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1 Introduction

In this paper, we consider the following quasilinear Schrödinger equation

i
∂ψ

∂t
= −△ψ +W (x)ψ − k(x, ψ) −△ρ(|ψ|2)ρ′(|ψ|2)ψ, (1.1)

where W : RN → R is a given potential, and k, ρ are real functions. Seeking solutions of the

type stationary waves, namely, the solutions of the form ψ(t, x) = exp(−iEt)u(x), E ∈ R and

u is a real function, (1.1) can be reduced to the corresponding equation of elliptic type

−∆u+ V (x)u −∆ρ(u2)ρ′(|u|2)u = k(x, u), x ∈ R
N , (1.2)

where V (x) =W (x)−E is a new potential function. equation (1.2) has been derived as models

of several physical phenomena and has been the subject of extensive study in recent years. If

we take ρ(s) = s, we get the superfluid film equation in plasma physics

−∆u+ V (x)u −∆(u2)u = k(x, u), x ∈ R
N . (1.3)
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If we set ρ(s) =
√
1 + s, we get the equation

−∆u+ V (x)u − γu

2
√
1 + u2

∆(
√
1 + u2) = k(x, u), x ∈ R

N , (1.4)

which models the self-channeling of a high-power ultrashort laser in matter (see [7]). For more

physical motivations, we may refer to [11–12] and references therein.

Recent studies have been focused on problem (1.3). The main mathematical difficulty

with problem (1.3) is caused by the second order derivatives ∆(u2)u, the natural functional

corresponding to problem (1.3) is not well defined for all u ∈ H1(RN ) if N ≥ 2. To overcome

this difficulty, various arguments have been developed, such as a constrained minimization

argument (see [12]), the perturbation method (see [10]) and a change of variables (see [6, 15]).

The above method is also suitable for (1.4). Up to our knowledge, there are few results on

problem (1.4). The greatest part of the literature focuses on the study of problem (1.4) when

the potential V is assumed to be a potential well (see [4, 9, 14] and references therein) or radially

symmetric potential (see [5]). Regretfully, the coercive potential and singular coefficients are

not considered.

Motivated by references [4, 15], we study the existence of solutions for (1.4) with coercive

potential and k(x, u) = λ|u|p−2u + |u|2∗(s)−2u

|x|s . Namely, the following quasilinear Schrödinger

equation

−∆u+ V (x)u − γu

2
√
1 + u2

∆(
√
1 + u2) = λ|u|p−2u+

|u|2∗(s)−2u

|x|s , x ∈ R
N , (1.5)

where N ≥ 3, γ, λ > 0, 0 ≤ s < 2, 2 < p < 2∗(s), 2∗(s) = 2(N−s)
N−2 , the potential V (x) satisfies

the following condition:

(V) V (x) ∈ C(RN ,R), inf
x∈RN

V (x) ≥ a0 > 0, and there exists d0 > 0, such that for every

M > 0,

lim
|y|→∞

meas{x ∈ R
N : |x− y| ≤ d0, V (x) ≤M} = 0.

The condition (V) was first introduced by Bartsch and Wang [2] to guarantee the compact-

ness of embeddings of the working spaces. The limit in condition (V) can be replaced by one

of the following simpler conditions:

(V′) lim
|x|→∞

V (x) = +∞ (see [17]).

(V′′) For each M > 0, meas{x ∈ R
N : V (x) ≤M} <∞ (see [2]).

Now we state our main results.

Theorem 1.1 Suppose that the condition (V) holds and N ≥ 3, λ > 0, 0 ≤ s < 2,

pN < p < 2∗(s), where

pN =

{
4, if N = 3,

2, if N ≥ 4.



Ground States for Quasilinear Schrödinger Equations 347

Then problem (1.5) possesses a ground state solution if 0 < γ < γ∗, where

γ∗ =





16(p− 2)

(p− 4)2
, if p < 4,

+∞, if p ≥ 4.

Theorem 1.2 Suppose that the conditions of Theorem 1.1 hold, uγn is the ground state

solution of (1.5) obtained in Theorem 1.1 with γ = γn. Then for each sequence {γn} with

γn → 0+ as n → ∞, there exists a subsequence, still denoted by {γn}, such that uγn → u0 in

E, where u0 is the ground state solution of semilinear problem

−∆u+ V (x)u = λ|u|p−2u+
|u|2∗(s)−2u

|x|s , x ∈ R
N . (1.6)

Remark 1.1 In [4], the nonlinearity is more general, but it does not include singular

coefficients. Here we consider problem (1.5) with critical Hardy-Sobolev exponents. Moreover,

the potential here is different from that in literature [4]. It is a complement of [4].

