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Bochner-Martinelli Formula for Higher Spin Operators of
Several R® Variables*
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Abstract The higher spin operator of several R® variables is an analogue of the 0-
operator in theory of several complex variables. The higher spin representation of so0g(C)
is ©"C* and the higher spin operator Dy acts on ©@*C*-valued functions. In this paper, the
authors establish the Bochner-Martinelli formula for higher spin operator Dy, of several RS
variables. The embedding of R®™ into the space of complex 4n x 4 matrices allows them
to use two-component notation, which makes the spinor calculus on R®™ more concrete
and explicit. A function annihilated by Dy is called k-monogenic. They give the Penrose
integral formula over R®" and construct many k-monogenic polynomials.

Keywords Higher spin operator, k-Monogenic, Bochner-Martinelli formula, Pen-
rose integral formula
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1 Introduction

After Pertici [17] proved the Hartogs’ phenomenon for several quaternionic variables, people
began to study the regular function theory of several quaternionic variables, generalizing the
theory of several complex variables. So far the k-Cauchy-Fueter complex, the quaternionic
counterpart of Dolbeault complex is known explicitly (see [1-2, 5-6] for & = 1, [23] and references
there in).

More generally, people are interested in constructing the corresponding differential complex

for several R™ variables. Such complexes exist in the stable case, i.e., the number of variables
5,
functions of several R™ variables. Ren and Wang [19] investigated several octonionic variables.

is less than or equal to see [7, 15, 20]. Tt is interesting to develop the function of regular

On the other hands, physicists are interested in 6-dimensional physics, in particular, the
superconformal field theory over space-time R>! and the 6-dimensional theory of self-dual
three-forms, the reduction of which gives us the self-dual string equations in 4-dimensions (see
e.g. [14, 16, 21] and references there in). It is well known that the orthogonal Lie algebra is
isomorphic to the special linear algebra sly(C), i.e.,

506(C) = 5[4 (C), (1.1)

see [11, P. 327]. Then the basic spin representation of s04(C) is isomorphic to C* as a sly(C)-
module and ®*C? is the higher spin representation of s05(C). So Kang and Wang [13] defined
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the elliptic version of the massless field operators on RS by the imbedding

7RO < A2CH C (C4X4,

0 izt + 2% 2t +ix® 2?2 +i2?
<1 6 2 .3 44 3.5
x:(:z:o R x5)l—>7'0(x) B B E 0 Tt —ir® —a*+ix (1.2)
T ’ ’ —zt —iz® —a2? +ixd 0 —jz! 4 28 ’
—22 —iz® 2t —ix® izl —af 0

This embedding is the generalization of the embedding of quaternionic space H — 2%2_ which
is based on

504(C) 2 sl5(C) @ sl2(C). (1.3)

Sémann and Wolf [21] and Mason et al. [16] defined the massless field operators on Lorentzian
space R>! by an embedding R>! into C***, which is the generalization of the embedding of
Minkowski space R?! into 2 x 2-Hermitian matrix space. The massless field operators are higher
spin operators.

By embedding H" into C?"*2, Wang defined the k-Cauchy-Fueter operator over H" and
gave the k-Cauchy-Fueter complex and twistor transform over H” by using the twistor method
with the advantage of two-component station, see [23]. Motivated by the embedding (1.2), we
give an embedding 7 : R < C47x4 .

To(XQ)
(:°8) 1= () = | 00| (1.4)
TO(Xn—l)
a=0,1,--- ,4n—1, B = 0,1, 2, 3, where we denote the element of R by x = (x0, X1, -+ ,X,_1)

with x; = (Xe1+1, Ter+2, -+, Tei+6). In this paper, we use the notation A, B,C, D € {0, 1,2, 3},
a,B€{0,1,---,4n — 1}, 5,I,m € {0,1,--- ,n — 1}. We denote by ®*C* the k-th symmetric
power of C*, whose element is 4*-tuple (¢4,...4,) With ¢4,...a, € C, which are invariant under
the permutations of subscripts Ay,---,Ar =0,1,2,3.

k-Cauchy-Fueter operator is valued in the higher spin representations of s04(C). Recently,
there are many works to construct higher spin operators on higher dimensional Euclidean space
and to investigate its function theory (see [8-10] and references there in).

