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C
∗-Isomorphisms Associated with Two Projections on a

Hilbert C∗-Module∗

Chunhong FU1 Qingxiang XU2 Guanjie YAN3

Abstract Motivated by two norm equations used to characterize the Friedrichs angle, this
paper studies C∗-isomorphisms associated with two projections by introducing the matched
triple and the semi-harmonious pair of projections. A triple (P,Q,H) is said to be matched
if H is a Hilbert C∗-module, P and Q are projections on H such that their infimum P ∧Q

exists as an element of L(H), where L(H) denotes the set of all adjointable operators on
H . The C∗-subalgebras of L(H) generated by elements in {P − P ∧Q,Q− P ∧Q, I} and
{P,Q, P ∧Q, I} are denoted by i(P,Q,H) and o(P,Q,H), respectively. It is proved that
each faithful representation (π,X) of o(P,Q,H) can induce a faithful representation (π̃,X)
of i(P,Q,H) such that

π̃(P − P ∧Q) = π(P )− π(P ) ∧ π(Q),

π̃(Q− P ∧Q) = π(Q)− π(P ) ∧ π(Q).

When (P,Q) is semi-harmonious, that is, R(P +Q) and R(2I − P −Q) are both orthog-
onally complemented in H , it is shown that i(P,Q,H) and i(I −Q, I −P,H) are unitarily
equivalent via a unitary operator in L(H). A counterexample is constructed, which shows
that the same may be not true when (P,Q) fails to be semi-harmonious. Likewise, a
counterexample is constructed such that (P,Q) is semi-harmonious, whereas (P, I −Q) is
not semi-harmonious. Some additional examples indicating new phenomena of adjointable
operators acting on Hilbert C∗-modules are also provided.

Keywords Hilbert C∗-module, Projection, Orthogonal complementarity,
C∗-Isomorphism
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1 Introduction

Let P and Q be two projections on a Hilbert space X . Their infimum P ∧Q is the projection

from X onto R(P ) ∩R(Q), which can be obtained by taking the limit of {(PQP )n}∞n=1 in the

strong operator topology (see [9, Lemma 22]). The cosine of the Friedrichs angle (see [4])

between M = R(P ) and N = R(Q) is denoted by c(M,N), and can be calculated as

c(M,N) = ‖(P − P ∧Q)(Q− P ∧Q)‖ .
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The characterization of c(M,N) = c(N⊥,M⊥) given in [3, Section 2] yields

‖(P − P ∧Q)(Q− P ∧Q)‖

= ‖[I −Q − (I −Q) ∧ (I − P )][I − P − (I −Q) ∧ (I − P )]‖. (1.1)

The Friedrichs angle has also been studied in the setting of C∗-algebras. To deal with the

Friedrichs angle associated with two projections P and Q in a C∗-algebra A, one approach

employed in [1] is to embed A into its enveloping von Neumann algebra A′′ via the universal

representation (πu, Hu) of A, and then to use the universal property of A′′ (see [11, Theorem

3.7.7]). By identifying A with πu(A), P ∧ Q can be obtained in A′′, and it is proved in [1,

Proposition 2.4] that for every faithful representation (π,X) of A,

‖(P − P ∧Q)(Q− P ∧Q)‖

= ‖[π(P )− π(P ) ∧ π(Q)][π(Q) − π(P ) ∧ π(Q)]‖. (1.2)

Hilbert C∗-modules are natural generalizations of Hilbert spaces, and every C∗-algebra can

be regarded as a Hilbert C∗-module over itself in a natural way. The purpose of this paper

is, in the framework of Hilbert C∗-modules, to give a deeper understanding of (1.1)–(1.2) via

algebraic systems rather than on products of finitely many operators.

It is notable that a closed submodule of a Hilbert C∗-module may fail to be orthogonally

complemented. In this paper much attention has been paid on this aspect. Let L(H) be the

set of all adjointable operators on a Hilbert C∗-module H . For two projections P,Q ∈ L(H),

let

R = R(Q) ∩R(P ) and N = N (Q) ∩N (P ). (1.3)

To check the validity of the Halmos’ two projections theorem in the Hilbert C∗-module case,

the term of the harmonious pair of projections is introduced in [7, Section 4], and it is shown

later in [12, Theorem 3.3] that for every pair (P,Q) of projections, the Halmos’ two projections

theorem is valid if and only if (P,Q) is harmonious. In view of the conditions stated in [7,

Lemma 5.4] and [12, Theorem 3.3], we make a definition as follows.

Definition 1.1 A pair (P,Q) of projections on a Hilbert C∗-module H is said to be semi-

harmonious if both R(P +Q) and R(2I − P −Q) are orthogonally complemented in H. If

(P,Q) and (P, I −Q) are both semi-harmonious, then (P,Q) is said to be harmonious.

Let R and N be defined by (1.3) for projections P and Q on a Hilbert C∗-module H . Since

R(2I − P −Q)
⊥

= R and R(P +Q)
⊥

= N , a condition weaker than the semi-harmony of

(P,Q) turns out to be the orthogonal complementarity of R and N , which is necessary and

sufficient to make use of the notations PR and PN (the projections from H onto R and N ,

respectively). The example constructed in [7, Section 3] (see also the proof of Theorem 2.2)

shows that there exist projections P and Q on certain Hilbert C∗-module such that R = N =

{0}, whereas (P,Q) is not semi-harmonious. So, generally the meaningfulness of PR and PN

does not imply the semi-harmony of (P,Q).

Next, we introduce the matched triple as follows.

Definition 1.2 A triple (P,Q,H) is said to be matched if H is a Hilbert C∗-module, P

and Q are projections on H such that R defined by (1.3) is orthogonally complemented in H.

In this case, the projection PR is denoted by P ∧ Q. The C∗-subalgebras of L(H) generated

by elements in {P − P ∧Q,Q − P ∧ Q, I} and {P,Q, P ∧ Q, I} are denoted by i(P,Q,H) and

o(P,Q,H), and are called the inner algebra and the outer algebra, respectively.
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Definition 1.3 Two matched triple (Pi, Qi, Hi) (i = 1, 2) are said to be innerly unitarily

equivalent if there exists a unitary operator U : H1 → H2 such that

U(P1 − P1 ∧Q1)U
∗ = P2 − P2 ∧Q2,

U(Q1 − P1 ∧Q1)U
∗ = Q2 − P2 ∧Q2.

Recall that a pair (π,X) is said to be a representation of a C∗-algebra A if X is a Hilbert

space and π : A → B(X) is a C∗-morphism, where B(X) denotes the set of all bounded linear

operators on X .

Definition 1.4 Let (P,Q,H) be a matched triple. A representation (π,X) of o(P,Q,H)

is called an outer representation of (P,Q,H). If furthermore a C∗-morphism π̃ : i(P,Q,H) →

B(X) can be induced such that π̃(I) = π(I), and

π̃(P − P ∧Q) = π(P )− π(P ) ∧ π(Q),

π̃(Q− P ∧Q) = π(Q)− π(P ) ∧ π(Q),

then (π,X) is called an inner-outer representation of (P,Q,H). When both π and π̃ are faithful,

(π,X) is called a faithful inner-outer representation of (P,Q,H).

