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1 Introduction

The classical isoperimetric problem is to determine a plane figure of the largest possible

area with perimeter of a given length and it was known in Ancient Greece. However, the first

mathematically rigorous proof was obtained only in the 19th century by Weierstrass based on

works of Bernoulli, Euler, Lagrange and others. The isoperimetric problem is characterized by

the isoperimetric inequality.

The higher dimensional generalization of the classical isoperimetric problem is to determine

a geometric subject of the maximum volume with boundary of a fixed surface area in the

Euclidean space Rn (n ≥ 2).

Let K be a compact convex set in Rn. Then the surface area S(K) and volume V (K) of K

satisfy

S(K)n ≥ nnωnV (K)n−1, (1.1)

where ωn is the volume of the unit ball in Rn. The inequality (1.1) holds as an equality if and

only if K is a standard ball.
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The classical isoperimetric inequality is the oldest and most beautiful geometric inequality

in mathematics that has an extraordinary variety of connections and applications to a number

of areas in mathematics and physics.

The isoperimetric inequality (1.1) for sufficiently smooth domains is equivalent to the

Sobolev inequality with optimal constant:

∫

Rn

‖∇f(x)‖dx ≥ nω
1
n

n

(∫

Rn

|f(x)|
n

n−1dx
)n−1

n

(1.2)

for all f ∈ W 1,1(Rn), the usual Sobolev space of real-valued functions of Rn with L1 partial

derivatives. Here ‖∇f(x)‖ is the norm of the gradient of f . The extremal functions for (1.2)

are the characteristic functions of balls.

The equivalence between the classical isoperimetric inequality and the Sobolev inequality has

a profound effect on convex geometry. A typical example is the affine Sobolev inequality which

is not only equivalent to the generalized Petty projection inequality but also stronger than the

classical isoperimetric inequality (see [45]). The affine Sobolev inequality is the characterization

of the affine Sobolev-type inequality. Extensions and analogues are obtained by Lutwak, Yang

and Zhang [33], Cianchi, Lutwak, Yang and Zhang [15], Haberl and Schuster [24], Wang [43]

and Lin [30]. By Lorentz integrals of the Lp convexification of level sets, Ludwig, Xiao and

Zhang obtained the sharp convex Lorentz-Sobolev inequality (see [32]). Later Fang, Xu, Zhou

and Zhu obtained a sharp convex mixed Lorentz-Sobolev inequality (see [18]). A new approach

to the affine Sobolev type inequalities was presented by Haddad, Jiménez and Montenegro [25].

The geometry on the set of functions is a new field and closely related to convex geometric

analysis. In this paper, we will investigate the geometric properties and geometric problems on

the set of s-concave functions.

A function f : Rn → [0,+∞) is s-concave (where −∞ ≤ s ≤ ∞) if

• f is supported on convex set Ω ⊂ Rn;

• for every x, y ∈ Ω and 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≥ (λf(x)
1
s + (1− λ)f(y)

1
s )s. (1.3)

If s = −∞, 0,+∞, we understand (1.3) in the limit sense. The case s = +∞ is important

and deserve a special name log-concave.

There are surprisingly analogies between the theory of convex bodies and the theory of s-

concave functions. The seed of this process is the Prékopa-Leindler inequality which recognized

as the functional version of the Brunn-Minkowski inequality (see [29, 38–39]). More connections

between the Prékopa-Leindler inequality and convex geometry are very well described in the

survey paper (see [23]).

The interplay between the geometry of s-concave functions and the geometry of convex sets

becomes increasingly important. The initial work can be found in Ball’s paper. Ball [8] obtained
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the functional Blaschke-Santaló inequality in the even case. Artstein, Klartag and Milman [5]

defined a convex body Ks(f) ⊂ Rn × Rs associated with an s-concave function f as follows:

Ks(f) := {(x, y) ∈ R
n × R

s : f(x) > 0, ‖y‖ ≤ f
1
s (x)}, (1.4)

where s is a positive integer. By the known Blaschke-Santaló inequality and the convex body

