)

for $t \in [0,1]$, we obtain $x_{ij}(t) = 0$ for $i, j \in \{1,2\}$ and every $t \in (0,1)$, which imply that $x_{ij} = 0$ for $1 \le i, j \le 2$, since all functions considered are continuous on [0,1]. This shows that $\mathcal{N} = \{0\}$. In view of $\mathcal{R} = \mathcal{N}(I - P) \cap \mathcal{N}(I - Q)$, the proof of $\mathcal{R} = \{0\}$ is similar.

Suppose that U determined by $U(t) = (U_{ij}(t))_{1 \le i,j \le 2}$ is a unitary in H, which satisfies both (3.3) and (3.4). Due to $P_{\mathcal{R}} = 0$ and $P_{\mathcal{N}} = 0$, (3.3)–(3.4) are simplified as

$$UP = (I - Q)U$$
 and $UQ = (I - P)U$,

or equivalently,

$$U(Q-P) = (Q-P)U$$
 and $U(P+Q) = (2I-P-Q)U.$ (3.18)

Substituting

$$(Q-P)(t) = \begin{pmatrix} 0 & 2s_t c_t \\ 2s_t c_t & 0 \end{pmatrix}, \quad t \in [0,1]$$

into the first equation in (3.18) yields

$$U_{12}(t) = U_{21}(t), \quad U_{11}(t) = U_{22}(t), \quad t \in [0, 1].$$

Combining the above equations with the expression of P(t)+Q(t) given in (3.17) and the second equation in (3.18), we arrive at

$$U_{11}(t)\left(c_t^2 - s_t^2\right) = 0, \quad \forall t \in [0, 1],$$

hence $U_{11}(t) \equiv 0$ for $t \in [0, 1]$ by the continuity of U_{11} . Consequently,

$$U(t) = \begin{pmatrix} 0 & U_{12}(t) \\ U_{12}(t) & 0 \end{pmatrix}.$$

This together with (3.16) yields $U(0) = U(1) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. It is a contradiction, since U is a unitary in H which ensures that all the 2 × 2 matrices $U(t)(t \in [0, 1])$ are unitary.

4 C^* -Isomorphisms Associated with Two Projections

Unless otherwise specified, throughout this section (P, Q, H) is a matched triple, i(P, Q, H)and o(P, Q, H) are its inner algebra and outer algebra (see Definitions 1.2). It is clear that

$$i(P,Q,H) = \operatorname{span}\left\{X^{(P,Q,k)} : X \in \{A, B, C, D\}, k \in \mathbb{Z}_+\right\},\tag{4.1}$$

where \mathcal{R} (also \mathcal{N}) is defined by (1.3), $P_{\mathcal{R}} = P \wedge Q$ and

$$A^{(P,Q,k)} = [(P - P_{\mathcal{R}})(Q - P_{\mathcal{R}})]^k, \qquad (4.2)$$

$$B^{(P,Q,k)} = A^{(P,Q,k)}(P - P_{\mathcal{R}}), \tag{4.3}$$

$$C^{(P,Q,k)} = (A^{(P,Q,k)})^* = A^{(Q,P,k)},$$
(4.4)

$$D^{(P,Q,k)} = C^{(P,Q,k)}(Q - P_{\mathcal{R}}) = B^{(Q,P,k)}$$
(4.5)

with the convention that $A^{(P,Q,0)} = I$. For each $k \ge 1$, by utilizing $P_{\mathcal{R}} \le P$ and $P_{\mathcal{R}} \le Q$ we obtain

$$A^{(P,Q,k)} = (PQ - P_{\mathcal{R}})^k = (PQ)^k - P_{\mathcal{R}},$$
(4.6)

which gives

$$A^{(P,Q,k)}(A^{(P,Q,k)})^* = [(PQ)^k - P_{\mathcal{R}}][(QP)^k - P_{\mathcal{R}}]$$

= $(PQ)^k(QP)^k - P_{\mathcal{R}} = (PQP)^{2k-1} - P_{\mathcal{R}}$
= $(PQP - P_{\mathcal{R}})^{2k-1}.$ (4.7)

It follows that

$$A^{(P,Q,k)}(A^{(P,Q,k)})^* = [A^{(P,Q,1)}(A^{(P,Q,1)})^*]^{2k-1}, \quad \forall k \ge 1.$$
(4.8)

 $C^{\ast}\operatorname{-Isomorphisms}$ Associated with Two Projections

Similarly,

$$B^{(P,Q,k)} = [(PQ)^k - P_{\mathcal{R}}](P - P_{\mathcal{R}}) = (PQP)^k - P_{\mathcal{R}} = (PQP - P_{\mathcal{R}})^k$$
$$= [A^{(P,Q,1)}(A^{(P,Q,1)})^*]^k, \quad \forall k \ge 1.$$
(4.9)

