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Abstract This paper is concerned with convergence of stochastic gradient algorithms

with momentum terms in the nonconvex setting. A class of stochastic momentum meth-

ods, including stochastic gradient descent, heavy ball and Nesterov’s accelerated gradient,

is analyzed in a general framework under mild assumptions. Based on the convergence

result of expected gradients, the authors prove the almost sure convergence by a detailed

discussion of the effects of momentum and the number of upcrossings. It is worth noting

that there are not additional restrictions imposed on the objective function and stepsize.

Another improvement over previous results is that the existing Lipschitz condition of the

gradient is relaxed into the condition of Hölder continuity. As a byproduct, the authors

apply a localization procedure to extend the results to stochastic stepsizes.
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1 Introduction

In recent years, deep learning has witnessed an impressive string of empirical success in the

area of image classification, speech recognition, natural language processing, etc. Due to the

rapid growth in the scale of modern datasets, finding the minimum of a function f with an

iterative procedure has become very popular, especially to minimize the training error of deep

networks. We study the classical unconstrained stochastic programming problem of the form

min
x

f(x) =̂ E
P[h(x, Z)], (1.1)

where x ∈ R
d, h is a measurable function, and Z is a random element with a known or unknown

probability law P. When a discrete distribution is considered, i.e., Z represents a random index

obeying the uniform distribution on the finite set {z1, · · · , zn}, the stochastic optimization

problem is given in the form

min
x

f(x) =̂
1

n

n∑

i=1

h(x, zi). (1.2)
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For instance, in supervised learning, each zi represents a training sample, x is the parameter

of the model, and f represents the training loss. The landscape of the cost function remains

blurred in the case f does not have special structure. Hence, sometimes we relax the problem

to find a critical point of f .

A heuristic approach is to take steps proportional to the negative of the gradient, which is

known as Gradient Descent (GD for short). It was first set forth in [6] by Cauchy dated 1847.

The convergence was proved in [8] for the least squares problem where each component function

h(·, z) is the square of a continuously differentiable function. Then related research progressed

towards convex programming problems and new variants with momentum were proposed. In

a celebrated work [30], Polyak came up with the Heavy Ball (HB for short) method, i.e., GD

with exponentially weighted memory, to speed up the convergence for convex optimization.

Furthermore, in [27], Nesterov’s Accelerated Gradient (NAG for short) method achieved the

optimal convergence rate for a convex function f with Lipschitz continuous gradient. The

application of quasi-Newton methods is also explored. For example, Becker and LeCun [2] used

diagonal approximations of the Hessian matrix. See also [28–29, 31–32] for classical results

regarding GD.

The exact value of the gradient is required for all the aforementioned algorithms. Neverthe-

less, the effective computation of the gradient is too cost in a large-scale optimization problem.

Sometimes our access to f or ∇f is limited when considering simulation-based problems or

problems with unknown P. Therefore, these deterministic algorithms are restrictive. To ad-

dress issues, stochastic gradient algorithms originated from [35] and [18] where the randomized

gradient substituted for the exact value. Not only stochastic methods keep the complexity per

iteration constant with respect to the scale of the problem, but they are also likely to escape

local minima. For this reason, stochastic versions of gradient algorithms such as Stochastic

GD (SGD for short), Stochastic HB (SHB for short), and Stochastic NAG (SNAG for short)

recently have regained interest.

However, there exists a gap between practical success and theoretical explorations. Non-

convex deep neural networks are usually trained with decaying learning rates while many con-

vergence results are gained for programming problems with convexity (see [5, 13, 28, 31], and

references therein) or fixed stepsizes (see [22, 24, 40]), and references therein). Although there

are some results for nonconvex problems under mild conditions, these works are often performed

in a case-by-case manner. Hence, convergence properties and the complexity are still open in

theory, especially for momentum and adaptive methods in a systematic approach.

Here we focus on the sufficient conditions of the convergence in a unified treatment. Using

the method in [14] and the algorithm framework of [40] flexibly, we show L2 convergence of

these gradient algorithms in Theorem 3.1. This allows us to bound the effects of momentum

in the original observation Lemma 3.3 lying at the center of our demonstration. Then we

prove almost sure convergence in Theorem 3.2 by the construction of a supermartingale and a

detailed discussing of upcrossings, which are extensions of analysis in [3]. Specifically, the main

contributions of this paper are summarized in the following.

• Firstly, we demonstrate almost sure convergence of stochastic momentum methods in-

cluding SGD, SHB and SNAG under mild assumptions. To the best of our knowledge, the

theoretical assurance of almost sure convergence of SNAG for a nonconvex f has not been

proved. The majority of previous works in nonconvex setting analyze asymptotic behavior in

the sense of distribution or L2(P). Nonetheless, in practical application we always complete the

training of neural networks few times, which is equivalent to taking several sample points from
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the corresponding distribution. Compared with distribution properties, the analysis of a fixed

sample path of stochastic algorithms seems more instructive.

• Secondly, the Lipschitz condition of ∇f is relaxed into the condition of Hölder-continuity.

Indeed, the derivative of such an uncomplicated R
1 function f(x) = x

4
31|x|≤1+(2x

2
3 − 1)1|x|>1

satisfies the 1
3 -Hölder condition but not Lipschitz condition. Additionally, we do not need

constant or decreasing stepsizes, or coercive condition of f , i.e., lim
‖x‖→∞

f(x) = +∞. These

restrictions are often assumed to hold. For example, the coercive condition is requisite in the

proof of almost sure convergence of SHB in [12].

• Finally, stochastic stepsizes are also analyzed and the convergence of some perturbed

adaptive algorithms with momentum terms is obtained.

The rest of the paper is organized as follows. In Section 2, we survey some recent related

works. After introducing notations as well as the analytical framework, Section 3 gives the

main results and proofs. Section 4 studies stochastic stepsizes and adaptive algorithms. Finally,

Section 5 concludes with a brief discussion.

2 Related Works

There are abundant works on the convergence of stochastic gradient algorithms. We con-

centrate on articles discussing nonconvex situations.

The first complete proof of almost sure convergence in the absence of convexity is fulfilled

by Bertsekas and Tsitsiklis in [3–4], where the classical SGD is considered. The core is that

the process f(xt) can be shown to be approximately a supermartingale. Then the Robbins-

Siegmund lemma (see [36]) and a thorough inspection of upcrossings guarantee the almost sure

convergence of f(xt) and ∇f(xt), respectively. Since every step is influenced by the lasting

memory, their analysis cannot be applied directly to algorithms with momentum terms.