Ks(f) (defined in (1.4)), Artstein, Klartag and Milman [5] obtained the general functional ver-

sion of the Blaschke-Santaló inequality. Aside from proofs by Fradelizi and Meyer[21], there are

also proofs by Lehec [27–28]. Various functional forms of the reverse Blaschke-Santaló inequal-

ity were investigated by Klartag and Milman [26], Fradelizi and Meyer [22]. Barthe, Böröczky

and Fradelizi [10] obtained the stability versions of the functional Blaschke-Santaló inequali-

ty. Artstein-Avidan, Klartag, Schütt and Werner [6] provided a functional affine isoperimetric

inequality for log-concave functions which can be viewed as an inverse logarithmic Sobolev in-

equality for entropy. Mixed integrals, quermassintegrals, the Brunn-Minkowski inequality and

the Alexandrov-Fenchel inequality for s-concave functions were studied by Milman and Rotem

[35]. For more information of connections of convex geometry and the theory of s-concave

functions, one can refer to [1–7, 12–14, 16–20, 26–28, 30, 34, 40–41].

Inspired by ideas and works of Artstein, Klartag and Milman [5], the projection body

of an s-concave function f (where s is a positive interger), a convex body in the (n + s)-

dimensional Euclidean space, is defined. Associated inequalities for s-concave functions, such

as, the functional isoperimetric inequality, the functional Petty projection inequality and the

functional Loomis-Whitney inequality are obtained. One of our main results is the following

analytic inequality (see Theorem 3.1).

The isoperimetric inequality for s-concave functions. For a positive integer s, if f

is an s-concave function and twice continuously differentiable, then

∫

Rn

f1− 1
s (1 + ‖∇f

1
s ‖2)

1
2dx ≥ cn,s

(∫

Rn

fdx
)1− 1

n+s

, (1.5)

where cn,s =
(n+s)

s

(ωn+s

ωs

) 1
n+s . Equality holds if and only if f = (a−‖x− b‖2)

s

2
+ with a > 0, b ∈

Rn, t ∈ R, t+ = max{t, 0}.

When s = +∞, the projection body of s-concave functions (i.e., log-concave functions)

was defined in [19]. We will investigate the projection body of s-concave functions when s

is a positive integer. In Section 4, we investigate the affine isoperimetric inequality. For an

s-concave function f , the projection body Π(s)f of f is defined by

Π(s)f = ΠKs(f).

Here ΠK denotes the projection body of K (defined in Section 2). Since ΠKs(f) is a convex

body in Rn+s, it will be proved that Π(s)f inherits almost all properties of the projection body

for convex bodies, such as, continuity, affine invariance, valuation and etc..
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Another main theorem of our results is the following Petty projection inequality for s-concave

functions (see Theorem 4.1): Let s ∈ N, and let f : Rn → [0,∞) be an s-concave function and

twice continuously differentiable. If

(x, x̃) = (x1, · · · , xn, xn+1, · · · , xn+s) ∈ R
n × R

s

satisfies x2
n+s = f(x)

2
s −

n+s∑
i=n+1

x2
i , then

∫

Sn+s−1

[ ∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|

]−(n+s)

du

≤ c̃n,s

( ∫

Rn

fdx
)1−s−n

, (1.6)

where c̃n,s = (n+ s)ωs

(
ωn+s

ωn+s−1ωs

)n+s
. Equality holds if and only if f = (a+ 〈b, x〉 − 〈φx, x〉)

s

2
+

for a > 0, b ∈ Rn and a positive definite matrix φ.

Finally, we will deduce a reverse inequality of (1.6). Zhang projection inequality for s-

concave functions ((4.18) in Corollary 4.2) is obtained. The Loomis-Whitney inequality of

1-concave functions ((4.20) in Theorem 4.2) is discussed in Section 4.

2 Preliminaries

We work in n-dimensional Euclidean space Rn, endowed with the usual scalar product 〈x, y〉

and norm ‖x‖. Let Kn denote the set of convex bodies (compact, convex subsets with nonempty

interiors) in the Euclidean space Rn. We write Kn
o for the set of convex bodies that contain

the origin in their interiors. Let Bn = {x ∈ Rn : ‖x‖ ≤ 1} denote the standard unit ball in

Rn and Sn−1 = {x ∈ Rn : ‖x‖ = 1} denote the unit sphere in Rn. Let Vn(K) denote the

n-dimensional volume of K. Volumes of the unit ball Bn and the unit sphere S
n−1 can be

expressed, respectively, as

Vn(Bn) = ωn =
π

n

2

Γ(1 + n
2 )

and Vn−1(S
n−1) = nωn =

2π
n

2

Γ(n2 )
. (2.1)

Here Γ(·) is the Gamma function.