Remark 1.1 Let (π,X) be an inner-outer representation of (P,Q,H). It is notable that

generally π(P )∧ π(Q) is taken in the von Neumann algebra [π[o(P,Q,H)]]′′ rather than in the

C∗-algebra π[o(P,Q,H)], so it may happen that π(P ∧Q) 6= π(P ) ∧ π(Q).

With the terms given as above, we list the main results of this paper as follows:

(1) There exist projections P and Q on certain Hilbert C∗-module H such that (P,Q) is

semi-harmonious, whereas it fails to be harmonious (see Theorem 2.2).

(2) For every semi-harmonious pair (P,Q) of projections on a Hilbert C∗-module H , the

matched triples (P,Q,H) and (I −Q, I − P,H) are innerly unitarily equivalent (see Theorem

3.1).

(3) There exist projections P and Q on certain Hilbert C∗-module H such that the triples

(P,Q,H) and (I − Q, I − P,H) are both matched, whereas they are not innerly unitarily

equivalent (see Theorem 3.2).

(4) Every faithful outer representation of a matched triple is a faithful inner-outer represen-

tation (see Theorem 4.1).

An application of Theorems 3.1 and 4.1 will be illustrated in Corollary 4.3. Another appli-

cation, as has been mentioned earlier, concerns a new insight into (1.1)–(1.2). Let P and Q be

two projections on a Hilbert C∗-module H such that R and N defined by (1.3) are orthogo-

nally complemented in H . By Theorem 4.1, we will see that each faithful unital representation

(π,X) of L(H) can induce unital C∗-isomorphisms π̃1 : i(P,Q,H) → i
(
π(P ), π(Q), X

)
and

π̃2 : i(I −Q, I − P,H) → i
(
I − π(Q), I − π(P ), X

)
such that

π̃1(P − P ∧Q) = π(P )− π(P ) ∧ π(Q),

π̃1(Q− P ∧Q) = π(Q)− π(P ) ∧ π(Q),

π̃2

[
I −Q− (I −Q) ∧ (I − P )

]
= I − π(Q)− π(I −Q) ∧ π(I − P ),

π̃2

[
I − P − (I −Q) ∧ (I − P )

]
= I − π(P )− π(I −Q) ∧ π(I − P ).

Thus, ‖π̃1(x)‖ = ‖x‖ for every x ∈ i(P,Q,H). Specifically, if we put x = (P−P∧Q)(Q−P∧Q),

then (1.2) is obtained.
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Note that (π(P ), π(Q)) is a pair of projections acting on a Hilbert space, so it is harmonious.

Hence, by Theorem 3.1 there exists a unitary operator U ∈ B(X) such that

U [π(P )− π(P ) ∧ π(Q)]U∗ = I − π(Q)− π(I −Q) ∧ π(I − P ),

U [π(Q)− π(P ) ∧ π(Q)]U∗ = I − π(P )− π(I −Q) ∧ π(I − P ).

Thus, a C∗-isomorphism ρ : i(P,Q,H) → i(I −Q, I − P,H) can be constructed as

ρ(x) = (π̃2)
−1Uπ̃1(x)U

∗, ∀x ∈ i(P,Q,H).

Therefore, ‖ρ(x)‖ = ‖x‖ for every x ∈ i(P,Q,H). Likewise, if we take x = (P − P ∧ Q)(Q −

P ∧Q), then (1.1) is obtained. So, a substantive generalization of (1.1)–(1.2) has been made.

The paper is organized as follows. The main purpose of Section 2 is to construct two

projections P and Q such that (P,Q) is semi-harmonious, whereas it fails to be harmonious.

Section 3 focuses on the construction of the unitary operator U satisfying (3.3)–(3.4). Section

4 is devoted to the study of the faithful inner-outer representation of a matched triple.

2 Semi-Harmonious Pairs of Projections

Throughout the rest of this paper, N, Z+ and C are the sets of all positive integers, non-

negative integers and complex numbers, respectively. Unless otherwise specified, A is a C∗-

algebra, E,H and K are Hilbert A-modules (see [5, 10]). The set of all adjointable operators

from H to K is denoted by L(H,K). Given A ∈ L(H,K), the adjoint operator, the range and

the null space of A are denoted by A∗, R(A) and N (A), respectively. Let |A| designate the

square root of A∗A. In case H = K, L(H,K) is abbreviated to L(H), whose subset consisting

of all positive elements is denoted by L(H)+. The unit of L(H) (namely, the identity operator

on H) is denoted by IH , or simply by I when no ambiguity arises. An operator P ∈ L(H) is

said to be a projection if P = P ∗ = P 2. The set of all projections on H is denoted by P(H).

Let M be a closed submodule of H . Clearly, there exists at most a projection in L(H),

written PM , such that R(PM ) = M . It can be easily verified that PM exists if and only if

H = M +M⊥, where

M⊥ = {x ∈ H : 〈x, y〉 = 0, ∀y ∈ M}.

In this case, M is said to be orthogonally complemented in H .

To construct semi-harmonious pairs of projections, we need a couple of lemmas.

Lemma 2.1 (see [6, Proposition 2.9]) For every T ∈ L(H)+ and α > 0, we have R(T ) =

R(Tα).

Lemma 2.2 (see [5, Proposition 3.7]) For every T ∈ L(H,K), we have R(T ) = R(TT ∗).

Lemma 2.3 (see [6, Proposition 2.7]) Let B,C ∈ L(E,H) be such that R(B) = R(C).

Then for every A ∈ L(H,K), we have R(AB) = R(AC).

An approach to construct semi-harmonious pairs of projections reads as follows.

Theorem 2.1 For every P,Q ∈ P(H), let M ⊆ H be defined by

M = R
[
(P +Q)(2I − P −Q)

]
. (2.1)

Then P |M and Q|M are projections on M such that (P |M , Q|M ) is semi-harmonious, where

P |M and Q|M are the restrictions of P and Q on M , respectively.
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Proof To simplify the notation, we put

A = P +Q and G = R
[
A(2I −A)

]
. (2.2)

Since G defined as above is the range of an adjointable operator, its closure M is a Hilbert

A-module.

For every T ∈ L(H) and X ⊆ H , let TX =
{
Tx : x ∈ X

}
. Then TX = R(T |X), and the

boundedness of T gives TX = TX. Hence

AM = AG and (2I −A)M = (2I −A)G. (2.3)

Since A and 2I − A are positive and commutative, we may combine (2.2)–(2.3) with Lemmas

2.1 and 2.3 to get

R(P |M +Q|M ) = AM = AG = R
[
(2I −A)A2

]

= R
[
(2I −A)A

]
= M. (2.4)

Similarly,

R(2IM − P |M −Q|M ) = (2I −A)M = (2I −A)G = R
[
A(2I −A)2

]

= R
[
A(2I −A)

]
= M. (2.5)

Furthermore, direct computations yield

P (2I −A)A = P (I −Q)P = A(2I −A)P,

Q(2I −A)A = Q(I − P )Q = A(2I −A)Q,

which lead clearly to PM ⊆ M and QM ⊆ M . Consequently, P |M and Q|M are projections

on M . In view of (2.4)–(2.5), we conclude that (P |M , Q|M ) is semi-harmonious.