Now, let (π, X) be a faithful representation of o(P, Q, H). Replacing X with $\pi(I)X$ if necessary, in what follows we always assume that π is unital. The infimum of $\pi(P)$ and $\pi(Q)$, and its subtraction by $\pi(P_{\mathcal{R}})$ are denoted simply by $P_{\mathcal{R}\pi}$ and $\widetilde{P_{\mathcal{R}}}$, respectively, that is,

$$P_{\mathcal{R}\pi} = P_{\mathcal{R}(\pi(P))\cap\mathcal{R}(\pi(Q))}, \quad \widetilde{P_{\mathcal{R}}} = P_{\mathcal{R}\pi} - \pi(P_{\mathcal{R}}).$$
(4.10)

It is clear that $\pi(P_{\mathcal{R}}) \leq P_{\mathcal{R}\pi}$, so $\widetilde{P_{\mathcal{R}}}$ defined as above is a projection. By (4.2) we have $A^{(\pi(P),\pi(Q),0)} = I$ and when $k \geq 1$,

$$A^{(\pi(P),\pi(Q),k)} = [(\pi(P) - P_{\mathcal{R}\pi})(\pi(Q) - P_{\mathcal{R}\pi})]^k = [\pi(P)\pi(Q)]^k - P_{\mathcal{R}\pi}.$$

This together with (4.6) and (4.10) gives

$$\pi(A^{(P,Q,k)}) = A^{(\pi(P),\pi(Q),k)} + \widetilde{P_{\mathcal{R}}}$$

The derivation above shows that

$$\pi(X^{(P,Q,k)}) = X^{(\pi(P),\pi(Q),k)} + \widetilde{P_{\mathcal{R}}} \quad \text{whenever } X^{(P,Q,k)} \neq I.$$
(4.11)

Note that $\widetilde{P_{\mathcal{R}}}$ is a projection, and

$$X^{(\pi(P),\pi(Q),k)} \cdot \widetilde{P_{\mathcal{R}}} = \widetilde{P_{\mathcal{R}}} \cdot X^{(\pi(P),\pi(Q),k)} = 0 \quad \text{whenever } X^{(P,Q,k)} \neq I, \tag{4.12}$$

so by (4.11) together with the observation $||I|| = 1 \ge ||\widetilde{P_{\mathcal{R}}}||$, we arrive at

$$\|X^{(P,Q,k)}\| = \|\pi(X^{(P,Q,k)})\|$$

= max{ $\|X^{(\pi(P),\pi(Q),k)}\|, \|\widetilde{P}_{\mathcal{R}}\|$ }, $\forall k \ge 0.$ (4.13)

We are now ready to derive a couple of norm equations. The first one reads as follows.

Lemma 4.1 Let (π, X) be a faithful representation of o(P, Q, H). Then for every $X \in \{A, B, C, D\}$ and $k \in \mathbb{Z}_+$, we have

$$\|X^{(P,Q,k)}\| = \|X^{(\pi(P),\pi(Q),k)}\|.$$
(4.14)

Proof First, we prove that

$$\|A^{(P,Q,k)}\| = \|A^{(\pi(P),\pi(Q),k)}\|, \quad \forall k \in \mathbb{Z}_+.$$
(4.15)

The case of k = 0 is trivial, so we start with k = 1. From (4.11), we have

$$\|A^{(P,Q,1)}\|^{2} = \|\pi(A^{(P,Q,1)})\|^{2} = \|\pi(A^{(P,Q,1)})[\pi(A^{(P,Q,1)})]^{*}\|$$

$$= \|(A^{(\pi(P),\pi(Q),1)} + \widetilde{P_{\mathcal{R}}})[(A^{(\pi(P),\pi(Q),1)})^{*} + \widetilde{P_{\mathcal{R}}}]\|$$

$$= \|A^{(\pi(P),\pi(Q),1)}(A^{(\pi(P),\pi(Q),1)})^{*} + \widetilde{P_{\mathcal{R}}}\|$$

$$= \max\{\|A^{(\pi(P),\pi(Q),1)}(A^{(\pi(P),\pi(Q),1)})^{*}\|, \|\widetilde{P_{\mathcal{R}}}\|\}$$

$$= \max\{\|A^{(\pi(P),\pi(Q),1)}\|^{2}, \|\widetilde{P_{\mathcal{R}}}\|\}, \qquad (4.16)$$