We write GL(n) for the group of general linear transformations in Rn. For φ ∈ GL(n), we

write φt for the transpose of φ and φ−t for the inverse of the transpose (contragradient) of φ.

Let detφ denote the determinant of φ. For K ∈ Kn, let h(K; ·) = hK : Rn → R denote the

support function of K, i.e.,

h(K;x) = max{〈x, y〉 : y ∈ K}.

Let NK(x) be the unit outer normal at x ∈ ∂K. Then

hK(NK(x)) = 〈NK(x), x〉, ∀x ∈ ∂K. (2.2)
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For λ > 0, the support function of the convex body λK = {λx : x ∈ K} satisfies

hλK(·) = λhK(·). (2.3)

For φ ∈ GL(n) the support function of the image φK = {φy : y ∈ K} is given by

hφK(x) = hK(φtx), ∀x ∈ R
n. (2.4)

For K ∈ Kn
o , the polar body K∗ of K is defined by

K∗ = {x ∈ R
n : 〈x, y〉 ≤ 1 for all y ∈ K}.

Let ρ(K; ·) = ρK : Rn \ {0} → [0,+∞) denote the radial function of K ∈ Kn
o , i.e.,

ρK(x) = max{λ > 0 : λx ∈ K}.

It is not hard to verify that

hK∗(·) =
1

ρK(·)
and ρK∗(·) =

1

hK(·)
. (2.5)

The n-dimensional volume of a convex body K is given by

Vn(K) =
1

n

∫

Sn−1

ρK(u)ndu, (2.6)

and the surface area of a convex body K is given by

S(K) =

∫

∂K

dµK(x), (2.7)

where dµK denotes the surface area measure of K.

Suppose that µ is a probability measure on a space X and g : X → I ⊂ R is a µ-integrable

function, where I is a possibly infinite interval. Jensen’s inequality states that if F : I → R is

a convex function, then
∫

X

F (g(x))dµ(x) ≥ F
(∫

X

g(x)dµ(x)
)
. (2.8)

If F is strictly convex, equality holds if and only if g(x) is constant for µ-almost all x ∈ X .

The classical projection body was introduced at the turn of the previous century by Minkows-

ki. Let K ∈ Kn. The projection body ΠK of K is defined as an origin-symmetric convex body

in Rn whose support function is

h(ΠK,u) = Vn−1(K|u⊥)

for u ∈ Sn−1. Here Vn−1(K|u⊥) is the n − 1 dimensional volume of K projecting to the

hyperplane that passing through the origin with the normal direction u. The support function

h(ΠK,u) can be rewritten as

hΠK(u) =
1

2

∫

∂K

|〈u,NK(y)〉|dµK(y). (2.9)



470 N. F. Fang and J. Z. Zhou

Interest in projection body was rekindled by three highly influential articles, which appeared

in the latter half of the 60’s, by Bolker [11], Petty [36] and Schneider [42].

The fundamental inequality for projection body in the field of affine isoperimetric inequalities

is the following Petty projection inequality (see [37]): If K ∈ Kn, then

Vn(K)n−1Vn(Π
∗K) ≤

( ωn

ωn−1

)n

(2.10)

with equality if and only if K is an ellipsoid. Here Π∗K denotes the polar body of the projection

body ΠK rather than (ΠK)∗.

The reverse Petty projection inequality reads as

1

nn

(
2n

n

)
≤ Vn(K)n−1Vn(Π

∗K) (2.11)

with equality if and only if K is a simplex.

The inequality (2.11) was conjectured by Ball [9] and first proved by Zhang [44]. The

inequality (2.11) is also known as Zhang projection inequality.

One reason that the operator Π is so useful in these areas is that projection body of affinely

equivalent convex bodies are affinely equivalent. Specifically

Π(φK) = | detφ|φ−tΠK and Π(K + x) = ΠK (2.12)

for every K ∈ Kn, φ ∈ GL(n) and x ∈ Rn.