Theorem 2.2 There exist projections P and Q on certain Hilbert C∗-module such that

(P,Q) is semi-harmonious, whereas it fails to be harmonious.

Proof We follow the line initiated in [8, Section 3] and modified in [7, Section 3]. Let

M2(C) and I2 be the set of all 2 × 2 complex matrices and the identity matrix in M2(C),

respectively. Denote by ‖ · ‖ the operator norm on M2(C). Let A = C([0, 1];M2(C)) be the set

of all continuous matrix-valued functions from [0, 1] to M2(C). For x ∈ A and t ∈ [0, 1], we put

x∗(t) = (x(t))∗ and ‖x‖ = max
0≤s≤1

‖x(s)‖.

With the ∗-operation as above and the usual algebraic operations, A is a unital C∗-algebra,

which is also a Hilbert A-module with the inner-product given by

〈x, y〉 = x∗y for x, y ∈ A.

Let e be the unit of A, that is, e(t) = I2 for every t ∈ [0, 1]. It is known that A ∼= L(A) via

a → La (see [7, Section 3]), where La(x) = ax for a, x ∈ A. For simplicity, we identify L(A)

with A and set

ct = cos
π

2
t and st = sin

π

2
t for t ∈ [0, 1]. (2.6)
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Let P,Q ∈ A be projections determined by the matrix-valued functions

P (t) ≡

(
1 0
0 0

)
and Q(t) =

(
c2t stct
stct s2t

)
for t ∈ [0, 1]. (2.7)

It is shown in [7, Section 3] that

R(P ) ∩R(Q) = R(P ) ∩ N (Q) = N (P ) ∩R(Q) = N (P ) ∩ N (Q) = {0}. (2.8)

Now, let H = A and M be defined by (2.1). According to Theorem 2.1, (P |M , Q|M ) is semi-

harmonious. In what follows, we prove that (P |M , Q|M ) is not harmonious.

Direct computation yields

(P +Q)(2I − P −Q) = P +Q− PQ−QP = (P −Q)(P −Q)∗,

which leads by (2.1) and Lemma 2.2 to

M = R(P −Q). (2.9)

Utilizing (2.7) we obtain P −Q = au, where a, u ∈ H are determined by

a(t) =

(
st 0
0 st

)
, u(t) =

(
st −ct
−ct −st

)
, t ∈ [0, 1].

Since u is a unitary and M can be represented by (2.9), we have M = R(a). Specifically,

a = ae ∈ M, R(P |M + IM −Q|M ) = R(T ),

where T = (P + I −Q)a ∈ H . For any x ∈ H with x(t) = (xij(t))1≤i,j≤2, it is easy to verify

that

(Tx)(1) =

(
2x11(1) 2x12(1)

0 0

)
,

hence

‖Tx− a‖ ≥ ‖(Tx)(1)− a(1)‖ =
∥∥∥
(
2x11(1)− 1 2x12(1)

0 −1

)∥∥∥ ≥ 1,

which implies that a /∈ R(T ). Furthermore, by (2.8) we have

R(P |M + IM −Q|M )
⊥
= N (P |M ) ∩R(Q|M ) ⊆ N (P ) ∩R(Q) = {0}.

This shows

a /∈ R(P |M + IM −Q|M ) +R(P |M + IM −Q|M )
⊥
,

whereas a ∈ M . So R(P |M + IM −Q|M ) is not orthogonally complemented in M .

Remark 2.1 It is notable that there exist projections P and Q such that R(P +Q) is

orthogonally complemented, whereas R(2I − P −Q) fails to be orthogonally complemented.

We provide such an example as follows.

Example 2.1 Let A = H = C
(
[0, 1];M2(C)

)
and P,Q ∈ P(H) be as in the proof of

Theorem 2.2. Put H0 = R(P +Q), P0 = P |H0
and Q0 = Q|H0

. From [7, Lemma 2.3] we have



C∗-Isomorphisms Associated with Two Projections 331

H0 = R(P ) +R(Q), which means that R(P ) ⊆ H0, hence P0H0 ⊆ H0. Consequently, P0 is a

projection on H0. Similarly, we have Q0 ∈ P(H0). In view of (2.8), we get

R(P0) ∩R(Q0) = N (P0) ∩ N (Q0) = {0}. (2.10)

According to Lemma 2.1, we have

H0 = R
[
(P +Q)2

]
⊆ R(P0 +Q0) ⊆ H0.

As a result, we arrive at

H0 = R(P0 +Q0) = R(P0 +Q0) +N (P0) ∩ N (Q0).

This shows the orthogonal complementarity of R(P0 +Q0) in H0.

Let F = (2I − P −Q)(P +Q). Clearly, F = (I − P )Q + (I −Q)P , so by (2.7) we have

F (t) =

(
s2t

s2t

)
, ∀t ∈ [0, 1],

which implies that for every x ∈ A, (Fx)(0) = F (0)x(0) =

(
0

0

)
. Hence

‖P − Fx‖ ≥ ‖P (0)− F (0)x(0)‖ =
∥∥∥
(
1 0
0 0

)∥∥∥ = 1.

Due to the definition of F and the observation of (2.10), we conclude that

P /∈ R(F ) = R(2IH0
− P0 −Q0) +R(P0) ∩R(Q0).

On the other hand, P = PI ∈ R(P ) ⊆ H0. Therefore, R(2IH0
− P0 −Q0) is not orthogonally

complemented in H0.

3 Unitary Equivalences Associated with Two Projections

In this section, we deal with unitary equivalences associated with two projections. We begin

with a known result as follows.

Lemma 3.1 (see [7, Lemma 4.1]) Let P,Q ∈ P(H) be such that R(I −Q+ P ) is orthog-

onally complemented in H. Then R(QP ) is also orthogonally complemented in H such that

P
R(QP ) = Q− PR(Q)∩N (P ).

Next, we provide a useful lemma as follows.

Lemma 3.2 For every P,Q ∈ P(H), we have

|P (I −Q)|+ |(I − P )Q| = |(I −Q)P |+ |Q(I − P )|. (3.1)

Proof For simplicity, we put

T1 = P (I −Q) and T2 = (I − P )Q. (3.2)

It is clear that

T ∗
1 T1 = (I −Q)T ∗

1 T1(I −Q) and T ∗
2 T2 = QT ∗

2 T2Q,
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so

|T1| = (I −Q)|T1|(I −Q) and |T2| = Q|T2|Q,

hence |T1| · |T2| = 0. Similarly, |T ∗
1 | · |T

∗
2 | = 0. As a result,

(
|T1|+ |T2|

)2
= T ∗

1 T1 + T ∗
2 T2 = P +Q− PQ−QP = T1T

∗
1 + T2T

∗
2

=
(
|T ∗

1 |+ |T ∗
2 |
)2
,

which gives (3.1) by taking the square roots of positive operators.

