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Abstract The note studies certain distance between unitary orbits. A result about Riesz
interpolation property is proved in the first place. Weyl (1912) shows that dist(U(x), U(y))
= δ(x, y) for self-adjoint elements in matrixes. The author generalizes the result to C∗-
algebras of tracial rank one. It is proved that dist(U(x), U(y)) = Dc(x, y) in unital AT -
algebras and in unital simple C∗-algebras of tracial rank one, where x, y are self-adjoint
elements and DC(x, y) is a notion generalized from δ(x, y).
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1 Introduction

It is an interesting and important problem to determine when two normal elements are uni-

tary equivalent in a C∗-algebra. Let dist(U(x), U(y)) denote the distance between the unitary

orbits of x and y. For matrix Mn, let x, y ∈ Mn be two normal elements with eigenvalues

{α1, · · · , αn} and {β1, · · · , βn}, respectively. Suppose

δ(x, y) = min
π

max
1≤i≤n

|αi − βπ(i)|,

where π runs over all permutations of {1, · · · , n}. The equality dist(U(x), U(y)) = δ(x, y) is

well known for Hermitian matrices by Weyl [12]. Hu and Lin [3] study the distance between

unitary orbits in separable simple C∗-algebras of real rank zero and stable rank one. Let A be

separable simple C∗-algebra of real rank zero and stable rank one with weakly unperforated

K0(A). Let x, y ∈ A be two normal elements. Hu and Lin prove that

dist(U(x), U(y)) ≤ Dc(x, y) (1.1)

when [λ− x] = [µ− y] = 0 in K1(A) for all λ /∈ sp(x) and µ /∈ sp(y),

dist(U(x), U(y)) ≤ De
c(x, y) ≤ 2Dc(x, y) (1.2)

when [λ− x] = [λ− y] = 0 in K1(A) for all λ /∈ sp(x) ∪ sp(y),

dist(U(x), U(y)) ≤ De
c(x, y) + 2min{ρx(x, y), ρy(x, y)} (1.3)
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for all normal elements x, y.

It is well known that a simple C∗-algebra A of tracial rank zero has real rank zero and

stable rank one with weakly unperforated K0(A). However, a simple C∗-algebra A of tracial

rank one hasn’t real rank zero in general, where the property plays an important role to study

the distance between unitary orbits. This takes a difficulty when A is tracial rank one. Then

Lin and Hu proposed the problem of the distance between unitary orbits in C∗-algebras of

tracial rank one.

Suppose R ⊂ {1, · · · ,m} × {1, · · · , n} and A ⊂ {1, · · · ,m}. Define RA ⊂ {1, · · · , n} to be

the subset of those j’s such that (i, j) ∈ R for some i ∈ A. Let (G,G+) be an ordered abelian

group. Let {ai}mi=1, {bj}nj=1 ⊂ G+ with
m
∑

i=1

ai =
n
∑

j=1

bj , R ⊂ {1, · · · ,m}× {1, · · · , n} satisfying:

For any A ⊂ {1, · · · ,m},
∑

i∈A

ai ≤
∑

j∈RA

bj.

Hu and Lin [3] generalize a result in [2] and obtain that when G is a countable weakly unper-

forated with the Riesz interpolation, there are {cij} ⊂ G+ such that

n
∑

j=1

cij = ai,

m
∑

i=1

cij = bj for all i, j and cij = 0 unless (i, j) ∈ R.

It is the starting point that Hu and Lin study the distance between unitary orbits.

It is obvious that this conclusion implies that the Riesz interpolation property holds. Fur-

thermore, we realize that the conclusion holds when an ordered abelian group (G,G+) just

has the Riesz interpolation property. This result is presented as a starting point in Section

3. To solve the problem Lin and Hu put forward, by using the result of Weyl, we present the

distance between unitary orbits of self-adjoint elements in unital AT -algebras and unital simple

C∗-algebras of tracial rank one in Section 4 (one can see Theorems 4.2–4.3).

2 Preliminaries

In this section, we need to recall some notations, definitions and elementary conclusions.

One can see [3, 6] for more details.

Definition 2.1 Let A be a unital C∗-algebra. Denote by U(A) the unitary group of A. Let

x ∈ A be a normal element. Define U(x) to be the closure of {u∗xu : u ∈ U(A)}. Denote by

T (A) the tracial state space of A.

Definition 2.2 (see [3]) Let A be a C∗-algebra and a, b ∈ A be two positive elements. We

write a . b if there is a sequence of elements {xn} ⊂ A such that

x∗
nbxn → a as n → ∞. (2.1)

If a . b and b . a, then we write [a] = [b] and say that a and b are equivalent in Cuntz

semigroup. We write [a] ≤ [b] if a . b.

If p, q ∈ A are two projections, then p . q means that there is a partial isometry v ∈ A such

that v∗v = p and vv∗ ≤ q.
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Definition 2.3 Let Ω be a compact metric space and let O ⊂ Ω be a non-empty open subset.

Denote by fO a positive function with 0 ≤ fO ≤ 1 whose support is exactly O, i.e., fO > 0

for all t ∈ O and fO(t) = 0 for all t /∈ O. Define f∅ = 0. Let O ⊂ Ω be a non-empty subset.

Denote by χO the characteristic function associating to O.

Suppose A is a unital C∗-algebra and x ∈ A is a normal element with X = sp(x) ⊂ Ω.

Denote by ϕX : C(Ω) → A the unital homomorphism. Define ϕX(f) = f(x) for all f ∈ C(Ω).

Define

Od = {t ∈ Ω : dist(t, O) < d} (2.2)

for any subset O ⊂ Ω.

Denote by O the closure of O.

The following lemma is a notation in [3] without a proof. We give the proof.

Lemma 2.1 Let Ω be a compact metric space and O ⊂ Ω be an open subset. Let k : C(Ω) →
A be a unital homomorphism. Then [k(fO)] does not depend on the choice of fO. Therefore, if

open sets O1 ⊂ O2 ⊂ Ω, then k(fO1
) . k(fO2

).

Proof Let fO, gO be two positive functions whose support is exactly O. If O is a clopen

subset of Ω, the function hO, defined by hO(t) = fO(t)/gO(t) if t ∈ O and hO(t) = 0 if t /∈ O,

belongs to C(Ω). Therefore, [k(fO)] = [k(gO)].

Now we assume that O is not a clopen subset of Ω. Suppose

Fε = g−1
O [0, ε) ∩ f−1

O [0, ε). (2.3)

Then Fε is an open subset. Note that ∂O 6= ∅ (the boundary of O) since O is not a clopen

subset of Ω. Then for any ε > 0, there exists tε ∈ Fε ∩ O. Fix ε and tε. Choose a number

ε′ with 0 < ε′ < min{f0(tε), g0(tε)}, then ε′ < ε. Define Fε′ = g−1
O [0, ε′) ∩ f−1

O [0, ε′). Let

Hε′ = F c
ε′ ∩ Fε, where F c

ε′ is the complementary set of Fε′ . Then tε ∈ Hε′ 6= ∅ and Hε′ is a

close subset. Since gO(F
c
ε′ ) > 0, we may define h′

ε′ = fO/gO in Hε′ . Then h′
ε′ ∈ C(Hε′). Let

π : C(Fε) → C(Hε′ ) (2.4)

be the restriction map. It is well known that π is surjective. So, h′
ε′ can be extended on Fε.

Let Lε = {t ∈ Fε : h′
ε′(t)gO(t) ≥ ε}. Then Lε is a close set. We may define sε(t) =

ε
gO(t) when

t ∈ Lε and sε(t) = h′
ε′(t) when t ∈ Fε\Lε. By pasting lemma (one can see [4, Theorem 3.2]),

sε ∈ C(Fε). Note that for all t ∈ Fε,

sε(t)gO(t) ≤ ε. (2.5)

Let h′′
ε′ = fO/gO on F c

ε′ . Note that F
c
ε′ ∪Fε = Ω, F c

ε′ ∩Fε = Hε′ and sε|Hε′
= h′′

ε′ |Hε′
. Therefore,

it follows from pasting lemma that there exists hε ∈ C(Ω) such that hε|Fε
= sε and hε|F c

ε′
= h′′

ε′ .

So, for any t ∈ Fε′ ,

|fO(t)− hε(t)gO(t)| ≤ |fO(t)|+ |hε(t)gO(t)| = |fO(t)|+ |sε(t)gO(t)| < 2ε. (2.6)

For any t ∈ F c
ε′ , fO(t) = hε(t)gO(t). Therefore,

‖fO − hεgO‖ = sup{|fO(t)− hε(t)gO(t)| : t ∈ Ω} ≤ 2ε. (2.7)

So, we get k(fO) . k(gO). In the same way, k(gO) . k(fO). Therefore, [k(fO)] = [k(gO)].
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Definition 2.4 (see [3]) Let Ω be a compact metric space and let O ⊂ Ω be an open subset.

If A is a unital C∗-algebra and K1,K2 : C(Ω) → A are two unital homomorphisms, define

Dc(K1,K2) = sup
O

{inf
d
{d > 0 : K1(fO) . K2(fOd

)} : O ⊂ Ω open}. (2.8)

Let X = sp(x), Y = sp(y) ⊂ Ω, where x, y ∈ A are two normal elements. Define ϕX : C(Ω)

→ A, f 7→ f(x) and ϕY : C(Ω) → A, f 7→ f(y). Denote by Dc(x, y) the Dc(ϕX , ϕY ).

Definition 2.5 (see [3]) Let ε > 0. Denote by fε the continuous function on (−∞,∞)

such that 0 ≤ fε ≤ 1; f(t) = 1 if t ∈ (−∞,−ε] ∪ [ε,∞), f(t) = 0 if t ∈
[

− ε
2 ,

ε
2

]

and f(t) is

linear in
(

− ε,− ε
2

)

and
(

ε
2 , ε

)

.

Let b ∈ A+. Define

dτ (b) = lim
ε→0

τ(fε(b)) (2.9)

for τ ∈ T (A).

A is said to has strict comparison for positive elements, if

dτ (a) < dτ (b) for all τ ∈ T (A) (2.10)

implies that a . b.

Unital simple C∗-algebras of tracial rank no more than one have strict comparison for pos-

itive elements.

Definition 2.6 (see [3]) Let A be a unital C∗-algebra with T (A) 6= ∅. Let Ω ⊂ C be a

compact set and X = sp(x), Y = sp(y) ⊂ Ω, where x, y ∈ A are two normal elements. Define

rO(ϕX , ϕY ) = inf
r
{r > 0 : dτ (ϕX(fO)) ≤ dτ (ϕY (fOd

)) for all τ ∈ T (A)}. (2.11)

Define

DT (ϕX , ϕY ) = sup
O

{rO(ϕX , ϕY ) : O ⊂ Ω open}. (2.12)

Denote by DT (x, y) the DT (ϕX , ϕY ).

Lemma 2.2 Let A be a unital C∗-algebra of stable rank one with T (A) 6= ∅. Then for any

normal elements x, y, z ∈ A,

Dc(x, z) ≤ Dc(x, y) +Dc(y, z), (2.13)

Dc(x, y) = Dc(y, x), (2.14)

DT (x, z) ≤ DT (x, y) +DT (y, z), (2.15)

DT (x, y) = DT (y, x), (2.16)

DT (x, y) ≤ Dc(x, y). (2.17)

Proof It follows from [3, Propositions 2.15 and 2.21].

Lemma 2.3 Let A be a unital C∗-algebra with T (A) 6= ∅ and let Ω ⊂ C be a compact

subset. For any ε > 0, there exists δ > 0 satisfying: For any normal elements x, y ∈ A with

sp(x), sp(y) ⊂ Ω, if

‖x− y‖ < δ, (2.18)
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then

Dc(x, y) < ε, (2.19)

DT (x, y) < ε. (2.20)

Proof It follows from the proof of [3, Lemma 2.17] that (2.19) holds. It follows from Lemma

2.2 that (2.20) holds.

Definition 2.7 (see [6]) Denote by Mn the matrix algebra Mn(C).

Denote by I(1) the class of all unital hereditary C∗-subalgebras of C(X) ⊗ F , where X is

one-dimensional finite CW complex and F is a finite dimensional C∗-algebra.

Let A be a C∗-algebra and B be a C∗-subalgebra of A. If a ∈ A, we say a ∈ε B if there is

an element b ∈ B such that ‖a− b‖ < ε.

Denote by TR(A) ≤ k the tracial rank no more than k (One can see the definition of tracial

rank by [6, Definition 3.6.1] ).

Remark 2.1 Note that those conclusions about spectrum in the following:

(1) Let A be a unital C∗-algebra. Suppose x, y ∈ A are two normal elements. Let ε > 0. If

‖x− y‖ < ε, then for any λ ∈ sp(x), dist(λ, sp(y)) < ε.

(2) Let A be a unital C∗-algebra and IA be the unit. Suppose B is a C∗-subalgebra of A

and x ∈ B is a normal element. If B has unit IB 6= IA, then spA(x) = spB(x)∪{0}. Otherwise,

spB(x) = spA(x).

(3) Suppose A = B ⊕ C, where A,B,C are unital C∗-algebras. Let x ∈ B and y ∈ C be

normal. Then spB(x) ∪ spC(y) = spA(x+ y).

Remark 2.2 Let A be a unital C∗-algebra with unit IA. Let B be a unital C∗-subalgebra

of A with unit IB. Suppose x ∈ B is a normal element and XA = spA(x). Set f ∈ C(XA).

Note that the function calculation f(x) in A and in B are different. Therefore, if necessary,

we denote by fA(x) the function calculation f(x) in A and denote by fB(x) the function

calculation f(x) in B. It is obvious that PA(x) = PB(x) + P (0)(IA − IB) for any polynomial

P . So fA(x) = fB(x) + f(0)(IA − IB) for any f ∈ C(XA).

This following lemma is probably well-known.

Lemma 2.4 Let A be a unital simple C∗-algebra and B be a unital hereditary C∗-subalgebra

of A. If τ ∈ T (B), then there is only one tracial positive linear function τ ′ on A such that

τ ′|B = τ .

Proof Since A is simple, it follows from [6, Lemma 3.3.6] that there are x1, · · · , xn ∈ A

such that IA =
n
∑

i=1

xiIBx
∗
i . Suppose {eij : i, j = 1, · · · , n} is a set of matrix units of Mn and

l : A → Mn ⊗A

a 7→ e11 ⊗ a.
(2.21)

Let τn be the normalized trace of Mn. Then τn ⊗ τ ∈ T (Mn ⊗ B). Put x =
n
∑

j=1

e1j ⊗ xj and

P = I ⊗ IB ∈ Mn ⊗B, where I is the unit of Mn. Then

e11 ⊗ IA = xPx∗. (2.22)
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Since Mn ⊗B is a hereditary C∗-subalgebra of Mn ⊗A, then

Px∗l(a)xP ∈ Mn ⊗B (2.23)

for any a ∈ A. Define τ ′(l(a)) = τn ⊗ τ(Px∗l(a)xP ) for a ∈ A. Therefore τ ′ is a positive linear

function on l(A). Suppose a, b ∈ A. Then by (2.22)–(2.23),

τ ′(l(ab)) = τn ⊗ τ(Px∗l(a)l(b)xP ) = τn ⊗ τ(Px∗l(a)xPx∗l(b)xP )

= τn ⊗ τ(Px∗l(b)xPx∗l(a)xP ) = τ ′(l(ba)).
(2.24)

This implies that τ ′ is a trace on l(A). For any b ∈ B+,

τ ′(l(b)) = τn ⊗ τ(Px∗l(b)xP ) = τn ⊗ τ(Px∗l(b)
1
2Pl(b)

1
2 xP )

= τn ⊗ τ(Pl(b)
1
2xPx∗l(b)

1
2P ) = τn ⊗ τ(Pl(b)P ) = τn ⊗ τ(l(b)).

(2.25)

Therefore, τ ′|l(B) = τn ⊗ τ . In other words, nτ ′ ◦ l|B = τ .

Now suppose τ ′1 and τ ′2 are tracial positive linear functions as two extensions of τ . For any

a ∈ A+,

τn ⊗ τ ′1(l(a)) = τn ⊗ τ ′1(l(a)
1
2xPx∗l(a)

1
2 ) = τn ⊗ τ ′1(Px∗l(a)xP )

= τn ⊗ τ(Px∗l(a)xP ) = τn ⊗ τ ′2(Px∗l(a)xP ) = τn ⊗ τ ′2(l(a))
(2.26)

This implies that τ ′1 = τ ′2.

3 C
∗-Algebras with the Riesz Interpolation Property

Definition 3.1 Let I and J be two sets. Suppose R ⊂ I × J , A ⊂ I and B ⊂ J . Define

RA ⊂ J to be the subset of those j’s such that (i, j) ∈ R for some i ∈ A. Define RB ⊂ I to be

the subset of those i’s such that (i, j) ∈ R for some j ∈ B.