Remark 1.2 For the coercive potential, Wang et al. studied the existence of ground state

solutions of problem (1.3) with singular coefficients in [15]. They make an unknown variable

v := f−1(u), where f is defined by the ordinary differential equation

f ′(t) =
1

(1 + 2f2(t))
1
2

, t ∈ [0,+∞); f(t) = −f(−t), t ∈ (−∞, 0].

In this paper, we study problem (1.5). We make a change of variables v := F (u) =
∫ u
0
f(t)dt,

where f is defined by

f(t) =

√
1 +

γt2

2(1 + t2)
.

Obviously, our results are different from those in [15]. Because our transformation is a little

more complex, we need more precise estimation when using the concentration compactness

principle (see Lemmas 3.5 and 2.3 below). Moreover, we regard γ > 0 as a parameter in (1.5)

and analyse the convergence property of the ground state solution as γ → 0+.

Remark 1.3 We denote
∫
RN h(x)dx as

∫
RN h(x) for simplicity.

Notation In this paper, we use the following notations:

• E :=
{
u ∈ H1(RN ) :

∫
RN V (x)u2 < +∞

}
is the Hilbert space endowed with the norm

‖u‖2 =
∫

RN

(|∇u|2 + V (x)u2).

• Ls(RN ) is the usual Banach space endowed with the norm

‖u‖ss =
∫

RN

|u|s, ∀s ∈ [1,+∞).

• Br(y) := {x ∈ R
N : |x− y| < r}.

• C,C1, C2, · · · denote various positive (possibly different) constants.
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2 Some Preliminary Results

We observe that formally problem (1.5) is the Euler-Lagrange equation associated with the

energy functional

J(u) =
1

2

∫

RN

[(
1 +

γu2

2(1 + u2)

)
|∇u|2

]
+

1

2

∫

RN

V (x)u2

− λ

p

∫

RN

|u|p − 1

2∗(s)

∫

RN

|u|2∗(s)
|x|s .

Variational methods cannot be applied directly to find weak solutions of problem (1.5), since

the natural associated functional J(u) is not defined for all u in the space H1(RN ). Hence we

employ an argument developed in [13] to introduce a variational framework associated with

problem (1.5). We make a change of variables v := F (u) =
∫ u
0
f(t)dt, where f is defined by

f(t) =

√
1 +

γt2

2(1 + t2)
. (2.1)

After the change of variables from J , we obtain the following functional

I(v) =
1

2

∫

RN

(|∇v|2 + V (x)|F−1(v)|2)− λ

p

∫

RN

|F−1(v)|p − 1

2∗(s)

∫

RN

|F−1(v)|2∗(s)
|x|s .

Then I(v) = J(u) = J(F−1(v)) and I is well defined in E, I ∈ C1(E,R). Moreover, we observe

that if v is a critical point of the functional I, then the function u = F−1(v) is a solution of

problem (1.5) (see [7, 13–14]).

Now, we summarize the properties of F−1, f , which have been proved in [14].

Lemma 2.1 The functions F−1, f satisfy the following properties :

(1) 1 ≤ f(t) ≤
√

2+γ
2 for all t ∈ R;

(2) 1 ≤ F−1(t)f(F−1(t))
t

≤ 4+2γ−2
√
4+2γ

γ
for all t ∈ R, t 6= 0;

(3)
√

2
2+γ |t| ≤ |F−1(t)| ≤ |t| for all t ∈ R;

(4) F−1(t)
t

→ 1 as t→ 0;

(5) F−1(t)
t

→
√

2
2+γ as t→ ∞;

(6) 0 ≤ f ′(t)t
f(t) ≤ 1 + 4−2

√
4+2γ
γ

for all t ∈ R.

Lemma 2.2 (see [15]) Let 0 ≤ s < 2. The embedding E →֒ Lα(RN , |x|−s) is continuous

for 2 ≤ α ≤ 2∗(s) and compact for 2 ≤ α < 2∗(s) when V (x) satisfies the condition (V).

Lemma 2.3 Suppose that {vn} ⊂ E is a bounded sequence and vn → 0 in Lα(RN , |x|−s)
for α ∈ (2, 2∗), s ∈ [0, 2). Then we have

lim
n→∞

∫

RN

|F−1(vn)|p−1

f(F−1(vn))
vn = lim

n→∞

∫

RN

|F−1(vn)|p = 0. (2.2)
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lim
n→∞

∫

RN

V (x)
(
|F−1(vn)|2 −

F−1(vn)vn
f(F−1(vn))

)
= 0. (2.3)

lim
n→∞

∫

RN

V (x)(|F−1(vn)|2 − v2n) = 0. (2.4)

lim
n→∞

∫

RN

( |F−1(vn)|2
∗(s)−1

f(F−1(vn))|x|s
vn −

(√ 2

2 + γ

)2∗(s) |vn|2
∗(s)

|x|s
)
= 0. (2.5)

lim
n→∞

∫

RN

((√ 2

2 + γ

)2∗(s) |vn|2
∗(s)

|x|s − |F−1(vn)|2
∗(s)

|x|s
)
= 0. (2.6)

Proof (i) Since vn → 0 in Lα(RN , |x|−s)(2 < α < 2∗, 0 ≤ s < 2) and 2 < p < 2∗(s) ≤ 2∗,

we can get (2.2) from the properties of F−1 and f easily.