Now, we are in the position to provide the main result of this section.

Theorem 3.1 Let P,Q ∈ P(H) be such that (P,Q) is semi-harmonious. Then there exists

a unitary U ∈ L(H) such that

U(Q− PR)U∗ = I − P − PN , (3.3)

U(P − PR)U∗ = I −Q− PN , (3.4)

where R and N are defined by (1.3).

Proof Let T1 and T2 be defined by (3.2). Since R(P +Q) is orthogonally complemented

in H , by Lemma 3.1 both R(T ∗
1 ) and R(T2) are orthogonally complemented in H . Similarly,

the orthogonal complementarity of R(2I − P −Q) leads to that of R(T1) and R(T ∗
2 ). So for

i = 1, 2, the notations P
R(Ti)

and P
R(T∗

i
) are meaningful. The point is, these projections can

be used to obtain the canonical forms of T1 and T2 (see [2]). In fact, in view of (3.2) we have

R(T1) ⊆ R(P ) and R(T ∗
1 ) ⊆ R(I −Q),

hence

P
R(T1)

P = P
R(T1)

and (I −Q)P
R(T∗

1
)
= P

R(T∗

1
)
,

which lead to

T1 = P
R(T1)

T1PR(T∗

1
) = P

R(T1)
P
R(T∗

1
). (3.5)

Replacing P and Q with I − P and I −Q, respectively, we obtain

T2 = P
R(T2)

P
R(T∗

2
). (3.6)

Taking ∗-operation, from (3.5)–(3.6) we arrive at

T ∗
1 = P

R(T∗

1
)PR(T1)

and T ∗
2 = P

R(T∗

2
)PR(T2)

. (3.7)

To make use of (3.1), we need the polar decompositions of T1 and T2. For i = 1, 2, as R(Ti)

and R(T ∗
i ) are both orthogonally complemented in H , by [6, Lemma 3.6 and Theorem 3.8]

there exists a unique partial isometry Vi ∈ L(H) such that

Ti = Vi|Ti|, T ∗
i = V ∗

i |T
∗
i |, V ∗

i Vi = P
R(T∗

i
), ViV

∗
i = P

R(Ti)
. (3.8)

Combining the last two equations in (3.8) with (3.5)–(3.7), we obtain

Ti = ViV
∗
i V

∗
i Vi and T ∗

i = V ∗
i ViViV

∗
i .
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These two equations together with (3.8), Lemmas 2.1–2.2 yield

(V ∗
i )

2Vi = V ∗
i (ViV

∗
i V

∗
i Vi) = V ∗

i Ti = V ∗
i Vi|Ti| = |Ti|,

which gives

(V ∗
i )

2Vi = |Ti| = V ∗
i V

2
i

by taking ∗-operation. Similarly, we have

V 2
i V

∗
i = |T ∗

i | = Vi(V
∗
i )

2.

Consequently, (3.1) turns out to be

V ∗
1 V

2
1 + V ∗

2 V
2
2 = V 2

1 V
∗
1 + V 2

2 V
∗
2 . (3.9)

Now, we are ready to construct the desired unitary operator. Let

U1 = V1 + PR, U2 = V2 + PN , U = U1 − U2, (3.10)

where R and N are defined by (1.3). Then by Lemma 3.1, (3.2) and (3.8), we have

P = V1V
∗
1 + PR, I − P = V2V

∗
2 + PN , (3.11)

Q = V ∗
2 V2 + PR, I −Q = V ∗

1 V1 + PN . (3.12)

It follows from (3.11) that

V1V
∗
1 PR = V2V

∗
2 PN = V1V

∗
1 V2V

∗
2 = V1V

∗
1 PN = PRV2V

∗
2 = PRPN = 0,

or equivalently,

V ∗
1 PR = V ∗

2 PN = V ∗
1 V2 = V ∗

1 PN = PRV2 = PRPN = 0. (3.13)

Similarly, it can be inferred from (3.12) that

V2PR = V1PN = V2V
∗
1 = V2PN = PRV ∗

1 = 0. (3.14)

It follows from (3.10)–(3.14) that

U1U
∗
2 = U∗

1U2 = 0, U1U
∗
1 = P, U2U

∗
2 = I − P,

U∗
1U1 + U∗

2U2 = V ∗
1 V1 + PR + V ∗

2 V2 + PN = Q+ I −Q = I.

Therefore UU∗ = U∗U = I, so the operator U defined by (3.10) is a unitary.

Finally, we check the validity of (3.3)–(3.4). According to (3.11)–(3.12), we have

Q− PR = V ∗
2 V2, I − P − PN = V2V

∗
2 ,

P − PR = V1V
∗
1 , I −Q − PN = V ∗

1 V1,

and thus

V1V
∗
1 + V2V

∗
2 = I − PR − PN = V ∗

1 V1 + V ∗
2 V2.

The above equations together with (3.9)–(3.10) and (3.13)–(3.14) yield

U(Q − PR) = (U1 − U2)V
∗
2 V2 = (V1 + PR − V2 − PN )V ∗

2 V2 = −V2
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= V2V
∗
2 (V1 + PR − V2 − PN ) = (I − P − PN )U,

U(P − PR) = (V1 + PR − V2 − PN )V1V
∗
1 = V 2

1 V
∗
1 − V2V1V

∗
1

= V 2
1 V

∗
1 − V2(I − PR − PN − V2V

∗
2 ) = V 2

1 V
∗
1 + V 2

2 V
∗
2 − V2

= V ∗
1 V

2
1 + V ∗

2 V
2
2 − V2 = V ∗

1 V
2
1 + (I − PR − PN − V ∗

1 V1)V2 − V2

= V ∗
1 V

2
1 − V ∗

1 V1V2 = V ∗
1 V1(V1 + PR − V2 − PN )

= (I −Q− PN )U.

Therefore, (3.3)–(3.4) are satisfied.

Remark 3.1 Let P,Q ∈ P(H) be such that (P,Q) is harmonious. In this case, the Halmos’

two projections theorem (see [12, Theorem 3.3]) indicates that up to unitary equivalence, P

and Q have the block matrix forms

P =




IH1

IH2

0
0

IH5

0




, Q =




IH1

0
IH3

0
Q0




,

where

H1 = R, H2 = R(P ) ∩ N (Q), H3 = N (P ) ∩R(Q), H4 = N ,

H5 = R(P )⊖ (H1 ⊕H2), H6 = N (P )⊖ (H3 ⊕H4),

Q0 =

(
A A

1

2

(
IH5

−A
) 1

2U∗
0

U0A
1

2

(
IH5

−A
) 1

2 U0

(
IH5

−A
)
U∗
0

)
∈ L(H5 ⊕H6), (3.15)

in which U0 ∈ L(H5, H6) is a unitary, A ∈ L(H5) is a positive contraction such that both A

and IH5
−A are injective and R(A−A2) = H5, which implies that

R(A) = R(IH5
−A) = H5.

