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Abstract The nonlinear Schrödinger (NLS for short) equation plays an important role in
describing slow modulations in time and space of an underlying spatially and temporarily
oscillating wave packet. In this paper, the authors study the NLS approximation by pro-
viding rigorous error estimates in Sobolev spaces for the electron Euler-Poisson equation,
an important model to describe Langmuir waves in a plasma. They derive an approximate
wave packet-like solution to the evolution equations by the multiscale analysis, then they
construct the modified energy functional based on the quadratic terms and use the rotat-
ing coordinate transform to obtain uniform estimates of the error between the true and
approximate solutions.
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1 Introduction

In the current paper, we consider the NLS approximation for the amplitude of the electron

oscillation in the following one-dimensional Euler-Poisson system





nt + (nv)x = 0, (1.1a)

vt + vvx +
1

men
p(n)x =

e

me

ψx, (1.1b)

ψxx = 4πe(n− n0), (1.1c)

where n denotes the density of electrons, v denotes the velocity field of electrons, and electric

field ψx satisfies the linear Poisson equation (1.1c). These unknown functions are defined for

(t, x) ∈ R × R. Constants e, me and n0 represent the electrons of charge, mass and the

average charge of an ion background, respectively. The electron Euler-Poisson system (1.1) is

an important model for describing rich and complex dynamics of electrons in a plasma, in which

the ions cannot follow the rapid fluctuation of the fluid due to the greater inertia and hence

only provide a background of positive charge with uniform density n0.
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The NLS type equation has been derived formally for the electron Euler-Poisson system

(1.1) by multiple scaling analysis as early as 1974 (see [11]). As a modulation equation that

describes slow modulation in time and space of the envelope of a temporally and spatially

oscillating wave packet, the NLS equation is a completely integrable Hamiltonian system and

can be explicitly solved with the help of inverse scattering schemes (see [1]). In this paper,

we are dedicated to proving the NLS approximation of system (1.1) mathematically rigorously.

For the sake of simplicity, we set all the physical constants me = e = n0 = 4π = 1 and assume

the pressure function p(n) = 1
3n

3 in the following.

To obtain formally the NLS equation for describing the slow modulations in time and in

space of the wave train ei(k0x+ω0t) around the constant state (1, 0), we set
(
n− 1
v

)
= εΨNLS +O(ε2) (1.2)

with

εΨNLS = εA(ε(x+ cgt), ε
2t)ei(k0x+ω0t)φ(k0) + c.c., (1.3)

where 0 < ε ≪ 1 is a small perturbation parameter, A is the complex-valued amplitude,

φ(k0) ∈ C2 is chosen as the eigenvector, a wave packet of the form ei(k0x+ω0t) is used in the

approximation, cg is the group velocity and ‘c.c.’ stands for the complex conjugate, the basic

temporal wave number ω0 > 0 is associated to the basic spatial wave number k0 > 0 by the

underlying temporally and spatially oscillating wave train ei(k0x+ω0t). We obtain the following

NLS equation for A by inserting (1.2) with (1.3) to system (1.1),

∂TA = iν1∂
2
XA+ iν2A|A|2, (1.4)

where X = ε(x + cgt) ∈ R is the slow spatial scale, T = ε2t ∈ R is the slow time scale, and

coefficients νj = νj(k0) ∈ R with j ∈ {1, 2}. The time and space scales of the modulations are

O
(

1
ε2

)
and O

(
1
ε

)
, respectively. For the electron Euler-Poisson system (1.1), the basic spatial

wave number k = k0 and the basic temporal wave number ω = ω0 satisfy the following linear

dispersion relation

ω(k) = sgn(k)
√
1 + k2, (1.5)

where sgn(k) denotes the sign function. The group velocity cg = ∂w
∂k

(k0) can be found for the

wave packet. If we replace ω0 and cg with −ω0 and −cg in (1.3), our ansatz makes waves

moving to the left becomes to one moving to the right.

Our main result of this paper is as follows.

Theorem 1.1 Fix sA ≥ 6. Then for all k0 6= 0 and for all C1, T0 > 0, there exist

C2 > 0, ε0 > 0 such that for all solutions A ∈ C([0, T0], H
sA(R,C)) of the NLS equation (1.4)

with

sup
T∈[0,T0]

‖A(·, T )‖HsA (R,C) ≤ C1,

the following holds: For all ε ∈ (0, ε0), there are solutions

(
n− 1
v

)
∈
(
C
([

0,
T0

ε2

]
, HsA(R,R)

))2
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of system (1.6) which satisfy

sup
t∈[0,

T0

ε2
]

∥∥∥
(
n− 1
v

)
− εΨNLS(·, t)

∥∥∥
HsA (R,R)2

≤ C2ε
3
2 ,

where φ(k0) =

(
ik0

−iω(k0)

)
.

Remark 1.1 It is noted that the error of order O(ε
3
2 ) is small enough compared with the

solution (n−1, v) and the approximation εΨNLS, which are both of order O(ε) in L∞ such that

the dynamics of the NLS equation can be found in system (1.6). In addition, the smoothness

of the error bound is the same as the smoothness of the amplitude A. This can be achieved

by applying a modified approximation that has compact support in Fourier space but differs

only slightly from εΨNLS, based on the fact that the Fourier transform of εΨNLS is sufficiently

strongly concentrated around the wave numbers ±k0.

Before progressing, we would like to draw attention to some literature on the global existence

of the electron Euler-Poisson system (1.1). The global existence of solutions with small ampli-

tude in all physical dimensions to the electron Euler-Poisson system (1.1) has been obtained in

the past decades. Guo [5] firstly constructed global irrotational solutions with small velocity by

the Klein-Gordon effect for the three-dimensional electron fluid. For the two-dimensional elec-

tron Euler-Poisson system, Ionescu and Pausader [8] proved that small smooth perturbations

exist globally in the constant background. Jang [9] obtained the global existence of smooth

solutions with small amplitude and spherical symmetry initial data. Moreover, Jang, Li and

Zhang [10] constructed the global smooth solutions, and Li and Wu [16] solved the Cauchy

problem by constructing the wave operators for the two-dimensional electron Euler-Poisson

system. Finally, Guo, Han and Zhang [6] obtained the global existence of solutions with no

shocks for the one-dimensional electron Euler-Poisson system (1.1) for p(n) ∼ n3.