(ii) By Lemma 2.1(4) and the properties of f , one has

lim
|vn|→0

vn

f(F−1(vn))F−1(vn)
= 1.

Hence, for any ε > 0, there is δ > 0, such that

∣∣∣ vn

f(F−1(vn))F−1(vn)
− 1

∣∣∣ < ε,

when |vn(x)| < δ. Then we have

∫

{x:|vn(x)|<δ}
V (x)

∣∣∣ vn

f(F−1(vn))F−1(vn)
− 1

∣∣∣ · |F−1(vn)|2

≤ ε

∫

RN

V (x)v2n ≤ Cε. (2.7)

By Lemma 2.1(2)–(3), one has

lim
n→∞

∫

{x:|vn(x)|≥δ}
V (x)

∣∣∣ vn

f(F−1(vn))F−1(vn)
− 1

∣∣∣ · |F−1(vn)|2

≤ C lim
n→∞

∫

{x:|vn(x)|≥δ}
V (x)v2n ≤ Cδ2−p lim

n→∞

∫

RN

V (x)|vn|p = 0. (2.8)

Combining (2.7) with (2.8), we can get (2.3). Similarly, we can verify (2.4).

(iii) On one hand, by Lemma 2.1(2)–(3), we have

∫

{x:|vn(x)|≤R}

|F−1(vn)|2
∗(s)−1

f(F−1(vn))|x|s
vn ≤

∫

{x:|vn(x)|≤R}

|F−1(vn)|2
∗(s)

|x|s

≤
∫

{x:|vn(x)|≤R}

|vn|2
∗(s)

|x|s

≤ R2∗(s)−p
∫

{x:|vn(x)|≤R}

|vn|p
|x|s

≤ R2∗(s)−p
∫

RN

|vn|p
|x|s

→ 0 as n→ ∞. (2.9)
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As we have shown in the proof of (2.9), it holds that

∫

{x:|vn(x)|≤R}

|vn|2
∗(s)

|x|s → 0 as n→ ∞. (2.10)

On the other hand, by Lemma 2.1(5) and the fact that

lim
|vn|→∞

vn

f(F−1(vn))F−1(vn)
= 1,

one gets

∫

{x:|vn(x)|≥R}

( |F−1(vn)|2
∗(s)−1

f(F−1(vn))|x|s
vn −

(√ 2

2 + γ

)2∗(s) |vn|2
∗(s)

|x|s
)

=

∫

{x:|vn(x)|≥R}

( |F−1(vn)|2
∗(s)

|vn|2∗(s)
vn

f(F−1(vn))F−1(vn)
−
(√ 2

2 + γ

)2∗(s)) |vn|2
∗(s)

|x|s

→ 0 as R > 0 sufficiently large. (2.11)

Combining (2.9)–(2.10) with (2.11), we can get (2.5). The proof of (2.6) is similar to the proof

of (2.5), so we omit it.

Lemma 2.4 (Mountain pass theorem see [16]). Let E be a real Banach space with its dual

space E∗ and suppose that I ∈ C1(E,R) satisfies

max{I(0), I(e)} ≤ µ < η ≤ inf
‖u‖=ρ

I(u)

for some µ < η, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ η be characterized by c =

inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} is the set of continuous

paths joining 0 and e, then there exists a sequence {un} ⊂ E such that

I(un) → c ≥ η, (1 + ‖un‖)‖I ′(un)‖ → 0.

3 Proofs of Theorem 1.1 and Theorem 1.2

Lemma 3.1 Suppose that the condition (V) holds and λ > 0, 0 ≤ s < 2, 2 ≤ pN < p <

2∗(s). Then there exist ρ > 0, η > 0 such that inf
‖v‖=ρ

I(v) > η.

Proof From Lemmas 2.1(3) and 2.2, we have

I(v) =
1

2

∫

RN

|∇v|2 + 1

2

∫

RN

V (x)|F−1(v)|2 − λ

p

∫

RN

|F−1(v)|p

− 1

2∗(s)

∫

RN

|F−1(v)|2∗(s)
|x|s

≥ 1

2

∫

RN

|∇v|2 + 2

2 + γ

∫

RN

V (x)|v|2 − λ

p

∫

RN

|v|p − 1

2∗(s)

∫

RN

|v|2∗(s)
|x|s

≥ C1‖v‖2 − C2‖v‖p − C3‖v‖2
∗(s).
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Therefore, we conclude that there is ρ > 0 small enough, such that I(v) > 0 whenever ‖v‖ ≤ ρ,

v 6= 0. And there exists η > 0 such that for any ‖v‖ = ρ, one has I(v) ≥ η > 0.