With the notations as above and that in the proof of Theorem 3.1, we have

PR = IH1
⊕ 0⊕ 0⊕ 0⊕ 0⊕ 0,

PN = 0⊕ 0⊕ 0⊕ IH4
⊕ 0⊕ 0,

T1 = 0⊕ IH2
⊕ 0⊕ 0⊕ S1, V1 = 0⊕ IH2

⊕ 0⊕ 0⊕ S2,

T2 = 0⊕ 0⊕ IH3
⊕ 0⊕ S3, V2 = 0⊕ 0⊕ IH3

⊕ 0⊕ S4,

where

S1 =

(
IH5

−A −A
1

2

(
IH5

−A
) 1

2U∗
0

0 0

)
,

S2 =

((
IH5

−A
) 1

2 −A
1

2U∗
0

0 0

)
,
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S3 =

(
0 0

U0A
1

2

(
IH5

−A
) 1

2 U0

(
IH5

−A
)
U∗
0

)
,

S4 =

(
0 0

U0A
1

2 U0

(
IH5

−A
) 1

2U∗
0

)
.

In virtue of (3.10), we have

U = V1 + PR − V2 − PN = diag(X,Y ),

where X = diag(IH1
, IH2

,−IH3
,−IH4

) and

Y = S2 − S4 =

((
IH5

−A
) 1

2 −A
1

2U∗
0

−U0A
1

2 −U0

(
IH5

−A
) 1

2U∗
0

)
.

This gives the block matrix form of the unitary operator U satisfying (3.3)–(3.4).

Remark 3.2 Since every closed linear subspace of a Hilbert space is orthogonally comple-

mented, Theorem 3.1 is therefore always applicable to every pair of projections on a Hilbert

space.

Theorem 3.2 There exist projections P and Q on certain Hilbert C∗-module such that

R = N = {0}, whereas (3.3)–(3.4) have no common unitary operator solution.

Proof Following [8, Section 3], we put B = C
(
[0, 1];M2(C)

)
and set

A = {f ∈ B : f(0) and f(1) are both diagonal}. (3.16)

As is shown in the proof of Theorem 2.2, A itself is a Hilbert A-module, and we can identify

L(A) with A. Let H = A and Q ∈ P(H) be determined by (2.7), and let P ∈ P(H) be changed

to

P (t) =

(
c2t −stct

−stct s2t

)
for t ∈ [0, 1],

where ct and st are defined by (2.6).

Let R and N be defined by (1.3), and suppose that x ∈ N is determined by x(t) =

(xij(t))1≤i,j≤2 for t ∈ [0, 1]. Utilizing

P (t) +Q(t) =

(
2c2t 0
0 2s2t

)
and [P (t) +Q(t)]x(t) = 0 (3.17)

for t ∈ [0, 1], we obtain xij(t) = 0 for i, j ∈ {1, 2} and every t ∈ (0, 1), which imply that

xij = 0 for 1 ≤ i, j ≤ 2, since all functions considered are continuous on [0, 1]. This shows that

N = {0}. In view of R = N (I − P ) ∩N (I −Q), the proof of R = {0} is similar.

Suppose that U determined by U(t) = (Uij(t))1≤i,j≤2 is a unitary in H , which satisfies both

(3.3) and (3.4). Due to PR = 0 and PN = 0, (3.3)–(3.4) are simplified as

UP = (I −Q)U and UQ = (I − P )U,

or equivalently,

U(Q− P ) = (Q − P )U and U(P +Q) = (2I − P −Q)U. (3.18)
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Substituting

(Q − P )(t) =

(
0 2stct

2stct 0

)
, t ∈ [0, 1]

into the first equation in (3.18) yields

U12(t) = U21(t), U11(t) = U22(t), t ∈ [0, 1].

Combining the above equations with the expression of P (t)+Q(t) given in (3.17) and the second

equation in (3.18), we arrive at

U11(t)
(
c2t − s2t

)
= 0, ∀t ∈ [0, 1],

hence U11(t) ≡ 0 for t ∈ [0, 1] by the continuity of U11. Consequently,

U(t) =

(
0 U12(t)

U12(t) 0

)
.

This together with (3.16) yields U(0) = U(1) =

(
0 0
0 0

)
. It is a contradiction, since U is a

unitary in H which ensures that all the 2× 2 matrices U(t)(t ∈ [0, 1]) are unitary.

4 C
∗-Isomorphisms Associated with Two Projections

Unless otherwise specified, throughout this section (P,Q,H) is a matched triple, i(P,Q,H)

and o(P,Q,H) are its inner algebra and outer algebra (see Definitions 1.2). It is clear that

i(P,Q,H) = span
{
X(P,Q,k) : X ∈ {A,B,C,D}, k ∈ Z+

}
, (4.1)

where R (also N ) is defined by (1.3), PR = P ∧Q and

A(P,Q,k) = [(P − PR)(Q− PR)]
k
, (4.2)

B(P,Q,k) = A(P,Q,k)(P − PR), (4.3)

C(P,Q,k) = (A(P,Q,k))∗ = A(Q,P,k), (4.4)

D(P,Q,k) = C(P,Q,k)(Q− PR) = B(Q,P,k) (4.5)

with the convention that A(P,Q,0) = I. For each k ≥ 1, by utilizing PR ≤ P and PR ≤ Q we

obtain

A(P,Q,k) = (PQ− PR)k = (PQ)k − PR, (4.6)

which gives

A(P,Q,k)(A(P,Q,k))∗ = [(PQ)k − PR][(QP )k − PR]

= (PQ)k(QP )k − PR = (PQP )2k−1 − PR

= (PQP − PR)2k−1. (4.7)

It follows that

A(P,Q,k)(A(P,Q,k))∗ = [A(P,Q,1)(A(P,Q,1))∗]2k−1, ∀k ≥ 1. (4.8)
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Similarly,

B(P,Q,k) = [(PQ)k − PR](P − PR) = (PQP )k − PR = (PQP − PR)k

= [A(P,Q,1)(A(P,Q,1))∗]k, ∀k ≥ 1. (4.9)

Now, let (π,X) be a faithful representation of o(P,Q,H). Replacing X with π(I)X if

necessary, in what follows we always assume that π is unital. The infimum of π(P ) and π(Q),

and its subtraction by π(PR) are denoted simply by PRπ and P̃R, respectively, that is,

PRπ = PR(π(P ))∩R(π(Q)), P̃R = PRπ − π(PR). (4.10)

It is clear that π(PR) ≤ PRπ , so P̃R defined as above is a projection. By (4.2) we have

A(π(P ),π(Q),0) = I and when k ≥ 1,

A(π(P ),π(Q),k) = [(π(P ) − PRπ)(π(Q) − PRπ)]
k
= [π(P )π(Q)]

k − PRπ.

