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Difference Independence of the Euler Gamma Function∗
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Abstract In this paper, the authors established a sharp version of the difference ana-
logue of the celebrated Hölder’s theorem concerning the differential independence of the
Euler gamma function Γ. More precisely, if P is a polynomial of n + 1 variables in
C[X, Y0, · · · , Yn−1] such that

P (s,Γ(s+ a0), · · · ,Γ(s+ an−1)) ≡ 0

for some (a0, · · · , an−1) ∈ Cn and ai − aj /∈ Z for any 0 ≤ i < j ≤ n− 1, then they have

P ≡ 0.

Their result complements a classical result of algebraic differential independence of the
Euler gamma function proved by Hölder in 1886, and also a result of algebraic difference
independence of the Riemann zeta function proved by Chiang and Feng in 2006.
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1 Introduction

A classical theorem of Hölder [8] states that the Euler gamma function

Γ(s) =

∫ +∞

0

ts−1e−tdt, ℜs > 0,

which can be analytically continued to the whole complex plane C, does not satisfy any non-

trivial algebraic differential equation whose coefficients are polynomials in C. We state it in the

following.

Theorem A Let P be a polynomial of n+ 1 variables in C[X,Y0, · · · , Yn−1]. Assume that

P (s,Γ(s), · · · ,Γ(n−1)(s)) ≡ 0,

then we have

P ≡ 0.
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To the best of our knowledge, the Euler gamma function Γ seems to be the first known

example which satisfies the algebraic differential independence property in the literature. It

is well known that the Riemann zeta function ζ is associated with Γ by the famous Riemann

functional equation

ζ(1 − s) = 21−sπ−s cos
πs

2
Γ(s)ζ(s). (1.1)

Motivated by the Riemann functional equation, it is natural to consider the algebraic d-

ifferential independence property for the Riemann zeta function. The study of the algebraic

differential independence of the Riemann zeta function ζ can be dated back to Hilbert. In [7],

he conjectured that Hölder’s result can be extended to the Riemann zeta function ζ. Later,

this conjecture was verified by Ostrowski in [14].

Bank and Kaufman [2–3] made the following celebrated generalizations of Hölder’s result.

Theorem B Let P be a polynomial in K[X,Y0, · · · , Yn−1], where K is the field of all

meromorphic functions such that the Nevanlinna’s characteristic T (r, f) = o(r) as r goes to

infinity for any f in K. Assume that

P (s,Γ(s), · · · ,Γ(n−1)(s)) ≡ 0,

then we have

P ≡ 0.

For the Nevanlinna characteristic T (r, f), we refer to Hayman’s book (see [6]) for a detailed

introduction. Since Γ and ζ appeared very naturally in Riemann functional equation (1.1),

Markus in [13] posted an open problem to study the joint algebraic differential independence

of Γ and ζ. We refer the readers to the references [9–12] for the recent developments in this

direction.

It is interesting to study the algebraic difference independence of ζ or Γ. Feng and Chiang

proved the following result.

Theorem C Let P be a polynomial of n+1 variables in C[X,Y0, · · · , Yn−1] and s0, · · · , sn−1

be n distinct numbers in C. Assume that

P (s, ζ(s+ s0), · · · , ζ(s+ sn−1)) ≡ 0,

then we have

P ≡ 0.

Chiang and Feng’s result extended a result of Ostrowski in [14] where the assumption that

s0, · · · , sn−1 are n distinct real numbers is needed. Indeed, Chiang and Feng proved that

Theorem C also holds under the same assumption in Theorem B, we refer the interested readers

to [4] for the details. Here, we also mention two remarkable universality results due to Voronin

in 1970s for the differential case in [16] and the difference case in [17]. We refer to [15] for the

detailed introduction of the recent developments in this direction.
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To the best of our knowledge, the topic of the algebraic difference independence of the Euler

gamma function was first addressed by Hardouin in [5] in the framework of difference Galois

theory. Motivated by the multiplication theorem of Euler gamma function

Γ(ns) = nns− 1

2 (2π)
1−n
2

n−1∏

j=0

Γ
(
s+

j

n

)
, (1.2)

Hardouin proved the following result.