C. H. Fu, Q. X. Xu and G. J. Yan

which implies that

$$\|A^{(P,Q,1)}\| = \|A^{(\pi(P),\pi(Q),1)}\|$$
(4.17)

whenever $||A^{(\pi(P),\pi(Q),1)}|| = 1$. Suppose that $||A^{(\pi(P),\pi(Q),1)}|| < 1$. Then according to (4.7)–(4.8), we have

$$\begin{aligned} \|(\pi(P)\pi(Q)\pi(P))^{2k-1} - P_{\mathcal{R}\pi}\| &= \|[A^{(\pi(P),\pi(Q),1)}(A^{(\pi(P),\pi(Q),1)})^*]^{2k-1}\| \\ &= \|A^{(\pi(P),\pi(Q),1)}(A^{(\pi(P),\pi(Q),1)})^*\|^{2k-1} \\ &= \|A^{(\pi(P),\pi(Q),1)}\|^{4k-2} \to 0 \quad \text{as } k \to \infty. \end{aligned}$$

It follows that $P_{\mathcal{R}\pi}$ is contained in the C^* -algebra $\pi(C^*_{(P,Q)})$, so $\pi^{-1}(P_{\mathcal{R}\pi}) \leq \pi^{-1}(\pi(P)) = P$ and $\pi^{-1}(P_{\mathcal{R}\pi}) \leq Q$ as well. Therefore, $\pi^{-1}(P_{\mathcal{R}\pi}) \leq P_{\mathcal{R}}$, and thus $P_{\mathcal{R}\pi} \leq \pi(P_{\mathcal{R}}) \leq P_{\mathcal{R}\pi}$. Plugging $\widetilde{P}_{\mathcal{R}} = 0$ into (4.16) gives (4.17) immediately.

Now, we consider the case that $k \ge 2$. Due to (4.8) and (4.17), we have

$$\|A^{(P,Q,k)}\| = \|A^{(P,Q,1)}\|^{2k-1} = \|A^{(\pi(P),\pi(Q),1)}\|^{2k-1} = \|A^{(\pi(P),\pi(Q),k)}\|.$$

This completes the proof of (4.15).

Next, we prove that

$$\|B^{(P,Q,k)}\| = \|B^{(\pi(P),\pi(Q),k)}\|, \quad \forall k \in \mathbb{Z}_+.$$
(4.18)

By (4.3), both $B^{(P,Q,0)}$ and $B^{(\pi(P),\pi(Q),0)}$ are projections, and

$$||B^{(P,Q,0)}|| = 0 \iff P \le Q \iff \pi(P) \le \pi(Q) \iff ||B^{(\pi(P),\pi(Q),0)}|| = 0.$$

This shows the validity of (4.18) for k = 0. Suppose that $k \ge 1$. Then by (4.9), we can get

$$\|B^{(P,Q,k)}\| = \|A^{(P,Q,1)}\|^{2k} = \|A^{(\pi(P),\pi(Q),1)}\|^{2k} = \|B^{(\pi(P),\pi(Q),k)}\|$$

Exchanging P with Q, we conclude that for every $k \in \mathbb{Z}_+$,

$$\|C^{(P,Q,k)}\| = \|A^{(Q,P,k)}\| = \|A^{(\pi(Q),\pi(P),k)}\| = \|C^{(\pi(P),\pi(Q),k)}\|, \\ \|D^{(P,Q,k)}\| = \|B^{(Q,P,k)}\| = \|B^{(\pi(Q),\pi(P),k)}\| = \|D^{(\pi(P),\pi(Q),k)}\|.$$

This completes the proof of (4.14).

Corollary 4.1 Let (π, X) be a faithful representation of o(P, Q, H). Then for every $n \in \mathbb{N}$, $X_i \in \{A, B, C, D\}$ and $k_i \in \mathbb{Z}_+$ $(1 \le i \le n)$, we have

$$\left\|\prod_{i=1}^{n} X_{i}^{(P,Q,k_{i})}\right\| = \left\|\prod_{i=1}^{n} X_{i}^{(\pi(P),\pi(Q),k_{i})}\right\|.$$
(4.19)

Proof From the definition of $X^{(P,Q,k)}$ given by (4.2)–(4.5), it is clear that

$$\prod_{i=1}^{n} X_{i}^{(P,Q,k_{i})} = Z^{(P,Q,k)} \quad \text{and} \quad \prod_{i=1}^{n} X_{i}^{(\pi(P),\pi(Q),k_{i})} = Z^{(\pi(P),\pi(Q),k)}$$

for some $Z \in \{A, B, C, D\}$ and $k \in \mathbb{Z}_+$. Due to (4.14), the desired norm equation follows.

We provide a technical lemma as follows.

