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Distance Between Unitary Orbits of Self-Adjoint
Elements in C*-Algebras of Tracial Rank One
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Abstract The note studies certain distance between unitary orbits. A result about Riesz
interpolation property is proved in the first place. Weyl (1912) shows that dist(U(z), U(y))
= §(z,y) for self-adjoint elements in matrixes. The author generalizes the result to C*-
algebras of tracial rank one. It is proved that dist(U(z),U(y)) = Dc(z,y) in unital AT-
algebras and in unital simple C*-algebras of tracial rank one, where z,y are self-adjoint
elements and D¢ (z,y) is a notion generalized from §(z,y).
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1 Introduction

It is an interesting and important problem to determine when two normal elements are uni-
tary equivalent in a C*-algebra. Let dist(U(x),U(y)) denote the distance between the unitary
orbits of z and y. For matrix M,, let x,y € M, be two normal elements with eigenvalues

{a1, -+ ,an} and {B1,- -+, Bn}, respectively. Suppose
5(1’, y) = H;_in 1%1%)(" |ai - ﬁﬂ(l) |7

where 7 runs over all permutations of {1,--- ,n}. The equality dist(U(x),U(y)) = §(x,y) is
well known for Hermitian matrices by Weyl [12]. Hu and Lin [3] study the distance between
unitary orbits in separable simple C*-algebras of real rank zero and stable rank one. Let A be
separable simple C*-algebra of real rank zero and stable rank one with weakly unperforated
Ky(A). Let 2,y € A be two normal elements. Hu and Lin prove that

dist(U(x),U(y)) < De(w,y) (1.1)
when [\ — 2] = [u—y] = 0 in K;(A) for all A ¢ sp(x) and p ¢ sp(y),
dist(U(2), U(y)) < Dg(z,y) < 2Dc(x,y) (1.2)
when [A — 2] = [\ —y] = 0 in K, (A) for all A ¢ sp(x) U sp(y),

dist(U(x), U(y)) < D¢(x,y) + 2min{pz (2, y), py(z,y) } (1.3)
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for all normal elements x,y.

It is well known that a simple C*-algebra A of tracial rank zero has real rank zero and
stable rank one with weakly unperforated Ky(A). However, a simple C*-algebra A of tracial
rank one hasn’t real rank zero in general, where the property plays an important role to study
the distance between unitary orbits. This takes a difficulty when A is tracial rank one. Then
Lin and Hu proposed the problem of the distance between unitary orbits in C*-algebras of
tracial rank one.

Suppose R C {1,---,m} x {1,---,n} and A C {1,---,m}. Define R4 C {1,---,n} to be
the subset of those j’s such that (i, j) € R for some i € A. Let (G, G4+) be an ordered abelian
group. Let {a;}/™,{b;}}_; C G4 with f: a; = i bj, RC {1,---,m} x{1,---,n} satisfying:

i=1 =1
For any A C {1,--- ,m}, ’

Yo Y

i€A JERA
Hu and Lin [3] generalize a result in [2] and obtain that when G is a countable weakly unper-
forated with the Riesz interpolation, there are {c;;} C G4 such that

Z Cij = Gy, Zcij = bj for all 1,7 and Cij = 0 unless (Z,j) € R.
j=1 i=1

It is the starting point that Hu and Lin study the distance between unitary orbits.

It is obvious that this conclusion implies that the Riesz interpolation property holds. Fur-
thermore, we realize that the conclusion holds when an ordered abelian group (G,G.) just
has the Riesz interpolation property. This result is presented as a starting point in Section
3. To solve the problem Lin and Hu put forward, by using the result of Weyl, we present the
distance between unitary orbits of self-adjoint elements in unital AT-algebras and unital simple
C*-algebras of tracial rank one in Section 4 (one can see Theorems 4.2-4.3).

2 Preliminaries

In this section, we need to recall some notations, definitions and elementary conclusions.
One can see [3, 6] for more details.

Definition 2.1 Let A be a unital C*-algebra. Denote by U(A) the unitary group of A. Let
x € A be a normal element. Define U(x) to be the closure of {u*xu : u € U(A)}. Denote by
T(A) the tracial state space of A.

Definition 2.2 (see [3]) Let A be a C*-algebra and a,b € A be two positive elements. We
write a < b if there is a sequence of elements {x,} C A such that

xrbr, —a  asn — oo. (2.1)

If a S b and b < a, then we write [a] = [b] and say that a and b are equivalent in Cuntz
semigroup. We write [a] < [b] if a < b.

If p,q € A are two projections, then p < q means that there is a partial isometry v € A such
that v*v = p and vo* <gq.



Distance Between Unitary Orbits of Self-Adjoint Elements 409

Definition 2.3 Let Q be a compact metric space and let O C Q be a non-empty open subset.
Denote by fo a positive function with 0 < fo < 1 whose support is exactly O, i.e., fo > 0
for allt € O and fo(t) =0 for allt ¢ O. Define fy = 0. Let O C Q be a non-empty subset.
Denote by xo the characteristic function associating to O.

Suppose A is a unital C*-algebra and x € A is a normal element with X = sp(x) C Q.
Denote by px : C(2) — A the unital homomorphism. Define ox(f) = f(x) for all f € C(Q).

Define

Oq = {t € Q: dist(t,0) < d} (2.2)

for any subset O C Q.
Denote by O the closure of O.

The following lemma is a notation in [3] without a proof. We give the proof.

Lemma 2.1 Let Q be a compact metric space and O C Q be an open subset. Let k : C(Q) —
A be a unital homomorphism. Then [k(fo)] does not depend on the choice of fo. Therefore, if
open sets O1 C Oo C Q, then k(fo,) S k(fo,)-

Proof Let fo,go be two positive functions whose support is exactly O. If O is a clopen
subset of €, the function ho, defined by ho(t) = fo(t)/go(t) if t € O and ho(t) =01if ¢t ¢ O,
belongs to C'(2). Therefore, [k(fo)] = [k(g0)].

Now we assume that O is not a clopen subset of 2. Suppose

F. = g5'[0,e) N f5[0,¢). (2.3)

Then F. is an open subset. Note that O # () (the boundary of O) since O is not a clopen
subset of ). Then for any € > 0, there exists t. € F. N O. Fix € and t.. Choose a number
e with 0 < ¢’ < min{fo(tc), go(tc)}, then &/ < . Define F.r = g5'[0,¢') N £5'[0,€’). Let
H. =F5nN F., where F¢ is the complementary set of F... Then t. € H.r # () and H.s is a
close subset. Since go(FS) > 0, we may define hl, = fo/go in H.. Then h., € C(H.). Let

m:C(F.) — C(H.) (2.4)
be the restriction map. It is well known that 7 is surjective. So, h., can be extended on E..
Let L. = {t € F. : hL,(t)go(t) > €}. Then L. is a close set. We may define s.(t) = 707 When
t € L. and sc(t) = h.,(t) when t € F.\L.. By pasting lemma (one can see [4, Theorem 3.2]),
s. € O(F.). Note that for all t € F,

se(t)go(t) <e. (2.5)

Let b, = fo/go on FS. Note that FSUF. = Q, FSNF. = H. and selm., = hl|m_,. Therefore,
it follows from pasting lemma that there exists h. € C(€2) such that h5|Ft = sc and he|pe, = hl,.

So, for any t € F./,

[fo(t) = he(t)go ()] < |fo(t)] + [he(t)go (t)] = [fo(t)] + [s=(t)go (t)] < 2. (2.6)
For any t € FS, fo(t) = ho(t)go(t). Therefore,
[fo = hegoll = sup{|fo(t) — he(t)go ()] : t € Q} < 2e. (2.7)

So, we get k(fo) < k(go). In the same way, k(go) < k(fo). Therefore, [k(fo)] = [k(g0)]-
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Definition 2.4 (see [3]) Let Q be a compact metric space and let O C Q be an open subset.
If A is a unital C*-algebra and Ky, Ko : C(Q2) = A are two unital homomorphisms, define

D (K1, Ks) = sup{i%f{d >0: Ki(fo) S Ka(fo,)}: O C Q open}. (2.8)
e)
Let X = sp(x),Y = sp(y) C Q, where z,y € A are two normal elements. Define px : C(£2)
= A, [ f(z) and py : C(Q) = A, f+— f(y). Denote by D.(x,y) the D.(px,py).
)

Definition 2.5 (see [3]) Let € > 0. Denote by f. the continuous function on (—oo,00)

such that 0 < fo < 1; f(t) =1 ift € (o0, —€]U[e,00), f(t) =0 ift € [— £,5] and f(t) is
linear in (— €, —%) and (%,E)
Let b€ Ay. Define
dr(b) = lim 7(f- (b)) (2.9)

for T € T(A).
A is said to has strict comparison for positive elements, if

d-(a) < d;(b) forallT e T(A) (2.10)

implies that a < b.
Unital simple C*-algebras of tracial rank no more than one have strict comparison for pos-
itive elements.

Definition 2.6 (see [3]) Let A be a unital C*-algebra with T(A) # 0. Let Q@ C C be a
compact set and X = sp(x),Y = sp(y) C Q, where x,y € A are two normal elements. Define

rolpx; py) = nf{r > 0:d-(px(fo)) < dr(pv(fo,)) for all 7 € T(A)}. (2.11)
Define
Dr(px,py) = st(l)p{ro(gox, vy): O CQ open}. (2.12)

Denote by Dy (x,y) the Dr(ox,¢y)-

Lemma 2.2 Let A be a unital C*-algebra of stable rank one with T'(A) # 0. Then for any
normal elements x,y,z € A,

De(z,2) < De(@,y) + De(y, 2), (2.13)
De(z,y) = De(y, ), (2.14)
Dr(z,z) < Dr(x,y) + Dr(y, 2), (2.15)
Dr(z,y) = Dr(y,z), (2.16)
Dr(z,y) < De(2,y) (2.17)

Proof It follows from [3, Propositions 2.15 and 2.21].

Lemma 2.3 Let A be a unital C*-algebra with T(A) # 0 and let Q@ C C be a compact
subset. For any e > 0, there exists § > 0 satisfying: For any normal elements x,y € A with

sp(x), sp(y) C €, if
lx =yl <6, (2.18)
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then

D.(z,y) <&, (2.19)
Dy (z,y) < e. (2.20)

Proof It follows from the proof of [3, Lemma 2.17] that (2.19) holds. It follows from Lemma
2.2 that (2.20) holds.

Definition 2.7 (see [6]) Denote by M, the matriz algebra M, (C).

Denote by IV the class of all unital hereditary C*-subalgebras of C(X) @ F, where X is
one-dimensional finite CW complex and F is a finite dimensional C*-algebra.

Let A be a C*-algebra and B be a C*-subalgebra of A. If a € A, we say a €. B if there is
an element b € B such that ||a —b|| < e.

Denote by TR(A) < k the tracial rank no more than k (One can see the definition of tracial
rank by [6, Definition 3.6.1] ).

Remark 2.1 Note that those conclusions about spectrum in the following:

(1) Let A be a unital C*-algebra. Suppose z,y € A are two normal elements. Let ¢ > 0. If
lx — y|| < e, then for any A € sp(x), dist(), sp(y)) < e.

(2) Let A be a unital C*-algebra and I4 be the unit. Suppose B is a C*-subalgebra of A
and x € B is a normal element. If B has unit Ig # 14, then spa(x) = spp(x)U{0}. Otherwise,
spp(x) = spa(x).

(3) Suppose A = B @ C, where A, B,C are unital C*-algebras. Let € B and y € C be
normal. Then spp(x) U spe(y) = spa(z + y).

Remark 2.2 Let A be a unital C*-algebra with unit I4. Let B be a unital C*-subalgebra
of A with unit Ip. Suppose x € B is a normal element and X4 = spa(z). Set f € C(X4).
Note that the function calculation f(z) in A and in B are different. Therefore, if necessary,
we denote by f4(z) the function calculation f(z) in A and denote by fZ(x) the function
calculation f(z) in B. It is obvious that P4 (x) = PB(x) + P(0)(Ia — Ig) for any polynomial
P. So fA(z) = fB(z) + f(0)(I4 — Ip) for any f € C(Xa).

This following lemma is probably well-known.

Lemma 2.4 Let A be a unital simple C*-algebra and B be a unital hereditary C*-subalgebra
of A. If T € T(B), then there is only one tracial positive linear function 7" on A such that

T'|p=r.
Proof Since A is simple, it follows from [6, Lemma 3.3.6] that there are z1,--- ,2, € A
such that T4 = 3 x;Ipx}. Suppose {e;; :i,j =1,--- ,n} is a set of matrix units of M,, and
i=1
l:A—M,®A
(2.21)
a+— e X a.