Ghadimi and Lan [14] demonstrate the convergence of the gradient in L2(P) sense. They

creatively use a random number R to terminate vanilla SGD. Then by direct computation of

E‖∇f(xR)‖
2, the complexity is established. Along this route, a class of randomized accelerated

gradient algorithms including SNAG is proved to converge in L2(P) sense in [15], in which

stepsizes must satisfy additional requirements. Yan et al. [40] also propose an enlightening

framework to unify SGD, SNAG and SHB. However, using the same technique, only expectation

convergence analysis is carried out in the case of small constant stepsizes and the bounded

gradient. Their discussion on the influence of momentum is insufficient to obtain further results.

Note that almost sure convergence cannot be derived from these papers. Notwithstanding

the fact that some technical conditions can be relaxed, there is intrinsic difficulty. Exactly

speaking, their demonstration hinges heavily on the termination time R. Given pre-fixed re-

quired accuracy ε, we can choose suitable Rε to ensure E‖∇f(xRε
)‖2 is small enough. When ε

tends to zero, the algorithm must terminate at different Rε which depends on ε and has different

distribution on the set of positive integers. It means that, the approach is unadaptable to the

study of asymptotic behavior, especially almost sure convergence.

The ODE approach is introduced by Ljung in [26], and extensively developed by [11, 20–

21], etc. The basic idea is approximating discrete-time stochastic algorithms by continuous-time

approach where the limit is an ordinary differential equation. On some stability assumptions,

the bridge is built between the behavior of each sample path of the SGD and the related ODE.

With the help of conclusions from the ODE method, almost sure convergence of SHB is obtained

in [12] by constructing a Lyapunov function. The limitation is that the coercive condition of f
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is required and stepsizes have the form 1
nr (r ∈ (0, 1]). [16] adopts a different approach based on

careful calculation and Levy’s extension of the Borel-Cantelli lemma, but only the limit inferior

is demonstrated with momentum parameter βt tending to 1 or 0.

In spite of limitations, some research is motivated by the ODE approach. [17] uses a multi-

variate Ornstein-Uhlenbeck process to approximate SGD in the vicinity of a local minimum, but

the statement there is in heuristic territory. The idea is further developed and mathematical

aspects are solidified in [23–24]. They go beyond OU process approximations and use a class

of stochastic differential equations to study the dynamics of SGD, SHB and SNAG methods.

Nevertheless, these convergence results are established in the weak sense, i.e., convergence in

distribution.

Some efforts have been devoted to utilizing control theoretic tools, such as Integral Quadratic

Constraints (see [22]), PID Controllers (see [1]) and Regularity Condition (see [39]), in the

analysis of stochastic algorithms with momentum, but they are also under strong assumptions.

3 Stochastic Gradient Methods with Momentum

3.1 Notations and setup

In the following, we will write vectors with bold letters. Let ‖ · ‖ denote the Euclidean norm

of a vector and 〈·, ·〉 denote the inner product.

Often, computing the full gradient can be quite expensive. Furthermore, we cannot gain

the exact gradient if the accurate distribution is not known. Therefore, instead of observing

a full gradient of f at x, we assume that we have a first order oracle which, given x ∈ R
d,

returns a noise gradient g(x, ξ) where g is a Borel measurable R
d-valued function and ξ is a

random variable on a probability space (Ω,F ,P). In the t-th iteration of the gradient method,

we observe g(xt, ξt) and denote it by gt for the sake of brevity.

Below, we repeat the Stochastic Unified Momentum (SUM for short) method that deals

with nonconvex stochastic programming problems and allows kinds of momentum terms. This

algorithm is firstly proposed in [40]. We replace the constant stepsize in SUM with a variable

one. The next subsection enjoys the convenience provided by this unified framework.

Algorithm 1 Stochastic Unified Momentum

Input: momentum factor β ∈ [0, 1), parameter s ≥ 0, stepsizes (γt)t≥0 and initial
point x0 ∈ R

d.
1 Set t = 0 and ys

0 = x0.
2 Sample ξt and get gt.
3 Set

yt+1 = xt − γtgt,

ys
t+1 = xt − sγtgt.

4 Set

xt+1 = yt+1 + β(ys
t+1 − ys

t ).

5 Substitute t with t+ 1 and go to step 2.
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Setting s= 1
1−β

, one can easily verify that SUM reduces to SGD with the stepsize
(

γt

1−β

)
:

xt+1 = xt −
γt

1− β
gt. (3.1)

When s = 0, we have SHB:

{
mt+1 = βmt − γtgt,

xt+1 = xt +mt+1,
(3.2)

whereas when s = 1, we have SNAG:

{
yt+1 = xt − γtgt,

xt+1 = yt+1 + β(yt+1 − yt).
(3.3)

Throughout this section, we impose the following assumptions on the cost function f .

(A.1) f is a continuous differentiable function such that

f∗ =̂ inf
x

f(x) > −∞.

(A.2) There exists α ∈ (0, 1] such that f ∈ C1+α, i.e., for some A > 0,

‖∇f(x)−∇f(y)‖ ≤ A‖x− y‖
α
, ∀x,y ∈ R

d.

f is called a L-smooth function in the case α = 1 and A = L. Smoothness assures us

that the gradient does not change dramatically within the region around where it is taken, and

thus the value of the gradient is informative when gradient algorithms are applied with small

stepsizes.

We will also need some assumptions on the stochastic oracle g(x, ξ). The expected direction

is assumed to be parallel with the gradient, and a bound on the mean square is essential.

(A.3) The oracle is an unbiased estimator for the gradient, i.e.,

E[g(x, ξ)] = ∇f(x), ∀x ∈ R
d.

(A.4) There exist positive constants σ2 and C, such that

E[‖g(x, ξ)−∇f(x)‖
2
] ≤ σ2 + C‖∇f(x)‖

2
, ∀x ∈ R

d.

(A.5) The random variables {ξt}t≥0 are independent of each other.

The following stepsize (γt)t≥0 is considered.

(A.6) (γt)t≥0 is a deterministic and nonnegative sequence such that

∞∑

t=0

γt = ∞,

∞∑

t=0

(γt)
1+α

< ∞.

Define F0 =̂ {Ω,∅} and Ft =̂ σ(ξ0, ξ1, · · · , ξt−1) for t ≥ 1. Since stepsizes are assumed to

be deterministic, we have xt ∈ Ft. Notice that (A.5) implies the independence of xt and ξt.