Lemma 4.2 Let (P,Q) be a harmonious pair of projections on H. Suppose that $n \in \mathbb{N}$, $X_i \in \{A, B, C, D\}$ and $k_i \in \mathbb{Z}_+$ $(1 \le i \le n)$ are given such that

$$\left\|\prod_{i=1}^{n} X_{i}^{(P,Q,k_{i})}\right\| = 1.$$
(4.20)

Then for every $\lambda_i \in \mathbb{C}$ $(1 \leq i \leq n)$, we have

$$\left|\sum_{i=1}^{n} \lambda_{i}\right| \leq \left\|\sum_{i=1}^{n} \lambda_{i} X_{i}^{(P,Q,k_{i})}\right\|.$$
(4.21)

Proof Denote by $\lambda = \sum_{i=1}^{n} \lambda_i$. The verification of

$$|\lambda| \le \Big\| \sum_{i=1}^n \lambda_i X_i^{(P,Q,k_i)} \Big\|$$

will be carried out by taking several cases into consideration.

Case 1 $X_i^{(P,Q,\bar{k}_i)} \in \{I, P - P_{\mathcal{R}}\}$ for all $i \in \{1, 2, \dots, n\}$. If $X_i^{(P,Q,k_i)} \equiv I$, then (4.21) is obviously satisfied. Otherwise, we have

$$\prod_{i=1}^{n} X_i^{(P,Q,k_i)} = P - P_{\mathcal{R}},$$

so according to (4.20) we obtain $||P - P_{\mathcal{R}}|| = 1$. It follows that

$$\left\|\sum_{i=1}^{n} \lambda_i X_i^{(P,Q,k_i)}\right\| \ge \left\| (P - P_{\mathcal{R}}) \sum_{i=1}^{n} \lambda_i X_i^{(P,Q,k_i)} \right\| = \|\lambda(P - P_{\mathcal{R}})\| = |\lambda|.$$

Case 2 $X_i^{(P,Q,k_i)} \in \{I, Q - P_{\mathcal{R}}\}$ for all $i \in \{1, 2, \dots, n\}$. The same verification gives (4.21).

Case 3 There exist $i_1, i_2 \in \{1, 2, \dots, n\}$ such that $X_{i_1}^{(P,Q,k_{i_1})} \notin \{I, P - P_{\mathcal{R}}\}$ and $X_{i_2}^{(P,Q,k_{i_2})} \notin \{I, Q - P_{\mathcal{R}}\}$. In this case, firstly we show that

$$\|A^{(P,Q,1)}\| = 1. (4.22)$$

Subcase 1 $k_{i_1} \neq 0$ or $k_{i_2} \neq 0$. Without loss of generality, we may assume that $k_{i_1} \neq 0$. In this subcase,

$$1 \ge \|A^{(P,Q,1)}\| = \|C^{(P,Q,1)}\| \ge \|X_{i_1}^{(P,Q,k_{i_1})}\| \ge \left\|\prod_{i=1}^n X_i^{(P,Q,k_i)}\right\| = 1.$$

Thus, (4.22) is satisfied.

Subcase 2 $k_{i_1} = k_{i_2} = 0$. In this subcase, we have $X_{i_1}^{(P,Q,k_{i_1})} = Q - P_{\mathcal{R}}$ and $X_{i_2}^{(P,Q,k_{i_2})} = P - P_{\mathcal{R}}$, which mean that

$$\prod_{i=1}^{n} X_{i}^{(P,Q,k_{i})} = W_{1}A^{(P,Q,1)}W_{2} \quad \text{or} \quad \prod_{i=1}^{n} X_{i}^{(P,Q,k_{i})} = W_{1}C^{(P,Q,1)}W_{2}$$

for some contractions $W_1, W_2 \in \mathcal{L}(H)$. As is shown in Subcase 1, (4.22) is also satisfied.

Since (P, Q) is harmonious, the Halmos' two projections theorem is applicable. Following the notations as in Remark 3.1, we have¹

$$P - P_{\mathcal{R}} = 0 \oplus I_{H_2} \oplus 0 \oplus 0 \oplus I_{H_5} \oplus 0,$$

$$Q - P_{\mathcal{R}} = 0 \oplus 0 \oplus I_{H_3} \oplus 0 \oplus Q_0,$$

$$A^{(P,Q,1)} = 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus S,$$

(4.23)

where Q_0 is defined by (3.15) and S is given by

$$S = \begin{pmatrix} A & A^{\frac{1}{2}} (I_{H_5} - A)^{\frac{1}{2}} U_0^* \\ 0 & 0 \end{pmatrix}.$$

Based on the above block matrices, we have

$$||A|| = \left\| \begin{pmatrix} A & 0\\ 0 & 0 \end{pmatrix} \right\| = ||SS^*|| = ||S||^2 = ||A^{(P,Q,1)}||^2 = 1.$$
(4.24)

This together with the positivity and contraction of A implies that $1 \in sp(A)$, where sp(A) denotes the spectrum of A.