Theorem D (see [5]) Let a0, · · · , an−1 be n complex numbers in C, b0, · · · , bm−1(≥ 2) be

m integers such that {aj(mod 1)}n−1
j=0 and

{ bj−1∑
l=0

l
bj
(mod 1)

}m−1

j=0
are Z-linearly independent.

Assume that

P (s,Γ(s+ a0), · · · ,Γ(s+ an−1),Γ(b0s), · · · ,Γ(bm−1s)) ≡ 0

for some polynomial P , then we have

P ≡ 0.

Hardouin’s proof relies on Kolchin’s type theorem in an essential way. See also in [1] for

a detailed discussion of Kolchin’s type theorem and several powerful applications in algebraic

independence problems.

Our starting point is another well known difference equation of Γ,

Γ(s+ 1) = sΓ(s). (1.3)

This may be the obvious obstruction for us to study the algebraic difference independence of

the Euler gamma function Γ. One can not expect to obtain Theorem B for Γ directly. While in

this paper, we will show that the machinery exhibited in (1.3) is the only obstruction to get the

algebraic difference independence of Γ. Now, we state our main result in the following. In this

paper, we will use an elementary method inspired by [8, 14] to prove our main result, which

avoids the advanced difference Galois theory. This may be of independent interest.

We define

H := {(a0, · · · , an−1) ∈ Cn : ai − aj /∈ Z for any 0 ≤ i < j ≤ n− 1}. (1.4)

Now, we state our main result in the following.

Theorem 1.1 Let P be a polynomial of n+1 variables in C[X,Y0, · · · , Yn−1]. Assume that

P (s,Γ(s+ a0), · · · ,Γ(s+ an−1)) ≡ 0

for some (a0, · · · , an−1) ∈ H, then we have

P ≡ 0.

We remark that we can also use Theorem D to recover part of the result of Theorem 1.1

under the same condition of (aj)
n−1
j=0 and alsom = 0 in Theorem D. While, it can not completely

recover Theorem 1.1, since the condition in Theorem 1.1 is sharp. Our result complements the

classical result of algebraic differential independence of Euler gamma function proved by Hölder

[8] in 1886, and also a result of algebraic difference independence of Riemann zeta function

proved by Chiang and Feng [4] in 2006.
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Corollary 1.1 Let P be a polynomial of n + 1 variables in C[X,Y0, · · · , Yn−1]. Assume

that

P (s,Γ(s), · · · ,Γ(s+ (n− 1)α)) ≡ 0

for some α 6∈ Q, then we have

P ≡ 0.

Remark 1.1 Theorem 1.1 can be seen as a difference version of the Hölder’s theorem. The

identity (1.3) shows that the discussion restricted to H is necessary.

We can also extend Theorem 1.1 to the setting of K[X,Y0, · · · , Yn−1] where K is the field

of all meromorphic functions such that the Nevanlinna’s characteristic T (r, f) = o(r) as r goes

to infinity for any f in K. While, we will not address it in this paper.

By Theorem 1.1 and the Euclidean’s algorithm, it is not hard to give the following two

examples.

Example 1.1 Let P = P (X,Y, Z) be a polynomial of 3 variables in C[X,Y, Z]. Assume

that

P (s,Γ(s+ a0),Γ(s+ a1)) ≡ 0,

then

P ≡ 0,

unless a1 − a0 ∈ Z. In the latter case, if ℜa0 < ℜa1, P can be divided by the polynomial

R(X,Y, Z) = Z − (X + a0) · · · (X + a1 − 1)Y .

Example 1.2 Let P (X,Y, Z,W ) = YW − Z2 − Y Z in C[X,Y, Z,W ]. We have

P (s,Γ(s),Γ(s+ 1),Γ(s+ 2)) ≡ 0.

P belongs to the ideal

〈W − (X + 1)Z,Z −XY 〉

generated by W − (X + 1)Z and Z −XY in C[X,Y, Z,W ]. Furthermore, P can be written by

P (X,Y, Z,W ) = Y (W − (X + 1)Z) + Z(XY − Z).