Let s, n ∈ N, and supp(f) = {x ∈ Rn : f(x) 6= 0}. f : Rn → [0,∞) is s-concave, and we

denote f ∈ Concs(R
n), if f is upper semi-continuous, the closure supp(f) of supp(f) is a convex

body and f
1
s is concave on supp(f). The class Conc(2)s (Rn) shall consist of such f ∈ Concs(R

n)

which are twice continuously differentiable in the interior of their support.

As in [5–6], associated with a function f ∈ Concs(R
n), the convex body Ks(f) in R

n × R
s

is given by

Ks(f) := {(x, y) ∈ R
n × R

s : x ∈ supp(f), ‖y‖ ≤ f
1
s (x)}. (2.13)

A special function in the class Concs(R
n), which will play the role of the Euclidean ball in

convexity, is

gs(x) = (1 − ‖x‖2)
s

2
+, (2.14)

where, for a ∈ R, a+ = max{a, 0}. It follows immediately from the definition that Ks(gs(x)) =

Bn+s
2 . By Fubini’s theorem, we have that for all f ∈ Concs(R

n),

Vn+s(Ks(f)) = Vs(B
s
2)

∫

Rn

f(x)dx. (2.15)

By (2.13), the boundary of Ks(f) is given by {(x, y) ∈ Rn × Rs : ‖y‖ = f
1
s (x)}, and the

boundary of Ks(f) is union of the graphs of the two mappings

(x1, · · · , xn, xn+1, · · · , xn+s−1) 7→ (x1, · · · , xn, xn+1, · · · , xn+s−1,+xn+s)
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and

(x1, · · · , xn, xn+1, · · · , xn+s−1) 7→ (x1, · · · , xn, xn+1, · · · , xn+s−1,−xn+s)

with x = (x1, · · · , xn) ∈ Rn, and

xn+s =
(
f

2
s (x) −

n+s−1∑

i=n+1

x2
i

) 1
2

. (2.16)

Because of symmetry, it is enough to consider only the “positive” part of ∂Ks(f), in which the

last coordinate is non-negative. Then the surface area element of Ks(f) is

dµKs(f) =
f

1
s (1 + ‖∇f

1
s ‖2)

1
2

|xn+s|
dx1 · · · dxn+s−1. (2.17)

In [6], the authors proved the following results.

Lemma 2.1 Let f ∈ Conc(2)s (Rn). Then for all (x, x̃) = (x1, · · · , xn, xn+1 · · · , xn+s) ∈

∂Ks(f) with x = (x1, · · · , xn) ∈ int(supp(f)),

NKs(f)(x, x̃) =
(f

1
s∇f

1
s ,−xn+1, · · · ,−xn+s)

f
1
s (1 + ‖∇f

1
s ‖2)

1
2

(2.18)

and

κKs(f)(x, x̃) =
∣∣∣

det(∇2f
1
s )

f
s−1
s (1 + ‖∇f

1
s ‖2)

n+s+1
2

∣∣∣. (2.19)

Here f is evaluated at x = (x1, · · · , xn) ∈ R
n.

3 The Isoperimetric Inequality of s-Concave Functions

In this section, we obtain the isoperimetric inequality for s-concave functions.

Theorem 3.1 Let s ∈ N and f ∈ Conc(2)s (Rn). Then

∫

Rn

f1− 1
s (1 + ‖∇f

1
s ‖2)

1
2dx ≥ cn,s

(∫

Rn

fdx
)1− 1

n+s

, (3.1)

where cn,s =
(n+s)

s

(ωn+s

ωs

) 1
n+s . Equality holds if and only if f = (a−‖x−b‖2)

s

2
+ for a > 0, b ∈ Rn.

Proof By (2.7) and (2.17) we have

S(Ks(f)) =

∫

∂Ksf

dµKs(f)(x)

= 2

∫

Rn+s−1

f
1
s (1 + ‖∇f

1
s ‖2)

1
2

|xn+s|
dx1 · · ·dxn+s−1. (3.2)