Theorem 3.1 Let (G,G+) be an ordered abelian group with the Riesz interpolation property.

If {ai}mi=1, {bj}nj=1 ⊂ G+ with
m
∑

i=1

ai =
n
∑

j=1

bj, R ⊂ {1, · · · ,m} × {1, · · · , n} satisfying: For any

A ⊂ {1, · · · ,m},
∑

i∈A

ai ≤
∑

j∈RA

bj, (3.1)

then there are {cij} ⊂ G+ such that

n
∑

j=1

cij = ai,

m
∑

i=1

cij = bj for all i, j (3.2)

and cij = 0 unless (i, j) ∈ R. (3.3)

Proof It follows from [6, Lemma 3.3.14] that, if a1, a2, b1, b2 ∈ G with ai ≤ bj (i, j = 1, 2),

then there exists c ∈ G such that ai ≤ c ≤ bj (i, j = 1, 2). Now, suppose a1, a2, b1, b2, b3 ∈ G

with ai ≤ bj (i = 1, 2 and j = 1, 2, 3). Then for a1, a2 and b1, b2, there exists c′ ∈ G such that

ai ≤ c′ ≤ bj for i, j = 1, 2. Therefore, for a1, a2 and c′, b3, we have ai ≤ c′ and ai ≤ b3 for

i = 1, 2. Then, we have c ∈ G such that ai ≤ c ≤ c′, b3 for i = 1, 2. Note that c ≤ c′ ≤ b1, b2.
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Therefore, we get c ∈ G such that ai ≤ c ≤ bj for i = 1, 2 and j = 1, 2, 3. In the same way, if

a1, · · · , am, b1, · · · , bn ∈ G with ai ≤ bj for all i, j, then there exists c ∈ G such that ai ≤ c ≤ bj

for all i, j.

Now, suppose {ai}mi=1, {bj}nj=1 ⊂ G+ with
m
∑

i=1

ai =
n
∑

j=1

bj , R ⊂ {1, · · · ,m} × {1, · · · , n}

satisfying: For any A ⊂ {1, · · · ,m},
∑

i∈A

ai ≤
∑

j∈RA

bj. (3.4)

When m = 1, it is trivial to check that there are c1j = bj ⊂ G+ such that

n
∑

j=1

c1j = a1, c1j = bj for all j (3.5)

and

cij = 0 unless (i, j) ∈ R. (3.6)

Then we assume that it holds for m = k − 1. Let m = k. Without loss of generality, suppose

(1, 1) ∈ R, R{1} = {1, · · · , n′} and R{1} = {1, · · · ,m′} where 1 ≤ m′ ≤ m, 1 ≤ n′ ≤ n. We

first consider m′, n′ ≥ 2. Let A = {A ⊂ {2, · · · ,m} : A ∩ {2, · · · ,m′} 6= ∅} and B = {B : B ⊂
{m′ + 1, · · · ,m}}. Note that ∅ ∈ B, A,B 6= ∅ and A ∪ B = {C : C ⊂ {2, · · · ,m}}. So, we can

suppose A = {A1, · · · , Al1}, B = {B1, · · · , Bl2}. Define
∑

i∈∅

ai =
∑

j∈∅

bj = 0. Therefore, we have

a1 +
∑

i∈Al

ai ≤
∑

j∈RAl∪{1}

bj for all l = 1, · · · , l1, (3.7)

∑

i∈Al

ai ≤
∑

j∈RAl

bj for all l = 1, · · · , l1, (3.8)

a1 +
∑

i∈Bl

ai ≤
∑

j∈RBl∪{1}

bj for all l = 1, · · · , l2, (3.9)

∑

i∈Bl

ai ≤
∑

j∈RBl

bj, for all l = 1, · · · , l2. (3.10)

By (3.8), we have

∑

j∈RAl

bj −
∑

i∈Al

ai ≥ 0 for all l = 1, · · · , l1. (3.11)

By (3.9), we have

a1 +
∑

i∈Bl

ai −
∑

j∈RBl∪{1}\{1}

bj ≤ b1 for all l = 1, · · · , l2. (3.12)

Note that for any B ∈ B, 1 /∈ RB . Then by (3.10),

∑

i∈Bl

ai ≤
∑

j∈RBl

bj ≤
∑

j∈RBl∪{1}\{1}

bj. (3.13)
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So,

a1 +
∑

i∈Bl

ai −
∑

j∈RBl∪{1}\{1}

bj ≤ a1 for all l = 1, · · · , l2. (3.14)

Let B′ = RAl∪Bl′∪{1}\RAl
. We can find that RAl∪Bl′∪{1} = RAl

∪RBl′∪{1} and RAl∩(Bl′∪{1}) ⊂
RAl

∩ RBl′∪{1}. So B′ = RBl′∪{1}\RAl
, B′ ∩ RAl∩Bl′

= ∅ and B′ ∪ RAl∩Bl′
⊂ RBl′∪{1}\{1}.

Therefore,

a1 +
∑

i∈Al

ai +
∑

i∈Bl′

ai

= a1 +
∑

i∈Al∪Bl′

ai +
∑

i∈Al∩Bl′

ai

≤
∑

j∈RAl∪B
l′

∪{1}

bj +
∑

j∈RAl∩B
l′

bj

=
∑

j∈RAl

bj +
∑

j∈B′

bj +
∑

j∈RAl∩B
l′

bj

≤
∑

j∈RAl

bj +
∑

j∈RB
l′

∪{1}\{1}

bj . (3.15)

So,

a1 +
∑

i∈Bl′

ai −
∑

j∈RB
l′

∪{1}\{1}

bj ≤
∑

j∈RAl

bj −
∑

i∈Al

ai (3.16)

for all l = 1, · · · , l1 and l′ = 1, · · · , l2. Combine (3.11)–(3.12), (3.14) and (3.16), we have

0, a1 +
∑

i∈Bl′

ai −
∑

j∈RB
l′

∪{1}\{1}

bj ≤ a1, b1,
∑

j∈RAl

bj −
∑

i∈Al

ai (3.17)

for all l = 1, · · · , l1 and l′ = 1, · · · , l2. Therefore, there exists c11 ∈ G such that

0, a1 +
∑

i∈Bl′

ai −
∑

j∈RB
l′

∪{1}\{1}

bj ≤ c11 ≤ a1, b1,
∑

j∈RAl

bj −
∑

i∈Al

ai (3.18)

for all l = 1, · · · , l1 and l′ = 1, · · · , l2.
Now, let a′1 = a1 − c11 ≥ 0 and b′1 = b1 − c11 ≥ 0. Let a′i = ai and b′j = bj for i = 2, · · · ,m

and j = 2, · · · , n. Let R′ = R\{(1, 1)}. Then, by (3.7), we have

a′1 +
∑

i∈Al

a′i ≤
∑

j∈RAl∪{1}

b′j =
∑

j∈R′
Al∪{1}

b′j for all l = 1, · · · , l1. (3.19)

By (3.18), we have

∑

i∈Al

a′i ≤
∑

j∈RAl

b′j =
∑

j∈R′
Al

b′j for all l = 1, · · · , l1 (3.20)

and

a′1 +
∑

i∈Bl

a′i ≤
∑

j∈RBl∪{1}\{1}

bj =
∑

j∈R′
Bl∪{1}

b′j for all l = 1, · · · , l2. (3.21)
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By (3.10), we have

∑

i∈Bl

a′i ≤
∑

j∈RBl

b′j for all l = 1, · · · , l2. (3.22)

Therefore, when m′, n′ ≥ 2, for {a′i}mi=1, {b′j}nj=1 ⊂ G+, we have
m
∑

i=1

a′i =
n
∑

j=1

b′j and for any

A ⊂ {1, · · · ,m},
∑

i∈A

a′i ≤
∑

j∈R′
A

b′j. (3.23)

However, when m′ = 1 and n′ ≥ 2, let c11 = b1, a
′
1 = a1 − c11 =

n
∑

j=2

bj −
m
∑

i=2

ai ≥ 0 and

b′1 = 0. Let a′i = ai and b′j = bj for i = 2, · · · ,m and j = 2, · · · , n. Let R′ = R\{(1, 1)}. It is

trivial to check that
m
∑

i=1

a′i =
n
∑

j=1

b′j and for any A ⊂ {1, · · · ,m},

∑

i∈A

a′i ≤
∑

j∈R′
A

b′j. (3.24)

Therefore, we have c11, · · · , c1n′−1 ∈ G+, a′i, b
′
j ∈ G+ (i = 1, · · · ,m and j = 1, · · · , n)

and R′ = R\{(1, 1), · · · , (1, n′ − 1)} such that b′j = bj − c1j ≥ 0 for j = 1, · · · , n′ − 1, a′1 =

a1 −
n′−1
∑

j=1

c1j ≥ 0, a′i = ai for i = 2, · · · ,m, b′j = bj for j = n′ · · · , n,
m
∑

i=1

a′i =
n
∑

j=1

b′j and for any

A ⊂ {1, · · · ,m},
∑

i∈A

a′i ≤
∑

j∈R′
A

b′j. (3.25)

Note that a′1 ≤ b′n′ . Therefore, let a′′i = a′i for i = 2, · · · ,m. Let b′′j = b′j for all j 6= n′. Let

c1n′ = a′1 and b′′n′ = b′n′ − c1n′ ≥ 0. Let

R′′ = R′\{(1, n′)} ⊂ {2, · · · ,m} × {1, · · · , n}. (3.26)

We can check that
m
∑

i=2

a′′i =
n
∑

j=1

b′′j and for any A ⊂ {2, · · · ,m},

∑

i∈A

a′′i ≤
∑

j∈R′′
A

b′′j . (3.27)

Since we assume that theorem holds for m − 1, there are {cij} ⊂ G+ (i = 2, · · · ,m and

j = 1, · · · , n) such that

n
∑

j=1

cij = a′′i ,

m
∑

i=2

cij = b′′j for all i, j (3.28)

and

cij = 0 unless (i, j) ∈ R′′. (3.29)
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Let c1n′+1 = · · · = c1n = 0. Then for above all cij ∈ G+, we have

n
∑

j=1

cij = ai,

m
∑

i=1

cij = bj for all i, j (3.30)

and

cij = 0 unless (i, j) ∈ R. (3.31)

In the end, by induction, for any m, theorem still holds.

Lemma 3.1 Let A be a unital C∗-algebra of stable rank one. Suppose (K0(A),K0(A)+) has

the Riesz interpolation property. Let x =
m
∑

i=1

αipi, y =
n
∑

j=1

βjqj, where {αi}mi=1, {βj}nj=1 ⊂ C,

{p1, · · · , pm} and {q1, · · · , qn} are two sets of mutually orthogonal non-zero projections in A

such that
m
∑

i=1

pi =
n
∑

j=1

qj = IA. Then Dc(x, y) ≤ d if and only if, for any ε > 0, there are

projections pij , qij ∈ A (i = 1, · · · ,m and j = 1, · · · , n) such that

pi =
n
∑

j=1

pij , qi =
m
∑

i=1

qij , [pij ] = [qij ] in K0(A) for all i, j (3.32)

and

max{dist(αi, βj) : qij 6= 0} < d+ ε. (3.33)

Proof Suppose d = Dc(x, y), ε > 0,

R = {(i, j) : dist(αi, βj) < d+ ε}. (3.34)

For any A ⊂ {1, · · · ,m}, let OA = {αi : i ∈ A} and ORA
= {βj : j ∈ RA}. Then

∑

i∈A

[pi] =
[

∑

i∈A

pi

]

= [fOA
(x)] ≤ [f(OA)d+ε

(y)] = [fORA
(y)] =

∑

j∈RA

[qj ]. (3.35)

It follows from Theorem 3.1 that there are {rij} ⊂ K0(A)+ (i = 1, · · · ,m and j = 1, · · · , n)
such that

[pi] =

n
∑

j=1

rij , [qj ] =

m
∑

i=1

rij for all i, j, (3.36)

where rij = 0 unless (i, j) ∈ R. Since A has stable rank one, by [6, 3.1.13], there are two sets

{pij}, {qij} of mutually orthogonal projections with [pij ] = [qij ] = rij such that

pi =

n
∑

j=1

pij , qj =

m
∑

i=1

qij for all i, j. (3.37)

Furthermore,

max{dist(αi, βj) : qij 6= 0} < d+ ε. (3.38)

The converse is obvious.

Hu and Lin [3] prove the following theorem when the following A is separable simple with

weakly unperforated K0(A). We generalize the result.
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Theorem 3.2 Let A be a unital C∗-algebra of stable rank one. Suppose (K0(A),K0(A)+)

has the Riesz interpolation property. Let x, y ∈ A be two normal elements with finite spectrum.

Then,

dist(U(x), U(y)) ≤ Dc(x, y). (3.39)

Proof Suppose ε > 0, d = Dc(x, y), x =
m
∑

i=1

αipi, y =
n
∑

j=1

βjqj , where {αi}mi=1, {βj}nj=1 ⊂ C,

{p1, · · · , pm} and {q1, · · · , qn} are two sets of mutually orthogonal non-zero projections in A

such that
m
∑

i=1

pi =
n
∑

j=1

qj = I. It follows from Lemma 3.1 that there are {pij}, {qij} (i = 1, · · · ,m

and j = 1, · · · , n) such that

pi =

n
∑

j=1

pij , qj =

m
∑

i=1

qij for all i, j. (3.40)

and

max{dist(αi, βj) : qij 6= 0} < d+ ε. (3.41)

Therefore, there exists u ∈ U(A) such that u∗piju = qij for all i, j. So,

‖u∗xu − y‖ =
∥

∥

∥

∑

i,j

(αi − βj)qij

∥

∥

∥
≤ max{|αi − βj | : qij 6= 0} < d+ ε. (3.42)

Therefore, dist(U(x), U(y)) ≤ Dc(x, y).

Hu and Lin [3] prove the following theorem when AF -algebras are simple.

Theorem 3.3 Let A be a unital AF -algebra (may not simple) and x, y ∈ A be two normal

elements. Then

dist(U(x), U(y)) ≤ Dc(x, y). (3.43)

Proof Since a unital AF -algebra has real rank zero and stable rank one, so (K0(A),K0(A)+)

has the Riesz interpolation property. Let ε > 0. Suppose δ is a number in Lemma 2.3 with

0 < δ < ε. It follows from [5] (or one can refer to [1]) that there is δ′ with δ′ < δ
2 such that

for any integer n and a ∈ Mn, if ‖aa∗ − a∗a‖ < δ′, then there is a normal a′ ∈ Mn such that

‖a− a′‖ < δ
2 .

Let x, y ∈ A be two normal elements, then there are finite dimensional C∗-algebra B ⊂ A

such that dist(x,B) < δ′

4 and dist(y,B) < δ′

4 . Let x1, y1 ∈ B such that ‖x − x1‖ < δ′

4 ,

‖y− y1‖ < δ′

4 . Then ‖x1x
∗
1 −x∗

1x1‖ < δ′ and ‖y1y∗1 − y∗1y1‖ < δ′. So, there are normal elements

x′
1, y

′
1 ∈ B such that ‖x′

1 − x1‖ < δ
2 and ‖y′1 − y1‖ < δ

2 . It is obvious that x′
1, y

′
1 has finite

spectrum with ‖x − x′
1‖ < δ and ‖y − y′1‖ < δ. Then by Theorem 3.2, there exists u ∈ U(A)

such that ‖x′
1 − u∗y′1u‖ ≤ Dc(x

′
1, y

′
1) + ε. So,

‖x− u∗yu‖ ≤ ‖x′
1 − u∗y′1u‖+ 2ε ≤ Dc(x

′
1, y

′
1) + 3ε ≤ Dc(x, y) + 5ε. (3.44)

Therefore, dist(U(x), U(y)) ≤ Dc(x, y).
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4 Distance Between Unitary Orbits of Self-Adjoint Elements

Lemma 4.1 Let X be a compact Hausdorff space with dimX ≤ 1. Then for any ε > 0 and

self-adjoint element x ∈ C(X)⊗Mn, there are self-adjoint elements fi(t) ∈ C(X) (i = 1, · · · , n)
with f1(t) > · · · > fn(t) for all t ∈ X, mutually orthogonal rank one projections e1, · · · , en ∈ Mn

and unitary u ∈ C(X)⊗Mn such that

∥

∥

∥

n
∑

i=1

fi ⊗ ei − u∗xu
∥

∥

∥
< ε. (4.1)

Proof It follows from [11, Lemma 1.1], there are f ′
1, · · · , f ′

n ∈ C(X) such that f ′
1(t) ≥

· · · ≥ f ′
n(t) and sp(x(t)) = {f ′

1(t), · · · , f ′
n(t)} for all t ∈ X . Let {eij : i, j = 1, · · · , n} be a set of

matrix units ofMn. Then by [11, Corollary 1.3], f ′
1⊗e11+· · ·+f ′

n⊗enn and x are approximately

unitarily equivalent. In other words, for ε > 0, there exists unitary u ∈ C(X)⊗Mn such that
∥

∥

n
∑

i=1

f ′
i ⊗ eii − u∗xu

∥

∥ < ε
2 . Let I ∈ C(X) be the unit and fi = f ′

i +
(n−i)ε

2n I, i = 1, · · · , n. Then
f1(t) > · · · > fn(t) for all t ∈ X and

∥

∥

∥

n
∑

i=1

fi ⊗ eii − u∗xu
∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

fi ⊗ eii −
n
∑

i=1

f ′
i ⊗ eii

∥

∥

∥
+
∥

∥

∥

n
∑

i=1

f ′
i ⊗ eii − u∗xu

∥

∥

∥
< ε. (4.2)

Lemma 4.2 Let X be a compact Hausdorff space with dimX ≤ 1. Then for any self-adjoint

elements x, y ∈ C(X)⊗Mn, dist(U(x), U(y)) ≤ DT (x, y).