Remark 1.2 Indeed, inspired by Examples 1.1–1.2, we can apply Theorem 1.1 and the

Euclidean’s algorithm again to give a complete characterization of the following set

I := {P ∈ C[X,Y0, · · · , Yn−1] : P (s,Γ(s+ a0), · · · ,Γ(s+ an−1)) ≡ 0}

without any assumption on a0, · · · , an−1. While, we will not discuss it in this paper.
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2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we need introduce a lexicographic order between any two

monomials Y i0
0 · · ·Y

in−1

n−1 and Y j0
0 · · ·Y

jn−1

n−1 in C[Y0, · · · , Yn−1], which plays an important role in

our proof. And this strategty was inspired by Ostrowski’s proof of Hölder’s classical proof in

[14]. It also shares some spirit of Kolchin’s type theorem which was used in [1, 5].

We first introduce an order for the n symbols Y0, · · · , Yn−1,

Y0 ≺ Y1 ≺ · · · ≺ Yn−1. (2.1)

This can be used to induce a lexicographic order between any two monomials Y i0
0 · · ·Y

in−1

n−1 and

Y j0
0 · · ·Y

jn−1

n−1 . We still denote it by ≺ to simplify the notation. We define it in the following:

Case 1 Y i0
0 · · ·Y

in−1

n−1 = Y j0
0 · · ·Y

jn−1

n−1 if ik = jk for k = 0, · · · , n− 1;

Case 2 Y i0
0 · · ·Y

in−1

n−1 ≺ Y j0
0 · · ·Y

jn−1

n−1 if i0 < j0 or there exists 1 ≤ k ≤ n− 1 such that

i0 = j0, · · · , ik−1 = jk−1, ik < jk;

Case 3 Y j0
0 · · ·Y

jn−1

n−1 ≺ Y i0
0 · · ·Y

in−1

n−1 can be defined similarly as in Case 2.

For any nonzero polynomial P = P (X,Y0, · · · , Yn−1) in C[X,Y0, · · · , Yn−1], we write it by

P =
∑

i=(i0,··· ,in−1)

Φi(X)Y i0
0 · · ·Y

in−1

n−1 , (2.2)

where Φi(X) ∈ C[X ] and Φi(X) 6= 0. The highest term of P is defined by the maximal element

in TP with respect to the lexicographic order ≺ introduced above, where

TP := {Y i0
0 · · ·Y

in−1

n−1 : Φi(X) Y i0
0 · · ·Y

in−1

n−1 appeared in (2.2)}. (2.3)

For any monomial L = Y i0
0 Y i1

1 · · ·Y
in−1

n−1 , we define its degree deg(L) by

deg(L) :=

n−1∑

k=0

ik.

The height of P is defined by the degree of the highest term of P .

Now, we will prove Theorem 1.1.

Proof Let

S := {P ∈ C[X,Y0, · · · , Yn−1] : P (s,Γ(s+ a0), · · · ,Γ(s+ an−1)) ≡ 0}. (2.4)

We will prove Theorem 1.1 by contradiction. We assume that S 6= {0}. By our assumption,

there exists a nonzero polynomial

Q =
∑

i=(i0,··· ,in−1)

Ψi(X)Y i0
0 · · ·Y

in−1

n−1 ,

which is of the lowest height in S\{0} with Ψj(X)Y j0
0 · · ·Y

jn−1

n−1 being its highest term for some

j = (j0, · · · , jn−1). Moreover, we also make the following assumption.

Assumption LD The nonzero polynomial Ψj(X) appearing in the highest term of Q is

also of the lowest degree.
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Let

T (X,Y0, · · · , Yn−1) := Q(X + 1, (X + a0)Y0, · · · , (X + an−1)Yn−1). (2.5)

Noting that

Q(s,Γ(s+ a0), · · · ,Γ(s+ an−1)) ≡ 0,

we have

T (s,Γ(s+ a0), · · · ,Γ(s+ an−1)) ≡ 0

by (1.3). And the highest term of T is Ψ̂j(X)Y j0
0 · · ·Y

jn−1

n−1 , where

Ψ̂j(X) := Ψj(X + 1)(X + a0)
j0 · · · (X + an−1)

jn−1 .