Let 7, be the normalized trace of M,,. Then 7, ® 7 € T(M,, ® B). Put z = }_ e1; ® x; and
=1
P=1I®Ip € M, ® B, where I is the unit of M,. Then

e11 @ Ia = xPx”. (2.22)
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Since M,, ® B is a hereditary C*-subalgebra of M, ® A, then
Pz*l(a)xP € M, ® B (2.23)

for any a € A. Define 7/(I(a)) = 7, @ T(P2z*l(a)zP) for a € A. Therefore 7’ is a positive linear
function on I(A). Suppose a,b € A. Then by (2.22)—(2.23),

7'(l(ab)) = 7, @ T(Pz*1(a)l(b)zP) = 7, @ T(Pz*l(a)x Px*1(b)zP)

(2.24)
= 7p @ T(Pz*l(b)xPz*l(a)zP) = 7'(I(ba)).
This implies that 7/ is a trace on [(A). For any b € B,
(1)) = 7 @ T(P2*1(b)aP) = 7, @ 7(Pz*1(b)? PL(b)? zP) (2.25)
= 7, ® T(PL(b)22Pz*1(b)2 P) = 1, @ T(PL()P) = 7, @ T(I(D)). '

Therefore, 7'[;g)y = 7, ® 7. In other words, n7’ ol|p = 7.
Now suppose 71 and 75 are tracial positive linear functions as two extensions of 7. For any
a € A+,

7 @ 71 (I(a)) = 7 @ 7{ (Il(a) 22 P2"1(a)?) = 7, ® {(P2"I(a)aP) (2.26)
=7, @ 7(Pz*l(a)zP) = 7, @ 5 (Px*l(a)zP) = 1, @ T5(I(a)) '
This implies that 7{ = 75.

3 C*-Algebras with the Riesz Interpolation Property

Definition 3.1 Let I and J be two sets. Suppose R C I x J, A C I and B C J. Define
R4 C J to be the subset of those j’s such that (i,§) € R for some i € A. Define R® C I to be
the subset of those i’s such that (i,7) € R for some j € B.

Theorem 3.1 Let (G,G) be an ordered abelian group with the Riesz interpolation property.
If{ai} 2y, {b;j}—y C Gy with 3~ a; = > bj, RC{1,--- ,m} x {1,---,n} satisfying: For any
i=1 j=1
Ac{l,---,m},

Z(li S Z bj, (31)

i€A JERA
then there are {c;;} C G4 such that
Z Cij = Q4 Z Cij = bj fO’I“ all i,j (32)
j=1 i=1
and ¢;; =0 wunless (i,7) € R. (3.3)

Proof It follows from [6, Lemma 3.3.14] that, if a1,a2,b1,b2 € G with a; < b; (4,5 = 1,2),
then there exists ¢ € G such that a; < ¢ <b; (i, = 1,2). Now, suppose a1, az, b1,b2,b3 € G
with a; <b; (i =1,2 and j = 1,2,3). Then for a1, as and b1, by, there exists ¢ € G such that
a; < ¢ <bjfor i,j = 1,2. Therefore, for ai,as and ¢, b3, we have a; < ¢ and a; < b3 for
1t = 1,2. Then, we have ¢ € G such that a; < ¢ < ¢/,bz for i = 1,2. Note that ¢ < ¢’ < by, bs.
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Therefore, we get ¢ € G such that a; < c < b; for i =1,2 and j = 1,2,3. In the same way, if

ai, -, Gm, b1, -+ ,bp € G with a; < by for all 4, j, then there exists ¢ € G such that a; < ¢ <b;
for all 4, j.
m n
Now, suppose {a;}/;,{b;}7_; C Gy with > a; = > bj, R C {l,---,m} x {1,--- ,n}
i=1 j=1

satisfying: For any A C {1,---,m},
i€A JERA

When m = 1, it is trivial to check that there are c¢;; = b; C G4 such that
chj =aq, Cl; = bj for allj (35)
j=1

and
¢i; = 0 unless (4, j) € R. (3.6)

Then we assume that it holds for m = k — 1. Let m = k. Without loss of generality, suppose
(1,1) € R, Ryyy = {1,---,n'} and RMW = {1,--- m/} where 1 <m/ <m, 1 <n/ <n. We
first consider m/,n’ > 2. Let A={AC{2,--- ,m}: AN{2,--- ,m'} #0} and B={B: B C
{m’+1,--- ,m}}. Note that ) € B, A,B# 0 and AUB={C:C C {2,---,m}}. So, we can
suppose A ={Ai,---, A, }, B={B1, - ,By,}. Define > a; = > b; = 0. Therefore, we have

ich jeo
al—i—Zaig Z b foralll=1,---,1, (3.7)
€A jeRAlu{l}
>ai< Y by foralll=1,- 1, (3.8)
i€A; jGRAL
o+ a;< Y by foralll=1,-l, (3.9)
i1€B; JERB,U{1}
>ai< Y by, foralll=1,- . (3.10)
ieB; JERB,
By (3.8), we have
Z bj—ZaiZO foralll =1,--- 1. (3.11)
jERAl €A
By (3.9), we have
a+ Y ai— > i<ty foralll=1,--- . (3.12)
ieB, jERpB, U1y \{1}

Note that for any B € B, 1 ¢ Rp. Then by (3.10),

dai< Y b < > b (3.13)

i€B) jGRBl jeRBlu{l}\{l}
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So,
o+ ai— Y bj<a foralll=1- 1l (3.14)
1€B; JERB, L1y \{1}

Let B = RALuBl,u{l}\RAL- We can find that RAZUBUU{I} = RALURB“U{I} and RALQ(Bl,U{l}) C
Ra, N RBl/u{l}~ So B’ = RBl/U{l}\RAza B'Nn RAZQBL, =( and B'U RAZQBL, C RBl,U{l}\{l}.
Therefore,

=ai+ Z a; + Z a;

i€ AjUBy, i€ ANBy,

Sooobi+ D b

JERA LB, U1} JERANB,,

IN

< > b+ > b (3.15)
So,

ay + Z a; — Z bj < Z bj— Zai (3.16)

i€ By jeRBl,u{l}\{l} jERAl i€A;

foralll=1,---,ly and I’ =1,---,l3. Combine (3.11)—(3.12), (3.14) and (3.16), we have

0,a1 + Z a; — Z bj < ay,by, Z bj — Z a; (317)

i€ By jeRBl,u{l}\{l} jeRAL i€EA;
foralll=1,---,ly and I’ =1,---,l5. Therefore, there exists c;; € G such that
0,a1 + Z a; — Z bj <c1 <ay,by, Z bj— Zai (318)
i€ By jeRBl,u{l}\{l} JERA, €A,

foralll=1,---,ljand ' =1,--- ,ls.
Now, let @] = a1 —c11 > 0 and b} = by — ¢11 > 0. Let a} = a; and b;- =b;fori=2---,m
and j =2,---,n. Let R' = R\{(1,1)}. Then, by (3.7), we have

v+ Y ap < Y b= > by foralll=1,--- 1. (3.19)

i€A; jGRALu{l} jER;‘xlu{l}

By (3.18), we have

Stal< ST vi= >0 foralll=1,--- 1 (3.20)

1€A; JERA, jGR’Al

and

i+ > a< > b= > W foralll=1,- . (3.21)

€8 jeRBlu{l}\{l} jeR,Blu{l}
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By (3.10), we have

dap< Y b foralll=1,-- 1. (3.22)
i€B) jERB,
Therefore, when m/,n" > 2, for {a;}*,,{b}}}_; C G4, we have ) a; = > b and for any
i=1 j=1
AC {1’... ’m}’

doa< N v (3.23)

i€A JER!,

However, when m’ = 1 and n’ > 2, let ¢11 = b1, a] = a1 —ci1 = Y, bj — > a; > 0 and
j=2 i=2
by = 0. Let a} = a; and by = bj for i = 2,--- ,m and j = 2,---,n. Let R" = R\{(1,1)}. It is

trivial to check that ) a; = > b} and for any A C {1,---,m},

i=1 j=1
doap< > (3.24)

icA JER,

Therefore, we have ci1,-++,cin—1 € Gy, aj,b; € G4 (i =1, ,mand j = 1,---,n)
and R = R\{(1,1),---,(1,n" — 1)} such that b}, = b; —c;; > 0 for j =1,---,n' =1, a} =
al—nilcljZO,agzaifori:Z---,m,b;:bjforj:n’---,n,ia’i:ibg and for any
AcC {le,l. - ,mb, = =

S oap< > (3.25)

i€A JER,

Note that aj < b,. Therefore, let a] = a] for i =2,--- ,m. Let b] = b} for all j # n’. Let
Cin = ajy and b)), =0/, — c1,y > 0. Let

R"=R\{(1,n")} Cc{2,---,m} x{1,--- ,n}. (3.26)
We can check that ) ai = > b} and for any A C {2,---,m},
i=2 j=1
doay< Y. (3.27)
i€A JER,
Since we assume that theorem holds for m — 1, there are {¢;;} C G4 (i = 2,---,m and
j=1,---n) such that
dej=al, Y =V foralli,j (3.28)
j=1 i=2

and

¢;j =0 unless (i,7) € R". (3.29)
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Let cip/41 = -+ = c1n, = 0. Then for above all ¢;; € G4, we have
Z Cij = Qg Zcij = bj for all i,j (330)
=1 i=1
and
ci; =0 unless (i,7) € R. (3.31)

In the end, by induction, for any m, theorem still holds.

Lemma 3.1 Let A be a unital C*-algebra of stable rank one. Suppose (Ko(A), Ko(A)1) has

m
the Riesz interpolation property. Let x = ) cuipi, y = ) Bjq;, where {a;};%,{B;}}—; C C,
i=1 j=1

{p1," - ,pm} and {q1, -+ ,qn} are two sets of mutually orthogonal non-zero projections in A
m n

such that Y p; = Y. qj = Isa. Then D.(z,y) < d if and only if, for any ¢ > 0, there are
i=1 j=1

projections pij,qi; € A (i1=1,--- ,m and j =1,---,n) such that
n
Pi = Zpijv qi = qu, ng qu] m KO(A) fO?” all 1] (332)

and
max{dist(a;, 8;) : ¢ij # 0} < d +e. (3.33)
Proof Suppose d = D.(z,y), € > 0,
R={(i,j) : dist(a;, 3;) < d + £} (3.34)
Forany A C {1,---,m},let Oy ={a;:i € A} and Or, = {B;:j € Ra}. Then
> bl = [ Yo 0] = ou @] < [fonu. )] = Uon, W] = D g (3:35)
i€A i€A JERA

It follows from Theorem 3.1 that there are {r;;} C Ko(A)+ (¢ =1,---,mand j =1,---,n)
such that

[pi] = Zﬂ'j, [g;] = Zﬂ'j for all 7, j, (3.36)
=1 i=1

where 7;; = 0 unless (i, j) € R. Since A has stable rank one, by [6, 3.1.13], there are two sets
{pi;},{q;} of mutually orthogonal projections with [p;;] = [gi;] = ri; such that

pi=> Py ¢= ay foralli,j. (3.37)
j=1 i=1
Furthermore,
max{dist(a;, 5;) : ¢i; # 0} < d+e. (3.38)

The converse is obvious.

Hu and Lin [3] prove the following theorem when the following A is separable simple with
weakly unperforated Ko(A). We generalize the result.
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Theorem 3.2 Let A be a unital C*-algebra of stable rank one. Suppose (Ko(A), Ko(A)+)
has the Riesz interpolation property. Let x,y € A be two normal elements with finite spectrum.
Then,

dist(U(z), U(y)) < De(z,y). (3.39)

Proof Supposee > 0,d = D¢(z,y), x = > a;pi, y = > B;q;, where {a;}21,{5;}7_; CC,
. =

i=1
{p1, - ypm} and {q1, -+ ,qn} are two sets of mutually orthogonal non-zero projections in A
m n
such that Y p; = > ¢; = I. It follows from Lemma 3.1 that there are {p;; }, {¢;;} (i =1,---,m
i=1 j=1

and j =1,---,n) such that

pi = Zpij’ g = Zqij for all i, j. (3.40)
j=1 i=1
and
max{dist(a;, 3;) : ¢;; # 0} < d+e. (3.41)

Therefore, there exists u € U(A) such that u*p;;u = ¢;; for all 4, j. So,

Smax{|ai—ﬁj| Qi 750} <d+e. (342)

Jwwu =yl = || > (0 = 8)as
0,J

Therefore, dist(U(x),U(y)) < D.(x,y).
Hu and Lin [3] prove the following theorem when AF-algebras are simple.

Theorem 3.3 Let A be a unital AF-algebra (may not simple) and x,y € A be two normal
elements. Then

dist(U(z), U(y)) < De(z,y). (3.43)

Proof Since a unital AF-algebra has real rank zero and stable rank one, so (Ko (A4), Ko(A)+)
has the Riesz interpolation property. Let € > 0. Suppose J is a number in Lemma 2.3 with
0 < & < e. It follows from [5] (or one can refer to [1]) that there is ¢’ with &' < 3 such that
for any integer n and a € M,, if |jaa* — a*al| < ', then there is a normal a’ € M,, such that
Jo— 'l < .