Lemma 3.2 Suppose that the condition (V) is satisfied and λ > 0, 0 ≤ s < 2, 2 ≤ pN <

p < 2∗(s). Then there exists e ∈ E with ‖e‖ > ρ, such that I(e) < 0, where ρ is given by

Lemma 3.1.

Proof We choose some ϕ ∈ C∞
0 (RN , [0, 1]), with suppϕ = B1, where B1 is the closed unit

ball in R
N . We will prove that I(tϕ) → −∞ as t → ∞, which will prove the result if we take

e = tϕ with t large enough. In fact, by Lemma 2.1(3), one has

I(tϕ) =
1

2

∫

RN

|∇(tϕ)|2 + 1

2

∫

RN

V (x)|F−1(tϕ)|2 − λ

p

∫

RN

|F−1(tϕ)|p

− 1

2∗(s)

∫

RN

|F−1(tϕ)|2∗(s)
|x|s

≤ t2

2

∫

RN

|∇ϕ|2 + t2

2

∫

RN

V (x)|ϕ|2 − tpλ

p

(√ 2

2 + γ

)p ∫

RN

|ϕ|p

− t2
∗(s)

2∗(s)

(√ 2

2 + γ

)2∗(s)
∫

RN

|ϕ|2∗(s)
|x|s

→ −∞ as t→ ∞.

Lemma 3.3 Suppose that (V) holds, λ > 0, 0 ≤ s < 2, 2 ≤ pN < p < 2∗(s), 0 < γ < γ∗.

Then there exists {vn} ⊂ E such that I(vn) → c, (1 + ‖vn‖)‖I ′(vn)‖ → 0 and {vn} is bounded

in E.

Proof It follows from Lemmas 3.1–3.2 and 2.4 that, there exists a Cerami sequence {vn}
for I. We only need to prove that {vn} is bounded. Let {vn} ⊂ E be an arbitrary Cerami

sequence for I at level c > 0, namely

I(vn) =
1

2

∫

RN

|∇vn|2 +
1

2

∫

RN

V (x)|F−1(vn)|2 −
λ

p

∫

RN

|F−1(vn)|p

− 1

2∗(s)

∫

RN

|F−1(vn)|2
∗(s)

|x|s = c+ on(1), (3.1)

and for any ϕ ∈ E,

〈I ′(vn), ϕ〉 =
∫

RN

(
∇vn · ∇ϕ+ V (x)

F−1(vn)

f(F−1(vn))
ϕ
)
− λ

∫

RN

|F−1(vn)|p−1

f(F−1(vn))
ϕ

−
∫

RN

|F−1(vn)|2
∗(s)−1

|x|sf(F−1(vn))
ϕ = on(1)‖ϕ‖.

Choosing ϕ = ϕn = F−1(vn)f(F
−1(vn)), from Lemma 2.1(1)(3)(6), we get |ϕn| ≤ C|vn| and

|∇ϕn| =
∣∣∣
(
1 +

F−1(vn)f
′(F−1(vn))

f(F−1(vn))

)
∇vn

∣∣∣ ≤ C|∇vn|.



352 Y. F. Xue, X. J. Zhong and C. L. Tang

Recalling that {vn} ⊂ E is a (C) sequence, we get

pc+ on(1)‖vn‖ = pI(vn)− 〈I ′(vn), ϕn〉

=

∫

RN

(p− 2

2
− F−1(vn)f

′(F−1(vn))

f(F−1(vn))

)
|∇vn|2

+
p− 2

2

∫

RN

V (x)|F−1(vn)|2 +
2∗(s)− p

2∗(s)

∫

RN

|F−1(vn)|2
∗(s)

|x|s

≥
∫

RN

(p− 2

2
− F−1(vn)f

′(F−1(vn))

f(F−1(vn))

)
|∇vn|2

+
p− 2

2 + γ

∫

RN

V (x)v2n. (3.2)

By Lemma 2.1(6), one has

p− 2

2
− F−1(vn)f

′(F−1(vn))

f(F−1(vn))
≥ p− 2

2
− 1− 4− 2

√
4 + 2γ

γ

:=
p− 4

2
+ h(γ).

If p ≥ 4, γ > 0, we get p−4
2 ≥ 0, h(γ) > 0. Then

p− 2

2
− F−1(vn)f

′(F−1(vn))

f(F−1(vn))
≥ p− 4

2
+ h(γ) ≥ 0. (3.3)

If 2 < p < 4, 0 < γ <
16(p−2)
(p−4)2 , we obtain inf

γ>0
h(γ) = 4−p

2 . Then

p− 2

2
− F−1(vn)f

′(F−1(vn))

f(F−1(vn))
≥ p− 4

2
+ h(γ) ≥ 0. (3.4)

Combining (3.2)–(3.3) with (3.4), one gets that ‖vn‖ is bounded.