Proof Let ε > 0 and d > DT (x, y). Suppose δ < ε. It follows from Lemma 4.1 that there are

self-adjoint elements fi, gi ∈ C(X) (i = 1, · · · , n) with f1 > · · · > fn and g1 > · · · > gn, a set of

mutually orthogonal rank one projections {e1, · · · , en} ⊂ Mn and unitaries u1, u2 ∈ C(X)⊗Mn

such that

∥

∥

∥
u∗
1xu1 −

n
∑

i=1

fi ⊗ ei

∥

∥

∥
< δ and

∥

∥

∥
u∗
2yu2 −

n
∑

i=1

gi ⊗ ei

∥

∥

∥
< δ. (4.3)

Let x′ =
n
∑

i=1

fi ⊗ ei and y′ =
n
∑

i=1

gi ⊗ ei. It follows from Lemma 2.3, for sufficiently small δ, we

may assume

|DT (x
′, y′)−DT (x, y)| < 2ε. (4.4)

Set

τt : C(X) → C (4.5)

f → f(t). (4.6)

Suppose τ is the tracial state of Mn. Then τt ⊗ τ is a tracial state of C(X) ⊗ Mn. Let

d′ > DT (x
′, y′). We claim that for any t ∈ X ,

|fi(t)− gi(t)| < d′ (4.7)

for all i. Otherwise, there exists t0 ∈ X and positive integer i0 ≤ n such that

|fi0(t0)− gi0(t0)| ≥ d′. (4.8)
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We may fix t0 and assume i0 is the minimum integer for t0 such that (4.8) holds. Furthermore

we may assume fi0(t0) ≥ gi0(t0). Then,

fi(t0)− gj(t0) ≥ d′ (4.9)

for all i ≤ i0 and j ≥ i0.

Let d′′ = d′+DT (x′,y′)
2 and O1 =

{

λ ∈ R : |λ−f1(t0)| < d′−d′′

2

}

. Note that τt⊗τ(a) = τ(a(t)).

Note that f(a)(t) = f(a(t)) for any normal element a ∈ C(X)⊗Mn, continuous f ∈ C(sp(a))

and t ∈ X . Since

dτt0⊗τ (fO1
(x′)) ≤ dτt0⊗τ (f(O1)d′′

(y′)) (4.10)

and

dτt0⊗τ (fO1
(x′)) = τ(χO1

(x′(t0))) ≥
1

n
, (4.11)

then (O1)d′′ ∩{g1(t0), · · · , gn(t0)} 6= ∅. Suppose gj(t0) ∈ (O1)d′′ ∩{g1(t0), · · · , gn(t0)} for some

j, then

f1(t0)− g1(t0) ≤ f1(t0)− gj(t0) < d′′ +
d′ − d′′

2
< d′. (4.12)

By (4.9), i0 > 1.

Let ε′ > 0 such that ε′ < d′−(fi0−1(t0)−gi0−1(t0)). Moreover, we may assume ε′ < {fi0(t0)−
fi0+1(t0)} if i0 < n. Put O = {f1(t0), · · · , fi0(t0)}ε′ and O′ = {g1(t0), · · · , gi0−1(t0)}ε′ . Since

ε′ < {fi0(t0)− fi0+1(t0)} if i0 < n, then

O ∩ {f1(t0), · · · , fn(t0)} = {f1(t0), · · · , fi0(t0)} (4.13)

when i0 < n. It is obvious that (4.13) also holds when i0 = n. Note thatO′∩{g1(t0), · · · , gn(t0)}
= {g1(t0), · · · , gi0−1(t0)}. Otherwise,

fi0(t0)− gi0(t0) ≤ fi0−1(t0)− gi0−1(t0) + ε′ < d′, (4.14)

a contradiction with (4.9).

Moreover, by (4.9),

(O)d′′ ∩ {g1(t0), · · · , gn(t0)} ⊂ {g1(t0), · · · , gi0−1(t0)} ⊂ O′. (4.15)

Therefore, as (4.11),

dτt0⊗τ (fO(x
′)) =

i0
n

>
i0 − 1

n
= dτt0⊗τ (fO′(y′)) ≥ dτt0⊗τ (f(O)d′′

(y′)). (4.16)

It is contrary with d′′ > DT (x
′, y′). This proves the claim.

The claim shows that dist(U(x′), U(y′)) ≤ DT (x
′, y′). Therefore,

dist(U(x), U(y)) ≤ dist(U(x′), U(y′)) + 2ε ≤ DT (x
′, y′) + 2ε ≤ DT (x, y) + 4ε. (4.17)

This implies that dist(U(x), U(y)) ≤ DT (x, y).
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Lemma 4.3 Let X be a compact Hausdorff space with dimX ≤ 1. Then for any self-adjoint

elements x, y ∈ C(X)⊗Mn, DT (x, y) ≤ dist(U(x), U(y)).

Proof We first prove that

T (C(X)⊗Mn) = T (C(X))⊗ T (Mn). (4.18)

Let τ ∈ T (C(X) ⊗ Mn) and τ1 = τ |C(X) and τ2 = τ |Mn
. Then τ1 ∈ T (C(X)) and τ2 ∈

T (Mn). Let {eij} be a matrix units of Mn. Let I1 be the unit of C(X) and I2 be the unit of

Mn. Then for any f ∈ C(X),

τ(f ⊗ eii) = τ((f ⊗ eii)(I1 ⊗ eii))

= τ((f ⊗ eii)(I1 ⊗ eij)(I1 ⊗ eji))

= τ((I1 ⊗ eji)(f ⊗ eii)(I1 ⊗ eij))

= τ(f ⊗ ejj) (4.19)

for any i, j. Therefore,

nτ(f ⊗ eii) =

n
∑

i=1

τ(f ⊗ eii) = τ(f ⊗ I2) = τ1(f) (4.20)

for all i. In other words, τ(f ⊗ eii) = τ1(f)τ2(eii) = (τ1 ⊗ τ2)(f ⊗ eii). Moreover, if i 6= j,

τ(f ⊗ eij) = τ((f ⊗ eij)(I1 ⊗ ejj)) = τ((f ⊗ ejj)(I1 ⊗ eij)) = 0 = (τ1 ⊗ τ2)(f ⊗ eij). (4.21)

This implies that τ = τ1 ⊗ τ2. So T (C(X)⊗Mn) ⊂ T (C(X))⊗ T (Mn).

For any τ1 ∈ T (C(X)) and τ2 ∈ T (Mn), we may check that τ1 ⊗ τ2 is a positive linear

function on C(X) ⊗Mn. Since ‖τ1 ⊗ τ2‖ = (τ1 ⊗ τ2)(I1 ⊗ I2) = 1, τ1 ⊗ τ2 is state. Moreover,

we may find that τ1 ⊗ τ2 is trace. Therefore, (4.18) holds.

As [11, Lemma 1.1], there are λ1, · · · , λn, η1, · · · , ηn ∈ C(X) such that sp(x(t)) = {λ1(t), · · · ,
λn(t)} and sp(y(t)) = {η1(t), · · · , ηn(t)}, respectively, for all t ∈ X . Define

δ(x(t), y(t)) = min
π

max
1≤i≤n

|λi(t)− ηπ(i)(t)|, (4.22)

where π runs over all permutations of {1, · · · , n}. The equality

dist(U(x(t)), U(y(t))) = δ(x(t), y(t)) (4.23)

is well known for Hermitian matrices by Weyl [12]. Let d(t) = δ(x(t), y(t)) and d′ = ‖x − y‖.
Then sup

t∈X
{d(t)} ≤ d′. Let ε > 0. Let τt ∈ T (C(X)) as in Lemma 4.2. Suppose τ2 is the tracial

state on Mn. For any open set O, choose f(O)ε such that f(O)ε(t) = 1 when t ∈ O, choose

f(O)d′+3ε
such that f(O)d′+3ε

(t) = 1 when t ∈ (O)d′+2ε. So by (4.23),

(τt ⊗ τ2)(f(O)ε(x)) ≤ dτt⊗τ2(f(O)2ε(x))

= τ2(χ(O)2ε(x(t)))

≤ τ2(χ(O)d′+2ε
(y(t)))

= dτt⊗τ2(f(O)d′+2ε
(y))
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≤ (τt ⊗ τ2)(f(O)d′+3ε
(y)). (4.24)

As [11, Lemma 1.1], there are λ′
1, · · · , λ′

n, η
′
1, · · · , η′n ∈ C(X) such that

sp((f(O)ε(x))(t)) = {λ′
1(t), · · · , λ′

n(t)},
sp((f(O)d′+3ε

(y))(t)) = {η′1(t), · · · , η′n(t)},
(4.25)

respectively, for all t ∈ X . Suppose x′ =
n
∑

i=1

λ′
ieii and y′ =

n
∑

j=1

η′jejj . It follows from [11, Corol-

lary 1.3], dist(U(x′), U(f(O)ε(x))) = dist(U(y′), U(f(O)d′+3ε
(y))) = 0. Then (τt⊗τ2)(f(O)ε(x)) =

(τt ⊗ τ2)(x
′) and (τt ⊗ τ2)(f(O)d′+3ε

(y)) = (τt ⊗ τ2)(y
′) for all t ∈ X . Therefore, by (4.24),

1

n

n
∑

i=1

λ′
i(t) = (τt ⊗ τ2)(x

′) ≤ (τt ⊗ τ2)(y
′) =

1

n

n
∑

j=1

η′j(t) (4.26)

for all t ∈ X . Now, choose any τ ′ ∈ T (C(X)). Then τ ′ is a positive linear function on C(X).

It follows from the Riesz representation theorem (see [8, Theorem 2.14]), there is a positive

measure µ such that τ ′(f) =
∫

X fdµ for all f ∈ C(X). It follows from (4.26) that

(τ ′ ⊗ τ2)(x
′) =

1

n

n
∑

i=1

τ ′(λ′
i) =

∫

X

1

n

n
∑

i=1

λ′
idµ ≤

∫

X

1

n

n
∑

j=1

η′idµ = (τ ′ ⊗ τ2)(y
′). (4.27)

So,

dτ ′⊗τ2(fO(x)) ≤ (τ ′ ⊗ τ2)(f(O)ε(x))

= (τ ′ ⊗ τ2)(x
′)

≤ (τ ′ ⊗ τ2)(y
′)

= (τ ′ ⊗ τ2)(f(O)d′+3ε
(y))

≤ dτ ′⊗τ2(f(O)d′+4ε
(y)). (4.28)

Therefore, by (4.18), for all τ ∈ T (C(X) ⊗ Mn), dτ (fO(x)) ≤ dτ (f(O)d′+4ε
(y)). This implies

that DT (x, y) ≤ dist(U(x), U(y)).

Theorem 4.1 Let C ∈ I(1). Then for any self-adjoint elements x, y ∈ C,

dist(U(x), U(y)) = DT (x, y). (4.29)

Proof Suppose C = ⊕n
i=1Pi(C(Xi) ⊗Mki

)Pi where X1, · · · , Xn are one-dimensional con-

nected finite CW complexes and Pi ∈ C(Xi)⊗Mki
are projections, i = 1, · · · , n. By [6, Theorem

2.6.15], we may furthermore assume C = ⊕n
i=1C(Xi)⊗Mki

. Suppose x =
n
∑

i=1

xi and y =
n
∑

i=1

yi,

where xi, yi ∈ C(Xi)⊗Mki
are self-adjoint elements for all i. It follows from Lemmas 4.2–4.3,

dist(U(x), U(y)) = max
i

{dist(U(xi), U(yi)} = max
i

{DT (xi, yi)} = DT (x, y). (4.30)

Lemma 4.4 Let Ω ⊂ C be a compact subset. For any ε > 0, there exist finitely many open

subsets O1, · · · , On ⊂ Ω satisfying the following :

Let d > 0 and f(Oi)2ε(t) (i = 1, · · · , n) be some continuous functions on Ω such that

f(Oi)2ε(t) = 1 if t ∈ (Oi)ε and f(Oi)2ε(t) = 0 if t /∈ (Oi)2ε. Let A be a unital C∗-algebra
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of stable rank one. Suppose x, y ∈ A are two normal elements with sp(x), sp(y) ⊂ Ω. If there

exist ui ∈ U(A), 0 < εi < 1 and 0 < ε′i < 1 (i = 1, · · · , n) such that for all i,

u∗
i fε′i(fεi(f(Oi)2ε(x)))ui ∈ Her(f(Oi)d+2ε

(y)), (4.31)

then

Dc(x, y) ≤ d+ 4ε. (4.32)

Proof Since Ω is compact, there are open subsets O1, · · · , On ⊂ Ω such that for any open

set G ⊂ Ω, there is an integer i,

G ⊂ Oi ⊂ Gε. (4.33)

Suppose d > 0. We assume ui ∈ U(A), 0 < εi < 1 and 0 < ε′i < 1 (i = 1, · · · , n) satisfying for

all i,

u∗
i fε′i(fεi(f(Oi)2ε(x)))ui ∈ Her(f(Oi)d+2ε

(y)). (4.34)

Then for any open subset G ⊂ Ω, suppose G ⊂ Oi ⊂ Gε for some i. Let fGd+4ε
(t) be a

continuous function on Ω such that fGd+4ε
(t) = 1 if t ∈ Gd+3ε and fGd+4ε

(t) = 0 if t /∈
Gd+4ε. Since the support of fG is contained in (Oi)ε and (Oi)ε is contained in the support of

fε′i(fεi(f(Oi)2ε(t))), it follows from Lemma 2.1 that

fG(x) . fε′i(fεi(f(Oi)2ε(x))). (4.35)

Since f(Oi)d+2ε
(y) ≤ fGd+4ε

(y), Her(f(Oi)d+2ε
(y)) ⊂ Her(fGd+4ε

(y)). By [9, Proposition 2.4], for

any ε′ > 0, there is a unitary u′
i ∈ A such that

u′∗
i fε′(fG(x))u

′
i ∈ Her(u∗

i fε′i(fεi(f(Oi)2ε(x)))ui)

⊂ Her(f(Oi)d+2ε
(y)) ⊂ Her(fGd+4ε

(y)). (4.36)

Therefore, by [9, Proposition 2.4] again, fG(x) . fGd+4ε
(y). This implies that Dc(x, y) ≤ d+4ε.

Lemma 4.5 Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Let x, y ∈ A be two

self-adjoint elements. Let e ∈ A be a projection and ε > 0. Suppose d > Dc(x, y). Then there

exists a projection P ∈ A, a C∗-subalgebra C ∈ I(1) with IC = P , four self-adjoint elements

x1, y1 ∈ C and x2, y2 ∈ (1− P )A(1 − P ) such that

(1) ‖x− (x1 + x2)‖ < ε and ‖y − (y1 + y2)‖ < ε,

(2) Dc(x1, y1) ≤ d+ ε in C,

(3) Dc(x2, y2) ≤ d+ ε in (1− P )A(1 − P ),

(4) 1− P . e.

Proof Let 0 < ε < 1 and 0 < ε1 ≤ ε
5 . Suppose Ω is the closure of (sp(x))2ε ∪ (sp(y))2ε.