Let 2,y € A be two normal elements, then there are finite dimensional C*-algebra B C A
such that dist(z, B) < %, and dist(y, B) < %,. Let x1,y1 € B such that [z — z1] < %,,
lly — ]l < %l. Then ||z12] —ziz1]| < ¢ and ||y1y] —yiya]| < §’. So, there are normal elements
24,y; € B such that |2} — 21| < £ and |y} — w1| < . It is obvious that z{,y; has finite
spectrum with ||z — 2| < ¢ and ||y — y}]| < §. Then by Theorem 3.2, there exists u € U(A)

such that ||z} — u*yju|| < D.(2,y}) + . So,
|z — u*yul| < |2} — v yiul| + 26 < De(2,9]) + 3e < De(z,y) + 5e. (3.44)

Therefore, dist(U(x),U(y)) < D.(x,y).
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4 Distance Between Unitary Orbits of Self-Adjoint Elements

Lemma 4.1 Let X be a compact Hausdorff space with dim X < 1. Then for any e > 0 and
self-adjoint element x € C(X)® M, there are self-adjoint elements f;(t) € C(X) (i=1,--- ,n)
with f1(t) > -+ > fu(t) for allt € X, mutually orthogonal rank one projections ey, -+ ,e, € M,
and unitary v € C(X) ® M,, such that

HZfi@)ei—u*qu <e. (4.1)
i=1

Proof It follows from [11, Lemma 1.1], there are fi,---, f/, € C(X) such that f{(¢t) >
<o > fl(t) and sp(x(t)) = {f1(t), -, fl(t)} for all t € X. Let {e;j :4,j =1,--- ,n} be a set of
matrix units of M,,. Then by [11, Corollary 1.3], f{®e11+- - -+ f] ®enyn and x are approximately
unitarily equivalent. In other words, for € > 0, there exists unitary v € C'(X) ® M,, such that

l ;fi’@eii—u*:z:un < 5. Let I € C(X) be the unit and f; :f{+%l,i: 1,-+,n. Then
f1(t) > -+ > fu(t) for all t € X and

HZfi@eii —U*qu < HZfi@eii > fi®ei
i=1 i=1 i=1

Lemma 4.2 Let X be a compact Hausdorff space with dim X < 1. Then for any self-adjoint
elements z,y € C(X) @ M, dist(U(z),U(y)) < Dr(z,y).

+ H Z fiQey; — u*qu <e. (4.2
i=1

Proof Lete > 0andd > Dy(z,y). Suppose 6 < . It follows from Lemma 4.1 that there are
self-adjoint elements f;, g; € C(X) (i =1,--- ,n) with f; > --- > f, and g1 > -+ > gn, a set of
mutually orthogonal rank one projections {es,--- ,e,} C M, and unitaries uy,us € C(X)® M,
such that

n n
HUTJJM — Zfz ®eill <6 and Hugyuz - Zgi ® e;

=1 i=1

<. (4.3)

Let 2/ =) fi®e; and ¢y = Z gi ® e;. It follows from Lemma 2.3, for sufficiently small §, we

=1 =1
may assume

|Dr(a',y") — Dr(z,y)| < 2e. (4.4)
Set
7:C(X)—=C
f= 1) (4.6)

Suppose T is the tracial state of M,. Then 7, ® 7 is a tracial state of C(X) ® M,,. Let
d' > Dp(z',y"). We claim that for any ¢ € X,

Ifi(t) —gi(t)| < d' (4.7)

for all i. Otherwise, there exists typ € X and positive integer ig < n such that

| fio (to) — gio (to)] > d'. (4.8)
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We may fix ¢y and assume ¢ is the minimum integer for ¢y such that (4.8) holds. Furthermore
we may assume f;,(to) > ¢i,(to). Then,

fi(to) — gj(to) > d’ (4.9)

for all i < iy and j > ip.
Let d” = £XPL0) and 0y = {A € R+ |A—fi(to)| < £52°}. Note that 7,®7(a) = (a(t)).
Note that f(a)(t) = f(a(t)) for any normal element a € C(X) ® M, continuous f € C(sp(a))

and t € X. Since

d"'to T (fol (CL'/)) < th0®T (f(01)d// (y/)) (410)

and

S

drywr(fo, (2') = T(x0, (2'(t))) = (4.11)

then (O1)ar N{g1(to), -+, gn(to)} # 0. Suppose g;(to) € (O1)ar N{g1(to), - ,gn(to)} for some
j, then

d —d"

fito) — g1(to) < filto) — g;(to) < d” + <d. (4.12)

By (4.9), ip > 1.

Let ¢’ > 0 such that e’ < d'—(fi,—1(to)—9gio—1(to)). Moreover, we may assume ¢’ < { f;, (to)—
Jio+1(to)} if ig < m. Put O = {f1(to), -, fi,(to)}er and O" = {g1(t0), - , Giy—1(t0)}e. Since
e < {fio (to) — fio+1 (to)} if ig < n, then

on {fl(t())v T 7fn(t0)} = {fl(t0)7 T 7fi0(t0)} (413)

when ig < n. It is obvious that (4.13) also holds when ig = n. Note that O’'N{g1(to), - , gn(to)}
={g1(to), -, gig—1(to)}. Otherwise,

io(to) = gio (to) < fig—1(to) = gip—1(to) +€" < d’, (4.14)

a contradiction with (4.9).
Moreover, by (4.9),

(O)ar N {g1(to), -+, gn(to)} € {g1(t0), -+, gio-1(to)} € O". (4.15)

Therefore, as (4.11),

9 ip—1
dr, or MN==>
to® (fo(l' )) n n

= d7t0®7’(f0’ (y/)) > thO®T(f(O)dN (yl)) (4'16)

It is contrary with d” > Dy (a’,y’). This proves the claim.
The claim shows that dist(U(2'),U(y")) < Dr(a’,y"). Therefore,

dist(U(z),U(y)) < dist(U(z"),U(y")) + 2¢ < Dp(2',y') + 26 < Dp(x,y) + 4e. (4.17)

This implies that dist(U(x),U(y)) < Dr(x,y).
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Lemma 4.3 Let X be a compact Hausdor[f space with dim X < 1. Then for any self-adjoint
elements z,y € C(X) @ M, Dr(z,y) < dist(U(z),U(y)).

Proof We first prove that
TC(X)® M,) =T(C(X))@T(M,). (4.18)

Let 7 € T(C(X) ® M) and 71 = T|¢(x) and 72 = 7[p,. Then 7 € T(C(X)) and » €
T(M,). Let {e;;} be a matrix units of M,. Let I; be the unit of C'(X) and I be the unit of
M,,. Then for any f € C(X),

T(f ®ei) = 7((f ® €)1 @ es))
=7((f ® ei) (1 ®eij) (11 ® €j5))
=7((Ih ®@eji)(f @ eir) (1 ® eij))
=7(f @ejj) (4.19)
for any 4, j. Therefore,
n(f®@ew) =Y 7(f @ex) =7(f @ L) = 1(f) (4.20)
=1

for all 4. In other words, 7(f ® e;;) = 11 (f)72(ei) = (11 @ 72)(f @ e;;). Moreover, if i # j,
T(f®ey) =7((f®ey) (1 ®ej;) =7((f ®@eji) (1 @ei;)) =0= (11 @72)(f @ eg5).  (4.21)

This implies that 7 =7 ® 72. So T(C(X)® M,,) C T(C(X)) @ T(M,).

For any 1 € T(C(X)) and 7o € T(M,,), we may check that 71 ® 72 is a positive linear
function on C(X) ® M,. Since |71 @ ]| = (11 @ 72)([1 ® I3) = 1, 71 ® 72 is state. Moreover,
we may find that 71 ® 75 is trace. Therefore, (4.18) holds.

As[11, Lemma 1.1], there are Ay, -+ , A\p,m1, - -+, 1, € C(X) such that sp(x(t)) = {\(¢), -,
An (D)} and sp(y(t)) = {n1(t),- -+ ,mu(t)}, respectively, for all t € X. Define

8(x(t),y(t)) = min max |A;() =0z (1)), (4.22)
where 7 runs over all permutations of {1,---,n}. The equality
dist(U (x(1)), U(y(t))) = 6(x(t),y(t)) (4.23)

is well known for Hermitian matrices by Weyl [12]. Let d(t) = §(x(¢),y(t)) and d' = || — y||.
Then sup{d(t)} < d'. Let ¢ > 0. Let 7, € T(C(X)) as in Lemma 4.2. Suppose 73 is the tracial
tex

state on M,,. For any open set O, choose f(p). such that foy (t) = 1 when ¢t € O, choose
f(o)ul,+3E such that f(o)ul,+3E (t) =1 when t € (O)g42:. So by (4.23),

(7t ® 72)(f(0). (%)) < dror (f(0),. (2))
= T2(X(0)a. (z(1)))
< 12(X(0) 0. (W)
= dr,0m (f(0)4112.(¥))
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< (1t @ 72)(f(0)r14. () (4.24)
As [11, Lemma 1.1], there are A}, --- , X, 0}, -+ ,n), € C(X) such that

sp((fioy. (@) () = {1 (1), -, A (D)},

} , (4.25)
SP((f(0)ar 5. W))(B)) = {m (8), - 1 (D)},

respectively, for all t € X. Suppose 2’ = Z Ne;i and y' = Z n;ejj- It follows from [11, Corol-

lary 1.3], dist(U («"), U(f(0). (%)) = dlst(l Uy, U(f(O)d%s( )))—0 Then (1:©72)(f(0). () =

0)
(1t @ 12)(2') and (14 ® TQ)(f(O)d,+35 (y)) = (1t @ 2)(y') for all t € X. Therefore, by (4.24),
% Z Nt =(nen)(r) <(nen) )= % Zn}(t) (4.26)

for all t € X. Now, choose any 7" € T(C(X)). Then 7’ is a positive linear function on C(X).
It follows from the Riesz representation theorem (see [8, Theorem 2.14]), there is a positive
measure u such that 7/(f) = [, fdu for all f € C(X). It follows from (4.26) that

1 1 & 1 &
(7" @) (a') = - ZT' / - Z)\gdu < / - andu = (7" @ m)(Y). (4.27)
X =1 X =1
So,

drgr, (fol2)) < (7' @ m2)(f0). ()
( (')
( (

:Z:/
y')

7' R T
A

)
T ®T)

IN

= (7" @ 12)(f(0) 4 1s.(¥)
< dror (f(0)y.. (¥))- (4.28)

Therefore, by (4.18), for all 7 € T(C(X) ® M), d-(fo(z)) < d-(f0),,,. (y)). This implies
that Dr(x,y) < dist(U(z), U(y)).

Theorem 4.1 Let C € IV, Then for any self-adjoint elements z,y € C,
dist(U(z),U(y)) = Dr(x,y). (4.29)

Proof Suppose C' = @ P;(C(X;) ® My, )P; where Xy, --,X,, are one-dimensional con-
nected finite CW complexes and P; € C(X;)® My, are projections, i =1,--- ,n. By [6, Theorem

2.6.15], we may furthermore assume C' = @&, C(X;) ® My,. Suppose x = Z x; and y = Z Yi,
=1 =1
where z;,y; € C(X;) ® My, are self-adjoint elements for all i. It follows from Lemmas 4.2-4.3,

dist(U(x),U(y)) = Inlax{dist(U(a:i), Uy:)} = InlaX{DT(xi,yi)} = Dr(x,y). (4.30)

Lemma 4.4 Let Q2 C C be a compact subset. For any € > 0, there exist finitely many open
subsets O1,--- , 0, C Q satisfying the following:

Let d > 0 and fo,),.(t) (i = 1,---,n) be some continuous functions on §2 such that
J(0)e. (1) = 1Lift € (Oi)c and fo,),.(t) = 0 if t ¢ (Oi)2-. Let A be a unital C*-algebra
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of stable rank one. Suppose x,y € A are two normal elements with sp(x), sp(y) C Q. If there

existu; € U(A), 0<e; <land0<e, <1 (i=1,---,n) such that for all i,
! For (For (F0an (@)t € Her(fi00),. 0): (4.31)
then
D (z,y) <d+ 4e. (4.32)
Proof Since (2 is compact, there are open subsets Oy, ---,0,, C  such that for any open

set G C 2, there is an integer 1,

G CO; CG.. (4.33)

Suppose d > 0. We assume u; € U(A), 0 <eg; <land 0<e, <1 (i=1,---,n) satisfying for
all 7,

u?fa/b (f& (f(01)2s (x)))ul € Her(f(oi)d+2s (y)) (434)

Then for any open subset G C Q, suppose G C O; C G. for some i. Let fg,. . (t) be a
continuous function on € such that fg,,, (t) = 1if t € Gays. and fg, . (1) = 0if t ¢
G d44e- Since the support of fg is contained in (O;). and (O;). is contained in the support of
fer(fe; (f(0:)2. (1)), it follows from Lemma 2.1 that

fa(x) S for (fe: (fi0).. (%)) (4.35)

Since f(0,)as0. () < fGaiae (W), Her(f(0,)ar0. () C Her(fa,.,,.(y)). By [9, Proposition 2.4], for
any € > 0, there is a unitary u} € A such that

u'; for(fa(x))uj € Her(uj for (fe, (f(0,),. (2)))us)
C Her(f(oi)d+2s (y)) C Her(de+4s (y)) (4'36)

Therefore, by [9, Proposition 2.4] again, fa(x) < fa,,..(y). This implies that D.(z,y) < d+4e.