This together with (4.6) and (4.10) gives

π(A(P,Q,k)) = A(π(P ),π(Q),k) + P̃R.

The derivation above shows that

π(X(P,Q,k)) = X(π(P ),π(Q),k) + P̃R whenever X(P,Q,k) 6= I. (4.11)

Note that P̃R is a projection, and

X(π(P ),π(Q),k) · P̃R = P̃R ·X(π(P ),π(Q),k) = 0 whenever X(P,Q,k) 6= I, (4.12)

so by (4.11) together with the observation ‖I‖ = 1 ≥ ‖P̃R‖, we arrive at

‖X(P,Q,k)‖ = ‖π(X(P,Q,k))‖

= max{‖X(π(P ),π(Q),k)‖, ‖P̃R‖}, ∀k ≥ 0. (4.13)

We are now ready to derive a couple of norm equations. The first one reads as follows.

Lemma 4.1 Let (π,X) be a faithful representation of o(P,Q,H). Then for every X ∈

{A,B,C,D} and k ∈ Z+, we have

‖X(P,Q,k)‖ = ‖X(π(P ),π(Q),k)‖. (4.14)

Proof First, we prove that

‖A(P,Q,k)‖ = ‖A(π(P ),π(Q),k)‖, ∀k ∈ Z+. (4.15)

The case of k = 0 is trivial, so we start with k = 1. From (4.11), we have

‖A(P,Q,1)‖2 = ‖π(A(P,Q,1))‖2 = ‖π(A(P,Q,1))[π(A(P,Q,1))]∗‖

= ‖(A(π(P ),π(Q),1) + P̃R)[(A(π(P ),π(Q),1))∗ + P̃R]‖

= ‖A(π(P ),π(Q),1)(A(π(P ),π(Q),1))∗ + P̃R‖

= max{‖A(π(P ),π(Q),1)(A(π(P ),π(Q),1))∗‖, ‖P̃R‖}

= max{‖A(π(P ),π(Q),1)‖2, ‖P̃R‖}, (4.16)
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which implies that

‖A(P,Q,1)‖ = ‖A(π(P ),π(Q),1)‖ (4.17)

whenever ‖A(π(P ),π(Q),1)‖ = 1. Suppose that ‖A(π(P ),π(Q),1)‖ < 1. Then according to (4.7)–

(4.8), we have

‖(π(P )π(Q)π(P ))2k−1 − PRπ‖ = ‖[A(π(P ),π(Q),1)(A(π(P ),π(Q),1))∗]2k−1‖

= ‖A(π(P ),π(Q),1)(A(π(P ),π(Q),1))∗‖2k−1

= ‖A(π(P ),π(Q),1)‖4k−2 → 0 as k → ∞.

It follows that PRπ is contained in the C∗-algebra π(C∗
(P,Q)), so π−1(PRπ) ≤ π−1(π(P )) = P

and π−1(PRπ) ≤ Q as well. Therefore, π−1(PRπ) ≤ PR, and thus PRπ ≤ π(PR) ≤ PRπ .

Plugging P̃R = 0 into (4.16) gives (4.17) immediately.

Now, we consider the case that k ≥ 2. Due to (4.8) and (4.17), we have

‖A(P,Q,k)‖ = ‖A(P,Q,1)‖2k−1 = ‖A(π(P ),π(Q),1)‖2k−1 = ‖A(π(P ),π(Q),k)‖.

This completes the proof of (4.15).

Next, we prove that

‖B(P,Q,k)‖ = ‖B(π(P ),π(Q),k)‖, ∀k ∈ Z+. (4.18)

By (4.3), both B(P,Q,0) and B(π(P ),π(Q),0) are projections, and

‖B(P,Q,0)‖ = 0 ⇐⇒ P ≤ Q ⇐⇒ π(P ) ≤ π(Q) ⇐⇒ ‖B(π(P ),π(Q),0)‖ = 0.

This shows the validity of (4.18) for k = 0. Suppose that k ≥ 1. Then by (4.9), we can get

‖B(P,Q,k)‖ = ‖A(P,Q,1)‖2k = ‖A(π(P ),π(Q),1)‖2k = ‖B(π(P ),π(Q),k)‖.

Exchanging P with Q, we conclude that for every k ∈ Z+,

‖C(P,Q,k)‖ = ‖A(Q,P,k)‖ = ‖A(π(Q),π(P ),k)‖ = ‖C(π(P ),π(Q),k)‖,

‖D(P,Q,k)‖ = ‖B(Q,P,k)‖ = ‖B(π(Q),π(P ),k)‖ = ‖D(π(P ),π(Q),k)‖.

This completes the proof of (4.14).

Corollary 4.1 Let (π,X) be a faithful representation of o(P,Q,H). Then for every n ∈ N,

Xi ∈ {A,B,C,D} and ki ∈ Z+ (1 ≤ i ≤ n), we have

∥∥∥
n∏

i=1

X
(P,Q,ki)
i

∥∥∥ =
∥∥∥

n∏

i=1

X
(π(P ),π(Q),ki)
i

∥∥∥. (4.19)

Proof From the definition of X(P,Q,k) given by (4.2)–(4.5), it is clear that

n∏

i=1

X
(P,Q,ki)
i = Z(P,Q,k) and

n∏

i=1

X
(π(P ),π(Q),ki)
i = Z(π(P ),π(Q),k)

for some Z ∈ {A,B,C,D} and k ∈ Z+. Due to (4.14), the desired norm equation follows.

We provide a technical lemma as follows.
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Lemma 4.2 Let (P,Q) be a harmonious pair of projections on H. Suppose that n ∈ N,

Xi ∈ {A,B,C,D} and ki ∈ Z+ (1 ≤ i ≤ n) are given such that

∥∥∥
n∏

i=1

X
(P,Q,ki)
i

∥∥∥ = 1. (4.20)

Then for every λi ∈ C (1 ≤ i ≤ n), we have

∣∣∣
n∑

i=1

λi

∣∣∣ ≤
∥∥∥

n∑

i=1

λiX
(P,Q,ki)
i

∥∥∥. (4.21)

Proof Denote by λ =
n∑

i=1

λi. The verification of

|λ| ≤
∥∥∥

n∑

i=1

λiX
(P,Q,ki)
i

∥∥∥

will be carried out by taking several cases into consideration.

Case 1 X
(P,Q,ki)
i ∈ {I, P − PR} for all i ∈ {1, 2, · · · , n}. If X

(P,Q,ki)
i ≡ I, then (4.21) is

obviously satisfied. Otherwise, we have

n∏

i=1

X
(P,Q,ki)
i = P − PR,

so according to (4.20) we obtain ‖P − PR‖ = 1. It follows that

∥∥∥
n∑

i=1

λiX
(P,Q,ki)
i

∥∥∥ ≥
∥∥∥(P − PR)

n∑

i=1

λiX
(P,Q,ki)
i

∥∥∥ = ‖λ(P − PR)‖ = |λ|.