Therefore, E[‖gt −∇f(xt)‖
2|Ft] ≤ σ2 + C‖∇f(xt)‖

2 a.s.

The above assumptions are standard and reasonable for general stochastic algorithms. For

instance, the cost function f of a multi-layer network with the sigmoid activation function

S(x) = 1
1+exp(−x) and the quadratic loss is L-smooth. The existing theoretical results are
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almost based on assumptions (A.1)–(A.6). See [3, 4, 14] for SGD, [15, 28] for SNAG, [12] for

SHB, and [16, 23–24, 40] for unified treatment. In fact, the coercive condition of f and the

boundedness of ∇f and g are always assumed in previous works.

To show that the assumption (A.2) is more general, we give several examples of machine

learning, in which the cost function satisfies (A.2) but not L-smooth condition.

Example 3.1 We consider the linear support-vector machine (SVM for short) for binary

classification. We are given a training dataset of n points: (x1, y1), · · · , (xn, yn), where each

xi is a point in R
d and yi ∈ {1,−1} indicates the class to which xi belongs. Our aim is to

minimize the empirical risk for the smooth hinge loss introduced by [34]:

hα(v) =





α

α+ 1
− v, v ≤ 0,

1

α+ 1
vα+1 − v +

α

α+ 1
, 0 < v < 1,

0, v ≥ 1,

(3.4)

where α > 0. So the cost function is

fα(w, b) =
1

n

n∑

i=1

hα(yi(〈w,xi〉+ b)), (3.5)

where (w, b) ∈ R
d × R. When α ≥ 1, the gradient of fα is Lipschitz continuous, whereas when

0 < α < 1, fα ∈ C1+α but it is not L-smooth. Note that hα converges uniformly to the original

hinge loss h(v) = max{0, 1 − v} as α → ∞. Additionally, the gradient of the corresponding

cost function for the hinge loss h is not continuous.

A nonconvex C1+α example can be found in [37], where the sigmoid activation function

combined with “α-loss” is considered. Some C1+α regularization terms are also introduced in

order to take the advantages of both L1 and L2 regularization. For instance, [38] adopts the

l2,p matrix norm as the regularization.

In the following part, we state and prove the convergence results under the mild conditions

(A.1)–(A.6).

3.2 Convergence in expectation

Theorem 3.1 Let (xt)t≥0 be computed by Algorithm 1. Suppose that the conditions (A.1)–

(A.5) hold and the stepsize satisfies (A.6). Then

∞∑

t=0

γtE‖∇f(xt)‖
2
≤ C0,

where C0 is a constant depending on f,x0, β, s, (γt), C, σ.

Instead of working over (xt)t≥0 directly, which can be complicated and hinder the intuitions,

we utilize immediate variables to simplify the presentation and facilitate the analysis. We start

by defining (pt)t≥0 and deriving recursive formulas.
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Lemma 3.1 Define

pt =̂




0, t = 0,
β

1− β
(xt − xt−1 + sγt−1gt−1), t ≥ 1

and

vt =̂
1− β

β
pt, t ≥ 0.

Let zt = xt + pt. Then for any t ≥ 0, we have

zt+1 = zt −
γt

1− β
gt,

vt+1 = βvt + ((1− β)s− 1)γtgt.

Remark 3.1 The proof of the recursion is straightforward and can be found in [40], al-

though only constant stepsizes are processed there. So we omit this proof. A similar recursion

is given by [13] with s = 0 or 1. Note that the lemma does not hold when β is replaced by (βt).

In the case of SHB with a variable momentum factor (βt), a recursion can be found in [7].

Remark 3.2 Out of aesthetics and succinctness, we use the SUM framework established by

Yan et al. in [40] to obtain the convergence of SGD, SNAG and SHB, but the unification is not

essential to our demonstration. Actually, we can discuss these stochastic gradient algorithms

one by one along the same proof line.

Applying Newton-Leibniz formula, we have the following estimate of a C1+α function.

Lemma 3.2 Let f ∈ C1+α(Rd) with A > 0 being the Hölder index of the gradient ∇f .

Then for any x, z ∈ R
d,

f(x+ z)− f(x) ≤ 〈z,∇f(x)〉 +A
‖z‖1+α

1 + α
.

Having the above preliminaries, we prove the convergence of the gradient in L2(Ω) space.

Applying common techniques to the α-Hölder case, this argumentation bears a resemblance

to most discussions of stochastic gradient methods (see [9, 14–15, 40]), where the rate of con-

vergence of the form minE‖∇f(xt)‖
2
or E‖∇f(xRt

)‖
2
is obtained by an approximation of

E[f(xt+1)− f(x0)].

Proof of Theorem 3.1 Define δt =̂ gt − ∇f(xt), t ≥ 0. By Jessen’s inequality, for any

a, b ≥ 0, (a+ b)1+α ≤ 2α(a1+α + b1+α) ≤ 2(a1+α + b1+α). According to Lemma 3.1, noting the

recursion of (zt), we have, for any t ∈ N,

f(zt+1)− f(zt)

≤ −
γt

1− β
〈∇f(zt),gt〉+

Aγ1+α
t

(1 + α)(1 − β)1+α
‖gt‖

1+α

≤ −
γt

1− β
〈∇f(zt),gt〉+

2Aγ1+α
t

(1 + α)(1 − β)1+α
(‖∇f(xt)‖

1+α + ‖δt‖
1+α). (3.6)

Taking conditional expectations with respect to Ft on both sides, under assumptions (A.3)–

(A.5), we obtain

E[f(zt+1)− f(zt)|Ft]
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≤ −
γt

1− β
〈∇f(zt),∇f(xt)〉+

2Aγ1+α
t

(1 + α)(1 − β)1+α
(‖∇f(xt)‖

1+α
+ E[‖δt‖

1+α
|Ft])

≤ −
γt

1− β
〈∇f(zt),∇f(xt)〉+

2Aγ1+α
t

(1 + α)(1 − β)1+α
((C

1+α

2 + 1)‖∇f(xt)‖
1+α

+ σ1+α)

= −
γt

1− β
〈∇f(zt)−∇f(xt),∇f(xt)〉 −

γt

1− β
‖∇f(xt)‖

2

+
2Aγ1+α

t

(1 + α)(1 − β)1+α
((C

1+α

2 + 1)‖∇f(xt)‖
1+α + σ1+α)

≤
Aγ1+α

t

2(1− β)1+α
‖∇f(xt)‖

2 +
γ1−α
t

2A(1− β)1−α
‖∇f(zt)−∇f(xt)‖

2 −
γt

1− β
‖∇f(xt)‖

2

+
2Aγ1+α

t

(1 + α)(1 − β)1+α
((C

1+α

2 + 1)‖∇f(xt)‖
1+α

+ σ1+α), (3.7)

where the second inequality follows from Jessen’s inequality for conditional expectations and

the last inequality follows from Cauchy-Schwarz inequality.