We would also like to draw attention to some recent results on the NLS approximation for

nonlinear dispersive systems. The first NLS approximation result for extended systems with

cubic nonlinearities was shown by using the Gronwall’s inequality directly (see [14]), in which

the quadratic term does not appear. In the case of semilinear quadratic terms and the eigenvalue

of the linearized problem satisfies a non-resonance condition, the NLS approximation can be

obtained by applying a normal-form transform (see [12]). When the quasilinear quadratic terms

occur in the original dispersive system, it is a highly nontrivial problem to prove rigorously the

NLS approximation due to the emergence of resonances and the loss of derivatives. In the

process of the NLS approximation of the long time scale, the quasilinear quadratic terms can

be eliminated in the following two cases at present. One case is that some special transforms are

used to eliminate the quadratic terms in the process of modulation approximation such as the

water wave problem without surface tension and infinite depth by finding special transforms

adapted to the special structure of these problems (see [21–22]), and the Korteweg-de Vries

equation by applying a Miura transformation (see [17]). The other case is to use the normal-

form transform to eliminate the quadratic terms directly or construct the energy functional. If

the quadratic term loses only half a derivative in quasilinear terms of the dispersive system, then

the transformed system loses only one derivative and the NLS approximation can be handled

with the help of the normal-form transform and Cauchy-Kowalevskaya theorem, such as in [4,
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18–19]. If the quasilinear quadratic term loses one derivative and hence makes the transformed

system lose two derivatives, the quadratic terms are removed by constructing a new modified

energy functional with normal-form transforms, such as the NLS approximation for a quasilinear

Klein-Gordon equation without resonances (see [2]) and a quasilinear dispersive scalar equation

(see [3]). Very recently, by using the normal-form transform to eliminate the low-frequency

parts and defining new energy to handle the high-frequency parts, the authors of [15] obtained

the NLS approximation for the ion Euler-Poisson system, where the quadratic nonlinearity loses

one derivative and resonances occur.

The NLS approximation for the electron Euler-Poisson equation (1.1) studied in this paper

is different from the results mentioned above. Firstly, the quadratic term of (1.1) loses one

derivative but not half a derivative, thus the Cauchy-Kowalevskaya theorem used in the water

wave system (see [4, 18–19]) is no longer suitable for this situation. Secondly, the electron

Euler-Poisson system (1.1) is drastically different from the ion Euler-Poisson system studied

in [15]: They have different dispersive relations, different Poisson equations and many others.

Most vitally to our present problem, the operator ∂2x is irreversible in the linear Poisson equation

(1.1c) for electrons, so we can not diagonalize the linearised system of (1.1) directly, drastically

different as done for the ion Euler-Poisson system (see [15]), where the linearized operator 1−∂2x
is revertible. Finally, the method applied in this paper is slightly different from the classical

Normal-Form method of Shatah [20] to close the energy estimate for the error as done in the

paper [2–3, 15].

To prove Theorem 1.1, we will apply the form of the quadratic terms to construct the

modified energy functional, and then use the rotating coordinate transform to obtain a uniform

error estimate. We first transform (1.1) into a diagonalized system of (E, v) by E := ψx,
{
Et + v + vEx = 0, (1.6a)

vt − E + Exx + vvx + ExExx = 0. (1.6b)

By the following transform, we can diagonalize the linear part of system (1.6),

S =

(
1 1

−Ω Ω

)
,

(
E

v

)
= S

(
U1

U−1

)
, (1.7)

where Ω is an operator defined by the dispersive relation (1.5) such that Ω̂u(k) = iω(k)û(k) for

function u, and every column vector of the invertible matrix S is the eigenfunction for system

(1.6). By the relation E := ψx and (1.7), we have
(
n− 1
v

)
= S̃

(
U1

U−1

)
, S̃ =

(
∂x ∂x
−Ω Ω

)
. (1.8)

Then we can obtain the NLS approximation for the transformed variables (E, v) and hence for

(n− 1, v) by the relation (1.7) and (1.8), as long as we prove rigorously the NLS approximation

for variables (U1, U−1). Plugging E = U1 + U−1 and v = −Ω(U1 − U−1) into (1.6), we obtain

the following linearised system

∂tUj = jΩUj +Qj(U,U) (1.9)

with

Qj(U,U) =
1

2
∂x(U1 + U−1)Ω(U1 − U−1) +

j∂x

4Ω
[(Ω(U1 − U−1))

2 + (∂x(U1 + U−1))
2], (1.10)
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where j ∈ {1,−1} and Qj denotes the quadratic term of the evolution equation for Uj . Then

the NLS equation can be formally derived by applying a modified ansatz U = εΨ.