The last equality follows as the boundary of Ks(f) consists of two, “positive” and “negative”,

parts. By (2.16) and a direct calculation, we have
∫

Rs−1

dxn+1 · · · dxn+s−1

|xn+s|
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=

∫

Rs−1

f− 1
s

(
1−

n+s−1∑

i=n+1

( xi

f
1
s

)2)− 1
2

dxn+1 · · ·dxn+s−1

=

∫
n+s−1∑
i=n+1

y2
i
≤1

f−
s−1
s

f− 1
s

(
1−

n+s−1∑

i=n+1

y2i

)− 1
2

dyn+1 · · · dyn+s−1

=
f

s−1
s

f
1
s

(s− 1)ωs−1

∫ 1

0

rs−2(1− r2)−
1
2dr

=
f

s−1
s

f
1
s

(s− 1)ωs−1

2
B
(s− 1

2
,
1

2

)

=
f

s−1
s

f
1
s

π
s

2

Γ
(
s
2

) . (3.3)

Together with (3.3), (3.2) means

S(Ks(f)) =
2π

s

2

Γ( s2 )

∫

Rn

f1− 1
s (1 + ‖∇f

1
s ‖2)

1
2 dx.

By the isoperimetric inequality (1.1), we have

S(Ks(f))
n+s =

( 2π
s

2

Γ( s2 )

∫

Rn

f1− 1
s (1 + ‖∇f

1
s ‖2)

1
2dx

)n+s

≥ (n+ s)n+sωn+s

(
Vs(B

s
2)

∫

Rn

fdx.
)n+s−1

.

Equality holds if and only ifKs(f) is a ball, this means that f = (a−‖x−b‖2)
s

2
+ for a ∈ R, b ∈ Rn.

Let f ∈ Concs(R
n). If s = 1, namely f is a concave function in Rn, we have the following

corollary.

Corollary 3.1 Let f be a concave function in Rn. Then

∫

Rn

(1 + ‖∇f‖2)
1
2dx ≥ (n+ 1)

(ωn+1

2

) 1
n+1

( ∫

Rn

fdx
) n

n+1

with equality if and only if f = (a− ‖x− b‖2)
1
2
+ for a > 0, b ∈ R

n.

Let f ∈ Concs(R
n). When s = n = 1, we have the following corollary.

Corollary 3.2 Let f be a concave function in R. Then

∫

R

(1 + f ′2)
1
2dx ≥ 2

(π
2

∫

R

fdx
) 1

2

with equality if and only if f(x) = (a− (x− b)2)
1
2
+ for a > 0, b ∈ R.

4 The Projection Body of s-Concave Functions

We will study the Petty projection body of s-concave functions in this section. We give the

definition of Petty projection body for s-concave functions which is an analogue of the Petty

projection body in convex geometry.
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Definition 4.1 Let f ∈ Concs(R
n). The convex body Π(s)f , the projection body of s-concave

functions f , is defined by

hΠ(s)f (·) = hΠKs(f)(·). (4.1)

Definition 4.1 means that the support function of Π(s)f satisfies:

hΠ(s)f (y) = hΠKs(f)(y) =
1

2

∫

∂Ks(f)

|y ·NKs(f)(x)|dµKs(f)(x), (4.2)

where y = (y1, · · · , yn+s) ∈ Rn × Rs.

The projection body Π(s)f is monotonic.

Proposition 4.1 Let s ∈ N and f1, f2 ∈ Concs(R
n). If f1 ≤ f2, then

Π(s)f1 ⊆ Π(s)f2. (4.3)

Proof From (2.13), Ks(f1) ⊆ Ks(f2) when f1 ≤ f2. Hence ΠKs(f1) ⊆ ΠKs(f2).

Proposition 4.2 Let s ∈ N and fi, f ∈ Conc(2)s (Rn). If fi → f as i → ∞, then

Π(s)fi → Π(s)f as i → ∞. (4.4)

Proof Let (x, x̃) = (x1, · · · , xn, xn+1 · · · , xn+s) ∈ ∂Ks(f) with x = (x1, · · · , xn) ∈

int(supp(f)). By (2.2) and (2.19), we have

hKs(f)(x, x̃) =
〈x, f

1
s∇f

1
s 〉 − (x2

n+1 + · · ·+ x2
n+s)

f
1
s (1 + ‖∇f

1
s ‖2)

1
2

.