Define Γt =̂
t∑

i=0

βi = 1−βt+1

1−β
. Observe that

‖∇f(zt)−∇f(xt)‖
2

≤ A2‖pt‖
2α

=
A2β2α

(1− β)2α
‖vt‖

2α

=
A2β2α|(1− β)s− 1|

2α

(1− β)2α

∥∥∥
t−1∑

i=0

βi γt−1−i gt−1−i

∥∥∥
2α

≤
A2β2α|(1− β)s− 1|

2α

(1− β)2α
Γα
t−1

{ t−1∑

i=0

βi γ2
t−1−i‖gt−1−i‖

2
}α

≤
A2β2α|(1− β)s− 1|

2α

(1− β)2α
Γα
t−1

t−1∑

i=0

βiα γ2α
t−1−i ‖gt−1−i‖

2α

≤
A2β2α|(1− β)s− 1|

2α

(1− β)3α

t−1∑

i=0

βiα γ2α
t−1−i ‖gt−1−i‖

2α
, (3.8)

where the second equation follows from the recursion of (vt) and the second inequality follows

from Hölder’s inequality for probability measures.

Now we substitute the second term of RHS of (3.7) with (3.8) and obtain

E[f(zt+1)− f(zt)]

≤
Aβ2α|(1− β)s− 1|

2α

(1 − β)1+2α

{ t−1∑

i=0

βiα γ1−α
t γ2α

t−1−i[σ
2α + (Cα + 1)E‖∇f(xt−1−i)‖

2α]
}

+
( Aγ1+α

t

2(1− β)1+α
−

γt

1− β

)
E‖∇f(xt)‖

2
+

2Aγ1+α
t

(1 + α)(1 − β)1+α
(C

1+α

2 + 1)E‖∇f(xt)‖
1+α

+
2Aσ1+αγ1+α

t

(1 + α)(1 − β)1+α
. (3.9)

Our next step is to bound the summation of the first terms of RHS of (3.9) as below. Let
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S denote 1 +
∞∑
t=0

γ1+α
t and we have

∞∑

t=0

t−1∑

i=0

βiαγ1−α
t γ2α

t−1−iE‖∇f(xt−1−i)‖
2α

=
∞∑

i=0

βiα

∞∑

t=i+1

γ1−α
t (γ2α

t−1−iE‖∇f(xt−1−i)‖
2α)

≤

∞∑

i=0

βiα
{( ∞∑

t=i+1

γ1+α
t

) 1−α

1+α
( ∞∑

t=i+1

γ1+α
t−1−iE‖∇f(xt−1−i)‖

1+α
) 2α

1+α
}

≤
∞∑

i=0

βiα
(
1 +

∞∑

t=0

γ1+α
t

)(
1 +

∞∑

t=0

γ1+α
t E‖∇f(xt)‖

1+α
)

≤
S

1− βα
+

S

1− βα

∞∑

t=0

γ1+α
t E‖∇f(xt)‖

1+α
, (3.10)

where in the first equality we have used Hölder’s inequality and Jessen’s inequality, and in the

second one |a|
c
≤ 1 + |a| for any c ∈ [0, 1]. Similarly,

∞∑

t=0

t−1∑

i=0

βiαγ1−α
t γ2α

t−1−i

=

∞∑

i=0

βiα

∞∑

t=i+1

γ1−α
t γ2α

t−1−i

≤

∞∑

i=0

βiα
( ∞∑

t=i+1

γ1+α
t

) 1−α

1+α
( ∞∑

t=i+1

γ1+α
t−1−i

) 2α
1+α

≤
S

1− βα
. (3.11)

For simplicity, we set

C1(S) =̂
A

2(1− β)1+α
+

2A(C
1+α

2 + 1)

(1 + α)(1 − β)1+α
+

Aβ2α|(1− β)s− 1|2αS(Cα + 1)

(1 − β)1+2α(1− βα)
,

C2 =̂
Aβ2α|(1− β)s− 1|

2α
(σ2α + 2Cα + 2)

(1− β)1+2α(1− βα)
+

2A(C
1+α

2 + 1)

(1 + α)(1 − β)1+α
+

2Aσ1+α

(1 + α)(1 − β)1+α
.

Then, we can sum up the inequalities involving E[f(zt+1)− f(zt)] and rearrange the terms.

Noting that |a|
c
≤ 1 + |a|

2
for any c ∈ [0, 2], we immediately obtain the following succinct

formula

∞∑

t=0

( γt

1− β
− C1(S)γ

1+α
t

)
E‖∇f(xt)‖

2 ≤ (f(x0)− f∗) + SC2. (3.12)

After some finite number of terms, the t-th term of LHS is bigger than γt−1

2(1−β)E‖∇f(xt−1)‖
2.

Moreover, note E‖∇f(xt)‖
2
< ∞ for any t, which can be shown by induction. We conclude

∞∑

t=0

γt

2(1− β)
E‖∇f(xt)‖

2
≤ C′. (3.13)
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Corollary 3.1 Let Rt be a random variable taking on a value in {0, 1, · · · , t} with the

probability measure

P(Rt = i) =
γi
t∑

i=0

γi

, 0 ≤ i ≤ t.

And (Rt) is independent of (ξt). Then, under assumptions (A.1)–(A.6),

E‖∇f(xRt
)‖

2
≤

C0

t∑
i=0

γi

→ 0 as t → ∞.

Furthermore, if more information on the stepsize is given, we can obtain an explicit upper bound

on the rate of convergence.

Corollary 3.2 The estimates (3.10)–(3.12) still hold under assumptions (A.1)–(A.5) for

a finite number of iterations. With a given positive integer t, consider (xi)i=0,1,··· ,t which is

computed by Algorithm 1 with γi = 1

t
1

1+α

for i = 0, · · · , t − 1. Noting
t−1∑
i=0

γi = t
α

1+α and

t−1∑
i=0

(γi)
1+α = 1, we immediately have S = 2 and

t−1∑

i=0

( γi

1− β
− C1(2)γ

1+α
i

)
E‖∇f(xi)‖

2 ≤ (f(x0)− f∗) + 2C2.