To justify the NLS approximation for system (1.9) on its natural timescale in some Sobolev

space, we have to estimate the error

εβR := U − εΨ

to be of order O(εβ) for all t ∈
[
0, T0

ε2

]
for some β > 1. To make the time interval to be O(ε−2),

the quadratic terms need to be transformed into cubic terms and a closed energy estimate for

the error R needs to be obtained. Thus we adopt the modified energy method based on the

quadratic terms to define

Es =
s∑

ℓ=0

[ ∫
(∂ℓxR)

2dx+ (2ℓ− 1)ε

∫
(∂xΨ+ΩΨ)(∂ℓxR)

2dx
]

(1.11)

for s = sA ≥ 6. Obviously,
√
Es is equivalent to ‖R‖Hs since ε‖(∂x + Ω)Ψ‖L∞ = O(ε) due to

the compact support of the modified approximation εΨ in Fourier space. Our energy functional

contains some modified terms of order O(ε), which is used to eliminate the highest derivatives

terms from the quadratic terms. In addition, we use the rotating coordinate transform for the

approximation solution εΨ and the error R to translate the quadratic terms of order O(ε) into

cubic terms of order O(ε2), and take advantage of the properties of no-resonance and quadratic

terms for system (1.9) to bound the time derivative of the energy in Fourier spaces. For more

on the modified energy method, see also Hunter et al. [7]. To close the error estimates, the

energy will be further modified into

Ẽs = Es + ε2h,

where h = O(‖R‖2Hs) as long as ‖R‖Hs = O(1). Consequently, we obtain

∂tẼs ≤ Cε2(Ẽs + 1)

as long as ‖R‖Hs = O(1). Gronwall’s inequality then yields the O(1) boundedness of Ẽs and

hence of R for all t ∈
[
0, T0

ε2

]
. So the NLS approximation for system (1.9) is achieved by combing

the estimates of the residual terms and the error. The details are given in Section 3.

In order to switch back into the (n−1, v) variables, we use the relation (n−1, v) = S̃(U1, U−1)

and the fact that the Fourier transform of the approximation solution εΨ is sufficiently strong

concentrated around integer multiple of the wave numbers ±k0. Then Theorem 1.1 can be

proved by defining φ(k0) =

(
ik0

−iω(k0)

)
in the approximation (1.3) and then using the estimate

‖εf(ε·)‖L2 = ε
1
2 ‖f‖L2.

In Section 2 we derive the NLS equation and estimate the formal approximate solutions and

the residual terms that remain after inserting the approximation into (1.6). In Section 3 we

perform the error estimate to prove Theorem 1.1.

Notation We denote the Fourier transform of a function u ∈ L2(R,K), with K = R or

K = C by

û(k) =
1

2π

∫

R

u(x)e−ikxdx.
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Let Hs(R,K) be the space of functions mapping from R into K for which

‖u‖Hs(R,K) =
(∫

R

|û(k)|2(1 + |k|2)sdk
) 1

2

<∞.

We usually write L2 andHs instead of L2(R,R) andHs(R,R). We define the space Lp(m)(R,K)

of u such that σmu ∈ Lp(R,K), where σ(x) = (1 + x2)
1
2 . We also write A . B if A ≤ CB for

a constant C > 0, and A = O(B) if |A| . B.

2 The Derivation of the NLS Approximation

In this section, the NLS equation will be obtained formally as an approximation equation

for system (1.9). We compute the Fourier transform of Uj for (1.9) as

∂tÛj = ijω(k)Ûj +

∫ ∑

m,n∈{±1}

ηjmn(k, k − ℓ, ℓ)Ûm(k − ℓ)Ûn(ℓ)dℓ, (2.1)

where the kernel function ηjmn of quadratic terms (1.10) satisfies

ηjmn(k, k − ℓ, ℓ) = −n
2
(k − ℓ)ω(ℓ)− jk

4ω(k)
[mnω(k − ℓ)ω(ℓ) + (k − ℓ)ℓ]. (2.2)

Define the residual as follows

Res(U) = −∂tU + ΛU +Q(U,U), (2.3)

which is a measure of how much U fails to be a solution of (1.9). To derive the NLS equa-

tion formally as an approximation equation for system (2.1), we make the residual smaller by

approximating U not just with the NLS terms, but rather by a more complicated approximation

εΨ̃j =
∑

0≤j1,|j2|≤5

εβj(j2,j1)ψ̃
j1
j2,j

, j ∈ {±1} (2.4)

with

β1(j2, j1) = 1 + ||j2| − 1|+ j1, β−1(j2, j1) =

{
β1(j2, j1) for j2 6= 1,

β1(1, j1) + 2 for j2 = 1.

Assume that the term ψ̃
j1
j2j

has the form

ψ̃
j1
j2j

= A
j1
j2j

(ε(x+ cgt), ε
2t)Ej2 , (2.5)

where Ej2 = eij2(k0x+ω0t), then we find that the amplitudes A0
±11 of the one order terms ψ̃0

±11

satisfy the NLS equation, while the higher terms satisfy some algebraic relations or inhomoge-

nous linear partial differential equations.

We now insert (2.4) with (2.5) into (1.9). For the dispersion relation ω = ω(k) which occurs

in terms of the form ωψ̃
j1
j2j

, we take their Taylor expansions around k = j2k0 in Fourier space.

Similarly, for the quadratic terms such as ηjmnψ̃
j1
j2j
ψ̃
j̃1

j̃2 j̃
, we take their Taylor expansions around

k = (j2 + j̃2)k0, k − ℓ = j2k0 and ℓ = j̃2k0 in Fourier space, respectively. For more details, one

can refer to [19].
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Now we equate the coefficients of εlEj2 to zero for j2 = 0, 1, 2, · · · inductively. Firstly, we

find that the coefficients of εE1 and ε2E1 vanish identically because of the relations ω0 = ω(k0)

and cg = ∂kω(k0). By letting the coefficient of ε3E1 be zero, we obtain

∂TA
0
11 =

i

2
∂2kω(k0)∂

2
XA

0
11 + q, (2.6)

where q is only related to A0
11A

0
0j and A0

−11A
0
2j .

By letting the coefficient of ε2E0 and ε2E2 be zero, we obtain

lim
k→0−

ω(k)A0
01 = κ01(A

0
11A

0
−11),

lim
k→0+

ω(k)A0
0−1 = κ02(A

0
11A

0
−11)

(2.7)

and

(2ω0 + ω(2k0))A
0
21 = κ21(A

0
11)

2,

(2ω0 + ω(2k0))A
0
2−1 = κ22(A

0
11A

0
−11),

(2.8)

where κ0j , κ2j ∈ C. Then A0
0j and A0

2j can be expressed by |A0
11|2 and (A0

11)
2, respectively,

due to the fact lim
k→0±

ω(k) 6= 0 and 2ω0 ± ω(2k0) 6= 0. Inserting (2.7)–(2.8) into (2.6), we can

obtain the NLS equation

∂TA
0
11 =

i

2
∂2kω(k0)∂

2
XA

0
11 − iγ(k0)A

0
11|A0

11|2, (2.9)

where γ(k0) ∈ R.