It follows from [8] that the minimization problem

S = inf
{∫

RN

|∇v|2 :

∫

RN

|v|2∗(s)
|x|s = 1, v ∈ D1,2(RN )

}

has a solution given by

wε(x) =
[(N − s)(N − 2)ε]

N−2
2(2−s)

(ε+ |x|2−s)N−2
2−s

.

Let φ ∈ C∞
0 (RN , [0, 1]) be a cut-off function satisfying φ ≡ 1 in BR(0), φ ≡ 0 in R

N\B2R(0),

vε = φwε. We follow the strategy used in [1, 3, 8] to get the following estimates:
∫

RN

|∇vε|2 = S
N−s

2−s +O(ε
N−2
2−s ), (3.5)

∫

RN

|vε|2
∗(s)

|x|s = S
N−s
2−s +O(ε

N−s
2−s ), (3.6)

∫

RN

|vε|2 ≤ O(ε
N−2
2−s | ln ε|), (3.7)

K1ε
2N−p(N−2)

2(2−s) ≤
∫

RN

|vε|p ≤ K2ε
2N−p(N−2)

2(2−s) ,
N

N − 2
< p < 2∗, (3.8)

where K1, K2 > 0 are constants.
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Lemma 3.4 The minimax level c satisfies

c <
2− s

2(N − s)

(2 + γ

2

)N−s
2−s

S
N−s

2−s .

Proof It suffices to show that there exists v0 ∈ E, v0 6= 0 such that

max
t≥0

I(tv0) <
2− s

2(N − s)

(2 + γ

2

)N−s

2−s

S
N−s

2−s .

Since lim
t→∞

I(tvε) = −∞ and I(tvε) > 0 for t > 0 small enough, there exists tε > 0 such that

I(tεvε) = max
t≥0

I(tvε). We claim that there are constants T1, T2 such that 0 < T1 ≤ tε ≤ T2.

First, we prove that tε is bounded from below by a positive constant. Otherwise, if tε → 0 as

ε→ 0, we have tεvε → 0. Therefore, 0 < c ≤ max
t≥0

I(tvε) → 0, which is a contradiction. On the

other hand, if tε → +∞ as ε→ 0, it follows from Lemma 2.1(3) that

I(tεvε) =
1

2

∫

RN

|∇(tεvε)|2 +
1

2

∫

RN

V (x)|F−1(tεvε)|2 −
λ

p

∫

RN

|F−1(tεvε)|p

− 1

2∗(s)

∫

RN

|F−1(tεvε)|2
∗(s)

|x|s

≤ t2ε
2

∫

RN

|∇vε|2 +
t2ε
2

∫

RN

V (x)|vε|2 −
tpελ

p

(√ 2

2 + γ

)p ∫

RN

|vε|p

− t
2∗(s)
ε

2∗(s)

(√ 2

2 + γ

)2∗(s)
∫

RN

|vε|2
∗(s)

|x|s
→ −∞ as tε → +∞.

Then we have 0 < c ≤ max
t≥0

I(tvε) = I(tεvε) → −∞ as tε → +∞, which is a contradiction.

Hence there is T2 > 0 such that tε ≤ T2 for ε small enough.

Now, by Lemma 2.1(3) and (3.5)–(3.8), we observe that

I(tεvε) ≤
t2ε
2

∫

RN

|∇vε|2 +
t2ε
2

∫

RN

V (x)|vε|2 −
tpελ

p

(√ 2

2 + γ

)p ∫

RN

|vε|p

− t
2∗(s)
ε

2∗(s)

(√ 2

2 + γ

)2∗(s)
∫

RN

|vε|2
∗(s)

|x|s

≤ t2ε
2
[S

N−s

2−s +O(ε
N−2
2−s )] +O(ε

N−2
2−s | ln ε|)−O(ε

2N−p(N−2)
2(2−s) )

− t
2∗(s)
ε

2∗(s)

(√ 2

2 + γ

)2∗(s)

[S
N−s

2−s +O(ε
N−s

2−s )]

=
[ t2ε
2
− t

2∗(s)
ε

2∗(s)

(√ 2

2 + γ

)2∗(s)]
S

N−s

2−s +O(ε
N−2
2−s )

+O(ε
N−2
2−s | ln ε|)−O(ε

2N−p(N−2)
2(2−s) )−O(ε

N−s

2−s ).

Denote

h(t) :=
t2

2
− t2

∗(s)

2∗(s)

(√ 2

2 + γ

)2∗(s)

.