Following the notation Rt−1 of Corollary 3.1, when t ≥ (2(1− β)C1(2))
1+α

α , we have that

E‖∇f(xRt−1
)‖2 ≤

2(1− β)((f(x0)− f∗) + 2C2)
t−1∑
i=0

γi

= C0t
− α

1+α .

The above inequality shows that momentum methods ensure E‖∇f‖
2
≤ ε in O

(
1

ε
1+α

α

)
iterations

with the constant stepsize being proportional to ε
1
α , which is aligned with our intuition.

3.3 Almost sure convergence

Based on the result in L2 sense, almost sure convergence can be established.

Theorem 3.2 Let (xt)t≥0 be computed by Algorithm 1. Also suppose that conditions (A.1)–

(A.5) are fulfilled and stepsizes are chosen such that (A.6) holds. Then, we have the following

three assertions:

(1) The sequence f(xt) converges almost surely,

(2) the sequence ∇f(xt) converges to zero almost surely,

(3) if, in addition, f has finite critical points in {x ∈ R
d | a ≤ f(x) ≤ b} for any a < b and

lim
‖x‖→∞

f(x) = +∞, then, xt converges almost surely,

Theorem 3.2 is not a direct inference that follows from Theorem 3.1. We actually need to

carefully restrict the dynamics introduced by noise and momentum. Then we can illustrate

that f(xt) is approximately a supermartingale and construct subsequent arguments.

The following lemma is of great importance in our argumentation, since it bridges the gap

between zt and xt by demonstrating that pt converges to 0. To some extent, this original

observation enables us to treat momentum algorithms as vanilla ones without momentum.
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Lemma 3.3 With the notations before, under assumptions (A.1)–(A.6), we have

(1)
∞∑
t=0

γt‖pt‖
2α

< ∞ a.s.,

(2) the sequence pt converges to zero almost surely.

Proof As in (3.8), we use the same approximation and obtain

E‖pt‖
2α

≤
β2α|(1 − β)s− 1|

2α

(1 − β)3α

t−1∑

i=0

βiα γ2α
t−1−i E‖gt−1−i‖

2α

≤
β2α|(1 − β)s− 1|

2α
(Cα + 1)

(1 − β)3α

{ t−1∑

i=0

βiα γ2α
t−1−iE‖∇f(xt−1−i)‖

2α
}

+
β2α|(1− β)s− 1|

2α
σ2α

(1− β)3α

t−1∑

i=0

βiα γ2α
t−1−i. (3.14)

We use C′ to denote a constant. Multiplying both sides of (3.14) by γt and summarizing

over t, we have

E

[ ∞∑

t=0

γt‖pt‖
2α
]

≤ C′
∞∑

t=0

γt

t−1∑

i=0

βiα γ2α
t−1−i E‖∇f(xt−1−i)‖

2α
+ C′

∞∑

t=0

γt

t−1∑

i=0

βiα γ2α
t−1−i

≤ C′
∞∑

i=0

βiα
( ∞∑

t=i+1

γ
1+α

1−α

t

) 1−α

1+α
( ∞∑

t=i+1

γ1+α
t−1−iE‖∇f(xt−1−i)‖

1+α
) 2α

1+α

+ C′
∞∑

i=0

βiα
( ∞∑

t=i+1

γ
1+α

1−α

t

) 1−α

1+α
( ∞∑

t=i+1

γ1+α
t−1−i

) 2α
1+α

< ∞, (3.15)

which is a direct application of Theorem 3.1 and (A.6). Therefore,
∞∑
t=0

γt‖pt‖
2α

< ∞ a.s.

Similar to the derivation of (1), we have

E

[ ∞∑

t=0

‖pt‖
2
]

≤ C′
∞∑

i=0

βi

∞∑

t=i+1

γ2
t−1−iE‖∇f(xt−1−i)‖

2
+ C′

∞∑

i=0

βi

∞∑

t=i+1

γ2
t−1−i

< ∞. (3.16)

We conclude that
∞∑
t=0

‖pt‖
2
< ∞ and ‖pt‖ → 0 almost surely.

Now, we are ready to prove the almost sure convergence of the SUM method.

Proof of Theorem 3.2 Noting ‖xt+1 − xt‖ → 0, we only need to prove assertion (1) and

assertion (2), because assertion (3) is a direct consequence. The proof consists of three steps

whose main body is along the lines of the proof of Proposition 4.1 in [3]. First we use Doob’s
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supermartingale convergence theorem to bound the effects of the noise and obtain the result

that f(zt) converges and lim inf ‖∇f(xt)‖ = 0 a.s. Assuming lim sup ‖∇f(xt)‖ > 0, we then

proceed to a detailed discussion of upcrossing intervals and reduce this assumption to absurdity.

The remaining part, i.e., f(xt) converges almost surely, is completed in the last step.

In truth, we can take the first step swiftly by means of the Robbins-Siegmund lemma, but

we provide a self-contained derivation here.

As is similar to the approximation of E[f(zt+1)− f(zt)|Ft] in (3.7)–(3.8), we have

E[f(zt+1)|Ft] ≤ f(zt)−Xt + Yt + Zt (3.17)

with

Xt =̂
( γt

2(1− β)
−

2A(1 + C)γ1+α
t

(1 + α)(1 − β)1+α

)
‖∇f(xt)‖

2
,

Yt =̂
A2γt

2(1− β)
‖pt‖

2α
,

Zt =̂
A(2σ2 + 1)

(1 + α)(1 − β)1+α
γ1+α
t .

Note that (Yt) and (Zt) are nonnegative (Ft)-adapted processes. Also, (Xt) is adapted and

there exists a constant TX such that Xt ≥ 0 for any t > TX . Consider the adapted process

(f̃t) defined by f̃t =̂ f(zt) +
t−1∑
i=0

Xi −
t−1∑
i=0

Yi −
t−1∑
i=0

Zi for any t ≥ 0. The above inequality can be

written as

E[f̃t+1|Ft] ≤ f̃t, (3.18)

which means that (f̃t) is a (Ft)-supermartingale.

In fact, the expectation of negative part of (f̃t) is bounded. We make use of (A.6) and (3.15)

and obtain

E[(f̃t)
−]

≤ (f(zt))
− +

TX∑

i=0

E[(Xi)
−] +

t−1∑

i=0

E[Yi] +

t−1∑

i=0

Zi

= (f(zt))
− +

TX∑

i=0

E[(Xi)
−] +

A2

2(1− β)

t−1∑

i=0

γiE‖pi‖
2α +

A(2σ2 + 1)

(1 + α)(1 − β)1+α

t−1∑

i=0

γ1+α
i

≤ C′, (3.19)

where the constant C′ does not depend on t.