Let O1, · · · , On ⊂ Ω be those open sets in Lemma 4.4 corresponding to Ω and ε1(replace of

ε in Lemma 4.4). Denote by gi the function fε1(f(Oi)2ε1
)(t) (i = 1, · · · , n), where f(Oi)2ε1

(t)

are those functions in Lemma 4.4 (i = 1, · · · , n). Denote by gn+i the function f(Oi)d+2ε1
(t)

(i = 1, · · · , n). Since gi(x) . gn+i(y), there are ri ∈ A such that ‖r∗i gn+i(y)ri − gi(x)‖ < ε1,

i = 1, · · · , n.
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Let M = max{1, ‖x‖, ‖y‖, ‖ri‖ : i = 1, · · · , n}. ε2 = ε1
(M+1)2 . Let δ > 0 with δ < ε2

satisfying [6, Lemma 2.5.11]. In other words, for number M and functions g1, · · · , g2n as above,

let B be a unital C∗-algebra, then for any projection P ∈ B, if a ∈ B is a normal element with

‖a‖ ≤ M and ‖Pa− aP‖ < 4δ, then ‖Pgi(a) − gi(a)P‖ < ε2 for i = 1, · · · , 2n; if a, b ∈ B are

normal elements with ‖a‖, ‖b‖ ≤ M and ‖a−b‖ < 4δ, then ‖gi(a)−gi(b)‖ < ε2 for i = 1, · · · , 2n.
Since TR(A) ≤ 1, let e be a projection and

F = {x, y, gi(x), gn+i(y), ri : i = 1, · · · , n}, (4.37)

then there exists a projection P ∈ A, a C∗-subalgebra C ∈ I(1) with IC = P such that

‖Pa− aP‖ < δ for all a ∈ F , (4.38)

PaP ∈δ C for all a ∈ F , (4.39)

1− P . e. (4.40)

Since x, y are self-adjoint elements, there are self-adjoint elements x1, y1 ∈ C, x2, y2 ∈ A′,

where A′ = (1− P )A(1 − P ), such that

‖x− (x1 + x2)‖ < 4δ and ‖y − (y1 + y2)‖ < 4δ. (4.41)

Note that

spC(x1) ⊂ spC+A′(x1 + x2) = spA(x1 + x2) ⊂ Ω. (4.42)

In the same way, spC(y1), spA′(x2), spA′(y2) ⊂ Ω. So

‖gAi (x)− (gCi (x1) + gA
′

i (x2))‖ < ε2, (4.43)

‖gAn+i(y)− (gCn+i(y1) + gA
′

n+i(y2))‖ < ε2 (4.44)

for all i. Let si ∈ C such that ‖si − PriP‖ < δ. Then ‖si‖ ≤ M + 1, i = 1, · · · , n. Therefore,

‖s∗i gCn+i(y1)si − gCi (x1)‖
≤ ‖Pr∗i PgCn+i(y1)PriP − PgCi (x1)P‖+ 2ε1

= ‖Pr∗i P (gCn+i(y1) + gA
′

n+i(y2))PriP − P (gCi (x1) + gA
′

i (x2))P‖ + 2ε1

≤ ‖Pr∗i g
A
n+i(y)riP − PgAi (x)P‖+ 4ε1

≤ ‖r∗i gAn+i(y)ri − gAi (x)‖ + 4ε1

≤ 5ε1. (4.45)

It follows from [9, Proposition 2.2] that

fC
5ε1(g

C
i (x1)) . s∗i g

C
n+i(y1)si (4.46)

in C. Since s∗i g
C
n+i(y1)si . gCn+i(y1), fC

5ε1(g
C
i (x1)) . gCn+i(y1) in C. Note that 5ε1 < 1,

then there exists 0 < ε′ < 1 such that the support of fC
ε′ f

C
(Oi)2ε

is contained in the support

of fC
5ε1f

C
ε1f

C
(Oi)2ε

. So fC
ε′ (f

C
(Oi)2ε

(x1)) . fC
5ε1(g

C
i (x1)) . gCn+i(y1) in C, i = 1, · · · , n. By [9,

Proposition 2.4], there are unitaries u1, · · · , un ∈ C and ε′′ with 0 < ε′′ < 1 such that

u∗
i f

C
ε′′(f

C
ε′ (f

C
(Oi)2ε

(x1)))ui ∈ Her(fC
n+i(y1)) (4.47)
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in C, i = 1, · · · , n. By applying Lemma 4.4, we have Dc(x1, y1) < d + ε in C. It follows from

[7, Theorem 6.9] that A has stable rank one. Therefore, we may apply the same argument to

show that Dc(x2, y2) < d+ ε in (1 − P )A(1− P ).

Lemma 4.6 Let A = C(X)⊗Mn, where X is a compact Hausdorff space with dimX ≤ 1.

Let x, y ∈ A be two self-adjoint elements. Then Dc(x, y) = DT (x, y).

Proof By (2.17), it suffices to prove that Dc(x, y) ≤ DT (x, y).

Let a, b ∈ A+. We first prove that if dτ (a) ≤ dτ (b) for all τ ∈ T (A), then a . b. There

are continuous functions 0 ≤ λ1 ≤ · · · ≤ λn ∈ C(X) and 0 ≤ η1 ≤ · · · ≤ ηn ∈ C(X) such

that sp(a(t)) = {λ1(t), · · · , λn(t)} and sp(b(t)) = {η1(t), · · · , ηn(t)}. Let e1, · · · , en ∈ Mn be

mutually disjoint projections. Then dist
(

U(a), U
(

n
∑

i=1

λi⊗ei
))

= dist
(

U(b), U
(

n
∑

i=1

ηi⊗ei
))

= 0.

So we may assume that a =
n
∑

i=1

λi ⊗ ei and b =
n
∑

i=1

ηi ⊗ ei. Suppose dτ (a) ≤ dτ (b) for all

τ ∈ T (A). Let t ∈ X . If a(t) 6= 0, we may assume λ1(t) = · · · = λi0 (t) = 0 < λi0+1(t) ≤ λn(t).

Let 0 < ε < λi0+1(t). Then

n− i0
n

= τ ′(fε(a(t))) = dτt⊗τ ′(a) ≤ dτt⊗τ ′(b), (4.48)

where τ ′ is the tracial state of Mn. This implies 0 < ηi0+1(t) ≤ · · · ≤ ηn(t). By the arbitrary of

t, we obtain that the support of λi is containing in support of ηi. It follows from Lemma 2.1,

λi . ηi in C(X). This implies that a . b.

Let d = DT (x, y). Then dτ (fO(x)) ≤ dτ (f(O)d(y)) for all τ ∈ T (A) implies fO(x) . f(O)d(y).

Therefore, Dc(x, y) = DT (x, y).

Note that the following A may not be simple, it is different from Theorem 4.3.

Theorem 4.2 Let A be a unital AT-algebra and x, y ∈ A be two self-adjoint elements. Then

dist(U(x), U(y)) = Dc(x, y). (4.49)

Proof We may assume A = ∪An, where each {An} is a finite direct sum of circle algebras

with IAn
= IA. We may assume furthermore that {An} is an increase sequence. Suppose

d > Dc(x, y) in A. The proof of Lemma 4.5 also shows that there exists An, two self-adjoint

elements x′, y′ ∈ An such that ‖x − x′‖ < ε, ‖y − y′‖ < ε and Dc(x
′, y′) ≤ d + ε in An.

It follows from Lemma 2.2, DT (x
′, y′) ≤ Dc(x

′, y′) in An. As Theorem 4.1, we also have

u ∈ U(An) ⊂ U(A) such that ‖u∗x′u − y′‖ < d + 2ε. Therefore, ‖u∗xu − y‖ < d + 4ε. This

implies

dist(U(x), U(y)) ≤ Dc(x, y). (4.50)

Let ε > 0, δ > 0 with δ < ε, d1 = dist(U(x), U(y)) and d2 = Dc(x, y) in A. There are two

self-adjoint elements x′, y′ ∈ An for some n such that ‖x′ − x‖ < δ and ‖y′ − y‖ < δ. Suppose

u ∈ U(A) such that d1 ≤ ‖u∗xu − y‖ < d1 + δ. It follows from [6, Lemma 4.1.1], there is a

unitary u1 ∈ An1
for some n1 such that ‖u1 − u‖ < δ. Let N1 > n, n1 be an integer number.

Then x1, y1, u1 ∈ AN1
since {An} is an increase sequence. So

dist(U(x1), U(y1)) ≤ ‖u∗
1x1u1 − y1‖ < d1 + (3 + 2‖x‖)δ < d1 + (3 + 2‖x‖)ε (4.51)
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in AN1
. It follows from Lemma 2.3, if δ is sufficiently small, thenDc(x1, x) < ε andDc(y1, y) < ε

in A. Suppose d3 = Dc(x1, y1) in AN1
. Then by Lemma 4.6,

d2 − 2ε ≤ d3 = DT (x1, y1) = dist(U(x1), U(y1)) ≤ d1 + (3 + 2‖x‖)ε. (4.52)

By arbitrary of ε, d2 ≤ d1.

We recall the notation of ε-path connected. One can see [10] for more details.

Definition 4.1 Let X ⊂ R and ε > 0. We say X is ε-path connected if for any a, b ∈ X,

there are finite points c1, · · · , cn ∈ X such that |a − c1| < ε, |cn − b| < ε and |ci − ci+1| < ε

for i = 1, · · · , n− 1. We define a relation on X by setting a ∼ b if there is an ε-path connected

subset of X containing both a and b. This relation is equivalence relation on X. This equivalence

classes will be called ε-path connected component. If X is compact, then X determine finitely

many mutually disjoint ε-path connected component.

Lemma 4.7 Let R ⊂ {1, · · · ,m} × {1, · · · , n} be a subset such that for any non-empty

subset A ⊂ {1, · · · ,m} and B ⊂ {1, · · · , n}, RA 6= ∅ and RB 6= ∅. Then there are aij ∈ Z+

(i = 1, · · · ,m and j = 1, · · · , n) such that
m
∑

i=1

n
∑

j=1

aij = mn,
n
∑

j=1

aij > 0,
m
∑

i=1

aij > 0 for all i, j

and aij = 0 unless (i, j) ∈ R.

Proof Suppose b1 = · · · = bm = 1. Choose i1 ∈ R{1}. Set bi11 = 1 and bi1j = 0 if j 6= 1.

Choose ji ∈ R{i} for each i 6= i1. For each i 6= i1, set biji = 1 and bij = 0 if j 6= ji. It is obvious

that bi =
n
∑

j=1

bij for i = 1, · · · ,m,
m
∑

i=1

bi1 > 0 and bij = 0 unless (i, j) ∈ R.

This proof implies that for each k, where k ∈ {1, · · · , n}, there are aijk ∈ {0, 1} (i = 1, · · · ,m
and j = 1, · · · , n) such that

n
∑

j=1

aijk = 1 for i = 1, · · · ,m,
m
∑

i=1

aikk > 0 and aijk = 0 unless

(i, j) ∈ R. Let aij =
n
∑

k=1

aijk. Then aij = 0 unless (i, j) ∈ R,
n
∑

j=1

aij = n for each i = 1, · · · ,m

and
m
∑

i=1

aij ≥
m
∑

i=1

aijj > 0 for each j = 1, · · · , n.

Lemma 4.8 Let A be a unital C∗-algebra. Suppose A has stable rank one and K0(A) has

the Riesz interpolation property. Let x, y ∈ A be two self-adjoint elements. Let ε > 0. Suppose

X = {λ1, · · · , λm} ⊂ sp(x) is a ε-dense subset of sp(x) and Y = {η1, · · · , ηn} ⊂ sp(y) is a ε-

dense subset of sp(y). Suppose X ′
1, · · · , X ′

m′ are mutually disjoint ε-path connected components

of sp(x) and Y ′
1 , · · · , Y ′

n′ are mutually disjoint ε-path connected components of sp(y). Let Xk =

X ′
k ∩X and Yl = Y ′

l ∩ Y for all k, l. Then

(1) (Xk)ε∩sp(x) = X ′
k, (Yl)ε∩sp(y) = Y ′

l are clopen subsets of sp(x) and sp(y) respectively,

k = 1, · · · ,m′, l = 1, · · · , n′;

(2) moreover,
∑

k∈O

χ(Xk)ε(x) = χ∪k∈O(Xk)ε(x) for any O ⊂ {1, · · · ,m′} and
∑

l∈O′

χ(Yl)ε(y) =

χ∪l∈O′ (Yl)ε(y) for any O′ ⊂ {1, · · · , n′}.
If R ⊂ X × Y such that for any non-empty subset B ⊂ X, f(B)ε(x) . f(RB)ε(y), then there

are ai, bj and cij ∈ Z+, i = 1, · · · ,m and j = 1, · · · , n, such that

(3) ai =
n
∑

j=1

cij > 0, bj =
m
∑

i=1

cij > 0 and
m
∑

i=1

n
∑

j=1

cij ≤ mn for all i, j;

(4) cij = 0 unless (λi, ηj) ∈ R;
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(5) for any subset O ⊂ {1, · · · ,m′}, set XO =
⋃

k∈O

Xk and O′ = {l : 1 ≤ l ≤ n′, RXO
∩ Yl 6=

∅}. If ∑

k∈O

[χ(Xk)ε(x)] =
∑

l∈O′

[χ(Yl)ε(y)] in K0(A), then
∑

k∈O

∑

λi∈Xk

ai =
∑

l∈O′

∑

ηj∈Yl

bj.

Proof It is trivial to check that (1) and (2). Then we prove (3), (4) and (5).

Let R′ = {(k, l) : RXk
∩ Yl 6= ∅} ⊂ {1, · · · ,m′} × {1, · · · , n′}. Then we have for any

O ⊂ {1, · · · ,m′}, ∑

k∈O

[χ(Xk)ε(x)] ≤ ∑

l∈R′
O

[χ(Yl)ε(y)]. Since
m′
∑

k=1

[χ(Xk)ε(x)] =
n′
∑

l=1

[χ(Yl)ε(y)], it

follows from Theorem 3.1 that there are dkl ∈ (K0(A))+, k = 1, · · · ,m′ and l = 1, · · · , n′,

such that [χ(Xk)ε(x)] =
n′
∑

l=1

dkl, [χ(Yl)ε(y)] =
m′
∑

k=1

dkl and dkl = 0 unless (k, l) ∈ R′. Denote

by |X | the number of elements in X . Put c′kl = |Xk| · |Yl| when dkl 6= 0 and c′kl = 0 when

dkl = 0, k = 1, · · · ,m′ and l = 1, · · · , n′. Let a′k =
n′
∑

l=1

c′kl and b′l =
m′
∑

k=1

c′kl. Then for any

O ⊂ {1, · · · ,m′}, we have O′ = R′
O and

∑

k∈O

a′k =
∑

k∈O

n′
∑

l=1

c′kl =
∑

k∈O

∑

l∈R′
{k}

c′kl ≤
∑

l∈R′
O

m′
∑

k=1

c′kl =
∑

l∈R′
O

b′l. (4.53)

Moreover, if
∑

k∈O

[χ(Xk)ε(x)] =
∑

l∈R′
O

[χ(Yl)ε ] in K0(A), then

∑

k∈O

∑

l∈R′
{k}

dkl =
∑

k∈O

[χ(Xk)ε(x)] =
∑

l∈R′
O

[χ(Yl)ε ] =
∑

l∈R′
O

m′
∑

k=1

dkl. (4.54)

Therefore

∑

l∈R′
O

∑

k/∈O

dkl =
∑

l∈R′
O

m′
∑

k=1

dkl −
∑

k∈O,l∈R′
O

dkl =
∑

l∈R′
O

m′
∑

k=1

dkl −
∑

k∈O,l∈R′
{k}

dkl = 0. (4.55)

So dkl = 0 when l ∈ R′
O, k /∈ O. This implies c′kl = 0 when l ∈ R′

O, k /∈ O. Then

∑

k∈O

a′k =
∑

k∈O

∑

l∈R′
{k}

c′kl =
∑

k∈O

∑

l∈R′
O

c′kl =
∑

l∈R′
O

m′
∑

k=1

c′kl =
∑

l∈R′
O

b′l. (4.56)

Suppose Ik = {i : λi ∈ Xk} and Jl = {j : ηj ∈ Yl} for all k, l. It follows from Lemma 4.7, for

any pair (k, l) which satisfy c′kl 6= 0, there are aikl, bjkl > 0 and cijkl ∈ Z+, i ∈ Ik and j ∈ Jl,

such that
∑

i∈Ik

∑

j∈Jl

cijkl = c′kl, aikl =
∑

j∈Jl

cijkl > 0, bjkl =
∑

i∈Ik

cijkl > 0 and cijkl = 0 unless

(λi, ηj) ∈ R. Let aikl = bjkl = cijkl = 0 if they haven’t been defined from above, i = 1, · · · ,m,

j = 1, · · · , n, k = 1, · · · ,m′ and l = 1, · · · , n′. Let ai =
m′
∑

k=1

n′
∑

l=1

aikl, bj =
m′
∑

k=1

n′
∑

l=1

bjkl and

cij =
m′
∑

k=1

n′
∑

l=1

cijkl . Then we may check that (3) and (4) hold for ai, bj, cij . To see (5), let