Repeating the above steps, we find that the higher-order terms satisfy some algebraic rela-

tions or inhomogeneous linear partial differential equations. For example, the term A1
11 satisfies

a linear inhomogeneous Schrödinger equation, in which all the inhomogeneous terms are known

according to the prior steps.

To obtain the approximation property of the NLS equation (2.9), it is helpful to modify

εΨ̃ by a new approximation εΨ by some cut-off function such that the modified approximation

εΨ in Fourier space has compact support in small neighborhoods of j2k0 with |j2| ≤ 5. More

precisely we define ψj1j2j such that




ψ̂
j1
j2j

(k) =
̂̃
ψ
j1

j2j
(k) for {k ∈ R | |k − j2k0| ≤ δ},

ψ̂
j1
j2j

(k) = 0, otherwise,

(2.10)

where δ > 0 is a constant independent on 0 < ε ≪ 1. Then our modified approximation εΨ is

as follows

εΨj =
∑

0≤j1,|j2|≤5

εβj(j2,j1)ψ
j1
j2j
, j ∈ {±1}, |βj(j2, j1)| ≤ 5. (2.11)

Note that the approximation is only changed slightly by the above modification due to the

concentration around the wave numbers j2k0, but this will lead to a simpler control of the error

and make the approximation an analytic function.
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Lemma 2.1 Let sA ≥ 6 and A ∈ C([0, T0], H
sA(R,C)) be a solution of the NLS equation

(2.9) with

sup
T∈[0,T0]

‖A‖HsA ≤ CA.

Then for all s ≥ 0, there exist CRes, CΨ, ε0 > 0 depending on CA such that the following holds

for all ε ∈ (0, ε0) : The modified approximation εΨ exists for all t ∈
[
0, T0

ε2

]
and satisfies





sup
t∈
[
0,

T0

ε2

] ‖ResU (εΨ)‖Hs ≤ CResε
9
2 , (2.12a)

sup
t∈
[
0,

T0

ε2

] ‖εΨ− εΨNLS‖HsA ≤ CΨε
3
2 , (2.12b)

sup
t∈
[
0,

T0

ε2

] ‖ψ̂
j1
j2j

‖L1(s+1)(R,C) ≤ CΨ. (2.12c)

Proof We refer to [4, Lemma 2.6] (see also [2]) for the proof of Lemma 2.1. According to

the form of original approximation solution, we have Res(εΨ̃) = O(ε5) and εΨ̃−ε(ψ̃0
11+ψ̃

0
−11) =

O(ε2) on the time interval [0, T0

ε2
] if A is a solution of the NLS equation (2.9) for T ∈ [0, T0].

Since the modified approximation εΨ̂ has a compact support whose size depends on k0, thus

there exists a constant C depending on k0 such that ‖Ψ‖Hs ≤ C‖Ψ‖L2 and ‖Ψ̂‖L1(s) ≤ C‖Ψ‖L1

for all s > 0.

Furthermore, by using the facts ‖f(ε·)‖L2 = ε−
1
2 ‖f‖L2 and the estimate

‖(χ[−δ,δ]−1)ε
−1f̂(ε−1·)‖L2(m) ≤ Cεm+M− 1

2 ‖f‖Hm+M (2.13)

for all m,M ≥ 0, where χ[−δ,δ] is the characteristic function on [−δ, δ], we can obtain (2.12a)

and

sup
t∈
[
0,

T0

ε2

] ‖εΨ− ε(ψ0
11 + ψ0

−11)‖HsA ≤ Cε
3
2 . (2.14)

By combing (2.13)–(2.14), (1.3) and (1.8), we obtain (2.12b).

Finally, due to ‖ε−1f̂(ε·)‖L1 = ‖f̂‖L1 and the construction of ψj1j2j , we obtain (2.12c).

Note that the bound (2.12c) will be used to estimate

‖ψj1j2jf‖Hs ≤ C‖ψj1j2j‖Cs
b
‖f‖Hs ≤ C‖ψ̂j1j2j‖L1(s)(R,C)‖f‖Hs

without loss of powers in ε, as it would be the case with ‖ψj1j2j‖L2(s)(R,C). Moreover, by an

analogous argument as in the proof of [4, Lemma 3.3], we have the following lemma.

Lemma 2.2 For all s ≥ 0 there exists a constant Cψ > 0 such that

‖∂tψ̂0
±11 + iωψ̂0

±11‖L1(s) ≤ Cψε
2. (2.15)

For later convenience, we give the following lemma.

Lemma 2.3 (see [13]) [Commutator Estimate] Let m ≥ 1 be an integer, and then the

commutator [∇m, f ]g := ∇m(fg)− f∇mg can be bounded by

‖[∇m, f ]g‖Lp ≤ ‖∇f‖Lp1‖∇m−1g‖Lp2 + ‖∇mf‖Lp3‖g‖Lp4 , (2.16)
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where p, p2, p3 ∈ (1,∞) and

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

3 The Error Estimates

In order to prove Theorem 1.1, we need only to prove the NLS approximation for system

(1.9) because of (1.7)–(1.8) and Lemma 2.1. Define the error R by U = εΨ+ εβR
(
β ≥ 5

2

)
and

plug it into (1.9), we then obtain the following equation for R,

∂tRj = jΩRj + 2εQj(Ψ, R) + εβQj(R,R) + ε−βResUj
(εΨ)

= jΩRj +
jε

2
∂x(Ψj +Ψ−j)Ω(Rj − R−j) +

jε

2
Ω(Ψj −Ψ−j)∂x(Rj +R−j)