Subsequently, using Doob’s supermartingale convergence theorem, we deduce that there

exists a random variable η ∈ L1(Ω,F ,P) such that f̃t → η a.s. Thanks to the convergence of

the sum of Yt and Zt,
(
f(zt) +

t−1∑
i=0

Xi

)
converges almost surely. Note that inf

x

f(x) > −∞ and

( t−1∑
i=0

Xi

)
is entirely non-decreasing after TX terms. As a result,

lim
t→∞

f(zt) exists and

∞∑

t=0

Xt < ∞ a.s.
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Since
∞∑
t=0

γt = ∞, we immediately obtain

lim inf
t→∞

‖∇f(xt)‖ = 0 a.s.

The first step has been accomplished.

We say that the time interval {t, t+ 1, · · · , t} is an upcrossing interval of (‖∇f(xs)‖) from

a to b, if ‖∇f(xt)‖ < a, ‖∇f(xt)‖ > b, and a ≤ ‖∇f(xs)‖ ≤ b for t < s < t. Now we assume

the opposite of the proposition that ∇f(xt) converges to zero a.s. and show its nonsense.

Assume there exists a constant ε > 0 and a measurable set Ω1 with P(Ω1) > 0 such that

lim sup ‖∇f(xt)‖(ω) ≥ 2ε for any ω ∈ Ω1. The fact that the limit inferior of ∇f(xt) is zero

and the above assumption lead to an infinite number of upcrossings from ε
2 to ε for ω ∈ Ω1.

Denote the k-th upcrossing interval by {tk, tk+1, · · · , tk}.

Define

χt =̂ 1{‖∇f(xt)‖≤ε} ∈ Ft,

and

ut =̂

t−1∑

i=0

χiγi(gi − E[gi|Fi]) =

t−1∑

i=0

χiγiδi ∈ Ft.

Then we proceed analogously as in the analysis of (f̃t) and obtain the almost sure convergence

of the (Ft)-martingale (ut). Since (χt) is adapted and the stochastic oracle is unbiased, we

have, for any t ≥ 0,

E[ut+1|Ft] = ut + E[χtγtδt|Ft] = ut + χtγtE[δt|Ft] = ut. (3.20)

It is also straightforward to verify the L2(Ω) boundedness of (ut).

E‖ut+1‖
2

= E‖ut‖
2
+ E[E[‖χtγtδt‖

2
|Ft]]

≤ E‖ut‖
2
+ γ2

t E[χt (C‖∇f(xt)‖
2
+ σ2)]

≤

t∑

i=0

γ2
i (Cε2 + σ2). (3.21)

Applying Doob’s martingale convergence theorem to (ut), we conclude that ut converges a.s.

We immediately obtain the two limits:

lim
k→∞

tk−1∑

t=tk

γtδt(ω) = 0 for almost all ω ∈ Ω1, (3.22)

lim
k→∞

γtkδtk(ω) = 0 for almost all ω ∈ Ω1. (3.23)

Using the recursion in Lemma 3.1, we have, for any k > 0,

‖∇f(xtk+1)‖ − ‖∇f(xtk)‖

≤ ‖∇f(ztk+1)‖ − ‖∇f(ztk)‖ +A‖ptk+1‖
α +A‖ptk‖

α
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≤ A
∥∥∥ γtk
1− β

gtk

∥∥∥
α

+A‖ptk+1‖
α
+A‖ptk‖

α

≤
Aγα

tk

(1− β)α
‖∇f(xtk)‖

α +
A

(1− β)α
‖γtkδtk‖

α +A‖ptk+1‖
α +A‖ptk‖

α
. (3.24)

Note that the four terms on the right side tends to zero for almost all ω ∈ Ω1, respectively.

Therefore, there exists a measurable set Ω2 such that Ω2 ⊂ Ω1, P(Ω2) = P(Ω1) > 0, and
tk−1∑
t=tk

γtδt(ω) → 0, γtkδtk(ω) → 0, ‖∇f(xtk+1)‖(ω) − ‖∇f(xtk)‖(ω) → 0, ptk(ω) → 0, and

ptk
(ω) → 0 for any ω ∈ Ω2.

We arbitrarily fix ω ∈ Ω2 and consider this sample path below. Since above convergence

properties, there exists a positive integer K1(ω) such that, for any k > K1(ω), ‖∇f(xtk)‖(ω) ≥
ε
4 . Additionally, by (A.2) and the fact both ptk(ω) and ptk

(ω) converge to zero, we can choose

a large enough K2(ω) such that, for k > K2(ω),

ε

4
≤ ‖∇f(ztk)‖(ω)− ‖∇f(ztk)‖(ω)

≤ A
∥∥∥

tk−1∑

t=tk

γt

1− β
gt

∥∥∥
α

(ω)

≤
A

(1− β)α

∥∥∥
tk−1∑

t=tk

γtδt

∥∥∥
α

(ω) +
A

(1− β)α

∥∥∥
tk−1∑

t=tk

γt∇f(xt)
∥∥∥
α

(ω). (3.25)

Since the first term on the right side tends to zero, we have

lim inf
k→∞

tk−1∑

t=tk

γt‖∇f(xt)‖(ω) ≥
(1− β)ε

1
α

4
1
αA

1
α

. (3.26)

Noting that ‖∇f(xt)‖(ω) ≥
ε
4 for any t ∈ [tk(ω), tk(ω)− 1] with k > K1(ω), we obtain

lim inf
k→∞

tk−1∑

t=tk

γt‖∇f(xt)‖
2(ω) ≥

(1− β)ε
1
α

4
1
αA

1
α

ε

4
. (3.27)

This immediately implies that
∞∑
t=0

γt‖∇f(xt)‖
2
(ω) = ∞ for any ω ∈ Ω2, which contradicts

Theorem 3.1. We conclude that ∇f(xt) converges to zero almost surely.

Thus, it remains to show the convergence of f(xt). By Lemma 3.2, we have

|f(xt)− f(zt)| ≤ ‖∇f(xt)‖‖pt‖+
A

1 + α
‖pt‖

1+α → 0 a.s. (3.28)

Therefore, the convergence of f(zt) implies that f(xt) converges with probability 1.