Lemma 4.5 Let A be a unital simple C*-algebra with TR(A) < 1. Let x,y € A be two
self-adjoint elements. Let e € A be a projection and € > 0. Suppose d > D.(x,y). Then there
exists a projection P € A, a C*-subalgebra C' € 1IN with Ic = P, four self-adjoint elements
x1,y1 € C and x2,y2 € (1 — P)A(1 — P) such that
(1) [l = (21 + 22)|| <€ and |ly — (1 +y2)|l <e,

(2) De(z1,91) <d+einC,
(3) De(z2,y2) < d+c¢cin (1 — P)A(1 — P),
(4)1-P<e.

Proof Let 0 <e < 1and 0 <e; < . Suppose 2 is the closure of (sp(z))2: U (sp(y))a2e-
Let Oy,---,0,, C Q be those open sets in Lemma 4.4 corresponding to €2 and & (replace of
¢ in Lemma 4.4). Denote by g; the function fe, (f(0,),.,)(t) (i = 1,---,n), where fo,,. (t)
are those functions in Lemma 4.4 (i = 1,---,n). Denote by g,+; the function f(o,), . (t)
(t=1,---,n). Since gi(z) < gn+i(y), there are r; € A such that ||r}gn+i(y)r: — gi(x)]| < €1,
1=1,---,n.
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Let M = max{L, |||, lyll,|r:ll : ¢ = 1,--- ,n}. e = orinz- Let 6 > 0 with 6 < &
satisfying [6, Lemma 2.5.11]. In other words, for number M and functions g1, - - - , g2, as above,
let B be a unital C*-algebra, then for any projection P € B, if a € B is a normal element with
llall| < M and ||Pa — aP|| < 49, then ||Pgi(a) — gi(a)P| < ez fori=1,---,2n;if a,b € B are
normal elements with ||a||, ||b]] < M and ||a—b]| < 49, then ||g;(a)—g;(b)|| < ez fori=1,---,2n.

Since TR(A) <1, let e be a projection and

F = {zayvgi(z)agn—i-i(y)vri D= 1a 7n}a (437)

then there exists a projection P € A, a C*-subalgebra C' € I") with I = P such that

|[Pa —aP||<d forallaecF, (4.38)
PaP €5 C forall a € F, (4.39)
1-P<e. (4.40)

Since z,y are self-adjoint elements, there are self-adjoint elements x1,1y; € C, xa,y2 € A’,
where A’ = (1 — P)A(1 — P), such that

lx — (1 + 22)|| <46 and |y — (y1 + y=2)|| < 49. (4.41)

Note that
spo(x1) C spoyar (X1 + x2) = spalxy + x2) C . (4.42)
In the same way, spc(y1), spar(z2), spar(y2) C Q. So
lgi* (@) = (9 (1) + 97" (2))I| < 2, (4.43)
gm0+ (W) = Gryi W) + gis (w2))l| < &2 (4.44)
for all 4. Let s; € C such that ||s; — Pr;P|| <. Then ||s;|| < M +1,i=1,---,n. Therefore,
57 954i(y1)si — gf (x1)]
< ||PriPgii(yn) PriP — Pyl (z1) Pl + 261
= [1Pr7 P95 (1) + g i(y2)) PriP = P(g (1) + g7 (w2)) P + 221
<|IPrigt,i(y)riP — Pg(x) P|| + 41
< Irfgis)ri = g (@) + 4
< 5e. (4.45)

It follows from [9, Proposition 2.2] that

st (g (@1)) S storayn)si (4.46)

in C. Since sfgy;(y1)si S gnri(un), f52,(97 (21)) S gisi(yr) in C. Note that bey < 1,
then there exists 0 < ¢ < 1 such that the support of f& f(coi)k is contained in the support

of f5g1fgf%7)2z So fg(f(%b)zz(xl)) 5 f56;1 (gzc(ml)) 5 gg+z(y1) in C? 1= 17" EERLE By [97
Proposition 2.4], there are unitaries uy,- -+ ,u, € C and ¢” with 0 < ¢” < 1 such that

uf fo (F& (F(0y),. (@1)))us € Her(f i (y1)) (4.47)
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inC,i=1,---,n. By applying Lemma 4.4, we have D.(z1,y1) < d+ ¢ in C. It follows from
[7, Theorem 6.9] that A has stable rank one. Therefore, we may apply the same argument to
show that D.(z2,y2) < d+¢in (1 — P)A(1 — P).

Lemma 4.6 Let A= C(X)® M, where X is a compact Hausdorff space with dim X < 1.
Let x,y € A be two self-adjoint elements. Then D.(x,y) = Dr(x,y).

y) < Dr(z,y).

-(b) for all 7 € T'(A), then a < b. There
X)and 0 < < -+ <, € C(X) such
m(t), - ,nu(t)}. Let er, -+ ,e, € M, be

i®e;)) =dist(U(b), U ( ; ni®e;)) = 0.

Proof By (2.17), it suffices to prove that D.(z
Let a,b € Ay. We first prove that if d,(a) <
are continuous functions 0 < A\ < --. < X, € C

that sp(a(t)) = {A(t), -+, An(t)} and sp( (t) =

mutually disjoint projections. Then dlst(U (a),U (

/—"—\A&‘\.

NE
>

s
I |
-

So we may assume that a = Z A ®e; and b = Z 7; @ €;. Suppose dr(a) < d,(b) for all

=1

)
T€T(A). Let t € X. Ifa();éO we may assume A\ () = -+ = X, () = 0 < Nig41(t) < A (B).
Let 0 < € < Ajg41(t). Then
n—io

n = Tl(fa(a(t))) = dr,er(a) < drer (D), (4.48)

where 7’ is the tracial state of M,,. This implies 0 < 7;,41(t) < --- < n,(t). By the arbitrary of
t, we obtain that the support of \; is containing in support of ;. It follows from Lemma 2.1,
Ai $n; in C(X). This implies that a < b.

Let d = Dr(z,y). Then d-(fo(z)) < d-(f0),(y)) for all 7 € T'(A) implies fo(z) < fi0),(y)-
Therefore, D.(x,y) = Dr(x,y).

Note that the following A may not be simple, it is different from Theorem 4.3.

Theorem 4.2 Let A be a unital AT-algebra and x,y € A be two self-adjoint elements. Then
dist(U(z),U(y)) = Dc(x,y). (4.49)

Proof We may assume A = UA,,, where each {4, } is a finite direct sum of circle algebras
with T4, = I4. We may assume furthermore that {4, } is an increase sequence. Suppose
d > D¢(x,y) in A. The proof of Lemma 4.5 also shows that there exists A,,, two self-adjoint
elements z’,y" € A, such that ||z —2'|| < &, |ly — ¥'|| < € and D.(2',y') < d+ ¢ in A,.
It follows from Lemma 2.2, Dp(2’,y’) < D.(z,y’) in A,. As Theorem 4.1, we also have
u € U(A,) C U(A) such that ||u*z'u — y'|] < d + 2e. Therefore, ||[u*zu — y|| < d + 4e. This
implies

dist(U(z),U(y)) < De(x,y). (4.50)

Let € > 0,0 > 0 with 6 < e, dy = dist(U(z),U(y)) and d2 = D.(x,y) in A. There are two
self-adjoint elements 2’,y" € A,, for some n such that ||z’ — z|| < ¢ and ||y’ — y|| < . Suppose
u € U(A) such that di < ||u*zu —y|| < di + 6. It follows from [6, Lemma 4.1.1], there is a
unitary u; € A, for some ny such that ||u; — ul] < §. Let Ny > n,n; be an integer number.
Then z1,y1,u1 € Ay, since {A,} is an increase sequence. So

dist(U(z1),U(y1)) < |[uiziur — w1 < di + 3+ 2||z]])d < di + (34 2||z|)e (4.51)
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in Ay, . It follows from Lemma 2.3, if ¢ is sufficiently small, then D.(x1,z) < € and D.(y1,y) < &
in A. Suppose d3 = D.(21,y1) in Ay,. Then by Lemma 4.6,

d2 — 2¢ S dg = DT($1,y1) = diSt(U(iEl), U(yl)) S dl + (3 + 2H$||)6 (452)

By arbitrary of €, dy < d;.
We recall the notation of e-path connected. One can see [10] for more details.

Definition 4.1 Let X C R and e > 0. We say X is e-path connected if for any a,b € X,
there are finite points c1,--- ,cn € X such that la — c1| < g, e, — b < € and |¢; — cip1] < €
fori=1,--- ., n—1. We define a relation on X by setting a ~ b if there is an e-path connected
subset of X containing both a and b. This relation is equivalence relation on X . This equivalence
classes will be called e-path connected component. If X is compact, then X determine finitely
many mutually disjoint e-path connected component.

Lemma 4.7 Let R C {1,--- ,m} x {1,---,n} be a subset such that for any non-empty
subset A C {1,---,m} and B C {1,--- n} RA # 0 and RB £ 0. Then there are a;j € Zy
(t=1,---,mand j=1,---,n) such that E Zam =mn, Zam >0, an > 0 for all i, j

i=1j=1 j=1
and a;; = 0 unless (i, j) € R.

Proof Suppose by = --- = b,, = 1. Choose iy € RUY. Set bi,i =1and b;; =0if j # 1.
Choose j; € R{ y for each i # i;. For each i # i1, set b;;, = 1 and b;; = 0 if j # j;. It is obvious
thatb—ZbUforz_l . mZbll>Oandbw—0un1ess(zg)€R

] i=
This proof implies that for each k, Where ke{l,---,n}, therearea;, € {0,1} i =1,---,m

and j = 1,---,n) such that Z aijr = 1 for i =1,--- ,m, > ajpr > 0 and a;j; = 0 unless
j=1 i=1
(i,j) € R. Let aj; = > a;jr. Then a;; = 0 unless (i,j) € R, Y a;j =nforeachi=1,--- ,m
k=1 j=1
and Zaij > Za’ijj >0foreachj=1,-~- ,n
i=1 i=1
Lemma 4.8 Let A be a unital C*-algebra. Suppose A has stable rank one and Ko(A) has
the Riesz interpolation property. Let x,y € A be two self-adjoint elements. Let € > 0. Suppose
X ={A1, -, A} C sp(x) is a e-dense subset of sp(x) and Y = {n1, - ,nn} C sp(y) is a e-
dense subset of sp(y). Suppose X1, -+, X . are mutually disjoint e-path connected components
of sp(z) and Y{,--- .Y, are mutually disjoint e-path connected components of sp(y). Let Xy =
XiNX and Y, =Y/ NY for all k,l. Then
(1) (Xi)Nsp(z) = X}, (Y1)eNsp(y) =Y, are clopen subsets of sp(x) and sp(y) respectively,
k=1, ,m/ =1,
(2) moreover, Z X(x0). (T) = XUpeo (x). (@) for any O C{1,---,m'} and l% X () =
e /
XUyeor (V). () for any 0" c {1, ,n'}.
If RC X xY such that for any non—empty subset B C X, fip). (%) S f(rp).(y), then there

are a;, b; andcweZJr,z—l . mandj—l -, n, such that
(3) a; ch>0b—ch>0andzch<mnforallzj,
1=17=1

4) ¢ij = O unless (Mi,7mj) € R,
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(5) for any subset O C {1,--- ,m'}, set Xo=|J Xy and O’ ={l:1<1<n',Rx,NY, #
k€O
0} ffk%[X(Xk)s(x)] = 2 e W)l in Ko(A), then 35 35 ai= 3 > b;.
€

leo’ keO \;eXy, €O’ n; €Y

Proof Tt is trivial to check that (1) and (2). Then we prove (3), (4) and (5).
Let R = {(k,]) : Rx, NY; # 0} < {1,---,m'} x {1,---,n'}. Then we have for any