It is easy to verify that for every $X \in \{A, B, C, D\}$ and $k \in \mathbb{Z}_+$, there exists $r \in \mathbb{N}$ depending on X and k such that

$$A^{(P,Q,1)}X^{(P,Q,k)}(P-P_{\mathcal{R}}) = 0 \oplus 0 \oplus 0 \oplus 0 \oplus \begin{pmatrix} A^r \\ & 0 \end{pmatrix}.$$

Consequently,

$$\left\|\sum_{i=1}^{n} \lambda_{i} X_{i}^{(P,Q,k_{i})}\right\| \geq \left\|A^{(P,Q,1)}\left(\sum_{i=1}^{n} \lambda_{i} X_{i}^{(P,Q,k_{i})}\right)(P-P_{\mathcal{R}})\right\|$$
$$= \left\|\left(\sum_{i=1}^{n} \lambda_{i} A^{r_{i}}\right)\right\| = \left\|\sum_{i=1}^{n} \lambda_{i} A^{r_{i}}\right\|$$
(4.25)

for some $r_i \in \mathbb{N}$ $(1 \le i \le n)$. Let $f(t) = \sum_{i=1}^n \lambda_i t^{r_i}$ for $t \ge 0$. Then

$$\left\|\sum_{i=1}^{n} \lambda_{i} A^{r_{i}}\right\| = \max\{|f(t)| : t \in \operatorname{sp}(A)\} \ge |f(1)| = |\lambda|.$$

Combining the above inequality with (4.25) gives (4.21).

Along the same line, another technical lemma can be provided as follows.

Lemma 4.3 Let (P,Q) be a harmonious pair of projections on H such that $PQ \neq QP$. Suppose that $n \in \mathbb{N}$, $X_i \in \{A, B, C, D\}$ and $k_i \in \mathbb{Z}_+$ are given such that (4.20) is satisfied and $X_i^{(P,Q,k_i)} \neq I$ for all $i \in \{1, 2, \dots, n\}$. Then for every $\lambda_i \in \mathbb{C}$ $(0 \leq i \leq n)$, we have

$$|\lambda_0| \le \left\| \lambda_0 (I - P_{\mathcal{R}}) + \sum_{i=1}^n \lambda_i X_i^{(P,Q,k_i)} \right\|.$$
(4.26)

¹ In some cases, it may happen that the closed subspaces H_5 and H_6 constructed for the Halmos decomposition are trivial, that is, $H_5 = H_6 = \{0\}$. Due to (4.22), both H_5 and H_6 are non-trivial, hence $A^{(P,Q,1)}$ has the form (4.23).

C^* -Isomorphisms Associated with Two Projections

Proof As in the proof of Lemma 4.2, the verification of (4.26) will be dealt with via several cases. Let $\lambda \in \mathbb{C}$ and $W \in \mathcal{L}(H)$ be defined by

$$\lambda = \sum_{i=0}^{n} \lambda_i, \quad W = \lambda_0 (I - P_{\mathcal{R}}) + \sum_{i=1}^{n} \lambda_i X_i^{(P,Q,k_i)}.$$
(4.27)

Case 1 $X_i^{(P,Q,k_i)} = P - P_{\mathcal{R}}$ for all $i \in \{1, 2, \dots, n\}$. In this case,

$$W = \lambda_0 (I - P) + \lambda (P - P_{\mathcal{R}}).$$

Since $PQ \neq QP$, we have $I - P \neq 0$, hence

$$||W|| \ge ||\lambda_0(I - P)|| = |\lambda_0|.$$

Case 2 $X_i^{(P,Q,k_i)} = Q - P_{\mathcal{R}}$ for all $i \in \{1, 2, \dots, n\}$. As is shown in the above case, we have $||W|| \ge |\lambda_0|$.