354 Y. F. Xue, X. J. Zhong and C. L. Tang

It is very standard to get that h(t) achieves its maximum at

t0 =
(√2 + γ

2

) 2∗(s)
2∗(s)−2

and

h(t0) =
2− s

2(N − s)

(2 + γ

2

)N−s

2−s

. (3.9)

It follows from (3.9) that

I(tεvε) ≤
[ t2ε
2
− t

2∗(s)
ε

2∗(s)

(√ 2

2 + γ

)2∗(s)]
S

N−s

2−s +O(ε
N−2
2−s )

+O(ε
N−2
2−s | ln ε|)−O(ε

2N−p(N−2)
2(2−s) )−O(ε

N−s

2−s )

≤ 2− s

2(N − s)

(2 + γ

2

)N−s

2−s

S
N−s

2−s +O(ε
N−2
2−s )

+O(ε
N−2
2−s | ln ε|)−O(ε

2N−p(N−2)
2(2−s) )−O(ε

N−s

2−s ).

Since 2N−p(N−2)
2(2−s) < N−2

2−s < N−s
2−s when pN < p < 2∗(s), we can get our result.

In order to complete the proof of Theorem 1.1, we must show that v is non-trivial. To prove

this, we need the following result.

Lemma 3.5 Assume that {vn} is a (C)c sequence for I with

c <
2− s

2(N − s)

(2 + γ

2

)N−s

2−s

S
N−s
2−s ,

and vn ⇀ 0 in E. Then there exists a sequence {yn} ⊂ R
N and r, η > 0 such that |yn| → ∞

and

lim sup
n→∞

∫

Br(yn)

v2ndx ≥ η > 0.

Proof Suppose that the conclusion is not true, then it follows from the Lions lemma (see

[16, Lemma 1.21]) that vn → 0 in Lq(RN ) for all 2 < q < 2∗. By Lemma 2.2, one has vn → 0

in Lα(RN , |x|−s)(2 ≤ α < 2∗(s)). Since {vn} ⊂ E is a Cerami sequence for I at level c > 0, we

have

I(vn) =
1

2

∫

RN

|∇vn|2 +
1

2

∫

RN

V (x)|F−1(vn)|2

− λ

p

∫

RN

|F−1(vn)|p −
1

2∗(s)

∫

RN

|F−1(vn)|2
∗(s)

|x|s
= c+ on(1) (3.10)

and

〈I ′(vn), vn〉 =
∫

RN

(
|∇vn|2 + V (x)

F−1(vn)

f(F−1(vn))
vn

)
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−
∫

RN

λ
|F−1(vn)|p−1

f(F−1(vn))
vn −

∫

RN

|F−1(vn)|2
∗(s)−1

|x|sf(F−1(vn))
vn

= on(1). (3.11)

Setting

l = lim
n→∞

∫

RN

(|∇vn|2 + V (x)|F−1(vn)|2)

and

m = lim
n→∞

∫

RN

|vn|2
∗(s)

|x|s .

Then by Lemma 2.3 and (3.10)–(3.11), we get

l

2
−
(√ 2

2 + γ

)2∗(s) m

2∗(s)
= c, l =

(√ 2

2 + γ

)2∗(s)

m. (3.12)

Observing that

S
(∫

RN

|vn|2
∗(s)

|x|s
) 2

2∗(s) ≤
∫

RN

|∇vn|2 ≤
∫

RN

(|∇vn|2 + V (x)|F−1(vn)|2),

we get Sm
2

2∗(s) ≤ l. Therefore, by (3.12), we get

c ≥ 2− s

2(N − s)

(2 + γ

2

)N−s

2−s

S
N−s

2−s ,

which contradicts the assumption

c <
2− s

2(N − s)

(2 + γ

2

)N−s
2−s

S
N−s
2−s .

Proof of Theorem 1.1 From Lemma 3.3, I has a bounded (C)c sequence {vn} ⊂ E. We

may get, up to a subsequence, vn ⇀ v in E. Then, by Lemma 2.2, vn → v in Lq(RN ) (2 ≤ q <

2∗), vn → v in Lα(RN , |x|−s) (0 ≤ s < 2, 2 ≤ α < 2∗(s)) and vn(x) → v(x) a.e. in R
N . For

any φ ∈ C∞
0 (RN ), one has

0 = 〈I ′(vn), φ〉+ o(1) = 〈I ′(v), φ〉,

i.e., v is a critical point of I. Moreover, by Lemma 3.5, there exists a constant η > 0 such that

∫

RN

v2dx = lim
n→∞

∫

RN

v2ndx ≥ η > 0,

which implies that v 6= 0.