/
n

Oc {1, ,m}, Z X(x). ()] < Z [X(v). ()] Since :;[xm)s(x)] = l;[xms(y)], it
follows from Theorem 3.1 that there are di € (KO(A))+, k=1,---m and | = 1,--- 70/,
such that [x(x,).(®)] = Z dits [xoviy. (W) = Z di; and d; = 0 unless (k,l) € R'. Denote
by |X| the number of elements in X. Put ckl = | Xkl - |Y| when dy; # 0 and ¢j; = 0 when
dig =0, k=1,---,m and l = 1,---,n/. Let a) = IZ:lckl and b) = Z ¢j;- Then for any

O c{l,---,m'}, we have O' = Ry, and

Z%:Zicgl—z > gy < ZZCM > b (4.53)

keO k€O i1=1 k€O IER],, IER), k= lER),
Moreover, if >~ [x(x,). ()] = > [xv).] in Ko(A), then
keO leRy,

Z Z di = Z (x0). (2)] = Z X (7). Z dez- (4.54)

k€O IER],, keO IER], IERY, k=
Therefore
m/ m,
NN du=> Y du— > du=> > du— > du=0.  (455)
leRy, kgO leERy, k=1 keO,leRy, leRy, k=1 k€O leRY,,

So diy = 0 when [ € Ry, k ¢ O. This implies ¢j; =0 when [ € Ry, k ¢ O. Then

ILEDIDIEDIDICEDD chl > b (4.56)

k€O k€O IER),, keO leRL, IR, k= lERL,
Suppose I, = {i: \; € Xi} and J; = {j : n; € Y;} for all k, [. It follows from Lemma 4.7, for
any pair (k,1) which satisfy ¢; # 0, there are a;x, bjr > 0 and c¢;j5 € Zy, i € I, and j € J,

such that > > cijm = ¢y it = Y. Cijr > 0, bjii = Y cijiw > 0 and ¢, = 0 unless
i€l jEJ) JjE€ i€y,
(Mi,n;) € R. Let ajp = bjgs = cijir = 0 if they haven’t been defined from above, z' = 1 ,m,

j=1L---n k=1, ,mandl =1,---,n. Let a; = > > ajm, bj = ZZ()JM and
=1

k=11=
¢ij = > Y. Ciyr- Then we may check that (3) and (4) hold for a;,b;,¢;;. To see (5), let
k=11=1
O C {1,---,m'}. Suppose > [x(x,).(®@)] = > Ixv).(®)] in Ko(A). Note that for each
k€O IER,,
k=1, i,

Z a; = Z Z il = Z Z Z Cijhl = Z Chi- (4.57)

i€l ZEIklER{k} i€}, lER’{k} Jje lER’{k}
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Foreachl=1,---,n/,
bj = bjkl = Cijkl = Cri- (4.58)
JEeJ; Jje€S ke R/ {1} Jje€J ke R/} i€l ke R/ {1}

Therefore, by (4.56)—(4.58),

ZZaizz Z Chy = Zicfdz Z Z Chy = Zij. (4.59)

k€O iely keOlery,, leRy, k=1 lER, ke R/} leRy, jEJ

Lemma 4.9 Let A be a unital simple C*-algebra with TR(A) < 1. Let x,y € A be two
self-adjoint elements and e € A be a projection. Let € > 0, d > D.(x,y). Suppose X =
{A, A} C sp(x) is a e-dense subset of sp(x) andY = {n1,--- ,nn} C sp(y) is a e-dense
subset of sp(y). Let X1, -, Xpm C X and Y1,---,Y, C Y as above lemma. Then there
exist self-adjoint elements x1,11 € A, two sets of mutually orthogonal non-zero projections
{p1, - ,pm} and {q1, -+ ,qn} and a unitary u € A such that

(1) 1,11 € A1, where A; = (1 — Zpi)A(l — sz'),
i=1 i=1

@ u S pu= 3 g and [£p] = [ 3 0] <[] in Ko(4),

(3) fl = (21 + X Awrpiw) | < e and [ly = (o + X mias) | <<,
i= j=
(4) spa(@) C (spa, (21))e and spa(y) C (spas(y1))e, . .
(5) De(u* Y- Nipsu, Y- 15q5) < d+¢€ in Ay where Ay = (Y q;)A(Y 45),
i=1 J=1 j=1 j=1
(6)

6) suppose O C {1,---.m'}, Xo = U Xk, if (X0)are NY = U Y1 for some O C
keO

leo’
(Lo} and 32 [, ()] = 52 Do, (9)] in Ko(4), then

1€0/
oD W= > g (4.60)
kEO N\ €X le0’ n;€Y;

m KO(AQ)

Proof Let M > 0 such that ||z||,|ly]] < M and ¢ < M. Denote by f € C[-2M

the function that f(t) = 1if [t| < £, f(t) = 0if [t} > £ and f(t) is linear in [ — £, —£]

[£,5]. Let a € A be a self-adjoint element with [ja| < M and A € sp(a). Let a’ = a— A

Then 0 € sp(a’). Since TR(A) < 1, there is a non-zero projection p’ € Her(f(a’)). Since
fla)f-(a")a' =0, p'f-(a")a’ = 0. Set b= f.(a')a’ + A\(1 — p’). Then

2M]
and

|(b+Ap') —al]|<e and b-Ap' =0. (4.61)

The proof implies that there are two sets of mutually orthogonal non-zero projections {p},-- ,

P} and {q{, -+ ,q,} and two self-adjoint elements 2} € (1 — Y pl)A(1 — > p}),y; € (1 -
i=1 i=1

i q)A(1 - i q,) such that
=1 i=1

o= (e o0k <o anad = (vh + Yo mie)

i=1 j=

’ <e. (4.62)
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By [6, Lemma 3.5.7], there is a non-zero projection e; € A such that (mn+1)[e1] < [e], [p}] and
[¢j] in Ko(A) for all 4, j. Suppose R = {(\;,n;) : dist(X\;, ;) < d+e}. Therefore, R satisfies the
condition of Lemma 4.8. Tt follows from [7, Theorem 6.11], A has Riesz interpolation property.
So by Lemma 4.8, there are c” € Z4 such that

(I) a; ch>0b—ch>0andzchgmnforaHZJ,

1=17=1
) ¢ij = 0 unless (7,7) € R

(
(IIT) suppose O C {1,---.m'}, Xo = U X3, O' ={l : 1 <1 <n',Rx, NY, # 0}, if
[

k€O
X(x. (@] = 3 [Xxw). )] in Ko(A), then 3° 37 ai= > > b
k€O 1€0’ KEO A\ €Xy 10’ n;eY;
There exist two sets {p1, -+ ,pm} and {q1, -+ ,¢n} of non-zero mutually orthogonal pro-

n m
jections such that p; < p; and ¢; < g¢j for all 4,7, [p;] = > cijler] and [g;] = > cijleal.
=1 i=1

Then there exists u € A such that u* Y pju = Y ¢;. Let 21 = u* (2} + Z Ai(p; — pi))u

i=1 j=1 i=
n

and y1 = yi + > 1;(¢j — q;). Tt is obvious that these projections p;,q; (i = 1,---,m and
j=1

j=1,---,n), self-adjoint elements x1,y; and unitary u satisfy (1)—(4).

To see (5), let O1 be a open set. Suppose O] = O1 N{ A1, -, Am} = { iy, \ip . Let
02 = RO{ Then

n
E C”J 61

[
W

(v 3" h0)]
=1

I=1 j=1
k
= Z Ciyj [61]
=1 jGR“L}
k
DIPICH
1=1 jEO,
m
< Z cijlei]
JEOs i=1

< (e ()] (4.63

in Ko(A). Suppose v € A such that vv* = xéf( > Aipiu) and v*v < xfozl)HE( > mia;)-

i=1 j=

Since v = w'v = v(_zn:qj) = (Zn:qj)v, v = (Zn: ;)v (Zn: ;) € Az. In other words,

Jj=1 7j=1 7j=1
[xéf (u Z; Aipiu)] < [X?Ozl)d+e (J;l n;q;)] in Ko(Az). By the arbitrariness of O,
D, (u* Z Aipit, Z njqj) <d+e (4.64)
i=1 j=1

in AQ.
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To see (6), suppose O C {1,---,m'}, Xp = UX;.C,O’ {1:1<1<n,Rx,NY; # 0}, if
> xxoy (@) = 3 xovy. (w)] in Ko(A), it follows from (III) that > > a;= > > b;.

k€O €0’ k€O A\ €X, 1€0" n; €Y
Therefore, > > [u*pu] = Y, > [¢;] in Ko(A), and furthermore in K((As). It shows
k€O N X}, 10" n; €Yy

that this lemma holds.

Lemma 4.10 Let A be a unital simple C*-algebra with TR(A) < 1. Let z,y € A be
two self-adjoint elements and e € A be a projection. Suppose ¢ > 0, d > D.(x,y). If X =
{1, -, A} C sp(x) is a e-dense subset of sp(x) and Y = {n1, -+ ,n.} C sp(y) is a e-dense
subset of sp(y), then there exist self-adjoint elements x1,y1 € A, two sets of mutually orthogonal
non-z€ero pmjectwns {pl, e ,pm} and {q1,- -+ ,qn} and a unitary u € A satisfying the following:

(1) u me—qu and[qu] < [e] in Ko(A),

(2) z1,y1 € A1, where A) = (1 — Z qj)A(l - qj),
j=1 j=1
(3) Hu*aju — (131 +u* ZIAJW)H < 2¢ and Hy — (y1 + Zl T]j(]j)H < 2¢,
i= i=
(4) )
(5)
(6)

pa(r) C (spa, (1))e and spa(y) C (spa, (y1))e,

»

o(x1 y1) <d+ 165 in A,
c( Z iDiU Z 77]%) < d/+38 in (

7j=1

D
D

M=

qJ‘)A(éilqj)-

Proof We may assume that ¢ < d— D.(z,y). Let Q be the closure of (sp(x))2: U (sp(y))2e
Let Oy,---,0x C Q be open sets in Lemma 4.4. Let f(o,),. () be those functions in Lemma
44, i=1,-- k.

Suppose X1, -+, X,y C X and Yy, ---,Y,, C Y are these subsets as in Lemma 4.8. We
take two condition for open set O:

MHonx =40,

(I1) O N sp(x) = O N sp(x), Og N 5p(y) = Ouyae N sp(y) and [x(0). ()] = [XOu,.(y)] in
Ko(A).

Without loss of generality, we may assume that (O;)ee, @ = 1,--- ,1 don’t satisfy condition
(I) and (IT), and (O;)¢e, ¢ =1+ 1,- -+ , k satisfy condition (I) or (II).

In the first step, we consider the case that i < [.

Put

1

<.
Il

= Inf{d-(f(0.)a110. @) — dr(f0). (¥)) : T € T(A)} (4.65)

fori=1,---,] and
o =min{oy, -+ ,00}. (4.66)

We claim that o > 0.

To show the claim, we consider 7 < [ into three cases. In the first case, we consider the case
that (O;)e- N sp(z) # (Oi)s N sp(z). We choose f(0,),. (t) such that fo,),.(t) = 1 when t €
(Oi)se, i =1,--- 1. We can choose g € C(Q) as a non-zero function such that 0 < g < 1 and the
support of g is contained in (O;)ge\(0;)¢e and g(z) # 0. Then T(f(0:)o. (%)) — dr (f(0:)6. (7)) >
7(g(z)) > 0 since A is simple. Note that Dp(z,y) < D.(x,y) < d. So

dT(f(Oi)dJrlOs (y)) - d‘l'(f(oqz)as (ZII)) > T(f(oqz)gs (ZZ?)) - dT(f(Oi)Ge (ZII)) > T(g(il?)) (467)
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for each 7 € T'(A). Since T'(A) is weak*-compact, o; > 0.
In the second case, if (O;)d+6c N sp(y) # (Oi)arse Nsp(y). We choose fo,),.,. (t) such that
f(0)aso. () = 1 when t € (O;)gise, i = 1,- -+, 1. Therefore,

dr(f(01)a10-¥) = dr (f(0.)6. (¥) = T(f(01)aro. (¥) — dr(f(0:)uss. (¥)) >0 (4.68)

for each 7 € T(A). Such as (4.67), o; > 0.
In the last case, (O;)ec N sp(z) = (Oi)se N sp(x), (Oi)aree N sp(y) = (Oi)atse N sp(y) and
[X(Oi)k (Jf)] 7é [X(Oi)d+7s (y)] in KO(A) HOWGVQI‘, [X(Oi)?e (Jj)] < [X(O'i)d+7g (y)] This imphes that

dT(f(Oi)d+lOs (y)) - dT(f(Oi)ﬁs ({E)) > T(X(Oi)d+7e (y)) - T(X(Oi)7s (1‘)) >0 (469)

for each 7 € T'(A). Therefore, o; > 0.