Case 3 There exist $i_1, i_2 \in \{1, 2, \dots, n\}$ such that $X_{i_1}^{(P,Q,k_{i_1})} \neq P - P_{\mathcal{R}}$ and $X_{i_2}^{(P,Q,k_{i_2})} \neq Q - P_{\mathcal{R}}$. Following the notations as in Remark 3.1, we have $H = \bigoplus_{i=1}^{6} H_i$ and up to unitary equivalence, every operator $Y \in \mathcal{L}(H)$ has the matrix form $Y = (Y_{i_j})_{1 \leq i,j \leq 6}$ with $Y_{i_j} \in \mathcal{L}(H_j, H_i)$. Let the linear map $\phi : \mathcal{L}(H) \to \mathcal{L}(H_6)$ be defined by $\phi(Y) = Y_{66}$. According to the definition of $X^{(P,Q,k_i)}$ given by (4.2)–(4.5), we have $\phi(B^{(P,Q,0)}) = 0$ and

$$\phi(A^{(P,Q,k)}) = \phi(B^{(P,Q,k)}) = \phi(C^{(P,Q,k)}) = 0$$

for every $k \geq 1$. Furthermore, direct computations yield

$$\phi(D^{(P,Q,k)}) = U_0(I-A)A^k U_0^*, \quad \forall k \in \mathbb{Z}_+.$$

It follows from (4.27) that²

$$\phi(W) = U_0 \Big[\lambda_0 I + \sum_j \lambda_{i_j} (I - A) A^{k_{i_j}} \Big] U_0^*,$$

where i_j is chosen in $\{1, 2, \dots, n\}$ whenever $X_{i_j}^{(P,Q,k_{i_j})} = D^{(P,Q,k_{i_j})}$. Let

$$f(t) = \lambda_0 + \sum_j \lambda_{i_j} (1-t) t^{k_{i_j}}, \quad t \ge 0.$$

Since $0 \le A \le I$ and $1 \in sp(A)$ (see (4.24)), we have

$$||W|| \ge ||\phi(W)|| = \max\{|f(t)| : t \in \operatorname{sp}(A)\} \ge |f(1)| = |\lambda_0|.$$

This completes the proof of (4.26).

Now, we provide the main result of this section as follows.

Theorem 4.1 For each faithful representation (π, X) of o(P, Q, H), a faithful representation $(\tilde{\pi}, X)$ of i(P, Q, H) can be induced such that $\tilde{\pi}(I) = \pi(I)$, and

$$\widetilde{\pi}(P - P_{\mathcal{R}}) = \pi(P) - \pi(P) \wedge \pi(Q), \quad \widetilde{\pi}(Q - P_{\mathcal{R}}) = \pi(Q) - \pi(P) \wedge \pi(Q).$$
(4.28)

² If $X_i \neq D$ for all $i \in \{1, 2, \dots, n\}$, then $\phi(W) = \lambda_0 I$, so in this case $\|\phi(W)\| = |\lambda_0|$.

Proof According to (4.1), we need only to prove that $||T|| = ||\underline{T}||$ for every $n \in \mathbb{N}$, $X_i \in \{A, B, C, D\}$, $k_i \in \mathbb{Z}_+$ and $\lambda_i \in \mathbb{C}$ $(0 \le i \le n)$ such that $X_i^{(P,Q,k_i)} \ne I$ for all $i \ge 1$, where³

$$T = \lambda_0 I + \sum_{i=1}^n \lambda_i X_i^{(P,Q,k_i)}, \quad \underline{T} = \lambda_0 I + \sum_{i=1}^n \lambda_i X_i^{(\pi(P),\pi(Q),k_i)}.$$
 (4.29)

If $\widetilde{P_{\mathcal{R}}} = 0$, then we see from (4.11) that $\pi(T) = \underline{T}$, which gives $||T|| = ||\underline{T}||$ as π is faithful. In what follows, we assume that $\widetilde{P_{\mathcal{R}}} \neq 0$. In this case, we have $PQ \neq QP$. Otherwise, $P_{\mathcal{R}} = PQ$ and $P_{\mathcal{R}\pi} = \pi(P)\pi(Q) = \pi(P_{\mathcal{R}})$, which contradicts the assumption of $\widetilde{P_{\mathcal{R}}} \neq 0$. Let $\lambda = \sum_{i=0}^{n} \lambda_i$. By (4.11) we have

$$\pi(T) = \underline{T} + (\lambda - \lambda_0)\widetilde{P_{\mathcal{R}}} = L + \lambda \widetilde{P_{\mathcal{R}}}, \qquad (4.30)$$

where

$$L = \lambda_0 (I - \widetilde{P_{\mathcal{R}}}) + \sum_{i=1}^n \lambda_i X_i^{(\pi(P), \pi(Q), k_i)} = Z + \lambda_0 \pi(P_{\mathcal{R}}),$$

in which

$$Z = \lambda_0 (I - P_{\mathcal{R}\pi}) + \sum_{i=1}^n \lambda_i X_i^{(\pi(P), \pi(Q), k_i)}$$