Finally, we try to find the ground state solution. We give another equation

−div
[(

1 +
γu2

2(1 + u2)

)
∇u

]
+ V (x)u +

γu|∇u|2
2(1 + u2)2

= λ|u|p−2u+
|u|2∗(s)−2u

|x|s . (3.13)
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The calculation shows that (1.5) and (3.13) are equivalent. If u is a solution of problem (1.5),

then it is also a solution of (3.13), and it should satisfy

∫

RN

[(
1 +

γu2

2(1 + u2)

)
∇u · ∇ϕ+

γu

2(1 + u2)2
|∇u|2ϕ

+ V (x)uϕ− λ|u|p−1ϕ− |u|2∗(s)−1

|x|s ϕ
]
= 0 (3.14)

for all ϕ ∈ C∞
0 (RN ). We claim that (3.14) is equivalent to the following equality

〈I ′(v), ψ〉 =
∫

RN

(
∇v · ∇ψ + V (x)

F−1(v)

f(F−1(v))
ψ − λ

|F−1(v)|p−1

f(F−1(v))
ψ

− |F−1(v)|2∗(s)−1

|x|sf(F−1(v))
ψ
)
= 0, ψ ∈ C∞

0 (RN ). (3.15)

In fact, if we let ϕ = ψ
f(u) in (3.14), we get (3.15). Since u = F−1(v), if we choose ψ = f(u)ϕ in

(3.15), we obtain (3.14). Moreover, from Lemma 2.1, we can deduce that if ψ ∈ C∞
0 (RN ), u ∈

H1(RN ), then ϕ = ψ
f(u) ∈ H1(RN ). Similarly, if ϕ ∈ C∞

0 (RN ), u ∈ H1(RN ), then ψ = f(u)ϕ ∈
H1(RN ). Hence, the equivalence of (3.14)–(3.15) can be obtained by the denseness. Therefore,

in order to find the ground state solutions of problem (1.5), it suffices to study the existence of

ground state solutions of the following equation

−△v + V (x)
F−1(v)

f(F−1(v))
= λ

|F−1(v)|p−1

f(F−1(v))
+

|F−1(v)|2∗(s)−1

|x|sf(F−1(v))
, x ∈ R

N .

Namely, we only need to find the critical point of I with the least energy. Let

m = inf{I(u) : u ∈ E, u 6= 0, I ′(u) = 0}.

By the definition of m, there exists {wn} ⊂ E such that wn 6= 0, I(wn) → m and I ′(wn) = 0.

Similar to the proof of Lemma 3.3, we have ‖wn‖ ≤ C. Following the same lines as the proof

of Theorem 1.1, we have wn ⇀ w in E, w 6= 0 and I ′(w) = 0. Hence, by the Fatou lemma, we

get

pm ≤ pI(w) − 〈I ′(w), F−1(w)f(F−1(w))〉

=

∫

RN

(p− 2

2
− F−1(w)f ′(F−1(w))

f(F−1(w))

)
|∇w|2

+
p− 2

2

∫

RN

V (x)|F−1(w)|2 + 2∗(s)− p

2∗(s)

∫

RN

|F−1(w)|2∗(s)
|x|s

≤ lim inf
n→∞

(pI(wn)− 〈I ′(wn), F−1(wn)f(F
−1(wn))〉)

= pm.

Therefore w 6= 0 satisfies I(w) = m and I ′(w) = 0. The proof is complete.

Now, we are going to prove Theorem 1.2. In the following, we regard γ > 0 as a parameter

in (1.5). We shall analyse the convergence property of uγ as γ → 0+.
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Proof of Theorem 1.2 Suppose that vγn is the ground state solution of (1.5) with γ = γn

in Theorem 1.1, and γn → 0+ as n → ∞. Then, I(vγn) = J(uγn) = mγn and I ′(vγn) = 0,

where uγn = F−1(vγn),

mγn = inf{Jγn(u) : u ∈ E, u 6= 0, u satisfies (3.14) with γ = γn},

Jγn(u) =
1

2

∫

RN

[(
1 +

γnu
2

2(1 + u2)

)
|∇u|2

]
+

1

2

∫

RN

V (x)u2

− λ

p

∫

RN

|u|p − 1

2∗(s)

∫

RN

|u|2∗(s)
|x|s .

The variational function associated with (1.6) is defined by

J0(u) =
1

2

∫

RN

(|∇u|2 + V (x)|u|2)− λ

p

∫

RN

|u|p − 1

2∗(s)

∫

RN

|u|2∗(s)
|x|s .

Define

m0 = inf{J0(u) : u ∈ E, u 6= 0, J ′
0(u) = 0}.