O ⊂ {1, · · · ,m′}. Suppose
∑

k∈O

[χ(Xk)ε(x)] =
∑

l∈R′
O

[χ(Yl)ε(y)] in K0(A). Note that for each

k = 1, · · · ,m′,
∑

i∈Ik

ai =
∑

i∈Ik

∑

l∈R′
{k}

aikl =
∑

i∈Ik

∑

l∈R′
{k}

∑

j∈Jl

cijkl =
∑

l∈R′
{k}

c′kl. (4.57)
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For each l = 1, · · · , n′,

∑

j∈Jl

bj =
∑

j∈Jl

∑

k∈R′{l}

bjkl =
∑

j∈Jl

∑

k∈R′{l}

∑

i∈Ik

cijkl =
∑

k∈R′{l}

c′kl. (4.58)

Therefore, by (4.56)–(4.58),

∑

k∈O

∑

i∈Ik

ai =
∑

k∈O

∑

l∈R′
{k}

c′kl =
∑

l∈R′
O

m′
∑

k=1

c′kl =
∑

l∈R′
O

∑

k∈R′{l}

c′kl =
∑

l∈R′
O

∑

j∈Jl

bj . (4.59)

Lemma 4.9 Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Let x, y ∈ A be two

self-adjoint elements and e ∈ A be a projection. Let ε > 0, d > Dc(x, y). Suppose X =

{λ1, · · · , λm} ⊂ sp(x) is a ε-dense subset of sp(x) and Y = {η1, · · · , ηn} ⊂ sp(y) is a ε-dense

subset of sp(y). Let X1, · · · , Xm′ ⊂ X and Y1, · · · , Yn′ ⊂ Y as above lemma. Then there

exist self-adjoint elements x1, y1 ∈ A, two sets of mutually orthogonal non-zero projections

{p1, · · · , pm} and {q1, · · · , qn} and a unitary u ∈ A such that

(1) x1, y1 ∈ A1, where A1 =
(

1−
m
∑

i=1

pi
)

A
(

1−
m
∑

i=1

pi
)

,

(2) u∗
m
∑

i=1

piu =
n
∑

j=1

qj and
[

m
∑

i=1

pi
]

=
[

n
∑

j=1

qj
]

≤ [e] in K0(A),

(3)
∥

∥x−
(

x1 +
m
∑

i=1

λiu
∗piu

)
∥

∥ < ε and
∥

∥y −
(

y1 +
n
∑

j=1

ηjqj
)
∥

∥ < ε,

(4) spA(x) ⊂ (spA1
(x1))ε and spA(y) ⊂ (spA2

(y1))ε,

(5) Dc

(

u∗
m
∑

i=1

λipiu,
n
∑

j=1

ηjqj
)

< d+ ε in A2 where A2 =
(

n
∑

j=1

qj
)

A
(

n
∑

j=1

qj
)

,

(6) suppose O ⊂ {1, · · · ,m′}, XO =
⋃

k∈O

Xk, if (XO)d+ε ∩ Y =
⋃

l∈O′

Yl for some O′ ⊂
{1, · · · , n′} and

∑

k∈O

[χ(Xk)ε(x)] =
∑

l∈O′

[χ(Yl)ε(y)] in K0(A), then

∑

k∈O

∑

λi∈Xk

[u∗piu] =
∑

l∈O′

∑

ηj∈Yl

[qj ] (4.60)

in K0(A2).

Proof Let M > 0 such that ‖x‖, ‖y‖ ≤ M and ε < M . Denote by f ∈ C[−2M, 2M ]

the function that f(t) = 1 if |t| ≤ ε
8 , f(t) = 0 if |t| ≥ ε

4 and f(t) is linear in
[

− ε
4 ,− ε

8

]

and
[

ε
8 ,

ε
4

]

. Let a ∈ A be a self-adjoint element with ‖a‖ ≤ M and λ ∈ sp(a). Let a′ = a − λ.

Then 0 ∈ sp(a′). Since TR(A) ≤ 1, there is a non-zero projection p′ ∈ Her(f(a′)). Since

f(a′)fε(a
′)a′ = 0, p′fε(a

′)a′ = 0. Set b = fε(a
′)a′ + λ(1 − p′). Then

‖(b+ λp′)− a‖ < ε and b · λp′ = 0. (4.61)

The proof implies that there are two sets of mutually orthogonal non-zero projections {p′1, · · · ,
p′m} and {q′1, · · · , q′n} and two self-adjoint elements x′

1 ∈
(

1 −
m
∑

i=1

p′i
)

A
(

1 −
m
∑

i=1

p′i
)

, y′1 ∈
(

1 −
m
∑

i=1

q′i
)

A
(

1−
m
∑

i=1

q′i
)

such that

∥

∥

∥
x−

(

x′
1 +

m
∑

i=1

λip
′
i

)∥

∥

∥
< ε and

∥

∥

∥
y −

(

y′1 +

n
∑

j=1

ηjq
′
j

)∥

∥

∥
< ε. (4.62)
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By [6, Lemma 3.5.7], there is a non-zero projection e1 ∈ A such that (mn+1)[e1] ≤ [e], [p′i] and

[q′j ] in K0(A) for all i, j. Suppose R = {(λi, ηj) : dist(λi, ηj) < d+ ε}. Therefore, R satisfies the

condition of Lemma 4.8. It follows from [7, Theorem 6.11], A has Riesz interpolation property.

So by Lemma 4.8, there are cij ∈ Z+ such that

(I) ai =
n
∑

j=1

cij > 0, bj =
m
∑

i=1

cij > 0 and
m
∑

i=1

n
∑

j=1

cij ≤ mn for all i, j,

(II) cij = 0 unless (i, j) ∈ R,

(III) suppose O ⊂ {1, · · · ,m′}, XO =
⋃

k∈O

Xk, O
′ = {l : 1 ≤ l ≤ n′, RXO

∩ Yl 6= ∅}, if
∑

k∈O

[χ(Xk)ε(x)] =
∑

l∈O′

[χ(Yl)ε(y)] in K0(A), then
∑

k∈O

∑

λi∈Xk

ai =
∑

l∈O′

∑

ηj∈Yl

bj.

There exist two sets {p1, · · · , pm} and {q1, · · · , qn} of non-zero mutually orthogonal pro-

jections such that pi ≤ p′i and qj ≤ q′j for all i, j, [pi] =
n
∑

j=1

cij [e1] and [qj ] =
m
∑

i=1

cij [e1].

Then there exists u ∈ A such that u∗
m
∑

i=1

piu =
n
∑

j=1

qj . Let x1 = u∗
(

x′
1 +

m
∑

i=1

λi(p
′
i − pi)

)

u

and y1 = y′1 +
n
∑

j=1

ηj(q
′
j − qj). It is obvious that these projections pi, qj (i = 1, · · · ,m and

j = 1, · · · , n), self-adjoint elements x1, y1 and unitary u satisfy (1)–(4).

To see (5), let O1 be a open set. Suppose O′
1 = O1 ∩ {λ1, · · · , λm} = {λi1 , · · · , λik}. Let

O2 = RO′
1
. Then

[

χA2

O1

(

u∗
m
∑

i=1

λipiu
)]

=

k
∑

l=1

n
∑

j=1

cilj [e1]

=

k
∑

l=1

∑

j∈R{il}

cilj [e1]

≤
k

∑

l=1

∑

j∈O2

cilj [e1]

≤
∑

j∈O2

m
∑

i=1

cij [e1]

≤
[

χA2

(O1)d+ε

(

n
∑

j=1

ηjqj

)]

(4.63)

in K0(A). Suppose v ∈ A such that vv∗ = χA2

O1

(

u∗
m
∑

i=1

λipiu
)

and v∗v ≤ χA2

(O1)d+ε

(

n
∑

j=1

ηjqj
)

.

Since v = vv∗v = v
(

n
∑

j=1

qj
)

=
(

n
∑

j=1

qj
)

v, v =
(

n
∑

j=1

qj
)

v
(

n
∑

j=1

qj
)

∈ A2. In other words,

[

χA2

O1

(

u∗
m
∑

i=1

λipiu
)]

≤
[

χA2

(O1)d+ε

(

n
∑

j=1

ηjqj
)]

in K0(A2). By the arbitrariness of O1,

Dc

(

u∗
m
∑

i=1

λipiu,

n
∑

j=1

ηjqj

)

< d+ ε (4.64)

in A2.
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To see (6), suppose O ⊂ {1, · · · ,m′}, XO =
⋃

k∈O

Xk, O
′ = {l : 1 ≤ l ≤ n′, RXO

∩ Yl 6= ∅}, if
∑

k∈O

[χ(Xk)ε(x)] =
∑

l∈O′

[χ(Yl)ε(y)] in K0(A), it follows from (III) that
∑

k∈O

∑

λi∈Xk

ai =
∑

l∈O′

∑

ηj∈Yl

bj .

Therefore,
∑

k∈O

∑

λi∈Xk

[u∗piu] =
∑

l∈O′

∑

ηj∈Yl

[qj ] in K0(A), and furthermore in K0(A2). It shows

that this lemma holds.

Lemma 4.10 Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Let x, y ∈ A be

two self-adjoint elements and e ∈ A be a projection. Suppose ε > 0, d > Dc(x, y). If X =

{λ1, · · · , λm} ⊂ sp(x) is a ε-dense subset of sp(x) and Y = {η1, · · · , ηn} ⊂ sp(y) is a ε-dense

subset of sp(y), then there exist self-adjoint elements x1, y1 ∈ A, two sets of mutually orthogonal

non-zero projections {p1, · · · , pm} and {q1, · · · , qn} and a unitary u ∈ A satisfying the following:

(1) u∗
m
∑

i=1

piu =
n
∑

j=1

qj and
[

n
∑

j=1

qj
]

≤ [e] in K0(A),

(2) x1, y1 ∈ A1, where A1 =
(

1−
n
∑

j=1

qj
)

A
(

1−
n
∑

j=1

qj
)

,

(3)
∥

∥u∗xu−
(

x1 + u∗
m
∑

i=1

λipiu
)
∥

∥ < 2ε and
∥

∥y −
(

y1 +
n
∑

j=1

ηjqj
)
∥

∥ < 2ε,

(4) spA(x) ⊂ (spA1
(x1))ε and spA(y) ⊂ (spA1

(y1))ε,

(5) Dc(x1, y1) < d+ 16ε in A1,

(6) Dc

(

u∗
m
∑

i=1

λipiu,
n
∑

j=1

ηjqj
)

< d+ 3ε in
(

n
∑

j=1

qj
)

A
(

n
∑

j=1

qj
)

.

Proof We may assume that ε < d−Dc(x, y). Let Ω be the closure of (sp(x))2ε ∪ (sp(y))2ε.

Let O1, · · · , Ok ⊂ Ω be open sets in Lemma 4.4. Let f(Oi)2ε(t) be those functions in Lemma

4.4, i = 1, · · · , k.
Suppose X1, · · · , Xm′ ⊂ X and Y1, · · · , Yn′ ⊂ Y are these subsets as in Lemma 4.8. We

take two condition for open set O:

(I) O ∩X = ∅,
(II) O ∩ sp(x) = O2ε ∩ sp(x), Od ∩ sp(y) = Od+2ε ∩ sp(y) and [χ(O)ε(x)] = [χOd+ε

(y)] in

K0(A).

Without loss of generality, we may assume that (Oi)6ε, i = 1, · · · , l don’t satisfy condition

(I) and (II), and (Oi)6ε, i = l + 1, · · · , k satisfy condition (I) or (II).

In the first step, we consider the case that i ≤ l.

Put

σi = inf{dτ (f(Oi)d+10ε
(y))− dτ (f(Oi)6ε(x)) : τ ∈ T (A)} (4.65)

for i = 1, · · · , l and

σ = min{σ1, · · · , σl}. (4.66)

We claim that σ > 0.

To show the claim, we consider i ≤ l into three cases. In the first case, we consider the case

that (Oi)6ε ∩ sp(x) 6= (Oi)8ε ∩ sp(x). We choose f(Oi)9ε(t) such that f(Oi)9ε(t) = 1 when t ∈
(Oi)8ε, i = 1, · · · , l. We can choose g ∈ C(Ω) as a non-zero function such that 0 ≤ g ≤ 1 and the

support of g is contained in (Oi)8ε\(Oi)6ε and g(x) 6= 0. Then τ(f(Oi)9ε(x))− dτ (f(Oi)6ε(x)) ≥
τ(g(x)) > 0 since A is simple. Note that DT (x, y) ≤ Dc(x, y) < d. So

dτ (f(Oi)d+10ε
(y))− dτ (f(Oi)6ε(x)) ≥ τ(f(Oi)9ε(x)) − dτ (f(Oi)6ε(x)) ≥ τ(g(x)) (4.67)
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for each τ ∈ T (A). Since T (A) is weak∗-compact, σi > 0.

In the second case, if (Oi)d+6ε ∩ sp(y) 6= (Oi)d+8ε ∩ sp(y). We choose f(Oi)d+9ε
(t) such that

f(Oi)d+9ε
(t) = 1 when t ∈ (Oi)d+8ε, i = 1, · · · , l. Therefore,

dτ (f(Oi)d+10ε
(y))− dτ (f(Oi)6ε(x)) ≥ τ(f(Oi)d+9ε

(y))− dτ (f(Oi)d+6ε
(y)) > 0 (4.68)

for each τ ∈ T (A). Such as (4.67), σi > 0.

In the last case, (Oi)6ε ∩ sp(x) = (Oi)8ε ∩ sp(x), (Oi)d+6ε ∩ sp(y) = (Oi)d+8ε ∩ sp(y) and

[χ(Oi)7ε(x)] 6= [χ(Oi)d+7ε
(y)] in K0(A). However, [χ(Oi)7ε(x)] ≤ [χ(Oi)d+7ε

(y)]. This implies that

dτ (f(Oi)d+10ε
(y))− dτ (f(Oi)6ε(x)) ≥ τ(χ(Oi)d+7ε

(y))− τ(χ(Oi)7ε(x)) > 0 (4.69)

for each τ ∈ T (A). Therefore, σi > 0.

As above, we obtain σ > 0. So the claim holds.

Choose

f(Oi)4ε (4.70)

such that f(Oi)4ε(t) = 1 when t ∈ (Oi)3ε, i = 1, · · · , l. Choose f(Oi)d+12ε
such that f(Oi)d+12ε

(t) =

1 when t ∈ (Oi)d+11ε, i = 1, · · · , l. According to the definition of dτ , we have τ(f(Oi)d+12ε
(y)) ≥

dτ (f(Oi)d+10ε
(y)) and dτ (f(Oi)6ε(x)) ≥ τ(f(Oi)4ε(x)) for all i ≤ l and τ ∈ T (A). Therefore,

inf{τ(f(Oi)d+12ε
(y))− τ(f(Oi)4ε(x)) : i = 1, · · · , l, τ ∈ T (A)}

≥ inf{dτ (f(Oi)d+10ε
(y))− dτ (f(Oi)6ε(x)) : i = 1, · · · , l, τ ∈ T (A)}

= σ. (4.71)

In the second step, we consider i ≥ l + 1.

Let σ′
i = σ′′

i = ε if (Oi)6ε satisfy condition (I). Otherwise let σ′
i = inf{dist(λ, (Oi)7ε) :

λ ∈ sp(x)\(Oi)7ε} and σ′′
i = inf{dist(η, (Oi)d+7ε) : η ∈ sp(y)\(Oi)d+7ε}. Then σ′

i, σ
′′
i ≥ ε for

i = l + 1, · · · , k according to condition (II). Let

σ′ = min{σ′
i, σ

′′
i : i = l + 1, · · · , k}. (4.72)

Then σ′ ≥ ε. We choose f(Oi) 15ε
2

such that f(Oi) 15ε
2

(t) = 1 when t ∈ (Oi)7ε and f(Oi)d+15ε
2

such

that f(Oi)d+15ε
2

(t) = 1 when t ∈ (Oi)d+7ε, i = l + 1, · · · , k.
In the third step, we begin to show the lemma.