Motivated by the higher spin operators on RS (see [13]), we introduce higher spin operators
D;. of several RS variables as

Dy, : C°(R5", @FC*) — C°(R®", C* @ @*~1CY), (1.5)
with
3
(Dkd)%,.n, = Y 2P0, a0 (1.6)
B=0
for k = 1,2,---, where Z“? are complex vector fields and the matrix (Z%?) is just the em-

bedding matrix (1.2)—(1.4) with the coordinate z7 replaced by 9, see (2.2) for details. A
©FC*-valued function ¢ on a domain U of R" is called k-monogenic on U if

Dy = 0.
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In this way, we could begin to study regular functions of several RS variables.

Integral representation formula, i.e., Bochner-Martinelli integral formula is a fundamental
and powerful tool to study holomorphic functions of several complex variables, see [18-19, 24—
26] and references there in. For quaternion Siegel upper half-space, we know a better kernel,
Cauchy-Szego kernel reproduces regular functions, see [3—4]. In [23], Wang gave the Bochner-
Martinelli type formula for k-Cauchy-Fueter operator. Wang and Ren [22] established the
explicit Bochner-Martinelli kernel by using technique of Clifford analysis. They also established
Bochner-Martinelli type formula for several octonionic variables, see [19]. Kang and Wang [13]
gave Bochner-Martinelli type formula for higher spin massless field operators on R®. In this
paper, we get the Bochner-Martinelli type formula for higher spin operator Dy on R6”.

Theorem 1.1 (Bochner-Martinelli type formula) Let U be an open bounded set of R™
with C' boundary. For ¢ € C(U,o"C*) N CYU,o*C*), k =1,2,--- and any fizred x € U, we
have

X) = X — ooB
onm =% ||t x = ¥)0 aa ()
> | Eaa (x=y)(Dro(¥)) . 4, d0(¥)- (1.7)
U )

Wang and Kang introduced the Penrose integral formula and series expansion of k-regular
functions over H" (see [12]). Sdmann and Wolf [21] constructed the Penrose integral formula
over the twistor space CP3. We construct lots of k-monogenic functions by writing down the
Penrose integral formula explicitly in terms of nonhomogeneous coordinates.

Let (w,p) be the coordinates of C4"*+3, w € C?,p € C*". The Penrose type contour integral
transformation is

(Pf)Al“'Ak (X)

:2/ dwl/ de/ dw:;'UJAI"'LUAkf(UJQ,UJg,UM,"' ,Zzo‘BwB,---) (1.8)
lwi]=1 |wa|=1 lws|=1 B

for f holomorphic on C*"*3\{wjwsws = 0}. We prove that the Penrose-type integral formula
produces k-monogenic functions and find many nontrivial k-monogenic polynomials by choosing
suitable holomorphic functions in the formula. Abundance of k-monogenic functions show the
theory of several RS variables is interesting.

Based on isomorphism (1.1) and (1.3), we can use two-component notation, which makes
the spinor calculus on R*" and R®" more concrete and explicit. There is no such isomorphism
for 50,,(C) with n > 6. That is why we only consider several R variables.

2 The Higher Spin Massless Field Operator D;, Over R

In R® (see [13]), we use complex vector fields

0 10p0 + 0y Opz + 10,0 Op1 + 10,2
ABy . —10,0 — Oys 0 Op1 — 10,2 —0p3 + 10,4
(V7)) = —0p3 — 10,2 —0p + 10,2 0 —i0,0 + 05 |’ (2.1)

—0p1 — iawz 8w3 — 1314 iawo - 8w5 0
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to define higher spin operators. Here we consider complex vector fields
(Z9B) ppxa = | ZWHAB | (2.2)

where I =0,1,---,n—1, A,B=0,1,2,3 and

0 iaIGl+1 +816l+6 aIGl+4 +iaIGl+5 816l+2 +i616l+3
(Z(4l+A)B)4 4= 102644 _.BZSHG v T R R —?zsz+4+iazsz+s ' (2.3)
. “Oug g —10ug 5 —Ongy o Hiag g 0 =102, 41 T02646
_8m61+2_i8m61+3 6161+4_i6161+5 i9, 2 0

T6l4+1 “T6146

Let eapop = e2BCP be the sign of the permutation from (0,1,2,3) to (A, B,C, D). Ob-

viously, we have Y eapcpe® PPl = 2(656E — 656E). We will use eapcop = e*BCP to lower
C.D
and raise indices:

1 41+C)D aB . 1 ABCD
ZaB = 3 CZI:JEABCDZ( 708 = 3 CZE:)é? Z4i1+C)Ds (2.4)

when a = 4l + A. By (2.2) and (2.4), we have
(Zap) = (Z°F). (2.5)
The following three propositions generalize the corresponding results in 6 dimensional case
in [13].
Proposition 2.1 For 2P defined by (1.4) and the operator Zsp defined by (2.5), we have

Zamyoyp2 TP =261, (6867 — 686). (2.6)

Proof When m # I, Z(4m+c)Dz(4l+A)B = 0 for any A,B,C,D € {0,1,2,3}, by using
(1.2)—(1.4) and (2.3)—(2.5). Now we consider the case m = [. It is direct to check that

Z(4l)1z(4l)1 = (_iBISH»l + Brsue)(ixGH_l + x6l+6) =2,
Z(4l)1z(4l+2)3 = (—i0 6141 + 8wsz+6)(—i$6l+1 + $6l+6) = 0.

So we have Z(4); 20 = —2 and Z(4),2(4+%? = 0 by 2B = (41484 And we have

AB 6l+1 61+6

Zapy1 2B = 0 for other case, since 24 is independent of x and 216, Hence we have

Z(4l)12(4l+A)B = 2(564513 - 5(?514)7

e., (2.6) holds for (C,D) = (0,1). Similarly, when (C,D) # (0,1), (2.6) also holds. The
proposition is proved.

Proposition 2.2 For operator Z*B and Z,p defined by (2.2)—(2.3) and (2.5), we have

> Zap, Z2°P = G2A, (2.7)

6n
where A = Y~ 92 is the Lapalace operator on R°™.
i=1

1=
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Proof When B; # Bs, we have

Z ZaBIZO‘B2 — % Z Z 5ABchZ(4l+c)DZ(4l+A)B2
@ I A C,D

by definition (2.4). Note that Z(#+4)B2 — 0 if A = By. Thus eap,cp VB2 £ 0 if and
only if C or D = B5. So we have

1
Z Zap, 282 = 3 Z Z (Z eAp,cp, ZWTO)B Z gABlB2Dz(4l+B2)D)Z(41+A)B2
o 7 " o .
1
=3 Z Z (Z eAB,cB, Z OBz 4 Z gABlDBzz(ALH-D)Bg)Z(4l+A)32
l A C 5
- Z Z Z e A 0B, ZWHC)I B2 7(UHA) B2 _
l A C
by €4B,B,D = —€AB, DB, and ZB2P = —7PB2 When B, = By, we have

> Zapz°P =Y Z0BzeP

[e3

by using (2.5). It is directed to check that

Z Z(4l+A)BZ(4l+A)B = aiGH»l + 6§6l+6 + 3§GL+4 + ageus + 6§m+2 + 6§m+3
A

for fixed [ € {0,1,--- ,n— 1} and B € {0,1,2,3}. So we have

ZWZQB =A.

The proposition is proved.
Define the inner products
(60) = > /G Par s, (V)PA1 4504, (Y)A0(Y), 6,9 € CF(R™,C" @ oF1CY)
Ay Ag,-e Ay VRO

and

=Y 3 [ 05 0T LB, 6T e CEER.CT e otieY).
Ap "

a Az,

Let L2(R%" ©*C*) and L2?(R%",C*" @ ©F~1C*) be the completion of C§°(R", ©*C*) and
Ce (RO, C4" @ ©F~1C*), respectively. Let Dj be the adjoint of the operator Dy in (1.5)
as

for any ¢ € C3°(RO™, 0FCH), € C§°(RO™, (C4)*  0F~1C4).

We will use primed symmetrization of indices

1
¢(A1Ak) = E Z ¢"'Aa(1)"'Aa(k)"'7 (28)

g€eSk
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where Sy is the group of permutations of k letters.
For any ¢, € L?(R™, ©*C*), by their symmetrization, we have

Z ¢A1A2»~Ak¢A1A2---Ak = Z ¢A1A2---Ak’(/](A1A2...Ak), a.e.. (29)
Aq, A Aq,- Ay
Proposition 2.3 For any ¢ € C(R%", ©FC*), k =1,2,--- , we have
DZDIC¢ = _A¢7

where A is the Laplace operator on R5™.