+
jε∂x

2Ω
[Ω(Ψj −Ψ−j)Ω(Rj −R−j) + ∂x(Ψj +Ψ−j)∂x(Rj +R−j)]

+
jεβ

2
∂x(Rj +R−j)Ω(Rj −R−j) +

jεβ∂x

4Ω
[(Ω(Rj −R−j))

2 + ∂x((Rj +R−j))
2]

+ ε−βResUj
(εΨ)

=: jΩRj + εA1 + εβA2 + ε−βResUj
(εΨ), (3.1)

where 2Qj(Ψ, R) =: A1, Qj(R,R) =: A2. By careful computation, we have

A1 = j[∂x(Ψj +Ψ−j) + Ω(Ψj −Ψ−j)]∂xRj

+
j

2
[∂x(Ψj +Ψ−j) + Ω(Ψj −Ψ−j)](Ω− ∂x)(Rj −R−j)

+
j

2

(∂x
Ω

− 1
)
[∂x(Ψj +Ψ−j)∂x(Rj +R−j) + Ω(Ψj −Ψ−j)Ω(Rj −R−j)]

=

3∑

i=1

A1i,

A2 = j[∂xRj + (Ω− ∂x)(Rj −R−j)]∂xRj

+
j

4
[(Ω− ∂x)(Rj −R−j)]

2

+
j

4

(∂x
Ω

− 1
)
[(Ω(Rj −R−j))

2 + (∂x(Rj +R−j))
2]

=

3∑

i=1

A2i.

(3.2)

According to the dispersive relation (1.5), we have

(Ω̂− ∂x)(k) = i(ω(k)− k) = i(
√

1 + k2 − k) = i
1√

1 + k2 + k
= iO(k−1), k → ∞,

( ∂̂x
Ω

− 1
)
(k) =

k√
1 + k2

− 1 =
−1√

1 + k2(
√
1 + k2 + k)

= O(k−2), k → ∞.

(3.3)

By (3.2)–(3.3), we note that the lost derivatives from the terms 2Qj(Ψ, R) and Qj(R,R) are

concentrated on A11 and A21, respectively, and the other terms such as A12, A13 and A21, A22
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do not lose derivatives. In order to control the error R, we define the following energy function

Es =
s∑

ℓ=0

Eℓ, (3.4)

Eℓ =
∑

j∈{±1}

[ ∫
(∂ℓxRj)

2dx+ (2ℓ− 1)ε
∑

m∈{±1}

∫
(∂x + jmΩ)Ψm(∂ℓxRj)

2dx
]
, (3.5)

where s = sA ≥ 6. The terms of order O(ε) in Eℓ are used to counteract the effects of the

quasilinearity. The evolution of these terms will cancel the terms with the highest derivatives

from the Hs norm. Note that

Eℓ . ‖∂ℓxR‖2L2 + ε‖∂xΨ‖L∞‖∂ℓxR‖2L2,

then we can obtain the energy
√
Es is equal to the ‖R‖Hs by applying Lemma 2.1 and Sobolev

embedding H1 →֒ L∞.

In order to prove rigorously the NLS approximation for system (1.9), we have to prove that

R is of order O(1) for all t ∈ [0, T0

ε2
]. In detail, we want to show ‖R‖Hs ≤ C for a constant C

independent of ε in the time interval [0, T0

ε2
], i.e., we want to show that

∂tEs . ε2(1 + Es + ε
3
2 E

3
2
s ).

Then we will conclude that

sup
t∈
[
0,

T0

ε2

] Es(t) ≤ C.

Furthermore, we can obtain that sup
t∈
[
0,

T0

ε2

]R(t) ≤ C.

Now we consider the evolution of Eℓ,

∂tEℓ =
∑

j∈{±1}

{
2

∫
∂ℓxRj∂

ℓ
x∂tRjdx+ 2(2ℓ− 1)ε

∑

m∈{±1}

[ ∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
x∂tRjdx

+
1

2

∫
(∂x + jmΩ)∂tΨm(∂

ℓ
xRj)

2dx
]}

=
∑

j∈{±1}

{
2j

∫
∂ℓxRj∂

ℓ
xΩRjdx+ 2ε

∫
∂ℓxRj∂

ℓ
xA1dx

+ 2(2ℓ− 1)ε
∑

m∈{±1}

∫
(j∂x +mΩ)Ψm∂

ℓ
xRj∂

ℓ
xΩRjdx

+ (2ℓ− 1)ε
∑

m∈{±1}

∫
(∂x + jmΩ)∂tΨm(∂ℓxRj)

2dx

+ 2εβ
∫
∂ℓxRj∂

ℓ
xA2dx+ 2(2ℓ− 1)ε2

∑

m∈{±1}

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
xA1dx

+ 2(2ℓ− 1)εβ+1
∑

m∈{±1}

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
xA2dx

+ 2ε−β
∫
∂ℓxRj∂

ℓ
xResUj

(εΨ)dx
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+ 2(2ℓ− 1)ε1−β
∑

m∈{±1}

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
xResUj

(εΨ)dx
}

=:
∑

j∈{±1}

9∑

i=1

Ii. (3.6)

Due to the skew symmetry of Ω, the first term I1 is equal to zero.

Now we first estimate the terms I5 − I9 which is at least of order O(ε2).

For I5, recalling (3.2), we have

I5 = 2εβ
∫
∂ℓxRj∂

ℓ
x

( 3∑

i=1

A2i

)
dx =:

3∑

i=1

I5i.

For I51, we have

I51 = 2jεβ
∫
∂ℓx[(∂xRj + (Ω− ∂x)(Rj −R−j)∂xRj)∂xRj ]∂

ℓ
xRjdx

= 2jεβ
∫
∂ℓx(∂xRj)

2∂ℓxRjdx+ 2jεβ
∫
∂ℓx((Ω− ∂x)(Rj −R−j)∂xRj)∂

ℓ
xRjdx

=: I511 + I512.