For convex functions ϕ, ϕi, if ϕi → ϕ, then

∇ϕi(x) → ∇ϕ(x) as i → +∞ (4.5)

for any x ∈ Rn in which ϕ, ϕ1, ϕ2, · · · are differentiable (see [40, Theorem 25.7]). Since the

functions f
1
s and f

1
s

i are concave, we have

∇f
1
s

i (x) → ∇f
1
s (x),

when fi → f . Since a convex function is differentiable almost everywhere, we have hKs(fi)(x, x̃)

→ hKs(f)(x, x̃) as i → ∞. Therefore Ks(fi) → Ks(f) as i → ∞ and Π(s)fi → Π(s)f as i → ∞.

We have the following integral representation of hΠ(s)f in R
n+s−1.

Lemma 4.1 Let s ∈ N and f ∈ Conc(2)s (Rn). The support function of Π(s)f can be ex-

pressed as the following integral :

hΠ(s)f (u) =

∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|
, u ∈ S

n+s−1, (4.6)

where x̃ = (xn+1, · · · , xn+s) ∈ Rs.
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Proof Let u ∈ S
n+s−1, x = (x1, · · · , xn), x̃ = (xn+1, · · · , xn+s) such that (x, x̃) ∈ (Rn ×

Rs)∩∂Ks(f). Denote by ∂̃Ks(f) the collection of all points (x1, · · · , xn+s) ∈ ∂Ks(f) such that

(x1, · · · , xn) ∈ int(supp(f)). Since there is no contribution to the integral of hΠ(s)f (x) from

∂Ks(f)\∂̃Ks(f), by Lemma 2.1 and (2.16)–(2.17), we have

hΠ(s)f (u) = hΠKs(f)(u) =
1

2

∫

∂Ks(f)

|〈u,NKs(f)(x)〉|dµKs(f)(x)

=
1

2

∫

∂̃Ks(f)

|〈u,NKs(f)(x)〉|dµKs(f)(x)

=

∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · ·dxn+s−1

|xn+s|
,

where f is evaluated at (x1, · · · , xn) ∈ Rn. The last equality follows as the boundary of Ks(f)

consists of two, “positive” and “negative”, parts.

For φ ∈ GL(n), set

φ =

(
φ 0
0 Is×s

)
∈ GL(n+ s), (4.7)

where Is×s is the s× s identity matrix.

Proposition 4.3 Let s ∈ N and f ∈ Concs(R
n). For φ ∈ GL(n), x0 ∈ Rn,

Π(s)(f ◦ φ) = | detφ|φ
−t
Π(s)f, Π(s)(f(x+ x0)) = Π(s)f(x). (4.8)

Proof By (2.13), we have

φKs(f) = Ks(f ◦ φ). (4.9)

The first equality of (2.12) and Definition 4.1 imply that

Π(φKs(f)) = | detφ|φ
−t
ΠKs(f). (4.10)

The first equality of (4.8) follows from (4.9)–(4.10).

Since Ks(f(x + x0)) = Ks(f(x)) + (x0, 0) (here 0 is the null vector in Rs), the translation

invariance of Π(s)f in (4.8) follows by the second equality of (2.12) and Definition 4.1.

The first formula in (4.8) states that the volume of Π(s)f and the polar body of Π(s)f

are affine invariants, that is, Vn+s(Π
(s)(f ◦ φ)) = Vn+s(Π

(s)f) and Vn+s(Π
(s),∗(f ◦ φ)) =

Vn+s(Π
(s),∗f) for any φ ∈ SL(n).

A Minkowski valuation is a map Z : Kn
o → 〈Kn

o ,+〉 such that

Z(K ∩ L) + Z(K ∪ L) = Z(K) + Z(L), K, L ∈ Kn
o , (4.11)

whenever K ∪ L ∈ Kn
o . Here “ + ” is the Minkowski sum.

The projection operator Π is a valuation, i.e.,

ΠK1 +ΠK2 = Π(K1 ∪K2) + Π(K1 ∩K2), (4.12)
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whenever K1,K2,K1 ∪K2 ∈ Kn.

The operate Π(s) is a valuation.

Proposition 4.4 Let s ∈ N, f1, f2 ∈ Concs(R
n). Then

Π(s)f1 +Π(s)f2 = Π(s)(max{f1, f2}) + Π(s)(min{f1, f2}), (4.13)

where “ + ” is Minkowski addition.