Case 2 X
(P,Q,ki)
i ∈ {I,Q − PR} for all i ∈ {1, 2, · · · , n}. The same verification gives

(4.21).

Case 3 There exist i1, i2 ∈ {1, 2, · · · , n} such that X
(P,Q,ki1

)
i1

/∈ {I, P−PR} and X
(P,Q,ki2

)
i2

/∈ {I,Q− PR}. In this case, firstly we show that

‖A(P,Q,1)‖ = 1. (4.22)

Subcase 1 ki1 6= 0 or ki2 6= 0. Without loss of generality, we may assume that ki1 6= 0.

In this subcase,

1 ≥ ‖A(P,Q,1)‖ = ‖C(P,Q,1)‖ ≥ ‖X
(P,Q,ki1

)

i1
‖ ≥

∥∥∥
n∏

i=1

X
(P,Q,ki)
i

∥∥∥ = 1.

Thus, (4.22) is satisfied.

Subcase 2 ki1 = ki2 = 0. In this subcase, we have X
(P,Q,ki1

)
i1

= Q−PR and X
(P,Q,ki2

)
i2

=

P − PR, which mean that

n∏

i=1

X
(P,Q,ki)
i = W1A

(P,Q,1)W2 or

n∏

i=1

X
(P,Q,ki)
i = W1C

(P,Q,1)W2

for some contractions W1,W2 ∈ L(H). As is shown in Subcase 1, (4.22) is also satisfied.
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Since (P,Q) is harmonious, the Halmos’ two projections theorem is applicable. Following

the notations as in Remark 3.1, we have1

P − PR = 0⊕ IH2
⊕ 0⊕ 0⊕ IH5

⊕ 0,

Q− PR = 0⊕ 0⊕ IH3
⊕ 0⊕Q0,

A(P,Q,1) = 0⊕ 0⊕ 0⊕ 0⊕ S,

(4.23)

where Q0 is defined by (3.15) and S is given by

S =

(
A A

1

2

(
IH5

−A
) 1

2U∗
0

0 0

)
.

Based on the above block matrices, we have

‖A‖ =
∥∥∥
(
A 0
0 0

)∥∥∥ = ‖SS∗‖ = ‖S‖2 = ‖A(P,Q,1)‖2 = 1. (4.24)

This together with the positivity and contraction of A implies that 1 ∈ sp(A), where sp(A)

denotes the spectrum of A.

It is easy to verify that for every X ∈ {A,B,C,D} and k ∈ Z+, there exists r ∈ N depending

on X and k such that

A(P,Q,1)X(P,Q,k)(P − PR) = 0⊕ 0⊕ 0⊕ 0⊕

(
Ar

0

)
.

Consequently,

∥∥∥
n∑

i=1

λiX
(P,Q,ki)
i

∥∥∥ ≥
∥∥∥A(P,Q,1)

( n∑

i=1

λiX
(P,Q,ki)
i

)
(P − PR)

∥∥∥

=
∥∥∥




n∑
i=1

λiA
ri

0



∥∥∥ =

∥∥∥
n∑

i=1

λiA
ri

∥∥∥ (4.25)

for some ri ∈ N (1 ≤ i ≤ n). Let f(t) =
n∑

i=1

λit
ri for t ≥ 0. Then

∥∥∥
n∑

i=1

λiA
ri

∥∥∥ = max{|f(t)| : t ∈ sp(A)} ≥ |f(1)| = |λ|.

Combining the above inequality with (4.25) gives (4.21).

Along the same line, another technical lemma can be provided as follows.

Lemma 4.3 Let (P,Q) be a harmonious pair of projections on H such that PQ 6= QP .

Suppose that n ∈ N, Xi ∈ {A,B,C,D} and ki ∈ Z+ are given such that (4.20) is satisfied and

X
(P,Q,ki)
i 6= I for all i ∈ {1, 2, · · · , n}. Then for every λi ∈ C (0 ≤ i ≤ n), we have

|λ0| ≤
∥∥∥λ0(I − PR) +

n∑

i=1

λiX
(P,Q,ki)
i

∥∥∥. (4.26)

1 In some cases, it may happen that the closed subspaces H5 and H6 constructed for the Halmos decomposition
are trivial, that is, H5 = H6 = {0}. Due to (4.22), both H5 and H6 are non-trivial, hence A(P,Q,1) has the form
(4.23).
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Proof As in the proof of Lemma 4.2, the verification of (4.26) will be dealt with via several

cases. Let λ ∈ C and W ∈ L(H) be defined by

λ =

n∑

i=0

λi, W = λ0(I − PR) +

n∑

i=1

λiX
(P,Q,ki)
i . (4.27)

Case 1 X
(P,Q,ki)
i = P − PR for all i ∈ {1, 2, · · · , n}. In this case,

W = λ0(I − P ) + λ(P − PR).

Since PQ 6= QP , we have I − P 6= 0, hence

‖W‖ ≥ ‖λ0(I − P )‖ = |λ0|.

Case 2 X
(P,Q,ki)
i = Q − PR for all i ∈ {1, 2, · · · , n}. As is shown in the above case, we

have ‖W‖ ≥ |λ0|.

Case 3 There exist i1, i2 ∈ {1, 2, · · · , n} such that X
(P,Q,ki1

)

i1
6= P − PR and X

(P,Q,ki2
)

i2
6=

Q−PR. Following the notations as in Remark 3.1, we haveH =
6⊕

i=1

Hi and up to unitary equiv-

alence, every operator Y ∈ L(H) has the matrix form Y = (Yij)1≤i,j≤6 with Yij ∈ L(Hj , Hi).

Let the linear map φ : L(H) → L(H6) be defined by φ(Y ) = Y66. According to the definition

of X(P,Q,k) given by (4.2)–(4.5), we have φ(B(P,Q,0)) = 0 and

φ(A(P,Q,k)) = φ(B(P,Q,k)) = φ(C(P,Q,k)) = 0

for every k ≥ 1. Furthermore, direct computations yield

φ(D(P,Q,k)) = U0(I −A)AkU∗
0 , ∀k ∈ Z+.

It follows from (4.27) that2

φ(W ) = U0

[
λ0I +

∑

j

λij (I −A)Akij

]
U∗
0 ,

where ij is chosen in {1, 2, · · · , n} whenever X
(P,Q,kij

)

ij
= D(P,Q,kij

). Let

f(t) = λ0 +
∑

j

λij (1− t)tkij , t ≥ 0.

Since 0 ≤ A ≤ I and 1 ∈ sp(A) (see (4.24)), we have

‖W‖ ≥ ‖φ(W )‖ = max{|f(t)| : t ∈ sp(A)} ≥ |f(1)| = |λ0|.

This completes the proof of (4.26).

Now, we provide the main result of this section as follows.