For I511, we have

I511 = 4jεβ
∫
∂xRj∂

ℓ+1
x Rj∂

ℓ
xRjdx+ 4ℓjεβ

∫
∂2xRj(∂

ℓ
xRj)

2dx

+ 2jεβ
∫ ℓ−2∑

i=2

C2
ℓ−2∂

i+1
x Rj∂

ℓ−i+1
x Rj∂

ℓ
xRjdx

= 2(2ℓ− 1)jεβ
∫
∂2xRj(∂

ℓ
xRj)

2dx+ 2jεβ
∫ ℓ−2∑

i=2

C2
ℓ−2∂

i+1
x Rj∂

ℓ−i+1
x Rj∂

ℓ
xRjdx

= εβO(E
3
2
s ), (3.7)

where we have used integration by parts, Sobolev embedding inequality and Young’s inequality.

For I512, we have

I512 = 2jεβ
∫
((Ω− ∂x)(Rj −R−j))∂

ℓ+1
x Rj∂

ℓ
xRjdx

+ 2jεβ
∫
[∂ℓx, (Ω− ∂x)(Rj −R−j)]∂xRj∂

ℓ
xRjdx

= −jεβ
∫
∂x((Ω− ∂x)(Rj −R−j))(∂

ℓ
xRj)

2dx

+ 2jεβ
∫
[∂ℓx, (Ω− ∂x)(Rj −R−j)]∂xRj∂

ℓ
xRjdx

= εβO(E
3
2
s ), (3.8)

where we have used (3.3) and the commutator estimates in Lemma 2.3. By combining (3.7)

with (3.8), we have I51 = εβO(E
3
2
s ). By estimation directly, the terms I52 and I53 can be

bounded by εβO(E
3
2
s ) by using (3.3) and integration by parts. Then we obtain

I5 = εβO(E
3
2
s ). (3.9)
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For I6, recalling (3.3), we have

I6 = 2(2ℓ− 1)ε2
∑

m∈{±1}

ε

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
x

3∑

i=1

A1idx =:
3∑

i=1

I6i.

For I61, we have

I61 = 2(2ℓ− 1)ε2
∑

m,n∈{±1}

ε

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
x[(j∂x + nΩ)Ψn∂xRj ]dx

= (2ℓ− 1)2ε2
∑

m,n∈{±1}

ε

∫
(∂x + jmΩ)Ψm∂x(j∂x + nΩ)Ψn(∂

ℓ
xRj)

2dx

+ 2(2ℓ− 1)ε2
∑

m,n∈{±1}

ε

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj

ℓ∑

i=2

Ciℓ∂
i
x(j∂x + nΩ)Ψn∂

ℓ−i+1
x Rjdx

= ε2O(Es),

where we have used integration by parts, Sobolev embedding inequality, Young’s inequality

and Lemma 2.1. By (3.2)–(3.3), we obtain I62+ I63 = ε2O(Es) by applying Sobolev embedding

inequality and Young’s inequality once more. Then we have

I6 = ε2O(Es). (3.10)

For I7, recalling (3.2), we have

I7 = 2(2ℓ− 1)εβ+1
∑

m∈{±1}

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
xA2dx

= εβO(Es + ε
3
2 E

3
2
s ), (3.11)

where we have used integration by parts, Sobolev embedding inequality, Young’s inequality and

Lemma 2.1 once more.

For I8, by applying the estimation of the residual term in Lemma 2.1, we can obtain

I8 = 2ε−β
∫
∂ℓxRj∂

ℓ
xResUj

(εΨ)dx

= ε2O(1 + Es). (3.12)

For I9, similar to I8, by applying the estimates of the residual term and approximated

solution in Lemma 2.1, we have

I9 = 2(2ℓ− 1)ε1−β
∑

m∈{±1}

∫
(∂x + jmΩ)Ψm∂

ℓ
xRj∂

ℓ
xResUj

(εΨ)dx

= ε3O(1 + Es). (3.13)

Thus by above equalities (3.9)–(3.13), we have

9∑

i=5

Ii = ε2O(1 + Es + ε
3
2 E

3
2
s ). (3.14)
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Next, we estimate the leaving terms I2 − I4, which are of order O(ε).

For I2, according to the relation (3.2), we have

I2 = 2ε

∫
∂ℓxRj∂

ℓ
x

( 3∑

i=1

A1i

)
dx =:

3∑

i=1

I2i.

For I21, by integration by parts, we have

I21 = 2ε

∫
∂ℓx[j(∂x(Ψj +Ψ−j) + Ω(Ψj −Ψ−j))∂xRj ]∂

ℓ
xRjdx

= 2ε
∑

m∈{±1}

∫
∂ℓx[(j∂x +mΩ)Ψm∂xRj ]∂

ℓ
xRjdx

= −ε
∑

m∈{±1}

∫
∂x[(j∂x +mΩ)Ψm](∂ℓxRj)

2dx

+ 2ε
∑

m∈{±1}

∫ ℓ∑

i=1

Ciℓ∂
i
x((j∂x +mΩ)Ψm)∂ℓ−i+1

x Rj∂
ℓ
xRjdx

= (2ℓ− 1)ε
∑

m∈{±1}

∫
∂x((j∂x +mΩ)Ψm)(∂

ℓ
xRj)

2dx

+ 2ε
∑

m∈{±1}

∫ ℓ∑

i=2

Ciℓ∂
i
x((j∂x +mΩ)Ψm)∂ℓ−i+1

x Rj∂
ℓ
xRjdx

=: I211 + I212.

For I3, by integration by parts, we have

I3 = 2(2ℓ− 1)ε
∑

m∈{±1}

∫
(j∂x +mΩ)Ψm∂

ℓ
xRj∂

ℓ
xΩRjdx

= −(2ℓ− 1)ε
∑

m∈{±1}

∫
∂x[(j∂x +mΩ)Ψm](∂ℓxRj)

2dx

+ 2(2ℓ− 1)ε
∑

m∈{±1}

∫
(j∂x +mΩ)Ψm∂

ℓ
xRj∂

ℓ
x(Ω− ∂x)Rjdx

= I31 + I32.