Proof By (4.12) and Definition 4.1, we have

Π(s)f1 +Π(s)f2 = Π(Ks(f1)) + Π(Ks(f2))

= Π(Ks(f1) ∪Ks(f2)) + Π(Ks(f1) ∩Ks(f2))

with Ks(f1) ∪Ks(f1) is convex. We only need to prove

Ks(f1) ∪Ks(f2) = Ks(max{f1, f2}), Ks(f1) ∩Ks(f2) = Ks(min{f1, f2}). (4.14)

We assume that (x, y) ∈ Ks(f1)∪Ks(f2). From the definition of Ks(f), there are the following

three different possibilities

f
1
s

2 (x) ≤ ‖y‖ ≤ f
1
s

1 (x),

f
1
s

1 (x) ≤ ‖y‖ ≤ f
1
s

2 (x),

‖y‖ ≤ f
1
s

1 (x) and ‖y‖ ≤ f
1
s

2 (x).

By these three cases we have

‖y‖ ≤ max{f
1
s

1 (x), f
1
s

2 (x)}

= (max{f1(x), f2(x)})
1
s ,

i.e., Ks(f1) ∪Ks(f2) ⊆ Ks(max{f1, f2}). The reverse inclusion is easy to obtain by the same

way. The equality Ks(f1) ∩Ks(f2) = Ks(min{f1, f2}) can be proved by the same way.

We are now in the position to prove the Petty projection inequality for s-concave functions.

Theorem 4.1 Let s ∈ N, f ∈ Conc(2)s (Rn), x = (x1, · · · , xn), x̃ = (xn+1 · · · , xn+s). Then

for all (x, x̃) ∈ ∂Ks(f) with x ∈ int(supp(f)),

∫

Sn+s−1

[ ∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|

]−(n+s)

du

≤ c̃n,s

( ∫

Rn

fdx
)1−s−n

, (4.15)

where c̃n,s = (n + s)ωs

(
ωn+s

ωn+s−1ωs

)n+s
. Equality holds if and only if f = (a+ 〈b, x〉 − 〈φx, x〉)

s

2
+

for a > 0, b ∈ Rn and a positive definite matrix φ.
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Proof Let Π(s),∗f denote the polar body of Π(s)f . By (2.5)–(2.6), (4.6) and the Petty

projection inequality (2.10), we have

Vn+s(Π
(s),∗f)

=
1

n+ s

∫

Sn+s−1

hΠ(s)f (u)
−(n+s)du

=
1

n+ s

∫

Sn+s−1

[ ∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|

]−(n+s)

du

≤
( ωn+s

ωn+s−1

)n+s(
ωs

∫

Rn

fdx
)1−s−n

. (4.16)

By the equality condition of the Petty projection inequality (2.10), (4.16) holds as an equality

if and only if Ks(f) is an ellipsoid. This means that f = (a+〈b, x〉−〈φx, x〉)
s

2
+ for a ∈ R, b ∈ Rn

and a positive definite matrix φ.

Corollary 4.1 The affine isoperimatric inequality for s-concave functions

∫

Sn+s−1

[ ∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|

]−(n+s)

du ≤ c̃n,s

(∫

Rn

fdx
)1−s−n

,

is stronger than the classical isoperimetric inequality for s-concave functions

∫

Rn

f1− 1
s (1 + ‖∇f

1
s ‖2)

1
2dx ≥ cn,s

(∫

Rn

fdx
)1− 1

n+s

.

Proof By Jensen’s inequality (2.8), Fubini’s theorem,

|(f
1
s∇f

1
s ,−x̃)| = f

1
s (1 + ‖∇f

1
s ‖2)

1
2 ,

and (3.3), we have

( 1

(n+ s)ωn+s

∫

Sn+s−1

[ ∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · ·dxn+s−1

|xn+s|

]−(n+s)

du
)− 1

n+s

≤
1

(n+ s)ωn+s

∫

Sn+s−1

∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|
du

=
1

(n+ s)ωn+s

∫

Rn+s−1

∫

Sn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|du

dx1 · · · dxn+s−1

|xn+s|

=
2ωn+s−1

(n+ s)ωn+s

∫

Rn+s−1

f
1
s (1 + ‖∇f

1
s ‖2)

1
2
dx1 · · · dxn+s−1

|xn+s|

=
sωn+s−1ωs

(n+ s)ωn+s

∫

Rn

f1− 1
s (1 + ‖∇f

1
s ‖2)

1
2 dx. (4.17)

Therefore, (3.1) follows from (4.15) and (4.17).