Let N be an integer number and e′ ∈ A be a projection such that

1

N
<

σ

8
, [e′] ≤ [e] and N [e′] ≤ [1] (4.73)

in K0(A). It follows from [7, 2.5.11] that, there is a ε1 > 0 such that for any normal elements

a, b with sp(a), sp(b) ⊂ Ω, if ‖a− b‖ < ε1, then

‖f(Oi)4ε(a)− f(Oi)4ε(b)‖ <
σ

8
and ‖f(Oi)d+12ε

(a)− f(Oi)d+12ε
(b)‖ <

σ

8
(4.74)

for i = 1, · · · , l and

‖f(Oi) 15ε
2

(a)− f(Oi) 15ε
2

(b)‖ < 1 (4.75)
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for i = l + 1, · · · , k. We may assume

ε1 < min
{

d−Dc(x, y),
ε

5
, δ
}

, (4.76)

where δ satisfies Lemma 2.3. Suppose X ′ = {λ′
1, · · · , λ′

m1
} ⊂ sp(x) is a ε1-dense subset of sp(x)

and Y ′ = {η′1, · · · , η′n1
} ⊂ sp(y) is a ε1-dense subset of sp(y). Suppose X ′

1, · · · , X ′
m′

1

⊂ X ′

and Y ′
1 , · · · , Y ′

n′
1

⊂ Y ′ are these sets corresponding to Lemma 4.9. We apply Lemma 4.9 for e′

(replace of e in Lemma 4.9), ε1 (replace of ε in Lemma 4.9) and d− ε1 (replace of d in Lemma

4.9). Then there exist self-adjoint elements x1, y1 ∈ A, two sets of mutually orthogonal non-zero

projections {p′1, · · · , p′m1
} and {q′1, · · · , q′n1

} and a unitary u ∈ A such that

u∗
m1
∑

i=1

p′iu =

n1
∑

j=1

q′j and
[

m1
∑

i=1

p′i

]

=
[

n1
∑

j=1

q′j

]

≤ [e′] ≤ [e] in K0(A), (4.77)

x1, y1 ∈ A1, where A1 =
(

1−
n1
∑

j=1

q′i

)

A
(

1−
n1
∑

j=1

q′i

)

, (4.78)

spA(x) ⊂ (spA1
(x1))ε1 and spA(y) ⊂ (spA1

(y1))ε1 , (4.79)

∥

∥

∥
u∗xu −

(

x1 + u∗
m1
∑

i=1

λ′
ip

′
iu
)∥

∥

∥
< ε1 and

∥

∥

∥
y −

(

y1 +

n1
∑

j=1

η′jq
′
j

)∥

∥

∥
< ε1, (4.80)

Dc

(

u∗
m1
∑

i′=1

λ′
i′p

′
iu
)

,

n1
∑

j′=1

η′jq
′
j

)

< d in A2, where A2 =
(

n1
∑

j=1

q′j

)

A
(

n1
∑

j=1

q′j

)

, (4.81)

and suppose I ⊂ {1, · · · ,m′
1}, X ′

I =
⋃

i′∈I

X ′
i′ , if (X

′
I)d ∩ Y ′ =

⋃

j′∈J

Y ′
j′ for some J ⊂ {1, · · · , n′

1}

and
∑

i′∈I

[χ(X′
i′
)ε1

(x)] =
∑

j′∈J

[χ(Y ′
j′
)ε1

(y)] in K0(A), then

∑

i′∈I

∑

λi∈X′
i′

[u∗p′iu] =
∑

j′∈J

∑

ηj∈Y ′
j′

[q′j ] (4.82)

in K0(A2).

There are two mutually disjoint index sets {B1, · · · , Bm} and {C1, · · · , Cn} such that
m
⋃

i=1

Bi = {1, · · · ,m1},
n
⋃

j=1

Cj = {1, · · · , n1}, dist(λ′
i′ , λi) < ε1 for each i′ ∈ Bi and dist(η′j′ , ηj) <

ε1 for each j′ ∈ Cj , i = 1, · · · ,m and j = 1, · · · , n. Let pi =
∑

i′∈Bi

p′i′ and qj =
∑

j′∈Cj

q′j′ . Let

x2 = u∗
m
∑

i=1

λipiu, y2 =
n
∑

j=1

ηjqj . Then

∥

∥

∥
x2 −

m1
∑

i=1

λ′
ip

′
i

∥

∥

∥
< ε1 and

∥

∥

∥
y2 −

n1
∑

j=1

η′jq
′
j

∥

∥

∥
< ε1. (4.83)

It is immediately that (1)–(4) hold. It follows from Lemma 2.3,

Dc

(

u∗x2u, u
∗

m1
∑

i=1

λip
′
iu
)

≤ ε and Dc

(

y2,

n1
∑

j=1

ηjq
′
j

)

≤ ε (4.84)

in A2. Therefore (6) holds. It remains to show that (5) holds.
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Note that

spA1
(x1) ⊂ spA

(

x1 + u∗
m1
∑

i=1

λ′
ip

′
iu
)

⊂ (spA(x))ε1 ⊂ Ω. (4.85)

In the same way,

spA1
(y1) ⊂ (spA(y))ε1 ⊂ Ω. (4.86)

It follows from (4.74) and (4.80),

∥

∥

∥
fA
(Oi)4ε

(u∗xu)−
(

fA1

(Oi)4ε
(x1) + fA2

(Oi)4ε

(

u∗
m1
∑

i′=1

λ′
i′p

′
iu
))∥

∥

∥
≤ σ

8
, (4.87)

∥

∥

∥
fA
(Oi)d+12ε

(y)−
(

fA1

(Oi)d+12ε
(y1) + fA2

(Oi)d+12ε

(

n1
∑

j′=1

η′jq
′
j

))
∥

∥

∥
≤ σ

8
(4.88)

for i = 1, · · · , l. Recall that 1
N < σ

8 , then

τ
(

fA2

(Oi)4ε

(

u∗
m1
∑

i′=1

λ′
i′p

′
iu
))

≤ τ(e′) ≤ σ

8
, (4.89)

τ
(

fA2

(Oi)d+12ε

(

n1
∑

j′=1

η′jq
′
j

))

≤ τ(e′) ≤ σ

8
. (4.90)

Therefore, by (4.71) and (4.87)–(4.90),

τ(fA1

(Oi)d+12ε
(y1))− τ(fA1

(Oi)4ε
(x1))

≥ τ
(

fA1

(Oi)d+12ε
(y1) + fA2

(Oi)d+12ε

(

n1
∑

j′=1

η′jq
′
j

))

− τ
(

fA1

(Oi)4ε
(x1)− fA2

(Oi)4ε

(

u∗
m1
∑

i′=1

λ′
i′p

′
iu
))

− σ

4

≥ τ(fA
(Oi)d+12ε

(y))− τ(fA
(Oi)4ε

(x)) − σ

2

≥ σ

2
(4.91)

for all i ≤ l and τ ∈ T (A). Recall that (4.70), then

τ(fA1

(Oi)d+12ε
(y1)) ≤ dτ (f

A1

(Oi)d+14ε
(y1)) and dτ (f

A1

(Oi)2ε
(x1) ≤ τ(fA1

(Oi)4ε
(x1)). (4.92)

Then

inf{dτ (fA1

(Oi)d+14ε
(y1))− dτ (f

A1

(Oi)2ε
(x1)) : i = 1, · · · , l, τ ∈ T (A)}

≥ inf{τ(f(Oi)d+12ε
(y1))− τ(f(Oi)4ε(x1)) : i = 1, · · · , l, τ ∈ T (A)}

≥ σ

2
. (4.93)

Furthermore, it follows from Lemma 2.13, we may write by τ1 the tracial extension of τ ∈ T (A1).

Suppose τ2 = 1
‖τ1‖

τ1. Note that τ2 ∈ T (A) and

τ1(e) ≤
1

N
τ1(1) =

1

N
τ1

(

n
∑

j=1

qj

)

+
1

N
τ1

(

1−
n
∑

j=1

qj

)

≤ 1

N
τ1(e) +

1

N
. (4.94)
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Then τ1(e) ≤ 1
N−1 . Moreover, 1 ≤ ‖τ1‖ = τ1(1) = 1 + τ1

(

n
∑

j=1

qj
)

≤ N
N−1 . So, for any positive

a ∈ A1 with ‖a‖ ≤ 1,

0 ≤ τ(a) − τ2(a) ≤ τ(a)− N − 1

N
τ(a) =

1

N
τ(a) ≤ 1

N
≤ σ

8
. (4.95)

This implies that |dτ (a)− dτ2(a)| ≤ σ
8 for any positive element a ∈ A1 with ‖a‖ ≤ 1. It follows

that

inf{dτ (fA1

(Oi)d+14ε
(y1))− dτ (f

A1

(Oi)2ε
(x1)) : i = 1, · · · , l, τ ∈ T (A1)} ≥ σ

4
> 0. (4.96)

This implies that fA1

(Oi)2ε
(x1) . fA1

(Oi)d+14ε
(y1) in A1 for all i ≤ l, since A has strict comparison

for positive elements.

In the following, we will prove that fA1

(Oi)2ε
(x1) . fA1

(Oi)d+14ε
(y1) in A1 for all i > l.

For Oi0 , where i0 ≥ l+1, if (Oi0)6ε ∩X = ∅, then f(Oi0
)2ε(x1) = 0 . f(Oi0

)d+14ε
(y1). Other-

wise, (Oi0 )6ε∩sp(x) = (Oi0)8ε∩sp(x), (Oi0 )d+6ε∩sp(y) = (Oi0 )d+8ε∩sp(y) and [χ(Oi0
)7ε(x)] =

[χ(Oi0
)d+7ε

(y)] in K0(A). Note that (X ′
i)ε1 ∩ sp(x) ⊂ (Oi0)6ε if (X ′

i)ε1 ∩ (Oi0 )6ε 6= ∅ since

(X ′
i)ε1 ∩ sp(x′) is ε1-path connected and (Oi0)6ε ∩ sp(x) ∩ (X ′

i)ε1 = (Oi0 )8ε ∩ sp(x) ∩ (X ′
i)ε1 .

This implies (Oi0)6ε ∩ sp(x) =
⋃

i∈Ii0

(X ′
i)ε1 ∩ sp(x) for some Ii0 ⊂ {1, · · ·m′

1}. In the same way,

(Oi0)d+6ε ∩ sp(y) =
⋃

j∈Ji0

(Y ′
j )ε1 ∩ sp(y) for some Ji0 ⊂ {1, · · ·n′

1}. Note that

∑

i∈Ii0

[χ(X′
i)ε1

(x)] = [χ(Oi0
)7ε(x)] = [χ(Oi0

)d+7ε
(y)] =

∑

j∈Ji0

[χ(Y ′
j )ε1

(y)] (4.97)

and

∑

i∈Ii0

χ(X′
i)ε1

(x) . f( ⋃

i∈Ii0

(X′
i)ε1

)

d−ε1

(y) .
∑

j∈Ji0

χ(Y ′
j )ε1

(y) (4.98)

in K0(A). Therefore,
(

⋃

i∈Ii0

X ′
i

)

d
∩ sp(y) =

⋃

j∈Ji0

(Y ′
j )ε1 ∩ sp(y). Furthermore,

(

⋃

i∈Ii0

X ′
i

)

d
∩ Y ′ =

⋃

j∈Ji0

(Y ′
j )ε1 ∩ Y ′ =

⋃

j∈Ji0

Y ′
j . (4.99)

Now, by (4.97) and (4.99), we can apply (4.82), then

∑

i∈I

∑

i′∈Ii

[u∗p′iu] =
∑

j∈J

∑

j′∈Jj

[q′j ]. (4.100)

Recall that (4.72), (4.76) and (4.85)–(4.86), let λ ∈ sp(x1)\(Oi0)7ε. Then there is λ′ ∈ sp(x)

such that |λ′ − λ| < ε1. So λ′ /∈ sp(x) ∩ (Oi0)6ε,

dist(λ, (Oi0 )7ε ∩ sp(x1)) ≥ dist(λ′, (Oi0)7ε ∩ (sp(x))ε1 )− ε1 ≥ σ′ − 2ε1 >
ε

2
. (4.101)

This implies that sp(x1) ∩ ((Oi0 ) 15
2
ε\(Oi0)7ε) = ∅. In the same way,

sp(y1) ∩ ((Oi0)d+ 15
2
ε\(Oi0)d+7ε) = ∅.
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Recall that the definition of f(Oi0
) 15ε

2

and f(Oi0
)
d+15ε

2

, we have

f(Oi0
) 15ε

2

(x) = χ(Oi0
)7ε(x), fA1

(Oi0
) 15ε

2

(x1) = χA1

(Oi0
)7ε

(x1), (4.102)

fA2

(Oi0
) 15ε

2

(

m1
∑

i=1

u∗λ′p′iu
)

= χA2

(Oi0
)7ε

(

m1
∑

i=1

u∗λ′p′iu
)

, (4.103)

and

f(Oi0
)
d+15ε

2

(y) = χ(Oi0
)d+7ε

(y), fA1

(Oi0
)
d+15ε

2

(y1) = χA1

(Oi0
)d+7ε

(y1), (4.104)

fA2

(Oi0
)
d+15ε

2

(

n1
∑

j=1

η′jq
′
j

)

= χA2

(Oi0
)d+7ε

(

n1
∑

j=1

η′jq
′
j

)

. (4.105)

Therefore, it follows from (4.75),

[χA1

(Oi0
)7ε

(x1)] +
[

χA2

(Oi0
)7ε

(

m1
∑

i=1

u∗λ′p′iu
)]

= [χA
(Oi0

)7ε
(x)]

= [χA
(Oi0

)d+7ε
(y)]

= [χA1

(Oi0
)d+7ε

(y1)] +
[

χA2

(Oi0
)d+7ε

(

n1
∑

j=1

η′jq
′
j

)]

(4.106)

in K0(A). It follows from (4.100) that [χA1

(Oi0
)7ε

(x1)] = [χA1

(Oi0
)d+7ε

(y1)] in K0(A) and so does in

K0(A1). Therefore,

fA1

(Oi0
)2ε

(x1) . χA1

(Oi0
)7ε

(x1) . χA1

(Oi0
)d+7ε

(y1) . fA1

(Oi0
)d+14ε

(y1) (4.107)

in A1.

In conclusion, we obtain that fA1

(Oi)2ε
(x1) . fA1

(Oi)d+14ε
(y1) for all i. Then by Lemma 4.4,

Dc(x1, y1) ≤ d+ 16ε in A1.

Lemma 4.11 Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Let x, y ∈ A be two

self-adjoint elements. Then

dist(U(x), U(y)) ≤ Dc(x, y). (4.108)

Proof Let ε > 0 and d > Dc(x, y). Let ε′ with 0 < ε′ < ε satisfy Lemma 2.3 (replace

of δ by 10ε′ in Lemma 2.3). Suppose {λ1, · · · , λm} ⊂ R is a ε′-dense subset of sp(x) and

{η1, · · · , ηn} ⊂ R is a ε′-dense subset of sp(y). Moreover, we may assume λ1 < · · · < λm and

η1 < · · · < ηn. It follows from Lemma 4.10 that there exist self-adjoint elements x1, y1 ∈ A, two

sets of mutually orthogonal non-zero projections {p1, · · · , pm} and {q1, · · · , qn} and a unitary

u ∈ A satisfying the following.