Note that the terms I31 and I211 can be cancelled and this is the reason why we choose the

modified energy Eℓ in (3.4).

For I4, we have

I4 = (2ℓ− 1)ε

∫
(∂x + jmΩ)∂tΨm(∂ℓxRj)

2dx

= (2ℓ− 1)ε

∫
(∂x + jmΩ)(∂t +Ω)Ψm(∂ℓxRj)

2dx− (2ℓ− 1)ε

∫
(∂x + jmΩ)ΩΨm(∂

ℓ
xRj)

2dx

= I41 + I42.

An application of Lemma 2.2 with (2.15) and Lemma 2.1 leads to I41 = ε3O(Es).
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So far, only the terms I212, I22, I23, I32, I42 of order O(ε) need to be estimated. In order to

prove that R is of order O(1) for all t ∈
[
0, T0

ε2

]
, we need to translate these terms of order O(ε)

to be of order O(ε2). For this sake we take the following coordinate transform

f = e−ΩtR, g = e−ΩtΨ, (3.15)

and then by using (3.1) and (3.15) we have

∂tfj = 2εe−ΩtQj(e
Ωtg, eΩtf) + εβe−ΩtQj(e

Ωtf, eΩtf) + ε−βe−ΩtResUj
(εΨ). (3.16)

It is noted that the O(1) term no longer appears in this coordinate frame. We analyze the

remaining terms of O(ε) in Fourier space

I212 + I22 + I23 + I32 + I42

= ε(−1)ℓ+1
∑

m,n∈{±1}

∫∫ {
(j + n)

ℓ∑

i=2

Ciℓ(k − l)i(j(k − l) +mω(k − l))lℓ−i+1kℓ

+ k2ℓ(j(k − l) +mω(k − l))n(ω(l)− l)

+ jk2ℓ
( k

ω(k)
− 1

)
((k − l)l+mnω(k − l)ω(l))

+ (2ℓ− 1)(j + n)(j(k − l) +mω(k − l))lℓkℓ(ω(k)− k)

−
(
ℓ− 1

2

)
(j + n)((k − l) + jmω(k − l))ω(k − l)kℓlℓ

}
R̂j(k)Ψ̂m(k − l)R̂n(l)dldk

=: ε(−1)ℓ+1
∑

m,n∈{±1}

∫∫
αjmn(k, k − l, l)R̂j(k)Ψ̂m(k − l)R̂n(l)dldk. (3.17)

That is to say αjmn =:
5∑
i=1

γi is the kernel function of I212 + I22 + I23 + I32 + I42 =: εJ . By

using (3.3), we find that the exponent sum of k and l from every term of α̂jmn(k, k − l, l) less

than 2ℓ except for −
(
ℓ − 1

2

)
(k + n)((k − l) + jmω(k − l))ω(k − l)kℓlℓ for m,n, j ∈ {±1}. By

using (3.15), we have

ε

∫ t

0

Jds = ε(−1)ℓ+1
∑

m,n∈{±1}

∫ t

0

∫∫
αjmn(k, k − l, l)R̂j(k)Ψ̂m(k − l)R̂n(l)dldkds

= ε(−1)ℓ+1
∑

m,n∈{±1}

∫ t

0

∫∫
eiφ

j
mn(k,l)sαjmn(k, k − l, l)f̂j(k)ĝm(k − l)f̂n(l)dldkds

= ε(−1)ℓ+1
∑

m,n∈{±1}

∫∫
αjmn(k, k − l, l)

iφjmn(k, l)
eiφ

j
mn(k,l)sf̂j(k)ĝm(k − l)f̂n(l)dldk

∣∣∣
t

0

− ε(−1)ℓ+1
∑

m,n∈{±1}

∫ t

0

∫∫
αjmn(k, k − l, l)

iφjmn(k, l)
eiφ

j
mn(k,l)s∂s(f̂j(k)ĝm(k − l)f̂n(l))dldkds

=: (−1)ℓ+1
∑

m,n∈{±1}

(J1 + J2), (3.18)

where

φjmn(k, l) = −jω(k) +mω(k − l) + nω(l), m, n, j ∈ {±1}. (3.19)
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Note that φjmn(k, l) 6= 0 for all k, l ∈ R according to the dispersive relation (1.5), thus the

right-hand terms of (3.17) are well-defined. When |k| → ∞, we have

φ
j
mj(k, l) = mω(k − l)− j(ω(k)− ω(l))

= mω(k − l)− j(k − l)ω′(k − θ(k, l)(k − l))

= mω(k − l)− j(k − l)(1 +O(|k|−2)),

φ
j
m,−j(k, l) = −jω(k) +mω(k − l)− jω(l)

= mω(k − l)− j(ω(k) + ω(k − (k − l)))

= 2ω(k)(1 +O(|k|−1)).

(3.20)

Note that the boundary term J1 of the right-hand of (3.17) can be subtracted in the left-hand

of our estimate, which does not change the energy because it can be estimated by CεEs due

to (3.20). The second term J2 is of order O(ε2) when the time derivative is applied to either

factor of f or g.