Remark 3.3 In fact, some conditions can be easily relaxed in our analysis. Instead of strict

restrictions on growth of ∇f and the unbiasedness of g, we consider the following counterparts.

(A.2′) 0 < α ≤ 1. ∇f is α-Hölder continuous and satisfies a linear growth condition, i.e.,

for some A > 0,

‖∇f(x)−∇f(y)‖ ≤ A (‖x− y‖α + ‖x− y‖), ∀x,y ∈ R
d.
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(A.3′) The conditional expectation of the stochastic oracle is not too short and makes an

acute angle with the gradient of f . More precisely, for some K > 0,

〈∇f(xt), E[gt|Ft]〉 ≥ K‖∇f(xt)‖
2
, ∀t ≥ 0.

(A.4′) There exist positive constants σ2 and C, such that

E[‖gt‖
2
|Ft] ≤ σ2 + C‖∇f(xt)‖

2
, ∀t ≥ 0.

We can tune up our proof along the feasible route in this section. For the sake of intuition,

we just give the derivation under assumptions (A.1)–(A.6). However, the whole key points

of our proof do not change under assumptions (A.1), (A.2′)–(A.4′) and (A.6). Since these

conditions still fit our analytical framework, we will get the same results.

4 Stochastic Stepsizes

The convergence theorems in the previous section require deterministic stepsizes. However,

the performance fluctuates dramatically and heavily depends on the choice of stepsizes. To-

wards the aim of obtaining easy-to-tune learning rates, adaptive algorithms such as AdaGrad,

Adadelta, RMSprop and Adam get employed and a considerable part of state-of-the-art re-

sults is achieved in deep learning articles. See [7, 10, 19, 33], and references therein. So the

determinacy of the stepsize appears to be restrictive and unnecessary from both practical and

theoretical points of view.

To fill the gap between deterministic and stochastic stepsizes, we will meticulously use an

approach based upon a localization procedure. The core of our discussion is to find a proper

localizing sequence of stopping times that reduces (γt) to a more regular one (γ
(N)
t ) such that

∞∑
t=0

γ
(N)
t = ∞ and

∞∑
t=0

(γ
(N)
t )1+α ≤ N a.s. The remaining argumentation is produced alike.

Additionally, we obtain the almost sure convergence of some variants of adaptive algorithms

with momentum as a by-product.

Define Ft =̂ σ(γ0, ξ0, γ1, ξ1, · · · , γt−1, ξt−1, γt) for any t ≥ 0, i.e., Ft stands for the entire

history of the algorithm up to and including the point at which γt is selected, but before the

update direction g(xt, ξt) is determined. We have the following theorem.

Theorem 4.1 Let (xt)t≥0 be computed by Algorithm 1. Suppose that the stepsize (γt) is a

nonnegative sequence satisfying
∞∑
t=0

γt = ∞ and
∞∑
t=0

(γt)
1+α < ∞ a.s. and that ξt is independent

of Ft for any t ≥ 0. Also, suppose the oracle g(xt, ξt)(ω) = g(xt(ω), ξt(ω)), i.e., a sample of g

is unaffected by the distribution of x, and so is γ. Then, under assumptions (A.1)–(A.5), the

following hold:

(1) The sequence f(xt) converges almost surely,

(2) the sequence ∇f(xt) converges to zero almost surely,

(3) if, in addition, f has finite critical points in {x ∈ R
d | a ≤ f(x) ≤ b} for any a < b and

lim
‖x‖→∞

f(x) = +∞, then, xt converges almost surely.

Proof To establish the convergence we construct localizing stopping times to impose some

additional assumptions about (γt). C1(·) and C2 are the same as those in the proof of Theorem

3.1. Fix an integer N ≥ 0. Let γ
(N)
∗ > 0 denote the solution of the following equation:

γ

2(1− β)
= C1(N + 1)γ1+α. (4.1)
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The left side of the above equation is greater than or equal to the right side for any 0 ≤ γ ≤ γ
(N)
∗ .

To begin with, we introduce the (Ft)-stopping time:

τN =̂ inf
{
t ≥ 0 :

t∑

i=0

γ1+α
i ≥ N −

α+ 1

α

}
.

Then, we adjust (γt) to suit the needs of argumentation in the previous section. Denote

γ
(N)
t =̂ γt1{t<τN} +

1

t+ 1
1{t≥τN}.

It is obvious that (γ
(N)
t ) is adapted. Now we fix an integer M ≥ 0. We subsequently define

γ
(N,M)
t =̂

{
γ
(N)
t , t < M,

min
(
γ
(N)
t , γ

(N)
∗

)
, t ≥ M.

It is quite simple to verify that (γ
(N,M)
t )t≥0 is adapted and satisfies that

∞∑

t=0

γ
(N,M)
t = ∞,

∞∑

t=0

(γ
(N,M)
t )1+α ≤ N a.s. (4.2)

Therefore, by construction, the stepsize (γ
(N,M)
t ) is endowed with the fine regularity. Let

(x
(N,M)
t ) be computed by Algorithm 1 with (γ

(N,M)
t ) and g

(N,M)
t denote g(x

(N,M)
t , ξt). Define

corresponding p
(N,M)
t in the same approach as in Lemma 3.1.

Noting the independence of ξt and Ft, we argue as in the proof of Theorem 3.1 and obtain

∞∑

t=0

E

[( 1

1− β
γ
(N,M)
t − C1(N + 1)(γ

(N,M)
t )1+α

)
‖∇f(x

(N,M)
t )‖

2]

≤ (N + 1)C2 + (f(x0)− f∗). (4.3)

Roughly speaking, C1(N +1)(γ
(N.M)
t )1+α can be combined into 1

1−β
γ
(N.M)
t because of the fact

0 ≤ γ
(N.M)
t ≤ γ

(N)
∗ for any t ≥ M . More concretely, we have

∞∑

t=0

E[γ
(N,M)
t ‖∇f(x

(N,M)
t )‖

2
] ≤ C(N,M). (4.4)

Then we produce estimations and afterwards obtain the boundedness of E
[ ∞∑
t=0

‖p
(N,M)
t ‖

2]

and E
[ ∞∑
t=0

γ
(N,M)
t ‖p

(N,M)
t ‖

2α]
, which echoes the derivation of (3.15)–(3.16). As a result,

∞∑

t=0

γ
(N,M)
t ‖p

(N,M)
t ‖

2α
< ∞ a.s. (4.5)

and

p
(N,M)
t → 0 a.s. (4.6)
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Furthermore, we use the same approach as Theorem 3.3 based on the supermartingale

convergence theorem and a sophisticated discussion of upcrossing intervals. This part of the

proof is unchanged. Finally, we obtain the two limits:

lim
t→∞

∇f(x
(N,M)
t ) = 0 a.s., (4.7)

lim
t→∞

f(x
(N,M)
t ) exists a.s. (4.8)

Since N and M here are arbitrary, we are going to pass to the limit. For an arbitrary

ω, except for some sample points forming a subset of a zero-probability event, we can choose

a large enough integer N(ω) and then a proper M(ω) such that (γ
(N,M)
t )t≥0 is identical to

(γt)t≥0. This immediately yields (x
(N(ω),M(ω))
t (ω)) ≡ (xt(ω)) because a fixed sample of g and

γ is unaffected by other samples. That is to say, the convergence of f(xt)(ω) and ∇f(xt)(ω)

holds. As a matter of fact, we actually accomplish the proof.