Then, as γn → 0, we have

Jγn(u) → J0(u), I(vγn) = J(uγn) = mγn → m0,

and for any ϕ ∈ C∞
0 (RN ), one has

0 = 〈I ′(vγn), f(F−1(vγn))ϕ〉

=

∫

RN

(∇uγn · ∇ϕ+ V (x)uγnϕ)

− γn

∫

RN

( uγn
2(1 + u2γn)

2
|∇uγn |2ϕ+

u2γn
2(1 + u2γn)

∇uγn∇ϕ
)

−
∫

RN

(
λ|uγn |p−2uγnϕ+

|uγn |2
∗(s)−2

|x|s uγnϕ
)

→
∫

RN

(∇uγn · ∇ϕ+ V (x)uγnϕ)

−
∫

RN

(
λ|uγn |p−2uγnϕ+

|uγn |2
∗(s)−2

|x|s uγnϕ
)

= 〈J ′
0(uγn), ϕ〉.

From Lemma 3.4 with γ = 0, one gets

m0 <
2− s

2(N − s)
S

N−s

2−s := ĉ. (3.16)

Setting un := uγn , then we have J0(un) → m0 < ĉ and J ′
0(un) → 0 as n → ∞. Next, we only

need to prove that J0 satisfies the (PS)m0 condition.

Similarly to the proof of Lemma 3.3, we can get that the sequence {vγn} is bounded. From

Lemma 2.1(3), we have

‖un‖ = ‖F−1(vγn)‖ ≤ C‖vγn‖ ≤ C1, (3.17)
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which implies that {un} is bounded in E. Passing to a subsequence, we may assume that

un ⇀ u0 in E. Then, by Lemma 2.2, un → u0 in Lα(RN , |x|−s) (0 ≤ s < 2, 2 ≤ α < 2∗(s))

and un(x) → u0(x) a.e. in suppϕ, ϕ ∈ C∞
0 (RN ). Since {un} is bounded in L2∗(s)(RN , |x|−s),

{|un|2
∗(s)−1} is bounded in L

2∗(s)
2∗(s)−1 (RN , |x|−s). It follows that

u2
∗(s)−1
n ⇀ u

2∗(s)−1
0 in L

2∗(s)
2∗(s)−1 (RN , |x|−s),

and so

−△u0 + V (x)u0 = λ|u0|p−2u0 +
|u0|2

∗(s)−2

|x|s u0,

J0(u0) =
1

2

∫

RN

(|∇u0|2 + V (x)u20)−
λ

p

∫

RN

|u0|p −
1

2∗(s)

∫

RN

|u0|2
∗(s)

|x|s

=
(1
2
− 1

p

)
λ

∫

RN

|u0|p +
(1
2
− 1

2∗(s)

) ∫

RN

|u0|2
∗(s)

|x|s
≥ 0. (3.18)

We write wn := un − u0, the Brezis-Lieb lemma leads to

‖un‖2 = ‖wn‖2 + ‖u0‖2 + on(1) (3.19)

and

∫

RN

|un|2
∗(s)

|x|s =

∫

RN

|wn|2
∗(s)

|x|s +

∫

RN

|u0|2
∗(s)

|x|s + on(1). (3.20)

Since un → u0 in Lp(RN ) (2 ≤ p < 2∗), we obtain

∫

RN

(|un|p − |u0|p) = on(1). (3.21)

Then from (3.19)–(3.21), we get

J0(un)− J0(u0) =
1

2
(‖un‖2 − ‖u0‖2)−

λ

p

∫

RN

(|un|p − |u0|p)

− 1

2∗(s)

∫

RN

( |un|2
∗(s)

|x|s − |u0|2
∗(s)

|x|s
)

=
1

2
‖wn‖2 −

1

2∗(s)

∫

RN

|wn|2
∗(s)

|x|s + on(1) (3.22)

and

on(1) = 〈J ′
0(un), un〉 − 〈J ′

0(u0), u0〉

= ‖un‖2 − ‖u0‖2 − λ

∫

RN

(|un|p − |u0|p)

−
∫

RN

( |un|2
∗(s)

|x|s − |u0|2
∗(s)

|x|s
)
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= ‖wn‖2 −
∫

RN

|wn|2
∗(s)

|x|s + on(1).

We may therefore assume that

‖wn‖2 → b,

∫

RN

|wn|2
∗(s)

|x|s → b.

Then it follows from (3.18) and (3.22) that

m0 ≥
(1
2
− 1

2∗(s)

)
b. (3.23)

By the definition of S, we can get that

S
(∫

RN

|wn|2
∗(s)

|x|s
) 2

2∗(s) ≤
∫

RN

|∇wn|2 ≤ ‖wn‖2,

namely, Sb
2

2∗(s) ≤ b. Either b = 0 or b ≥ S
N−s
2−s . If b = 0, the proof is complete. Assume

b ≥ S
N−s

2−s , it follows from (3.23) that

m0 ≥
(1
2
− 1

2∗(s)

)
b ≥ 2− s

2(N − s)
S

N−s

2−s = ĉ,

which is contrary to (3.16). This completes the proof of Theorem 1.2.
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