Suppose P =
n
∑

j=1

qj , A1 = (1−P )A(1−P ), A2 = PAP , x2 = u∗
m
∑

i=1

λipiu and y2 =
n
∑

j=1

ηjqj ,

then

u∗
m
∑

i=1

piu =

n
∑

j=1

qj , (4.109)
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x1, y1 ∈ A1 and x2, y2 ∈ A2, (4.110)

‖u∗xu − (x1 + x2)‖ < 2ε′ and ‖y − (y1 + y2)‖ < 2ε′, (4.111)

Dc(x1, y1) < d+ 16ε′ in A1 and Dc(x2, y2) < d+ 3ε′ in A2. (4.112)

We choose a non-zero projection e ∈ A1 such that 2mn[e] ≤ [pi], [qj ] in K0(A) for i =

1, · · · ,m and j = 1, · · · , n. Since TR(A1) ≤ 1, it follows from Lemma 4.5 that there exists a

projection P1 ∈ A1, a C∗-subalgebra C ∈ I(1) of A1 with IC = P1, four self-adjoint elements

x′
1, y

′
1 ∈ C, x′

2, y
′
2 ∈ (1− P − P1)A1(1− P − P1) such that

‖x1 − (x′
1 + x′

2)‖ < ε′ and ‖y1 − (y′1 + y′2)‖ < ε′, (4.113)

Dc(x
′
1, y

′
1) ≤ d+ 17ε′ in C, (4.114)

Dc(x
′
2, y

′
2) ≤ d+ 17ε′ in (1− P − P1)A1(1− P − P1), (4.115)

1− P − P1 . e. (4.116)

Let A3 = (1 − P1)A(1 − P1). Then x′
2 + x2, y

′
2 + y2 ∈ A3. Since 1 − P − P1 . e and

2mn[e] ≤ [pi], [qj ] for all i, j, there is v1 ∈ A3 such that v∗1v1 = 1 − P − P1 and v1v
∗
1 ≤

u∗p1u. Suppose 0 < ε1 < ε′

2 and P ′
1 = 1 − P − P1 + v1v

∗
1 , A

′
1 = P ′

1AP
′
1. We can check that

x′
2−λ1(1−P −P1)+ ε1v1+ ε1v

∗
1 is invertible in A′

1. Let x
′
21 = x′

2+ ε1v1+ ε1v
∗
1 +λ1v1v

∗
1 . Then

x′
21 − λ1P

′
1 = x′

2 − λ1(1− P − P1) + ε1v1 + ε1v
∗
1 is invertible in A′

1. Therefore, λ1 /∈ spA′
1
(x′

21)

and ‖x′
21 − (x′

2 + λ1v1v
∗
1)‖ < ε1. Let 0 < ε2 < ε1

2 . Since [P ′
1] ≤ 2[e], there is v2 ∈ A3 such

that v∗2v2 = P ′
1 and v2v

∗
2 ≤ u∗p2u. Put x′

22 = x′
21 + ε2v2 + ε2v

∗
2 + λ2v2v

∗
2 , P

′
2 = P ′

1 + v2v
∗
2 ,

A′
2 = P ′

2AP
′
2. We also have λ2 /∈ spA′

2
(x′

22) and ‖x′
22 − (x′

21 + λ2v2v
∗
2)‖ < ε2. Since

spA′
2
(x′

22) ⊂ (spA′
2
(x′

21 + λ2v2v
∗
2))ε2 = (spA′

1
(x′

21) ∪ {λ2})ε2 , (4.117)

if ε2 is sufficiently small, we may assume λ1 /∈ spA′
2
(x′

22). By induced, we may get εi > 0,

vi ∈ A3, projections P ′
i ∈ A3, C∗-subalgebras A′

i and self-adjoint elements x′
2i ∈ A′

i (i =

1, · · · ,m) such that εi+1 < εi
2 , v∗i vi = P ′

i , P ′
i+1 = P ′

i + viv
∗
i , viv

∗
i ≤ u∗piu, A′

i = P ′
iAP

′
i ,

{λ1, · · · , λi} ∩ spA′
i
(x′

2i) = ∅, and ‖x′
2,i+1 − (x′

2i + λi+1vi+1v
∗
i+1)‖ < εi+1 for all i. Therefore,

∥

∥

∥
x′
2m −

(

x′
2 +

m
∑

i=1

λiviv
∗
i

)∥

∥

∥
< ε′ (4.118)

and {λ1, · · · , λm} ∩ spA′
m
(x′

2m) = ∅. Note that spA′
m

(

x′
2 +

m
∑

i=1

λiviv
∗
i

)

⊂ (spA(x))2ε′ . So

spA′
m
(x′

2m) ⊂ (spA(x))3ε′ . Then {λ1, · · · , λm} is a 4ε′-dense subset of spA′
m
(x′

2m). Put λ0 =

λ1−4ε′ and λm+1 = λm+4ε′. Let p′i = χi(x
′
2m), where χi is a characteristic function associating

to [λi, λi+1], i = 0, · · · ,m. Then p′i = χi(x
′
2m) ∈ A′

m, i = 0, · · · ,m are mutually orthogonal

projections satisfying
m
∑

i=0

p′i = P ′
m and

∥

∥

∥
x′
2m −

(

λ1p
′
0 +

m
∑

i=1

λip
′
i

)∥

∥

∥
≤

∥

∥

∥
x′
2m −

m
∑

i=0

λip
′
i

∥

∥

∥
+ 4ε′ < 8ε′. (4.119)

Now, we suppose

x′′
2 = λ1p

′
0 +

m
∑

i=1

λip
′
i +

m
∑

i=1

λi(u
∗piu− viv

∗
i ) ∈ A3. (4.120)
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Then x′′
2 has finitely spectrum. Recall that (4.118)–(4.120), we have

‖x′′
2 − (x′

2 + x2)‖ =
∥

∥

∥
x′′
2 −

(

x′
2 +

m
∑

i=1

λiu
∗piu

)∥

∥

∥
< 9ε′. (4.121)

In the same way, we also have self-adjoint element y′′2 ∈ A3 with finite spectrum such that

‖y′′2 − (y′2 + y2)‖ < 9ε′. (4.122)

Since Dc(x
′
2, y

′
2) < d + 17ε′ in (1 − P − P1)A(1 − P − P1) and Dc(x2, y2) < d + 3ε′ in A2,

we can check that Dc(x
′
2 + x2, y

′
2 + y2) < d + 17ε′ in A3. It follows from Lemma 2.3 that

we may assume Dc(x
′′
2 , y

′′
2 ) < d + 20ε in A3. It follows from [7, Theorem 6.11], A3 has Riesz

interpolation property. So by Theorems 3.2 and 4.1, there are unitaries u1 ∈ C and u2 ∈ A3

such that

‖u∗
1x

′
1u1 − y′1‖ < d+ 20ε and ‖u∗

2x
′′
2u2 − y′′2‖ < d+ 20ε. (4.123)

Let u′ = u1 + u2. Then u′ is a unitary of A. Note that ‖u∗xu − (x′
1 + x′′

2 )‖ < 21ε and ‖y−
(y′1 + y′′2 )‖ < 21ε. In conclusion,

‖u′∗uxuu′ − y‖ < ‖u′∗(x′
1 + x′′

2 )u
′ − (y′1 + y′′2 )‖+ 42ε

= max{‖u∗
1x

′
1u1 − y′1‖, ‖u∗

2x
′′
2u2 − y′′2‖}+ 42ε

< d+ 62ε. (4.124)

This implies that dist(U(x), U(y)) ≤ Dc(x, y).

Lemma 4.12 Let A be a unital simple C∗-algebra with TR(A) ≤ k. Then for any ε > 0, any

finite subset B ⊂ A+ and any finite subset F ⊂ A with B ⊂ F , there exists a finite-dimension

C∗-subalgebra C ⊂ A with IC = P such that for any x ∈ F and b ∈ B,

(1) ‖Px− xP‖ < ε,

(2) PxP ∈ε C and ‖PbP‖ > ‖b‖ − ε.

Proof We may assume B = {b1, · · · , bn} with ‖bi‖ ≤ 1 for all i. When n = 1, it follows

from [7, Corollary 6.4] that lemma holds.

Suppose lemma holds when n = m. Let n = m + 1. Then for {b1, · · · , bm} and ε1 = ε
4 ,

there exists a finite-dimension C∗-subalgebra C ⊂ A with IC = P such that for any x ∈ F and

b1, · · · , bm,

(1) ‖Px− xP‖ < ε1,

(2) PxP ∈ε1 C and ‖PbiP‖ > ‖bi‖ − ε1, i = 1, · · · ,m.

If ‖Pbm+1P‖ > ‖bm+1‖ − ε, lemma holds when n = m+ 1.

Otherwise, ‖Pbm+1P‖ ≤ ‖bm+1‖− ε. Since ‖Pbm+1P +(1−P )bm+1(1−P )− bm+1‖ < 2ε1,

‖(1 − P )bm+1(1 − P )‖ > ‖bm+1‖ − 2ε1. Let F ′ = {(1 − P )x(1 − P ) : x ∈ F}. Then for

(1−P )bm+1(1−P ) and F ′, there exists a finite-dimension C∗-subalgebra C1 ⊂ (1−P )A(1−P )

with IC1
= P1 such that for any y ∈ F ′ and bm+1,

(1) ‖P1y − yP1‖ < ε1,

(2) P1yP1 ∈ε1 C1 and ‖P1(1−P )bm+1(1−P )P1‖ > ‖(1−P )bm+1(1−P )‖−ε1 > ‖bm+1‖−3ε1.

Let C2 = C ⊕ C1 and P2 = P + P1. Then for any x ∈ F and b1, · · · , bm+1,
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(1) ‖P2x− xP2‖ < 4ε1,

(2) P2xP2 ∈4ε1 C2 and ‖P2biP2‖ ≥ ‖PbiP‖ > ‖bi‖ − ε1, i = 1, · · · ,m,

(3) ‖P2bm+1P2‖ ≥ ‖P1(1− P )bm+1(1− P )P1‖ > ‖bm+1‖ − 3ε1.

This implies that lemma holds for n = m+ 1.

Therefore, lemma holds by induction.

Lemma 4.13 Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Let {p1, · · · , pn}
and {q1, · · · , qm} be two sets of mutually orthogonal projections with

n
∑

i=1

pi =
m
∑

j=1

qj = 1, and

{λ1, · · · , λn}, {η1, · · · , ηm} be two subsets of R. Suppose λ1 < · · · < λn and η1 < · · · < ηm.

Suppose x =
n
∑

i=1

λipi and y =
m
∑

j=1

ηjqj. Let d = Dc(x, y) > 0 and 0 < ε < d. Then there exists

integer k ≤ n satisfying one of the following conditions:

(1) Let Ok = {λ1, · · · , λk}, [χOk
(x)] � [χ(Ok)d−ε

(y)] in K0(A),

(2) Let O′
k = {λk, · · · , λn}, [χO′

k
(x)] � [χ(O′

k
)d−ε

(y)] in K0(A).

Proof Let Λ = {λ1, · · · , λn}. According to the definition of Dc(x, y), there exists subset

O = {λi1 , · · · , λil} ⊂ Λ such that [χO(x)] � [χOd−ε
(y)] in K0(A), where λi1 < · · · < λil .

If there exists ηj0 for some j0 such that (ηj0 − (d − ε), ηj0 + d − ε) ∩ Λ = ∅, then we may

assume λk0
≤ ηj0 − (d − ε) < ηj0 − (d − ε) ≤ λk0+1 for some k0. Let Ok = {λ1, · · · , λk} and

O′
k = {λk, · · · , λn}. We claim that there exists integer k ≤ n such that

[χOk
(x)] � [χ(Ok)d−ε

(y)] (4.125)

or

[χO′
k
(x)] � [χ(O′

k
)d−ε

(y)] (4.126)

inK0(A). Otherwise, [1] = [χΛ(x)] ≤ [χΛd−ε
(y)] inK0(A). But it is impossible since ηj0 /∈ Λd−ε.

It shows the claim. This implies that lemma holds if (ηj0 − (d− ε), ηj0 + d− ε) ∩Λ = ∅. So we

may assume that for all j,

(ηj − (d− ε), ηj + d− ε) ∩ Λ 6= ∅. (4.127)

Let E,F ⊂ R and a ∈ R, we write E < F if supE < inf F , and E ≤ a if supE ≤ a. Let

A = {A : O ⊂ A ⊂ Λ, A ≤ λil = supO, [χA(x)] � [χ(A)d−ε
(y)]}. (4.128)

We write |A| the number of elements of set A. Then there is a set A0 ∈ A such that

|A0| = sup{|A| : A ∈ A}. (4.129)

It is trivial to check that A0 satisfyies one of the following cases:

(I) A0 = {λ1, λ2, · · · , λil},

(II) there exist non-empty sets A1 < B1 < · · · < Bl′−1 < Al′ such that
l′
⋃

i=1

Ai = A0 and

l′−1
⋃

i=1

Bi = {λ1, λ2, · · · , λil}\A0,
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(III) there exist non-empty sets B1 < A1 < · · · < Bl′ < Al′ such that
l′
⋃

i=1

Ai = A0 and

l′
⋃

i=1

Bi = {λ1, λ2, · · · , λil}\A0.

(I) Implies (1) of the lemma holds.

If A0 satisfies (II), we claim

[χ(A0∪B1)(x)] ≤ [χ(A0∪B1)d−ε
(y)] (4.130)

in K0(A). Otherwise, A0 ∪B1 ∈ A, it is contrary with (4.129). It shows the claim. Since

[χ(A0)(x)] � [χ(A0)d−ε
(y)], (4.131)

it follows from [8, Theorem 6.8] that there exists τ0 ∈ T (A) such that

τ0(χ(A0)(x)) ≥ τ0(χ(A0)d−ε
(y)). (4.132)

Therefore, by (4.130) and (4.132),

τ0(χ(B1)(x)) ≤ τ0(χ(A0∪B1)d−ε
(y))− τ0(χ(A0)d−ε

(y)). (4.133)

By (4.130)–(4.131),

[χ(B1)(x)] 6= [χ(A0∪B1)d−ε
(y)]− [χ(A0)d−ε

(y)] (4.134)

in K0(A). If [χA1
(x)] � [χ(A1)d−ε

(y)] in K0(A), then (1) of the lemma holds. Otherwise,

[χA1
(x)] ≤ [χ(A1)d−ε

(y)]. (4.135)

Note that χ(A0∪B1)d−ε
(y) − χ(A0)d−ε

(y) and χ(A1)d−ε
(y) are mutually orthogonal projections.

Then, by (4.133) and (4.135),

τ0(χ(A1∪B1)(x)) ≤ τ0(χ(A0∪B1)d−ε
(y))− τ0(χ(A0)d−ε

(y)) + τ0(χ(A1)d−ε
(y)). (4.136)

Furthermore, if [χA1
(x)] = [χ(A1)d−ε

(y)], then by (4.134),

[χ(A1∪B1)(x)] 6= [χ(A0∪B1)d−ε
(y)]− [χ(A0)d−ε

(y)] + [χ(A1)d−ε
(y)]. (4.137)

If [χA1
(x)] < [χ(A1)d−ε

(y)], by (4.133),

τ0(χ(A1∪B1)(x)) < τ0(χ(A0∪B1)d−ε
(y))− τ0(χ(A0)d−ε

(y)) + τ0(χ(A1)d−ε
(y)). (4.138)

So (4.137) also holds. Then by (4.136),

τ0(χΛ\(A1∪B1)(x))

= τ0(1)− τ0(χ(A1∪B1)(x))

≥ τ0(1)− (τ0(χ(A0∪B1)d−ε
(y))− τ0(χ(A0)d−ε

(y)) + τ0(χ(A1)d−ε
(y)))

= τ0(χ(Λ\(A1∪B1))d−ε
(y)). (4.139)

The last equation (4.139) holds by the following reason.
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Suppose λk1
= inf A2. We consider the case that ηj0 ∈ (Λ\(A1 ∪B1))d−ε for some j0, then

ηj0 > λk1
− (d− ε). (4.140)

If ηj0 ∈ (A1)d−ε, then χ(A0)d−ε
(y) = χ(A0∪B1)d−ε

(y). This implies that A0 ∪ B1 ∈ A. It is

contrary with (4.129). If

ηj0 ∈ ((A0 ∪B1)d−ε\(A0)d−ε) ∩ {η1, · · · , ηm}, (4.141)

we will find that ηj0 ≤ λk1
− (d− ε). It is contrary with (4.140). Therefore,

χ(Λ\(A1∪B1))d−ε
(y) ≤ 1− (χ(A0∪B1)d−ε

(y)− χ(A0)d−ε
(y) + χ(A1)d−ε

(y)). (4.142)

In reverse, we consider the case that ηj0 /∈ (Λ\(A1 ∪B1))d−ε for some j0, then

ηj0 ≤ λk1
− (d− ε). (4.143)

or

ηj0 ≥ λn + (d− ε). (4.144)

Since (4.127), it is impossible for (4.144). Then by (4.127) and (4.143),

λ1 − (d− ε) < ηj0 < λk1−1 + (d− ε), (4.145)

where λk1−1 ∈ B1. It shows that ηj0 ∈ (A1 ∪ B1)d−ε. Furthermore, if ηj0 /∈ (A1)d−ε, then

ηj0 ∈ (A0 ∪B1)d−ε\(A0)d−ε. So ηj0 ∈ ((A0 ∪B1)d−ε\(A0)d−ε) ∪ (A1)d−ε. In other word,

χ(Λ\(A1∪B1))d−ε
(y) ≥ 1− (χ(A0∪B1)d−ε

(y)− χ(A0)d−ε
(y) + χ(A1)d−ε

(y)). (4.146)

By combining (4.142) and (4.146), we have

χ(Λ\(A1∪B1))d−ε
(y) = 1− (χ(A0∪B1)d−ε

(y)− χ(A0)d−ε
(y) + χ(A1)d−ε

(y)). (4.147)

Therefore, (4.139) holds.

Similarly as (4.139), by (4.137) and (4.147), we can also check that [χΛ\(A1∪B1)(x)] 6=
[χ(Λ\(A1∪B1))d−ε

(y)]. Then by (4.139), [χΛ\(A1∪B1)(x)] � [χ(Λ\(A1∪B1))d−ε
(y)]. This implies

that (2) of the lemma holds.