It follows from the Euclidean’s algorithm, there exist two polynomials R = R(X) and

U = U(X) in C[X ] such that

Ψ̂j = RΨj + U,

where either U = 0 or 0 < degU < degΨj . It is easy to see that degR ≥ 1.

We claim that U = 0. Otherwise, we know that the polynomial

H(X,Y0, · · · , Yn−1) := T (X,Y0, · · · , Yn−1)−R(X)Q(X,Y0, · · · , Yn−1)

is in S. It follows that the highest term of H is

U(X)Y j0
0 · · ·Y

jn−1

n−1

and 0 < degU < degΨj . Thus, H 6= 0, which contradicts the choice of Q and Assumption LD.

Now, we have U = 0.

Since U = 0, we see that the highest term of H is less than the highest term of Q if H 6= 0.

This again contradicts our choice of Q. Thus, we get H = 0. That is,

T (X,Y0, · · · , Yn−1) = R(X)Q(X,Y0, · · · , Yn−1). (2.6)

We first assume that there exists β /∈ Λ := {−ak : 0 ≤ k ≤ n− 1} such that R(β) = 0. By

(2.5)–(2.6), we get

Q(β + 1, (β + a0)Y0, · · · , (β + an−1)Yn−1) = 0

in C[Y0, · · · , Yn−1]. This implies that

Q(β + 1, Y0, · · · , Yn−1) =
∑

i=(i0,··· ,in−1)

Ψi(β + 1)Y i0
0 · · ·Y

in−1

n−1 = 0

in C[Y0, · · · , Yn−1]. Thus, we have

Ψi(β + 1) = 0

for all i, which implies that each Ψi(X) can be divided by X − β − 1. This contradicts our

assumption that Ψj is of the lowest degree.
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Hence, each root of R lies in Λ. Without loss of generality, we assume that R(−a0) = 0.

Thus, we get

Q(−a0 + 1, 0, (a1 − a0)Y1, · · · , (an−1 − a0)Yn−1) = 0

by (2.5)–(2.6). Recalling that aj − a0 /∈ Z for any j 6= 0, we have

Q(−a0 + 1, 0, Y1, · · · , Yn−1) = 0. (2.7)

Taking X = −a0 + 1, Y0 = 0 in (2.5)–(2.6), we get

Q(−a0 + 2, 0, (a1 − a0 + 1)Y1, · · · , (an−1 − a0 + 1)Yn−1)

= R(−a0 + 1)Q(−a0 + 1, 0, Y1, · · · , Yn−1) = 0

by (2.7). Noting that aj − a0 /∈ Z for any j 6= 0 again, we obtain

Q(−a0 + 2, 0, Y1, · · · , Yn−1) = 0

in C[Y0, · · · , Yn−1]. By induction, we can prove that for any m ∈ N,

Q(−a0 +m, 0, Y1, · · · , Yn−1) = 0

in C[Y0, · · · , Yn−1]. It follows by the fundamental theorem of algebra, we get

Q(X, 0, Y1, · · · , Yn−1) = 0

in C[X,Y0, · · · , Yn−1]. Thus, we proved that Q can be divided by the monomial Y0, which

contradicts the assumption that Q is of the lowest height in S.

Now, we finish the proof of Theorem 1.1.
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[2] Bank, S. B. and Kaufman, R. P., A note on Hölder’s theorem concerning the gamma function, Math. Ann.,
232(2), 1978, 115–120.

[3] Bank, S. B. and Kaufman, R. P., On differential equations and functional equations, J. Reine Angew.

Math., 311(312), 1979, 31–41.

[4] Chiang, Y. M. and Feng, S. J., Difference independence of the Riemann zeta function, Acta Arith., 125(4),
2006, 317–329.
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