For the last term J2 of (3.17), we have

J2 = −ε
∫ t

0

∫∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
eiφ

j
mn(k,l)s∂s(f̂j(k)ĝm(k − l)f̂n(l))dldkds

= −ε
∫ t

0

∫∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
eiφ

j
mn(k,l)s∂s(f̂j(k))ĝm(k − l)f̂n(l)dldkds

− ε

∫ t

0

∫∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
eiφ

j
mn(k,l)sf̂j(k)∂s(ĝm(k − l))f̂n(l)dldkds

− ε

∫ t

0

∫∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
eiφ

j
mn(k,l)sf̂j(k)ĝm(k − l)∂s(f̂n(l))dldkds

=: J21 + J22 + J23. (3.21)

For J21, recalling (3.16), we have

J21 = −ε
∫ t

0

∫ ∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
ei(mω(k−l)+nω(l))s(2εQ̂j(eiωsĝ, eiωsf̂)(k)

+εβQ̂j(eiωsf̂ , eiωsf̂)(k) + ε−βResUj
(εeiωsĝ))ĝm(k − l)f̂n(l)dldkds

= −2ε2
∫ t

0

∫ ∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
Q̂j(Ψ̂, R̂)(k)Ψ̂m(k − l)R̂n(l)dldkds

− εβ+1

∫ t

0

∫ ∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
Q̂j(R̂, R̂)(k)Ψ̂m(k − l)R̂n(l)dldkds

− ε1−β
∫ t

0

∫ ∫
α̂jmn(k, k − l, l)

iφjmn(k, l)
ResUj

(εΨ̂)Ψ̂m(k − l)R̂n(l)dldkds

=: J211 + J212 + J213. (3.22)

The term J213 including the residual can be bounded directly by ε2O(1 + Es) by applying

Lemma 2.1, Young’s inequality and Cauchy-Schwarz. Recalling the kernel function αjmn from

(3.17), we have

J211 + J212 = −2ε2
∫ t

0

∫ ∫
5∑
i=1

γi

iφjmn(k, l)
Q̂j(Ψ̂, R̂)(k)Ψ̂m(k − l)R̂n(l)dldkds
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− εβ+1

∫ t

0

∫ ∫
5∑
i=1

γi

iφjmn(k, l)
Q̂j(R̂, R̂)(k)Ψ̂m(k − l)R̂n(l)dldkds

=:

5∑

i=1

(J211i + J212i). (3.23)

According to (3.3) and (3.17), we obtain γi(i = 1, 2, 3, 4) is of order less than or equal to 2ℓ− 1

and the quadratic terms Qj(Ψ, R) or Qj(R,R) only lose one derivative by (3.2), so we have

4∑

i=1

(J211i + J212i) = ε2O(Es + ε
3
2 E

3
2
s ), (3.24)

where we have used Lemma 2.1, Young’s inequality and Cauchy-Schwarz once more.

For J2115 with j = n, we have

J2115 = −2(2ℓ− 1)ε2
∫ t

0

∫∫
((k − l) + jmω(k − l))ω(k − l)kℓlℓ

iφjmj(k, l)

× Q̂j(Ψ̂, R̂)(k)Ψ̂m(k − l)R̂j(l)dldkds

= −(2ℓ− 1)ε2
∫ t

0

∫∫
((k − l) + jmω(k − l))ω(k − l)kℓlℓ

iφjmj(k, l)

×
3∑

i=1

Â1i(k)Ψ̂m(k − l)R̂j(l)dldkds

=:
3∑

i=1

J i2115. (3.25)

According to (3.20), we have

∣∣∣ k

iφjmj(k, l)
+ ik

∣∣∣ ≤ C,
∣∣∣ k

iφjm−j(k, l)
+ i(k − l)

∣∣∣ ≤ C. (3.26)

Since A12 + A13 from (3.2) does not lose derivatives, by applying (3.26), Lemma 2.1, Young’s

inequality and Cauchy-Schwarz, we have

J2
2115 + J3

2115 = ε2O(Es) (3.27)

and

J1
2115 = −(2ℓ− 1)ε2

∑

q∈{±1}

∫ t

0

∫∫∫
i((k − l) + jmω(k − l))ω(k − l)kℓlℓ

× (j(k − p) + q(k − p))pΨ̂q(k − p)R̂j(p)Ψ̂m(k − l)R̂j(l)dpdldkds

+ ε2O(Es)

= (−1)ℓ+1(2ℓ− 1)ε2
∑

q∈{±1}

∫ t

0

∫
∂ℓx((j∂x + qΩ)Ψq(∂x + jmΩ)ΩΨm∂xRj)∂

ℓ
xRjdxds

+ ε2O(Es)
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= (−1)ℓ+1 (2ℓ− 1)2

2
ε2

∑

q∈{±1}

∫ t

0

∫
∂x((j∂x + qΩ)Ψq(∂x + jmΩ)ΩΨm)(∂ℓxRj)

2dxds

+ (−1)ℓ+1(2ℓ− 1)ε2
∑

q∈{±1}

∫ t

0

∫ ℓ∑

i=2

Cℓi ∂
i
x(j∂x + qΩ)Ψq(∂x + jmΩ)ΩΨm

× ∂ℓ−i+1
x Rj∂

ℓ
xRjdxds

+ ε2O(Es)
= ε2O(Es). (3.28)

Combining (3.27) with (3.28), we obtain

J2115 = ε2O(Es). (3.29)

Similarly, by using (3.2)–(3.3) and (3.17), we have

J2125 = ε2O(Es + ε
3
2 E

3
2
s ). (3.30)

By (3.22)–(3.24) and (3.29)–(3.30), we have

J21 = ε2O(1 + Es + ε
3
2 E

3
2
s ).

Similarly to J21, J22 and J23 can be bounded by ε2O(1 + Es + ε
3
2 E

3
2
s ). Then we have

J2 = ε2O(Es + ε
3
2 E

3
2
s ). (3.31)

Recalling the evolution of Eℓ in (3.6), associate (3.14), (3.17)–(3.18) with (3.31), we have

∂t(Eℓ + εhℓ) = ε2O(1 + Es + ε
3
2 E

3
2
s ), (3.32)

where hℓ is the modified term for the energy Eℓ coming from J1 in (3.18) and can be estimated

by εO(Es). Then by using Gronwall’s inequality, we have

sup
t∈
[
0,

T0

ε2

] ‖R(t)‖Hs < C, (3.33)

independent of ε as desired.
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