As above, we obtain ¢ > 0. So the claim holds.
Choose

~—

J(0:)4. (4.70

such that fo,),.(t) = 1whent € (O;)sc,i=1,---,1. Choose f(0,),,,,. suchthat fo,), .. (1) =
I whent € (O;)at11e, i = 1,--+ 1. According to the definition of d,, we have 7(f(0,), .. (¥)) >
dr (f(01)as10. W) and dr(f(0,)6. () = T(f(0,),. () for all @ <1 and 7 € T'(A). Therefore,

inf{T(f(Oi)d+12e (y)) T(f(0¢)4s (:E)) i=1,--- 1, 7€ T(A)}
> inf{dT(f(Oqz)d+1gE (y)) dT(f(Oi)ss (aj)) A 15 e vla T E T(A)}
=o. (4.71)

In the second step, we consider ¢ > [ + 1.
Let o] = of = ¢ if (0;)¢ satisfy condition (I). Otherwise let o] = inf{dist(A, (O;)7:) :
A € sp(x)\(0i)7e} and of = inf{dist(n, (0;)a+7e) : 1 € sp(y)\(Oi)d+7e}. Then of,0! > ¢ for
i=1+1,---,k according to condition (II). Let
o' =min{o}, 0! :i=1+1,--- ,k}. (4.72)

(2 3

such that f(o,i)% (t) =1 when t € (O;)7. and f01),, 15. such

15¢ 15¢
2

Then o’ > e. We choose J(0:) 152
that f(oi,)ﬁ% (t) =1 when t € (O;)aqre, i =14+1,- k.

In the third step, we begin to show the lemma.

Let N be an integer number and e’ € A be a projection such that

1 o , ,
— <= < < 4.73
v <3 [€1<[e] and Nl[eT<[l] (4.73)
in Ko(A). It follows from [7, 2.5.11] that, there is a 1 > 0 such that for any normal elements
a,b with sp(a), sp(b) C Q, if ||a — b]| < &1, then
g

g (4.74)

g
||f(0i)4s (a‘) - f(Oi)4s (b)” << and ||f(Oi)d+125 (a) - f(oi)d+12s (b)H <
8

fori=1,---,] and

Hf<on% (@) = fon . O <1 (4.75)

2
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fori=1+1,---,k. We may assume
e < min{d—Dc(x,y),g,d}, (4.76)
where 0 satisfies Lemma 2.3. Suppose X’ = {\,---, A, } C sp(x) is a e1-dense subset of sp(x)

and Y' = {n},--- ,m,,} C sp(y) is a e1-dense subset of sp(y). Suppose X7,--- ,X,’n,1 c X’
and Y/, -- ,YT;/I C Y are these sets corresponding to Lemma 4.9. We apply Lemma 4.9 for ¢’
(replace of e in Lemma 4.9), 1 (replace of € in Lemma 4.9) and d — ¢; (replace of d in Lemma
4.9). Then there exist self-adjoint elements x1,y; € A, two sets of mutually orthogonal non-zero

projections {p},--- ,p),, } and {q}, -+ ,q,, } and a unitary u € A such that
mi ni mi ni
u* Zp;u = Zq; and [Zp;} {Z ] 1< [e] in Ko(A), (4.77)
i=1 j=1 i=1 J=1
ny
x1,y1 € A1,  where A} = (1 - Z ) ( qu), (4.78)
j=1 i=1
spa(@) C (spa,(21))e, and  spa(y) C (spa, (y1))e,, (4.79)
Hu U — (xl +u” Z)\lpl )H <ep and Hy— (yl—l—i:n;-q;)H < €1, (4.80)
j=1
ny ni
DC(U*Z)\;,pg ) anqj) <d in Ay, where Ay = (Zq;)A(Zq;), (4.81)
=1 j=1 j=1

and suppose I C {1,--- ,m}|}, X;= U X/, if (X})aNY’' = U Y/, for some J C {1,---,n}}
el j'ed

and 3 [x(xy)., (@)] = 3 [Xov))., (v)] in Ko(A), then

i€l J'ed
>, > lwpll=3, 3 g (4.82)
el \ieX), j'edm;ey],
in KQ(AQ)
There are two mutually disjoint index sets {Bi, -+, By} and {Cq,---,C,} such that
U Bi={1,--,mi}, U Cj={L,-- ,ni},dist(\,,\;) < ey foreachd’ € B; and dist(n7},,7;) <
i=1 j=1

er foreach j' € Cj, i =1,--- ,mand j =1,--- ,n. Let p; = > pj and g; = > ¢j. Let
i'€B; J'€C;

m n
T2 =u* Y. Nipiw, Y2 = Yy 1njq;. Then
i=1 j=1

ny
ng — Z Nopil| < &1 and Hyg — Zn}q} < €. (4.83)
j=1
It is immediately that (1)—(4) hold. It follows from Lemma 2.3,
mi ni
D, (u*xzu, u* Z /\ip;u) <e and D, (yg, Z 77]"19) <e (4.84)
i=1 j=1

in Ay. Therefore (6) holds. It remains to show that (5) holds.
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Note that

spa,(x1) C spA(xl +u” Z)\lpl ) C (spa(x))e, C Q.
i=1

In the same way,

spa, (Y1) C (spa(y))e, C Q.
It follows from (4.74) and (4.80),

O R (AN E N (D 9P|

=1

“f(?)i)d+l2s (y) o (f(A )d+12¢ (yl) + f(O Ja+12e ( Z T]qu)) H = %

7'=1
fori=1,---,l. Recall that i < 27 then
g
( (o) ( Zlk/pz )) <T )gg,
o
( (04 )d+125(z n]qj)) <T )< g
7'=1

Therefore, by (4.71) and (4.87)—(4.90),

T {0y wina. W) = T(f{,. (1))

n1
A A
> (5 ) 4 5 ()

=1

_T(f(aus(xl f<o>4s( ZA'pz )) %

T(f{0)a112. W) = T(F(D,),. (%)) =

(AVARR Y]
| Q

7
2
for all i <l and 7 € T(A). Recall that (4.70), then

T 0 prae @) S de(F5 1 1)) and dr(fi, (1) < 7(f{5

1)45

Then
inf{dT(f(’L‘Ofi)d+l4€ (y1)) — d‘r(f(Aoli)zs(xl)) vi=1,- 1, 7€ T(A)}

> inf{T(f(Oqz)gHmE (yl)) - T(f(Oi)st ($1)) ti=1,-- 7177— € T(A)}

>_
2

(x1))-
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(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

Furthermore, it follows from Lemma 2.13, we may write by 7 the tracial extension of 7 € T'(A4;).

Suppose 5 = . Note that 72 € T'(A) and

1
Tral 71

n n

Tl(e)S% =%71(Zq) —Tl( qu) i +%.

Jj=1 J=1

(4.94)
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n
Then 71 (e) < . Moreover, 1 < |71 = 71(1) = 1+ 7 ( Z ;) < 5. So, for any positive

=1
a € Ay with |la]] <1,
N -1 1 1 o
< — < — - — —<Z .
0 <7(a) —T1(a) <7(a) I 7(a) NT(a) N 73 (4.95)

This implies that |d-(a) — dr,(a)| < § for any positive element a € A; with [Ja| < 1. It follows
that

inf{d- ({5, .. ) = de(F{&), (@) s =1, 1,7 € T(A1)} > % > 0. (4.96)

This implies that f(401'i)25 (x1) S ffd»ﬁm (y1) in A; for all ¢ <[, since A has strict comparison
for positive elements.

In the following, we will prove that f(Aoli)% (21) < ffoli)dﬂk (y1) in A; for all ¢ > [.

For O;,, where ig > [ +1, if (Oio)ﬁs NX =0, then f(oio)zs (r1)=0< f(Oqzo)d+14s (y1). Other-
wise, (O )oz N5p(x) = (Or)s= N5p(), O )aree N5p(y) = (Oiy)asse N3p(y) and [X(00, . (2)] =
[X(01y)asre (¥)] in Ko(A). Note that (X])e, N sp(x) C (O4)se if (X])e; N (Oig)oe # O since
(XD)e, Nsp(a’) is er-path connected and (O;,)ee N sp(x) N (X)), = (Oiy)se N sp(z) N (X)), -
This implies (O;,)6e Nsp(z) = U (X))e, Nsp(x) for some I;, C {1,---m]}. In the same way,

€15,
(Oig)aree Nsply) = U (Y])e, Nsp(y) for some J;, C {1,---nj}. Note that
J€Jig
D xn., (@)] = X017 (@) = [X(Oig)arr @] = Y [x(v2)., )] (4.97)
€15, Jj€Jig
and
> xxn., (@) S f( U x) W< Y xon., W) (4.98)
i€ 14, i€l R d—ey J€Jig

in Ko(A). Therefore, ( | X{)d Nsp(y) = U (Y])e, Nsp(y). Furthermore,
1€l J€Jig

( U X;)dmy’: U @)any' = (J v (4.99)

iEIq‘,O jEJiO ]EJLO

Now, by (4.97) and (4.99), we can apply (4.82), then

DO il => " > ). (4.100)

i€l i'el; jeJjed;

Recall that (4.72), (4.76) and (4.85)—(4.86), let A € sp(x1)\(O;,)7e. Then there is X' € sp(z)
such that [N — A <e1. So N ¢ sp(z) N (Oyy )6k,

dist(A, (Os)7e Nsp(xy)) > dist(N, (04 )7e N (sp(2))e, ) — €1 > 0" — 261 > % (4.101)
This implies that sp(z1) N ((Oi,)15.\(Osy)7e) = . In the same way,

sp(y1) N ((Oio) a4 12\ (Oig Jar7e) = 0.
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Recall that the definition of f(o, ),,. and f(o,)),, 1,.» We have
2 2
(z) = A =y 4.102
15¢ = X(Oi4)7e (2), f(oio)m (z1) = X(0ig)7e (21), (4.102)

(Zu Npl )_X(o (Zu Np) ) (4.103)

f(0i9)

15¢
2
and

A
f(o'io)d &25 (y) = X(O'io)d+7s (y)7 f 10)d+% (yl) = X(Olio)d+75 (y1)7 (4104)

(anqj) =X 70>d+75(Z’7ﬂ})~ (4.105)

Therefore, it follows from (4.75),

(OLO

4 15e
2

Xy @01+ [XEE, ), (Zux )] = Doy ). (@)]

= [X{01y) a1 ®)]
- [X?Olio)wk (y1)] + [ 70)d+7s ( Z njqj)} (4.106)

in Ko(A). It follows from (4.100) that [y (o Yoo (x1)] = [X?Olig)d+7s (y1)] in Ko(A) and so does in
Ko(Ay). Therefore,

Fi81072: (1) S X(B1r (€1) S X(B1)asre 1) S F{8,0y 100, 1) (4.107)

in Al
In conclusion, we obtain that f(o) (x1) < fo o (y1) for all i. Then by Lemma 4.4,
De(x1,y1) < d+ 16¢ in A;.

Lemma 4.11 Let A be a unital simple C*-algebra with TR(A) < 1. Let x,y € A be two
self-adjoint elements. Then

dist(U(z),U(y)) < D.(x,y). (4.108)

Proof Let e > 0 and d > D (z,y). Let ¢’ with 0 < & < ¢ satisfy Lemma 2.3 (replace
of 6 by 10¢’ in Lemma 2.3). Suppose {A1, -, A} C R is a ¢’-dense subset of sp(z) and
{m, -+ ,nn} C Ris a ¢’-dense subset of sp(y). Moreover, we may assume A\; < --- < A, and
m < -+ <np. It follows from Lemma 4.10 that there exist self-adjoint elements z1,y; € A, two
sets of mutually orthogonal non-zero projections {p1,--- ,pm} and {q1, - ,¢,} and a unitary
u € A satisfying the following.

Suppose P = En: gj, Ay = (1-P)A(1-P), Ay = PAP, z9 = u* i Aipiu and yo = En: 145,

Jj=1 Jj=1

i=1

then

u* Zpiu = Z qj, (4.109)
i=1 j=1
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z1,y1 € Ay and  @2,ys € A, (4.110)
lu*zu — (x1 + 22)|| <26’ and ||y — (31 +y2)| < 2¢/, (4.111)
De(z1,151) <d+16¢" in Ay and D.(z2,y2) < d+ 3¢’ in As. (4.112)

We choose a non-zero projection e € A; such that 2™"[e] < [p;],[g;] in Ko(A) for i =
1,---,mand j=1,--- ,n. Since TR(A;) < 1, it follows from Lemma 4.5 that there exists a
projection P; € Aj, a C*-subalgebra C € I of Ay with Ic = Py, four self-adjoint elements
zy,y; € C, ab,yh € (1— P — P1)A1(1 — P — Py) such that

oy = (21 +ap)ll <&’ and [lyr = (1 +5)ll <&’
D.(2},y}) <d+17¢" in C,

D.(xh,y5) <d+17¢" in (1—-P—P)A;(1—P—Py),
1—P—P <e.