Theorem 4.1 For each faithful representation (π,X) of o(P,Q,H), a faithful representa-

tion (π̃, X) of i(P,Q,H) can be induced such that π̃(I) = π(I), and

π̃(P − PR) = π(P )− π(P ) ∧ π(Q), π̃(Q− PR) = π(Q)− π(P ) ∧ π(Q). (4.28)

2 If Xi 6= D for all i ∈ {1, 2, · · · , n}, then φ(W ) = λ0I, so in this case ‖φ(W )‖ = |λ0|.
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Proof According to (4.1), we need only to prove that ‖T ‖ = ‖T‖ for every n ∈ N,

Xi ∈ {A,B,C,D}, ki ∈ Z+ and λi ∈ C (0 ≤ i ≤ n) such that X
(P,Q,ki)
i 6= I for all i ≥ 1,

where3

T = λ0I +

n∑

i=1

λiX
(P,Q,ki)
i , T = λ0I +

n∑

i=1

λiX
(π(P ),π(Q),ki)
i . (4.29)

If P̃R = 0, then we see from (4.11) that π(T ) = T , which gives ‖T ‖ = ‖T‖ as π is faithful. In

what follows, we assume that P̃R 6= 0. In this case, we have PQ 6= QP . Otherwise, PR = PQ

and PRπ = π(P )π(Q) = π(PR), which contradicts the assumption of P̃R 6= 0. Let λ =
n∑

i=0

λi.

By (4.11) we have

π(T ) = T + (λ− λ0)P̃R = L+ λP̃R, (4.30)

where

L = λ0(I − P̃R) +

n∑

i=1

λiX
(π(P ),π(Q),ki)
i = Z + λ0π(PR),

in which

Z = λ0(I − PRπ) +

n∑

i=1

λiX
(π(P ),π(Q),ki)
i .

Hence

‖L‖ = max{‖Z‖, |λ0| ‖π(PR)‖}, (4.31)

‖T ‖ = ‖π(T )‖ = max{‖L‖, |λ| ‖P̃R‖} = max{‖L‖, |λ|}, (4.32)

‖T‖ = ‖L+ λ0P̃R‖ = max{‖L‖, |λ0| ‖P̃R‖} = max{‖L‖, |λ0|‖}. (4.33)

Let

α =
∥∥∥

n∏

i=1

X
(π(P ),π(Q),ki)
i

∥∥∥.

By (4.19) and (4.11)–(4.12), we have

α =
∥∥∥π
( n∏

i=1

X
(P,Q,ki)
i

)∥∥∥ =
∥∥∥

n∏

i=1

π(X
(P,Q,ki)
i )

∥∥∥

=
∥∥∥

n∏

i=1

X
(π(P ),π(Q),ki)
i + P̃R

∥∥∥ = max{α, ‖P̃R‖} = max{α, 1}.

Hence α = 1, which apparently gives

∥∥∥
n∏

i=0

X
(π(P ),π(Q),ki)
i

∥∥∥ = 1

by setting X
(π(P ),π(Q),k0)
0 = I. It is notable that π(P ) and π(Q) are projections acting on a

Hilbert space, so (π(P ), π(Q)) is harmonious. It follows from Lemmas 4.2–4.3 that

‖T‖ ≥ |λ| and ‖Z‖ ≥ |λ0|.

3 When λ0 = 0, the first term in T and T will disappear.
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So by (4.31) we have ‖L‖ ≥ ‖Z‖ ≥ |λ0|, which leads by (4.33) to ‖T‖ = ‖L‖. Combining this

equality with ‖T‖ ≥ |λ| and (4.32), we arrive at ‖T ‖ = ‖T‖ = ‖L‖.

Under the restriction of λ0 = 0 in (4.29), a corollary can be derived immediately as follows.

Corollary 4.2 Let C∗(P,Q, PR) and C∗(P − PR, Q − PR) denote the C∗-subalgebras of

L(H) generated by elements in {P,Q, PR} and {P − PR, Q − PR}, respectively. Then each

faithful representation (π,X) of C∗(P,Q, PR) can induce a faithful representation (π̃, X) of

C∗(P − PR, Q− PR) such that (4.28) is satisfied.

In the derivations given as above, we merely consider the meaningfulness of PR. At this

moment, we do not know whether there exist projections P and Q such that R is orthogonally

complemented, whereas N fails to be orthogonally complemented4. To give a partial answer,

we need an auxiliary lemma, whose proof is given for the sake of completeness.

Lemma 4.4 Let P,Q ∈ P(H) be such that the sequence {(PQP )n}∞n=1 converges to T ∈

L(H) in norm-topology. Then T is a projection such that R(T ) = R, where R is defined by

(1.3).

Proof Clearly, T is a projection such that R ⊆ R(T ) and PT = T . So it needs only to

show that QT = T , or equivalently, [(I − Q)T ]∗(I −Q)T = 0, which can be derived from the

equations

(PQP )n(I −Q)(PQP )n = (PQP )2n − (PQP )2n+1, ∀n ∈ N.

Corollary 4.3 Let (P,Q,H) be a matched triple such that ‖(P −PR)(Q−PR)‖ < 1. Then

(I −Q, I − P,H) is also a matched triple.

Proof Choose any faithful unital representation (π,X) of L(H). Let PRπ be defined by

(4.10), and put

PNπ = (π(I −Q)) ∧ (π(I − P )),

S = [I − π(Q)− PNπ][I − π(P )− PNπ],

T = [π(P )− PRπ][π(Q)− PRπ ],

W = (I − P )(I −Q)(I − P ).

(4.34)

Then

PNπ = PR(π(I−Q))∩R(π(I−P )) = PR(I−π(Q))∩R(I−π(P ))

= PN (π(P ))∩N (π(Q)).

By Theorems 3.1 and 4.1, there exists a unitary U ∈ B(X) such that

‖S‖ = ‖U∗TU‖ = ‖T ‖ = ‖(P − PR)(Q − PR)‖ < 1,

hence ‖(S∗S)n‖ = ‖S∗S‖n = ‖S‖2n → 0 as n → ∞. For each n ∈ N, it is clear that

(S∗S)n = (π(W ))n − PNπ,

so {(π(W ))n}∞n=1 is norm-convergent and thus is a Cauchy sequence, and so does for {Wn}∞n=1

by the faithfulness of π. Due to the completeness of L(H), {Wn}∞n=1 is norm-convergent. The

assertion then follows from Lemma 4.4.
4 Alternatively, is it possible to find a matched triple (P,Q,H) such that (I −Q, I − P,H) is not a matched

triple?
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Remark 4.1 Our next example shows that there exists a matched triple (P,Q,H) such

that the sequence {(PQP )n}∞n=1 does not converge strongly to PR.

Example 4.1 Let A, H, P and Q be as in Example 2.1. According to (2.8), we have

PR = 0. From (2.7) we obtain

[(PQP )n](0) =

(
1

0

)

for every n ≥ 1. It follows that

‖(PQP )nP‖ ≥ ‖[(PQP )nP ](0)‖ = 1, ∀n ≥ 1.

Thus, {(PQP )n}∞n=1 does not converge strongly to zero.
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