Hence

$$|L|| = \max\{||Z||, |\lambda_0| ||\pi(P_{\mathcal{R}})||\},$$
(4.31)

$$||T|| = ||\pi(T)|| = \max\{||L||, |\lambda| ||P_{\mathcal{R}}||\} = \max\{||L||, |\lambda|\},$$
(4.32)

$$\|\underline{T}\| = \|L + \lambda_0 P_{\mathcal{R}}\| = \max\{\|L\|, |\lambda_0| \|P_{\mathcal{R}}\|\} = \max\{\|L\|, |\lambda_0|\|\}.$$
(4.33)

Let

$$\alpha = \left\| \prod_{i=1}^{n} X_i^{(\pi(P), \pi(Q), k_i)} \right\|.$$

By (4.19) and (4.11)-(4.12), we have

$$\alpha = \left\| \pi \left(\prod_{i=1}^{n} X_i^{(P,Q,k_i)} \right) \right\| = \left\| \prod_{i=1}^{n} \pi (X_i^{(P,Q,k_i)}) \right\|$$
$$= \left\| \prod_{i=1}^{n} X_i^{(\pi(P),\pi(Q),k_i)} + \widetilde{P_{\mathcal{R}}} \right\| = \max\{\alpha, \|\widetilde{P_{\mathcal{R}}}\|\} = \max\{\alpha, 1\}.$$

Hence $\alpha = 1$, which apparently gives

$$\left\|\prod_{i=0}^{n} X_{i}^{(\pi(P),\pi(Q),k_{i})}\right\| = 1$$

by setting $X_0^{(\pi(P),\pi(Q),k_0)} = I$. It is notable that $\pi(P)$ and $\pi(Q)$ are projections acting on a Hilbert space, so $(\pi(P),\pi(Q))$ is harmonious. It follows from Lemmas 4.2–4.3 that

$$||\underline{T}|| \ge |\lambda|$$
 and $||Z|| \ge |\lambda_0|$.

³ When $\lambda_0 = 0$, the first term in T and <u>T</u> will disappear.

So by (4.31) we have $||L|| \ge ||Z|| \ge |\lambda_0|$, which leads by (4.33) to $||\underline{T}|| = ||L||$. Combining this equality with $||\underline{T}|| \ge |\lambda|$ and (4.32), we arrive at $||T|| = ||\underline{T}|| = ||L||$.

Under the restriction of $\lambda_0 = 0$ in (4.29), a corollary can be derived immediately as follows.

Corollary 4.2 Let $C^*(P, Q, P_{\mathcal{R}})$ and $C^*(P - P_{\mathcal{R}}, Q - P_{\mathcal{R}})$ denote the C^* -subalgebras of $\mathcal{L}(H)$ generated by elements in $\{P, Q, P_{\mathcal{R}}\}$ and $\{P - P_{\mathcal{R}}, Q - P_{\mathcal{R}}\}$, respectively. Then each faithful representation (π, X) of $C^*(P, Q, P_{\mathcal{R}})$ can induce a faithful representation $(\tilde{\pi}, X)$ of $C^*(P - P_{\mathcal{R}}, Q - P_{\mathcal{R}})$ such that (4.28) is satisfied.

In the derivations given as above, we merely consider the meaningfulness of $P_{\mathcal{R}}$. At this moment, we do not know whether there exist projections P and Q such that \mathcal{R} is orthogonally complemented, whereas \mathcal{N} fails to be orthogonally complemented⁴. To give a partial answer, we need an auxiliary lemma, whose proof is given for the sake of completeness.

Lemma 4.4 Let $P, Q \in \mathcal{P}(H)$ be such that the sequence $\{(PQP)^n\}_{n=1}^{\infty}$ converges to $T \in \mathcal{L}(H)$ in norm-topology. Then T is a projection such that $\mathcal{R}(T) = \mathcal{R}$, where \mathcal{R} is defined by (1.3).

Proof Clearly, T is a projection such that $\mathcal{R} \subseteq \mathcal{R}(T)$ and PT = T. So it needs only to show that QT = T, or equivalently, $[(I - Q)T]^*(I - Q)T = 0$, which can be derived from the equations

$$(PQP)^n(I-Q)(PQP)^n = (PQP)^{2n} - (PQP)^{2n+1}, \quad \forall n \in \mathbb{N}.$$

Corollary 4.3 Let (P, Q, H) be a matched triple such that $||(P - P_R)(Q - P_R)|| < 1$. Then (I - Q, I - P, H) is also a matched triple.