Let A3 = (1 — P1)A(1 — P1). Then ) + x2,y5 + y2 € A3z. Since 1 — P — P < e and
2m"e] < [pi],[g;] for all 4,7, there is v1 € As such that viv; = 1 — P — P; and vivf <
u*pru. Suppose 0 < g1 < % and Pl =1— P — P, +vvj, Ay = P{AP]. We can check that

—M(1—=P—P))+e1v; +e10f is invertible in A}. Let 2% = ab +e1v1 + 2107 + Ajv1v5. Then
ry — M P =25 — M (1 — P — P1) +ev1 +e1vf is invertible in A}. Therefore, A1 ¢ spaj (25;)
and [|z5; — (25 + Mv1v])| < 1. Let 0 < g2 < & Since [P[] < 2[e], there is vo € A3 such
that vive = P| and vovy < u*pau. Put by = by + eovg + 203 + Aavavy, Py = P| + vav3,
Ay = PyAP;. We also have A\a ¢ spay (25;) and [|xhy — (25 + A2v2v3)|| < 2. Since

spay (T9s) C (spay (51 + Aavav3))e, = (spay (¥91) U {A2})es, (4.117)

if e2 is sufficiently small, we may assume A1 ¢ spa;(75,). By induced, we may get &; > 0,
v; € As, projections P/ € As, C*-subalgebras A} and self-adjoint elements x5, € A} (i =
1,---,m) such that e;41 < %, vjv; = P/, P{,, = P} + v}, viv;y < upu, Aj = P{AP],
{1 A} Nspar(ay;) =0, and |25 ;4 — (xzi + Xit10i4105, 1) || < €iq1 for all 4. Therefore,

and {A1,--+, Am} N spas (2h,,) = 0. Note that spa, (o5 + Z Aivivf) C (spa(z))2er. So

Th — (1324—2/\ vV )H <é (4.118)

spar (xh,,) C (spa(z))ser. Then {A1,---, Ap} is a 4e’-dense subset of spar (x5,,). Put A\g =
A —4e’ and Appy1 = A t+4e’. Let pl = Xl(;va) where Y; is a characteristic function associating
to [Aiy Ait1], @ = 0,--- ,m. Then p; = x;(z5,,) € A,

m?

1 = 0,---,m are mutually orthogonal

m
projections satisfying > p; = P}, and
i=0

Hx’zm (Alpo + Z Alpz) g — Z Aipj|| +4¢” < 8¢'. (4.119)
i=1 =0
Now, we suppose
o = Xph+ Y i+ Y Ni(upiu — vv}) € A, (4.120)

=1 i=1
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Then x4 has finitely spectrum. Recall that (4.118)—(4.120), we have

la§ — (2 + )] = |

m

xh — (13/2 + Z /\iu*piu) H < 9¢’. (4.121)
i=1

In the same way, we also have self-adjoint element y; € As with finite spectrum such that

lys — (2 +y2) || < 9<". (4.122)

Since D¢(ah,y5) < d+17¢" in (1 — P — P)A(1 — P — P1) and D.(z2,y2) < d + 3¢’ in As,
we can check that D.(xh + 2,95 + y2) < d+ 17" in As. It follows from Lemma 2.3 that
we may assume D.(25,y5) < d+ 20e in Az. It follows from [7, Theorem 6.11], A3 has Riesz
interpolation property. So by Theorems 3.2 and 4.1, there are unitaries u; € C and us € Ag

such that
luiriur — yi|| < d+20e and |udzyus — y4|| < d+ 20e. (4.123)

Let v’ = uj + u2. Then v is a unitary of A. Note that ||u*zu — (2] + 25)|| < 21e and |ly—
(yi +y4)|l < 21e. In conclusion,

lu" uzuw — y|| < [[u” (2} + 23)u’ = (45 +3)l| + 42¢
= max{|[ujziur — |, [uszhus — ys |} + 422

< d+ 62. (4.124)

This implies that dist(U(z),U(y)) < D¢(x,y).

Lemma 4.12 Let A be a unital simple C*-algebra with TR(A) < k. Then for any e > 0, any
finite subset B C Ay and any finite subset F C A with B C F, there exists a finite-dimension
C*-subalgebra C C A with Ic = P such that for any x € F and b € B,

(1) |Pz— 2P <&

(2) PxP €. C and ||PbP|| > ||b]| — €.

Proof We may assume B = {by,--- by} with ||b;]| < 1 for all i. When n = 1, it follows
from [7, Corollary 6.4] that lemma holds.

Suppose lemma holds when n = m. Let n = m + 1. Then for {by, -+ ,b,} and g1 = §,
there exists a finite-dimension C*-subalgebra C' C A with I = P such that for any z € F and
bi, bm,

(1) | Pz — zP|| < ex,

(2) PzP €., C and ||Pb;P|| > ||bi]| —e1,i=1,--- ,m.

If || Pbp+1 Pl > ||bm+1]] — €, lemma holds when n = m + 1.

Otherwise, || Pby+1P|| < ||bm+1]] — . Since || Pby+1 P+ (1 — P)byt1(1 — P) — byra]| < 261,
(1 = P)byy1(1 = P)|| > |[bm+al — 261. Let /' = {(1 — P)z(1 — P) : « € F}. Then for
(1—P)byy+1(1—P) and F', there exists a finite-dimension C*-subalgebra C; C (1—P)A(1— P)
with I, = P; such that for any y € 7’ and by,41,

(1) [[Pry — yPruf| <ex,

(2) PiyPy €., Ch and || Py (1= P)byt1(1—P)Py|| > ||(1—=P)bys1(1—P)||—€1 > [|bim+1]|—3e1-

Let Co =C & Cy and P, = P+ Py. Then for any z € F and by, -+ ,bymyt1,
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(1) ||P2{E — .TPZH < 4deq,

(2) PoxPs SYEN Cy and ||P2bZP2|| > HszPH > ||b1|| —e1,t=1,---,m,
3) 1P2bmr P2l = [[Pr(1 = P)bypgr (1 = P)Pr|| > [|bgsr || — 3er.

This implies that lemma holds for n = m + 1.

Therefore, lemma holds by induction.

Lemma 4.13 Let A be a unital simple C*-algebra with TR(A) < 1. Let {p1, - ,pn}

n

and {q1, - ,qm} be two sets of mutually orthogonal projections with > p; = ¢; =1, and
= =1

=1 Jj=
{2\t A, nm} be two subsets of R. Suppose Ay < -+ < A\, and 1 < -+ < Ny
n m

Suppose x = Y Nipi and y = Y njq;. Let d = D(z,y) >0 and 0 < e < d. Then there exists
i=1 =1
integer k < n satisfying one of the following conditions:

(1) Let Oy = {/\17 T 7/\7€}7 [XOk (x)] ﬁ [X(Ok)d—s (y)] in KO(A)’

(2) Let Of = { A, -+, A}, [xor ()] £ [X(0p)a. ()] in Ko(A).

Proof Let A = {\,---,\,}. According to the definition of D.(z,y), there exists subset
O = {X\i,,-+,X\i,} C A such that [xo(z)] £ [xo. .(y)] in Ko(A), where A\;; < --- < \;,.
If there exists 7n;, for some jy such that (n;, — (d —€),nj, +d —e) N A = 0, then we may
assume Ay < 15, — (d —¢) < nj, — (d —¢€) < Agy41 for some kg. Let Op = {1, -, \x} and
O, = { Ak, -+, An}. We claim that there exists integer k£ < n such that

[XOk (x)] ﬁ [X(Ok)d—s (y)] (4'125)

or

[xo;, ()] £ [x(0)a-. )] (4.126)

in Ko(A). Otherwise, [1] = [xa(2)] < [xa,_.(y)] in Ko(A). But it is impossible since 1, ¢ Ag—-.
It shows the claim. This implies that lemma holds if (n;, — (d —¢),n;, +d —¢) N A = 0. So we
may assume that for all j,

(nj—(d—e),mj+d—e)NAF#0. (4.127)
Let E,F CR and a € R, we write E < F if supFE <inf F, and E < a if supF < a. Let
A={A:OCACMANA<N, =supO,[xa(@)] £ [xa)._. ®)]} (4.128)
We write |A| the number of elements of set A. Then there is a set Ag € A such that
|Ag| = sup{|A|: A € A}. (4.129)

It is trivial to check that Ag satisfyies one of the following cases:
(1) Ao = {A1, A2, A

l/
(II) there exist non-empty sets A1 < By < -+ < By_1 < Ap such that | A; = Ap and
i=1
-1
Bi = {1, A2, , A, P\ Ao,
1

1=
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l/
(IIT) there exist non-empty sets By < A; < --- < By < Ap such that |J A; = Ap and

i=1

l/
U Bi = {1, A2, -+, A, F\ Ao.

i=1

(I) Implies (1) of the lemma holds.
If Ap satisfies (IT), we claim

[X(AOUBl)(x)] < [X(AOUBl)d—z (y)] (4'130)

in Ko(A). Otherwise, Ag U By € A, it is contrary with (4.129). It shows the claim. Since

[X(Ao)(x)] ﬁ [X(AO)dfs (y)]7 (4131)
it follows from [8, Theorem 6.8] that there exists 79 € T'(A) such that
To(X(40) () = To(X(40)a_. (¥))- (4.132)
Therefore, by (4.130) and (4.132),
70(x(81) () < T0(X(A00B1)a— () = T0(X(40)a-. (¥))- (4.133)
By (4.130)—(4.131),

X8 ()] # IX(a00B1)a-. (V)] = X(a0)a-. (W)] (4.134)

in Ko(A). If [xa, ()] £ [x(a1)._. ()] in Ko(A), then (1) of the lemma holds. Otherwise,

[, (@)] < [xan. . @) (4.135)

Note that X(a,uBy)a_. (V) = X(40)a_. (¥) and X(a,),_.(y) are mutually orthogonal projections.
Then, by (4.133) and (4.135),

To(X(a,0B) (@) < T0(X(a00B1)a—. (V) = T0(X(A0)a—. (1) + To(X(A1)a-. (V))- (4.136)
Furthermore, if [y, ()] = [X(4,),_. ()], then by (4.134),
X)) (@)] # X(a0uB1) - ()] = IXa0)am (W)] + DX (A1) ()] (4.137)
If [xa, (@)] < Dxcana-. (9)]; by (4.133),
To(X (0B () < T0(X(a00B1)a—. V) = T0(X(A0)a—. (1) + To(X(A1)a-. (V))- (4.138)

So (4.137) also holds. Then by (4.136),

To(XA\(4,UBy) (T))

(
7'0(1) —70(X(4,uBy) (7))
(
(

\]

1) ( ( X(AoUB1) 4 s(y)) - TO(X(Ao)dfs(y)) +7'0(X(A1)d,€(y)))
= T0(X(A\(41UB1))a-. (¥))- (4.139)

0

The last equation (4.139) holds by the following reason.
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Suppose A, = inf A>. We consider the case that n;, € (A\(A1 U B1))4—. for some jo, then
Njo > Mgy — (d —€). (4.140)

If nj, € (A1)d—e, then X(Ao)dfg(y) = X(4oUB1)4_. (). This implies that Ao U By € A. It is
contrary with (4.129). If

Njo € ((Ao U B1)a—e\(Ao)a—c) N {m1, -+ snm}, (4.141)
we will find that n;, < Ap, — (d — ¢). It is contrary with (4.140). Therefore,
XA\(A0B1 ) () S 1= (X(a0uB1a (¥) = X(a0)a—. (¥) + X(a1)a. (9))- (4.142)
In reverse, we consider the case that n;, ¢ (A\(A1 U B1))q—. for some jo, then
Njy < Ay — (d—€). (4.143)
or
Mo 2 An + (d —¢). (4.144)
Since (4.127), it is impossible for (4.144). Then by (4.127) and (4.143),
M —(d—¢) <njy < Ag—1+(d—e), (4.145)

where \i, 1 € By. It shows that n;, € (A1 U Bi)g—.. Furthermore, if n;, ¢ (A1)d4—c, then
Njo € (AO U Bl)d—s\(AO)d—s- So Njo € ((A() U Bl)d—s\(AO)d—s) U (Al)d—s- In other WOI‘d,

X(A\(A10B1))a— () = 1= (X(40UB1)a— (W) = X(A0)a—. (¥) + X(a1)a. (¥))- (4.146)

By combining (4.142) and (4.146), we have

X(A\(A10B1))a— (¥) =1 = (X(40UB1)a— (V) = X(A0)a—. (¥) + X(a1)a. (V) (4.147)

Therefore, (4.139) holds.
Similarly as (4.139), by (4.137) and (4.147), we can also check that [xa\(a,um,)(z)] #

[X(A\(A1UB1))a. ()] Then by (4.139), [xa\(a,uB) ()] £ [X(a\(4,uB1))._. (¥)]. This implies
that (2) of the lemma holds.