We also obtain the Zhang projection inequality for s-concave functions.

Corollary 4.2 Let s ∈ N and f ∈ Conc(2)s (Rn). If x = (x1, · · · , xn) and x̃ = (xn+1 · · · , xn+s),

then for all (x, x̃) ∈ ∂Ks(f) with x = (x1, · · · , xn) ∈ int(supp(f)),
∫

Sn+s−1

[ ∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|

]−(n+s)

du
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≥
1

(n+ s)n+s

(
2n+ 2s

n+ s

)(
ωs

∫

Rn

fdx
)1−s−n

. (4.18)

Proof Note that from (2.5)–(2.6), (4.6) and Zhang projection inequality (2.11),

Vn+s(Π
(s),∗f)

=
1

n+ s

∫

Sn+s−1

hΠ(s)f (u)
−(n+s)du

=
1

n+ s

∫

Sn+s−1

[ ∫

Rn+s−1

|〈u, (f
1
s∇f

1
s ,−x̃)〉|

dx1 · · · dxn+s−1

|xn+s|

]−(n+s)

du

≥
1

(n+ s)n+s

(
2(n+ s)

n+ s

)(
ωs

∫

Rn

fdx
)1−s−n

.

For a compact set K ⊆ Rn, let {e1, · · · , en} be the standard Euclidean basis of Rn and K|e⊥i

denote the orthogonal projection of K on to the one-codimensional subspace e⊥i perpendicular

to ei. Then the following classical Loomis-Whitney inequality (see [31]) states that the n-

dimensional volume Vn(K) of a compact set K in Rn is dominated by the geometric mean of

(n− 1)-dimensional volumes Vn−1(K|e⊥i ) of its coordinate projections on K|e⊥i . That is,

Vn(K)n−1 ≤
n∏

i=1

Vn−1(K|e⊥i ) (4.19)

with equality if and only if K is a coordinate box (a rectangular parallelepiped whose facets

are parallel to the coordinate hyperplanes) in Rn.

We are now ready to prove the following functional Loomis-Whitney inequality.

Theorem 4.2 Let f ∈ Conc
(2)
1 (Rn). If x = (x1, · · · , xn) and xn+1 ∈ R, then for all

(x, xn+1) ∈ ∂K1(f) with x ∈ int(supp(f)),

[
2

∫

Rn

f(x)dx
]n

≤ Vn(supp(f))

n∏

i=1

∫

Rn

|〈ei,∇f〉|dx, (4.20)

where {e1, · · · , en} is the standard Euclidean basis of Rn.

Proof For the standard Euclidean basis {e1, · · · , en} of Rn, without loss of generality, we

assume that e1 = (1, 0, · · · , 0, 0, 0), · · · , en = (0, · · · , 0, 1, 0) and en+1 = (0, · · · , 0, 0, 1) (since

Proposition 4.3).

For 1 ≤ i ≤ n, by (2.9) and (3.3), we have

Vn(K1(f)|e
⊥
i ) =

1

2

∫

∂K1(f)

|〈ei, NK1(f)(x, xn+1)〉|dµK1(f)(x, xn+1)

=

∫

Rn

f |〈ei,∇f〉|
1

|xn+1|
dx

=

∫

Rn

|〈ei,∇f〉|dx. (4.21)
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For i = n+ 1, we have

Vn(K1(f)|e
⊥
n+1) =

1

2

∫

∂K1(f)

|〈en+1, NK1(f)(x, xn+1)〉|dµK1(f)(x, xn+1)

=

∫

supp(f)

dx

= Vn(supp(f)). (4.22)

By the definition of s-concave function, supp(f) is a convex body in Rn. Hence Vn(supp(f)) is

finite.

Combining with (2.15), (4.19) and (4.21)–(4.22), we obtain

[
2

∫

Rn

f(x)dx
]n

= [Vn+1(K1(f))]
n

≤

n+1∏

i=1

Vn(K1(f)|e
⊥
i )

= Vn(supp(f))

n∏

i=1

∫

Rn

|〈ei,∇f〉|dx.

We complete the proof of the functional Loomis-Whitney inequality (4.20).
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