If A0 satisfies (III), as (4.130), we have

[χ(A0∪B1)(x)] ≤ [χ(A0∪B1)d−ε
(y)]. (4.148)

As (4.133),

τ0(χB1
(x)) ≤ τ0(χ(A0∪B1)d−ε

(y))− τ0(χ(A0)d−ε
(y)). (4.149)

Furthermore, as (4.134),

[χB1
(x)] 6= [χ(A0∪B1)d−ε

(y)]− [χ(A0)d−ε
(y)]. (4.150)
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Therefore,

τ0(χΛ\B1
(x))

= τ0(1)− τ0(χB1
(x))

≥ τ0(1)− (τ0(χ(A0∪B1)d−ε
(y))− τ0(χ(A0)d−ε

(y)))

= τ0(χ(Λ\B1)d−ε
(y)). (4.151)

The last equation of (4.151) holds since 1 − (χ(A0∪B1)d−ε
(y) − χ(A0)d−ε

(y)) = χ(Λ\B1)d−ε
(y),

similarly as (4.147). In the same way, we can check that [χΛ\B1
(x)] 6= [χ(Λ\B1)d−ε

(y)]. It shows

(2) of the lemma holds.

Remark 4.1 Let A be a unital C∗-algebra, p ∈ A be a non-zero projection and x ∈ A be

self-adjoint element. Suppose sp(x) ⊂ [a, b], then we will find sppAp(pxp) ⊂ [a, b].

Proof We may assume sup sp(x) = b and inf sp(x) = a. Then 0 ≤ p(b − x)p ≤ (b − a)p.

Therefore, sppAp(pxp) ⊂ [a, b].

Lemma 4.14 Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Let x, y ∈ A be

self-adjoint elements with finite spectrum. Then

Dc(x, y) ≤ dist(U(x), U(y)). (4.152)

Proof Let x =
n
∑

i=1

λipi, y =
m
∑

j=1

ηjqj , where {λ1, · · · , λn}, {η1, · · · , ηm} ⊂ R, {p1, · · · , pn}

and {q1, · · · , qm} be two sets of mutually orthogonal projections with
n
∑

i=1

pi =
m
∑

j=1

qj = 1.

Suppose ‖x‖, ‖y‖ < M , d = Dc(x, y). Lemma holds when d = 0. So we may assume d > 0. Let

0 < ε < d. Suppose λ1 < · · · < λn and η1 < · · · < ηm. It follows from Lemma 4.13, there exists

integer k ≤ n satisfying one of the following conditions:

(1) Let Ok = {λ1, · · · , λk}, [χOk
(x)] � [χ(Ok)d−ε

(y)] in K0(A).

(2) Let O′
k = {λk, · · · , λn}, [χO′

k
(x)] � [χ(O′

k
)d−ε

(y)] in K0(A).

We consider case (1). We may assume k is the minimum integer such that case (1) holds.

When (Ok)d−ε ∩ {η1, · · · , ηm} = ∅, let 0 < δ < ε
2mnM . Since TR(A) ≤ 1, there exist C ⊂ I(1)

with IC = P and {p11, · · · , p1n} ⊂ C, {p21, · · · , p2n} ⊂ (1 − P )A(1 − P ), {q11, · · · , q1m} ⊂ C

and {q21, · · · , q2m} ⊂ (1 − P )A(1 − P ) are four sets of mutually orthogonal projections with
n
∑

i=1

p1i +
n
∑

i=1

p2i =
m
∑

j=1

q1j +
m
∑

j=1

q2j = 1 such that for all i, j,

‖p1i + p2i − pi‖ < δ and ‖q1j + q2j − qj‖ < δ. (4.153)

Set x1 =
n
∑

i=1

λip1i, x2 =
n
∑

i=1

λip2i, y1 =
m
∑

j=1

ηjq1j and y2 =
m
∑

j=1

ηjq2j . Since (Ok)d−ε ∩

{η1, · · · , ηm} = ∅, Dc(x1, y1) ≥ d− ε in C. Then

d− ε ≤ ‖x1 − y1‖ ≤ ‖x1 + x2 − (y1 + y2)‖ ≤ ‖x− y‖+ ε. (4.154)

This implies lemma holds.

Now we may assume ηk′ = max((Ok)d−ε ∩ {η1, · · · , ηm}). If there exists k′1 < k′ such

that ηk′
1

/∈ (Ok)d−ε ∩ {η1, · · · , ηm}, let Λ = {λ1, · · · , λn} and Λ′ = {λ1, · · · , λk}. Then
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dist(Λ′, {ηk′
1
}) ≥ d − ε and ηk′

1
< ηk′ < λk + (d − ε). Therefore, ηk′

1
≤ λk − (d − ε) <

λk+1 − (d − ε). This implies that dist(Λ, {ηk′
1
}) ≥ d − ε. As (4.153)–(4.154), we will obtain

x1 =
n
∑

i=1

λip1i, y1 =
m
∑

j=1

ηjq1j ∈ C, where C ∈ I(1), such that ‖x1 − y1‖ ≤ ‖x − y‖ + ε. Since

χ{ηk′
1
}(y1) > 0 and χ{ηk′

1
}d−ε

(x1) = 0, Dc(x1, y1) ≥ d−ε in C. So d−ε ≤ ‖x1−y1‖ < ‖x−y‖+ε.

This implies lemma holds.

Therefore, furthermore, we may assume

(Ok)d−ε ∩ {η1, · · · , ηm} = {η1, · · · , ηk′}. (4.155)

Since [χOk
(x)] � [χ(Ok)d−ε

(y)], it follows from [6, Lemma 2.5.2],
∥

∥

(

k
∑

i=1

pi
)(

1−
k′
∑

j=1

qj
)
∥

∥ = 1.

So,
∥

∥

(

k
∑

i=1

pi
)(

1−
k′
∑

j=1

qj
)(

k
∑

i=1

pi
)
∥

∥ = 1.

Set

F =
{

pi, qj ,
(

k
∑

i=1

pi

)(

1−
k′
∑

j=1

qj

)(

k
∑

i=1

pi

)

: i = 1, · · · , n, j = 1, · · · ,m
}

. (4.156)

Let 0 < δ1 < δ2 with 16δ2+16
√
2δ2 <

ε
(n+m)M . By Lemma 4.12, there exists a finite-dimension

C∗-subalgebra C′ ⊂ A with IC′ = P ′ such that for any a ∈ F ,

(I) ‖P ′a− aP ′‖ < δ1,

(II) P ′aP ′ ∈δ1 C′ and ‖P ′aP ′‖ > ‖a‖ − δ1.

If δ1 is sufficiently small, by [6, Lemma 2.5.6], there exist two sets of non-zero projections

{p′1, · · · , p′n} ⊂ C′ and {q′1, · · · , q′m} ⊂ C′ such that ‖P ′piP
′ − p′i‖ < δ2 and ‖P ′qjP

′ − q′j‖ < δ2

for all i, j. Furthermore, we may assume

∥

∥

∥

(

k
∑

i=1

p′i

)(

1−
k′
∑

j=1

q′j

)(

k
∑

i=1

p′i

)

− P ′
(

k
∑

i=1

pi

)(

1−
k′
∑

j=1

qj

)(

k
∑

i=1

pi

)

P ′
∥

∥

∥
< δ2. (4.157)

Then by (II),

∥

∥

∥

(

k
∑

i=1

p′i

)(

1−
k′
∑

j=1

q′j

)(

k
∑

i=1

p′i

)∥

∥

∥
>

∥

∥

∥
P ′

(

k
∑

i=1

pi

)(

1−
k′
∑

j=1

qj

)(

k
∑

i=1

pi

)

P ′
∥

∥

∥
− δ2

> 1− 2δ2. (4.158)

Set r =
(

k
∑

i=1

p′i
)(

1−
k′
∑

j=1

q′j
)(

k
∑

i=1

p′i
)

. Since r ∈ C′, spC′(r) is finitely. Suppose r =
l
∑

i=1

αiri,

where r1, · · · , rl are mutually orthogonal non-zero projections in C′. By (4.158), without loss

of generality, we may assume α1 ∈ (1− 2δ2, 1]. Note that r1 ≤
k
∑

i=1

p′i, then

α1r1 = r1rr1 = r1

(

1−
k′
∑

j=1

q′j

)

r1. (4.159)
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Therefore,
∥

∥r1
(

1−
k′
∑

j=1

q′j
)

r1 − r1
∥

∥ < 2δ2 and then
∥

∥r1
(

k′
∑

j=1

q′j
)

r1
∥

∥ < 2δ2. So we will find

∥

∥

∥
(1− r1)

(

k′
∑

j=1

q′j

)

(1− r1)−
(

k′
∑

j=1

q′j

)∥

∥

∥
< 2δ2 + 2

√

2δ2. (4.160)

It follows from [6, 2.5.4] that there exists projection q′ ∈ (1 − r1)C
′(1 − r1) such that

∥

∥q′ −
(

k′
∑

j=1

q′j
)∥

∥ < 4δ2 + 4
√
2δ2. By [6, 2.5.1], there exists unitary u ∈ C′ such that q′ = u

(

k′
∑

j=1

q′j
)

u∗

and ‖P ′−u‖ < 8δ2+8
√
2δ2. Note that r1u

(

k′
∑

j=1

q′j
)

u∗ = r1q
′ = 0 and r1u

(

1−
k′
∑

j=1

q′j
)

u∗r1 = r1.

This implies that r1 ≤ u
(

1−
k′
∑

j=1

q′j
)

u∗. Therefore, r1u
(

1−
k′
∑

j=1

q′j
)

u∗r1 = r1 = r1
(

k
∑

i=1

p′i
)

r1. Let

x′ =
k
∑

i=1

λip
′
i and y′ = u

(

m
∑

j=k′+1

ηjq
′
j

)

u∗. By Remark 4.1,

spr1C′r1(r1x
′r1) ⊂ [λ1, λk] and spr1C′r1(r1y

′r1) ⊂ [ηk′+1, ηm]. (4.161)

Note that ηk′+1 − λk ≥ d− ε by (4.155). So

χr1C
′r1

[λ1,λk]
(r1x

′r1) = r1 > 0 = χr1C
′r1

([λ1,λk])d−ε
(r1y

′r1). (4.162)

Therefore, Dc(r1x
′r1, r1y

′r1) ≥ d − ε in r1C
′r1. Since r1C

′r1 is finite dimension, d − ε ≤
‖r1x′r1 − r1y

′r1‖. But

‖r1x′r1 − r1y
′r1‖

=
∥

∥

∥
r1

(

n
∑

i=1

λip
′
i

)

r1 − r1u
(

m
∑

j=1

ηjq
′
j

)

u∗r1

∥

∥

∥

≤
∥

∥

∥
r1

(

n
∑

i=1

λip
′
i

)

r1 − r1

(

m
∑

j=1

ηjq
′
j

)

r1

∥

∥

∥
+ (16δ2 + 16

√

2δ2)M

≤
∥

∥

∥

n
∑

i=1

λip
′
i −

m
∑

j=1

ηjq
′
j

∥

∥

∥
+ (16δ2 + 16

√

2δ2)M

≤ ‖P ′(x− y)P ′‖+ (n+m)Mδ2 + (16δ2 + 16
√

2δ2)M

≤ ‖x− y‖+ 2ε. (4.163)

We get d ≤ ‖x− y‖+ 3ε.

To consider the case (2) of the lemma, by the same argument, we will also have d ≤
‖x− y‖+ 3ε. Therefore, lemma holds.

Theorem 4.3 Let A be a unital simple C∗-algebra with TR(A) ≤ 1. Let x, y ∈ A be

self-adjoint elements. Then

Dc(x, y) = dist(U(x), U(y)). (4.164)

Proof It follows from Lemma 4.11, we remain to show Dc(x, y) ≤ dist(U(x), U(y)).
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Let d = Dc(x, y). It holds when d = 0.

Now, we may assume d > 0. Let 0 < ε < d and ‖x‖, ‖y‖ ≤ M . Let 0 < ε′ < ε satisfy

Lemma 2.3 (replace of δ by 10ε′ in Lemma 2.3). Suppose X = {λ1, · · · , λn} is a ε′-dense

subset of sp(x) and Y = {η1, · · · , ηm} is a ε′-dense subset of sp(y). It follows from Lemma

4.9, there exist two sets of mutually orthogonal projections {p1, · · · , pn} and {q1, · · · , qm} and

self-adjoint elements x1, y1 ∈ A such that x1

n
∑

i=1

pi = y1
m
∑

j=1

qj = 0 and
∥

∥x1 +
n
∑

i=1

λipi − x
∥

∥ < ε′

and
∥

∥y1 +
m
∑

j=1

ηjqj − y
∥

∥ < ε′.

Set F = {x1, y1, pi, qj : i = 1, · · · , n; j = 1, · · · ,m} and 0 < ε′1 < ε′. It follows from Lemma

4.12, there exists finite dimension C∗-subalgebra C ⊂ A with IC = P such that for all a ∈ F ,

(1) ‖Pa− aP‖ < ε′1,

(2) PaP ∈ε′
1
C and ‖PaP‖ > ‖a‖ − ε′1.

Therefore, if ε′1 is sufficiently small, there exist four sets of mutually orthogonal projections

{pk1, · · · , pkn} and {qk1, · · · , qkm}, k = 1, 2, such that for all i, j, p1i, q1j ∈ C, p2i, q2j ∈
(1− P )A(1− P ), and

‖p1i + p2i − pi‖ <
ε′

(n+m)M
, (4.165)

‖q1i + q2i − qi‖ <
ε′

(n+m)M
. (4.166)

Furthermore, there exist self-adjoint elements x2, y2 ∈ (1 − P )A(1 − P ) and x3 ∈
(

P −
n
∑

i=1

p1i
)

C
(

P −
n
∑

i=1

p1i
)

, y3 ∈
(

P −
m
∑

j=1

p1j
)

C
(

P −
m
∑

j=1

p1j
)

such that ‖x2 + x3 − x1‖ < ε′ and

‖y2 + y3 − y1‖ < ε′. Let x4 = x2 +
n
∑

i=1

λip2i, y4 = y2 +
m
∑

j=1

ηjp2j , x5 = x3 +
n
∑

i=1

λip1i and

y5 = y3 +
m
∑

j=1

ηjp1j. Then x4, y4 ∈ (1− P )A(1 − P ) and x5, y5 ∈ C. Furthermore, we have

‖x4 + x5 − x‖ < 3ε′ and ‖y4 + y5 − y‖ < 3ε′. (4.167)

Since ‖PpiP‖ ≥ ‖pi‖ − ε′1 = 1 − ε′1 and ‖PqjP‖ ≥ ‖qj‖ − ε′1 = 1 − ε′1 for all i, j, p1i, q1j

are non-zero projections for all i, j if ε′1 is sufficiently small. Therefore, spC(x5) is a 4ε′-dense

subset of (sp(x))3ε′ and spC(y5) is a 4ε′-dense subset of (sp(x))3ε′ .

Set x5 =
k
∑

i=1

αip5i and y5 =
k′
∑

j=1

βjq5j , where spC(x5) = {α1, · · · , αk} and spC(y5) =

{β1, · · · , βk′}, {p51, · · · , p5k} and {p51, · · · , p5k′} are two sets of mutually orthogonal projections

of C with
k
∑

i=1

p5i =
k′
∑

j=1

q5j = P . Let e ∈ (1 − P )A(1 − P ) be a projection such that 2mn[e] ≤

[p5i], [q5j ] in K0(A) for all i, j. Then there exists C′ ∈ I(1) with IC = P ′ and C′ ⊂ (1−P )A(1−
P ), four self-adjoint elements x6, y6 ∈ C′ and x7, y7 ∈ (1− P − P ′)A(1− P − P ′) such that

[1− P − P ′] ≤ [e], ‖x6 + x7 − x4‖ < ε′ and ‖y6 + y7 − y4‖ < ε′. (4.168)

By the same argument of proof of (4.120) in Lemma 4.11, there exist self-adjoint elements

x8, y8 ∈ (1− P ′)A(1 − P ′) such that sp(x8) and sp(y8) are finitely and

‖x5 + x7 − x8‖ < 4ε′ and ‖y5 + y7 − y8‖ < 4ε′. (4.169)
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Therefore, by (4.167)–(4.169),

‖x6 + x8 − x‖ < ‖x5 + x6 + x7 − x‖ + 4ε′ < ‖x4 + x5 − x‖+ 5ε′ < 8ε′. (4.170)

We also have ‖y6 + y8 − y‖ < 8ε′. Let d1 = Dc(x6, y6) in C′ and d2 = Dc(x8, y8) in (1 −
P ′)A(1 − P ′). By Lemma 2.3, Theorem 4.2 and Lemma 4.14, we get

d ≤ max{d1, d2}+ 2ε

≤ max{‖x6 − y6‖, ‖x8 − y8‖}+ 2ε

= ‖x6 + x8 − y6 − y8‖+ 2ε

≤ ‖x− y‖+ 10ε. (4.171)

This implies that theorem holds.
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