If A satisfies (III), as (4.130), we have
Xa0uB) (2)] < IX(auB ). (Y)]- (4.148)
As (4.133),
T0(xB, (%)) < T0(X(A0UB1)a-. (¥)) = To(X(40)a—. (¥))- (4.149)
Furthermore, as (4.134),

[xB, (2)] # X(a0uB1)a-. ()] = X(a0)a-. (V)] (4.150)
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Therefore,

Xa\B: (%))

1) = 10(xB, ()

1) — (TO(X(AouBl)dfs(y)) - TO(X(AO)d—s(y)))

X(A\B)a-. (¥))- (4.151)

The last equation of (4.151) holds since 1 — (X(4,uB1 ). (¥) = X(A0)a_. (¥)) = X(A\B1)u_. (V)
similarly as (4.147). In the same way, we can check that [xa\ 5, (z)] # [X(a\B1)._. ()] It shows
(2) of the lemma holds.

Remark 4.1 Let A be a unital C*-algebra, p € A be a non-zero projection and = € A be
self-adjoint element. Suppose sp(z) C [a,b], then we will find sppa,(pzp) C [a, b].

Proof We may assume sup sp(xz) = b and inf sp(x) = a. Then 0 < p(b — x)p < (b — a)p.
Therefore, sppap(prp) C [a,b].

Lemma 4.14 Let A be a unital simple C*-algebra with TR(A) < 1. Let z,y € A be
self-adjoint elements with finite spectrum. Then

De(z,y) < dist(U(z), U(y)). (4.152)

Proof Let z = Z )\ipia Yy = Z 77](]]7 where {)\17"' 7)\11}7{7717"' 777777,} C R7 {pla"' 7pn}
j=1

=1

and {q1, - ,qm} be two sets of mutually orthogonal projections with zn:pl- = i g = 1.

i=1 =1
Suppose ||z|[, ||y|| < M, d = D.(z,y). Lemma holds when d = 0. So we may assumejd > 0. Let
0<e<d Suppose \; < -+ < Ay and n1 < -+ < 1. It follows from Lemma 4.13, there exists
integer k < n satisfying one of the following conditions:

(1) Let Op = (A, M, oy (@)] £ (X0 )] in Ko(A).

(2) Let O = D+ An, [xoy (0] £ [0y ()] in Ko(A)

We consider case (1). We may assume k is the minimum integer such that case (1) holds.
When (Og)a—e N {n1, =+ ,nm} =0, let 0 < § < 5=+ Since TR(A) < 1, there exist C C IV
with I = P and {plla . 7p1n} C C, {pgl, . ,pgn} C (1 —P)A(l —P), {qll,'-- ,qlm} cC
and {go1, -~ 7qgm} C(1- P)A(l — P) are four sets of mutually orthogonal projections with

Zplz + me = Z qj + Z g2j = 1 such that for all 7, 7,
1= =1 7j=1

p1i +p2i —pill <0 and |lqu; + g25 — g5l < 0. (4.153)

n
Set &1 = Y Nip1i, @2 = Zkzpz“ o= Z niq; and y; = Z njq2;- Since (Ok)g—- N
=1 1=1

{m,  smm} =0, De(z1,51) > d—¢in C. Then
d—e<|z1—yil <|lwr + 22— (11 +y2)|| < lz =yl +e (4.154)

This implies lemma holds.
Now we may assume 7 = max((Og)a—e N {m1, - ,9m}). If there exists k] < k' such
that mg, & (Ok)a—e N {1, -+ s mm}, let A = {1, A} and A" = {Ay,---, Ag}. Then
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dist(A", {nx;}) > d — e and my < m < A + (d — €). Therefore, my < A — (d —¢) <
Mi+1 — (d —€). This implies that dist(A, {m}) > d —e. As (4.153)-(4.154), we will obtain

T = Z AiD1i, Y1 = Z n;q1; € C, where C € I (1), such that lx1 — 1|l < ||l — y|| +&. Since

X{nk/}(yl) > 0 and X{nk/}d (21) =0, De(z1,91) > d—einC. Sod—e < ||lz1—y1]| < ||lz—y|/+e.
This implies lemma holds.

Therefore, furthermore, we may assume

(Ok)a—e N {01, T} = {1+ i} (4.155)

k %
Since [xo, (z)] £ [X(01)a_. ()], it follows from [6, Lemma 2.5.2], ||( Z:lpz) (1 — Zl qj) || =1.
i= j=

So, \!(iilpi><1—2qj><zpz>||— -

Set

F= {pi,qj, (Zk:p) (1—§:qj)(zk:pi) =1, m=1, ,m}. (4.156)

i=1

Let 0 < 61 < §9 with 1659 4+ 164/262 < m By Lemma 4.12, there exists a finite-dimension
C*-subalgebra €' C A with I = P’ such that for any a € F,

(I) |P'a — aP'| < 01,

(IT) P'aP’ €5, C" and ||P’'aP’|| > ||a| — d1.

If 67 is sufficiently small, by [6, Lemma 2.5.6], there exist two sets of non-zero projections
{rh,-- 0Ly € C"and {q, -+ ,q,} C C’ such that ||[P'p;P" — pi|| < d2 and |[P'q; P" — q}|| < 02
for all 7, j. Furthermore, we may assume

() (-2 ) () - P () (- ) () s
Then by (II),
() 0-Sa)(SA)l> [P(Sn) (- 2a) (Sr)P] -
> 1 — 26s. (4.158)

l

k % k
Set = (Y pi) (1= X ¢}) (X pj). Since r € C’, spei(r) is finitely. Suppose r = Y- a7,
i=1 j=1 i=1 i=1

where 71, -+, r; are mutually orthogonal non-zero projections in C’. By (4.158), without loss

k
of generality, we may assume oy € (1 — 2d2,1]. Note that 1 < Y pl, then
i=1
k/

QT =TTy =11 (1 — Z qé-)ﬁ- (4.159)

Jj=1
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K K’
(1 -3 q;-)rl — 7‘1H < 26> and then ||7“1( > qg-)ﬁH < 205. So we will find
j=1 j=1

K’

Ja=r(Xd)a-r)- (f;q;)

j=1 =

] < 285 + 21/205. (4.160)

It follows from [6, 2.5.4] that there exists projection ¢’ € (1 — r1)C’(1 — r1) such that ld —

( Z qj) H < 465 + 44/28,. By [6, 2.5.1], there exists unitary u € C’ such that ¢’ = u( Z qj)

and || P’ —ul| < 885+ 8v/28;. Note that r1u( Z ¢j)u* =r1¢ =0 and riu(l— Z qj)urry =y
j Jj=
% K
This implies that 1 < u(l — E qj)u Therefore, rlu(l — Z qj)u r=r = 7"1( Z pz)rl Let
j=

k m
=Y Aipjand ¢’ =u( > 7;¢;)u*. By Remark 4.1,
i=1 J=k'+1
SpriC'ry (7'11'/7‘1) C [)\1,)\k] and  Spr,cir (le/T‘l) C [nk’+1777m]~ (4,161)

Note that ngr11 — A\x > d — € by (4.155). So
7‘10/7'1 7‘1C 1

X[Al,)\k](ﬁx/m) =71> 0= X\, A . (riy'r1). (4.162)

Therefore, D.(r1z'r1,ry'r1) > d — ¢ in r1C’'r1. Since r1C’ry is finite dimension, d — & <
A !
|lria’r — riy'r]]. But

||7’1$I7“1 - 7“13//7’1H
= 7‘1(2 /\ip/i)ﬁ - Tlu(anq;)u*rl H
i=1 j=1
7’1(2 /\ip/i)ﬁ — T (anq;)ﬁH + (1682 + 16+/282) M
Z&pl anqj + (1665 + 161/205) M

<||P'(z— y)P’H + (n4+m)Mdy + (162 + 16+/202) M
< lz —yll + 2e. (4.163)

IN

IN

We get d < ||z — y|| + 3e.
To consider the case (2) of the lemma, by the same argument, we will also have d <
|lx — y|| + 3. Therefore, lemma holds.

Theorem 4.3 Let A be a unital simple C*-algebra with TR(A) < 1. Let z,y € A be
self-adjoint elements. Then

D.(z,y) = dist(U(x),U(y)). (4.164)

Proof It follows from Lemma 4.11, we remain to show D.(z,y) < dist(U(z), U(y)).



Distance Between Unitary Orbits of Self-Adjoint Elements 443

Let d = D.(z,y). It holds when d = 0.

Now, we may assume d > 0. Let 0 < ¢ < d and ||z|], |Jy]]| < M. Let 0 < &’ < ¢ satisfy
Lemma 2.3 (replace of ¢ by 10¢’ in Lemma 2.3). Suppose X = {A1,---,\,} is a &'-dense
subset of sp(z) and Y = {m, -+ ,nm} is a €'-dense subset of sp(y). It follows from Lemma
4.9, there exist two sets of mutually orthogonal pI‘OJGCthDS {p1, - ,pn} and {ql, ©, qm} and

self-adjoint elements x1,y; € A such that x4 Z pi =11 Z ¢; =0 and Hxl + Z AiDi — xH <ée
1=1

and ||y + Zl nia; —yl| <€
=

Set F = {z1,y1,pi,¢j :i=1,---,n;j=1,--- ,m} and 0 < e} <¢'. It follows from Lemma
4.12, there exists finite dimension C*-subalgebra C' C A with I = P such that for all a € F,

(1) [Pa —aP|| <&,

(2) PaP €. C and |[PaP|| > |al — &}.

Therefore, if €] is sufficiently small, there exist four sets of mutually orthogonal projections
{pk1, s Pkn} and {qr1, "+ ,qkm}, k = 1,2, such that for all 4,7, P1i,q1; € C, D2, q2j €
(1-P)A(1 — P), and

5/

||pli +p21 - sz < m, (4165)
!
||(J1i + q2i — QiH < m (4166)

Furthermore, there exist self-adjoint elements z2,y2 € (1 — P)A(l1 — P) and 23 € (P —
ZPM)C(P — Zpli), ys € (P -3 plj)C(P -3 plj) such that [|zs 4+ x5 — 21| < &’ and
i=1 i=1 j=1 j=1

n m n
llys +ys — w1l < €. Let x4 = xo + > NipP2i, Ya = Y2 + D 1jP2j, Ts = T3+ > A;p1; and
e} =1 i=1

m
ys =ys + »_ njp1j. Then z4,ys € (1 — P)A(1 — P) and x5, ys € C. Furthermore, we have
j=1

a4+ 25 — 2| < 3¢ and |lysa+ys —yl| < 3¢’ (4.167)

Since ||Pp;iP|| = |lpill — €7 = 1= ¢} and [Pg; P > |lg;|| — &y = 1 — ¢} for all 4,5, pui,aqy;
are non-zero projections for all ¢, j if €] is sufficiently small. Therefore, spc(xs) is a 4e’-dense

subset of (sp(z ))35/ and spc(ys) is a 4e’-dense subset of (sp(x))se .
k/
Set x5 = Zazpt’n and ys = Z Bjgsj, where spc(xs) = {a1, -+, ar} and spo(ys) =

{B1,, Bk/} {p51, -, psk } and {p51, -, Psks } are two sets of mutually orthogonal projections
k/

of C' with Z psi = > ¢s; = P. Let e € (1 — P)A(1 — P) be a projection such that 2™"[e] <
i=1 j=1

[psil, [g5;] in Ko(A) for all 4, j. Then there exists C’ € IV with Ic = P" and C' C (1—P)A(1—
P), four self-adjoint elements z¢,ys € C’' and x7,y7 € (1 — P — P')A(1 — P — P’) such that

M=P—-PJ<[e], lwe+azr—mzil <& and |ys+yr—vall <& (4.168)

By the same argument of proof of (4.120) in Lemma 4.11, there exist self-adjoint elements
xs,ys € (1 — P')A(1 — P’) such that sp(zs) and sp(ys) are finitely and

|25 + 27 —ws]| <4’ and |lys +y7 — ys| < 4e’. (4.169)
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Therefore, by (4.167)—(4.169),
|lze + xs — || < ||z5 + 6 + 27 — || + 4’ < |24 + 75 — 2| + B’ < 8. (4.170)

We also have ||y + ys — y|| < 8¢’. Let di = D.(w6,ys) in C' and do = D.(xs,ys) in (1 —
P")A(1 — P’). By Lemma 2.3, Theorem 4.2 and Lemma 4.14, we get

d < max{dy,ds} + 2¢

IN

max{||z¢ — ysll, [|vs — ys|} + 2¢

lze + 28 — ye — ysll + 2¢
< ||z —yl| + 10e. (4.171)

This implies that theorem holds.
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