Proof Choose any faithful unital representation (π, X) of $\mathcal{L}(H)$. Let $P_{\mathcal{R}\pi}$ be defined by (4.10), and put

$$P_{\mathcal{N}\pi} = (\pi(I-Q)) \land (\pi(I-P)),$$

$$S = [I - \pi(Q) - P_{\mathcal{N}\pi}][I - \pi(P) - P_{\mathcal{N}\pi}],$$

$$T = [\pi(P) - P_{\mathcal{R}\pi}][\pi(Q) - P_{\mathcal{R}\pi}],$$

$$W = (I - P)(I - Q)(I - P).$$

(4.34)

Then

$$P_{\mathcal{N}\pi} = P_{\mathcal{R}(\pi(I-Q))\cap\mathcal{R}(\pi(I-P))} = P_{\mathcal{R}(I-\pi(Q))\cap\mathcal{R}(I-\pi(P))}$$
$$= P_{\mathcal{N}(\pi(P))\cap\mathcal{N}(\pi(Q))}.$$

By Theorems 3.1 and 4.1, there exists a unitary $U \in \mathbb{B}(X)$ such that

$$||S|| = ||U^*TU|| = ||T|| = ||(P - P_{\mathcal{R}})(Q - P_{\mathcal{R}})|| < 1$$

hence $||(S^*S)^n|| = ||S^*S||^n = ||S||^{2n} \to 0$ as $n \to \infty$. For each $n \in \mathbb{N}$, it is clear that

$$(S^*S)^n = (\pi(W))^n - P_{\mathcal{N}\pi},$$

so $\{(\pi(W))^n\}_{n=1}^{\infty}$ is norm-convergent and thus is a Cauchy sequence, and so does for $\{W^n\}_{n=1}^{\infty}$ by the faithfulness of π . Due to the completeness of $\mathcal{L}(H)$, $\{W^n\}_{n=1}^{\infty}$ is norm-convergent. The assertion then follows from Lemma 4.4.

⁴ Alternatively, is it possible to find a matched triple (P, Q, H) such that (I - Q, I - P, H) is not a matched triple?

Remark 4.1 Our next example shows that there exists a matched triple (P, Q, H) such that the sequence $\{(PQP)^n\}_{n=1}^{\infty}$ does not converge strongly to $P_{\mathcal{R}}$.

Example 4.1 Let \mathfrak{A}, H, P and Q be as in Example 2.1. According to (2.8), we have $P_{\mathcal{R}} = 0$. From (2.7) we obtain

$$[(PQP)^n](0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

for every $n \ge 1$. It follows that

$$||(PQP)^n P|| \ge ||[(PQP)^n P](0)|| = 1, \quad \forall n \ge 1.$$

Thus, $\{(PQP)^n\}_{n=1}^{\infty}$ does not converge strongly to zero.

Acknowledgement The authors thank two referees for valuable comments and suggestions.

References

- Anoussis, M., Katavolos, A. and Todorov, I. G., Angles in C*-algebras, Houston J. Math., 37, 2011, 501–517.
- [2] Corach, G. and Maestripieri, A., Products of orthogonal projections and polar decompositions, *Linear Algebra Appl.*, 434, 2011, 1594–1609.
- [3] Deutsch, F., The angle between subspaces of a Hilbert space. Approximation theory, wavelets and applications (Maratea, 1994), 107–130, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 454, Kluwer Acad. Publ., Dordrecht, 1995.
- [4] Friedrichs, K., On certain inequalities and characteristic value problems for analytic functions and for functions of two variables, *Trans. Amer. Math. Soc.*, 41(3), 1937, 321–364.
- [5] Lance, E. C., Hilbert C*-Modules–A Toolkit for Operator Algebraists, Cambridge University Press, Cambridge, 1995.
- [6] Liu, N., Luo, W. and Xu, Q. X., The polar decomposition for adjointable operators on Hilbert C*-modules and centered operators, Adv. Oper. Theory, 3(4), 2018, 855–867.
- [7] Luo, W., Moslehian, M. S. and Xu, Q. X., Halmos' two projections theorem for Hilbert C*-module operators and the Friedrichs angle of two closed submodules, *Linear Algebra Appl.*, 577, 2019, 134–158.
- [8] Manuilov, V. M., Moslehian, M. S. and Xu, Q. X., Douglas factorization theorem revisited, Proc. Amer. Math. Soc., 148(3), 2020, 1139–1151.
- [9] von Neumann, J., On rings of operators. Reduction theory, Ann. of Math., 50, 1949, 401–485.
- [10] Paschke, W. L., Inner product modules over B*-algebras, Trans. Amer. Math. Soc., 182, 1973, 443-468.
- [11] Pedersen, G. K., C*-Algebras and Their Automorphism Groups, London Math. Soc. Monographs, 14, Academic Press, New York, 1979.
- [12] Xu, Q. X. and Yan, G. J., Harmonious projections and Halmos' two projections theorem for Hilbert C*-module operators, *Linear Algebra Appl.*, **601**, 2020, 265–284.