Now we consider adaptive algorithms, i.e., γ is a function of past stochastic gradients. There

is not enough research on this area, especially in the nonconvex setting. What is worse, some

algorithms have convergence issues. For example, exponential moving average methods like

Adam have flaws in an online convex setup, according to [33].

Thanks to Theorem 4.1, we can easily get mild sufficient conditions guaranteeing the conver-

gence of some adaptive gradient algorithms. We expect this perspective will shed a little light

on adaptive stepsizes. We consider the following generalized Adam algorithm as an example:





vt = β′vt−1 + (1− β′)‖gt−1‖
2
,

mt+1 = βmt −
(1 − β)

(t+ 1)
1
2
+ε(κ+ v

1
2

t )
gt,

xt+1 = xt +mt+1,

(4.9)

where v0 = 0, m0 = 0, 0 ≤ β < 1, 0 ≤ β′ < 1, and κ > 0 for ensuring the numerical

stability of the stepsize. Obviously, by setting γt =
1−β

(t+1)
1
2
+ε(κ+v

1
2
t
)
and s = 0, the SUM method

reduces to the above algorithm. Note that the analysis here also applies to both a coordinate-

wise stepsize and AdaFom (AdaGrad with First Order Momentum) firstly proposed by [7]. A

similar perturbed AdaGrad algorithm without momentum is analyzed in [25].

Corollary 4.1 Consider the perturbed Adam (4.9). Assume (A.1)–(A.3) and (A.5). Sup-

pose that 1
1+α

− 1
2 < ε ≤ 1

2 and there exists some constant G > 0 such that ‖∇f(xt)‖ ≤ G and

‖gt‖ ≤ G for any t. Then, the gradient converges to zero and the value of f converges almost

surely. Moreover, lim inf t
1
2
−ε‖∇f(xt)‖

2
= 0 with probability 1.

Proof It is clear to see that γt ∈ σ(ξ0, · · · , ξt−1) for any t. This yields ξt is independent of

Ft. It remains to show that effective stepsizes satisfy
∞∑
t=0

γt = ∞ and
∞∑
t=0

(γt)
1+α < ∞ almost

surely. We only need to bound κ+ v
1
2

t as follows:

κ ≤ κ+ v
1
2

t ≤ κ+
( t−1∑

i=0

(β′)t−1−i(1 − β′)G2
) 1

2

≤ κ+G. (4.10)

Thus, Theorem 4.1 can be utilized straightforwardly. We know that
∞∑
t=0

γt‖∇f(xt)‖
2 is finite
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with probability 1. This means

∞∑

t=0

1

(t+ 1)
1
2
+ε

‖∇f(xt)‖
2(ω) ≤ C(ω) a.s. (4.11)

By multiplying both the numerator and denominator of the t-th term on the left side by

(t+ 1)
1
2
−ε, the above inequality can be written as

∞∑

t=0

1

t+ 1
[(t+ 1)

1
2
−ε‖∇f(xt)‖

2
](ω) ≤ C(ω) a.s. (4.12)

Proof by contradiction leads to the desired result.

The stepsize is not required to be nonincreasing in our analysis. But the finite l1+α norm

of the stepsize is necessary, which is easier to fulfill in practice. It is worth noting that the

assumption on boundness of the gradient ∇f and the oracle g is extremely common in articles

analyzing adaptive methods, though it seems somewhat unsatisfying from a theoretical point

of view. The independence of γt and ξt is also of importance. If vt = β′vt−1 + (1 − β′)‖gt‖
2
,

the conditional expectation of update direction γtgt will not be guaranteed to make an acute

angle with the accurate gradient. In this case, we need additional conditions, e.g., the limit on

oscillation of effective stepsizes, which exceeds the scope of this article.

5 Conclusion and Discussion

We have provided mild conditions to ensure L2 and almost sure convergence of stochastic

gradient algorithms with momentum terms in the nonconvex setting. The analysis is present-

ed within a general framework while some common assumptions are weakened in this paper.

Particularly, ∇f is permitted to be α-Hölder continuous. Moreover, we go in the direction of

showing the convergence of a modified version of AdaGrad and Adam.

Similar extensions to original adaptive algorithms, however, are more complicated. Our

current analysis here does not necessarily hold in the case, mainly because the stepsize γt is a

function of past gradients g0, · · · ,gt and the expected update direction may deviate from the

exact gradient. Another limitation is the fact that the paper provides limited guidance on how

to set the parameters such as stepsizes and the momentum factor in practice. We leave these

possible extensions as interesting topics for future research.

Acknowledgement The authors would like to thank the anonymous reviewers for their

careful corrections and helpful comments.

References

[1] An, W., Wang, H., Sun, Q., et al., A PID Controller Approach for Stochastic Optimization of Deep
Networks, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
2018, 8522–8531.

[2] Becker, S. and Lecun, Y., Improving the Convergence of Back-propagation Learning with Second-order
Methods, Proceedings of the 1988 Connectionist Models Summer School, San Mateo, 1988, 29–37.

[3] Bertsekas, D. P. and Tsitsiklis, J. N., Neuro-Dynamic Programming, Athena Scientific, Belmont, MA,
1996.

[4] Bertsekas, D. P. and Tsitsiklis, J. N., Gradient convergence in gradient methods with errors, SIAM J.

Control Optim., 10(3), 2000, 627–642.



Convergence of Gradient Algorithms 463

[5] Bottou, L., Curtis, F. E. and Nocedal, J., Optimization methods for large-scale machine learning, SIAM

Rev., 60(2), 2018, 223–311.
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