Proof For ¢ € C§°(R™, ®*C*) and ¢ € C§°(R™, C*" @ ©*~1C*), we have

Dk¢ Q/J Z Z / Z ZO‘AI¢A2'~AkA1 ! ¢%2~»AkdU(Y)
Ay

OLAQ

Z DAL A Ay, ZZQA11ZJA2 a,dv(y)

R6n

Z / ¢A1A2 A ZZQ(AJ/JAZ Ak) ( ) (¢7IDZ¢)7

which follows from Stokes’ formula. Here we use (2.9) in the third identity. Note that

(DZ1/’)A1~~Ak = - Z Za(Alwzz...Ak)-

We get
(DZDqu)AlAk - k' Z Z ZO(AC,(U (ZZO[B(ZSQU(Q)---AU(;C)B)
a oESE
1

_ B _

- _ﬁ Z 25A6<1>A¢Aa<2)"'14a<k)3 ] Z APA,a) Ao Aa)
oeS, B oeSy

= —Apa,A,.-4,

by using (1.6) and (2.7). Then (D;Dy)¢ = —A¢. The proposition is proved.

3 The Bochner-Martinelli Integral Formula

It is directed to check that K(y) := |y‘6n > is the fundamental solution of the Laplacian

operator A on R, where C' = mﬁ% and |y| = (y? + 93 + -+ y2,)?. Define the

Bochner-Martinelli kernel
Ean(y) = Z°BK(y) = ZapK(y),
which is a C** @ ©®*C* valued function. Define the (6n — 1)-form
dy® =g, dv(y), do®P(y) = igasdu(y), (3.1)

where i is the interior product and dv(y) := dy* Ady? A --- Ady®" is the standard volume form
on R%". Obviously, we have

i(clayﬂl +C23y52)dv(y) = Cldyﬁl + cgdy,@2’ Bi, B € {17 .. 76n}'
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Then do®B(y) in (3.1) can be rewritten as
(do*F(y)) = [ doWH DB (y) |

where y; € R, 1=0,1,---,n—1, A,B=0,1,2,3 and

—_

0 idySl+T 4 dySi+6 dybl+d1idybi+5 dybl+24idy6l+s
_idy/sz—ﬁ_dy/sfﬁ 0 dy/sur\2_idy/sz.ﬁ _dy/61+\4+idy/sz.ﬁ

41+ A)B _
(Ao (yy)) = T 0T T TS T
—dyOlH_jdyOl45 —qybi+2 4 idy0i+3 0 —idySlHT g6l +6

—dySl+2—idy6i+3  dybltd—_idy6l+5 jdybl+1—_dyoi+6 0
This matrix is just (1.2) with 2% replaced by dy/ﬁ“r\i.
Lemma 3.1 For a domain U in R%" and u,w € C1(U,C), we have
d(u - wde®P(y)) = (Z*Pu-w +u- Z°Pw)do(y). (3.2)

Proof For fixed ji,jo € {1,---,6n}, we have

6n
> 0yih-dy’ A (i1, 5, +e20,5, Q0(¥)) = (€10 + €205 )h - dv(y). (3.3)

i—1
Thus for h(y) € CY(U), we have

6n 6n
d(h-do®P) =" 0h-dy' Ade®P =" 0h - dy’ Nigasdo(y) = Z*Ph- do(y)
i=1 i=1

by (3.3). Then (3.2) follows.

Lemma 3.2 Let U be an bounded domain of RS with C* boundary OU and ® € C(U, ®*C*)
NCH (U, ®FC*). For a fized point x ¢ U and fized Ay, --- , A € {0,1,2,3}, we have

[ Y = )Pt 5(3)d0 P 3)
ou < 5
=3 [ Eane - VPO, D) (3.4
Proof Apply Lemma 3.1 to u(-) = Zaa, K(x—-),w(-) = ®a,..a,B() to get
_ O,aB
/6U dy [Xa: XB:SQAl(X Y)Pa,ea,5(y)d (Y)}

= ZZ/U[—Z“BZaAlK(X—y) D uyen,B(Y) + Zaa, K(x—y) - ZP® 4, a,5(y)|do(y)
o B

= % /U —68 AK(x—y) - ®a,.a,(y)dvo(y) + ; /U Ear, (X —¥)(Dr®(y))%,..a,dv(y)

-y /U Eats (% — ¥) (DkB(Y))5,...a, Ao (y)

by S22 Zoa, =3 Zan, Z2°P = 65 Aand AK(x —y) =0forx ¢ U.
We also need the identity corresponding to (3.4) for x € U.
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Lemma 3.3 Let U be an bounded domain in R®™ with C* boundary OU and ¢ € C(U, ®*C*)
NCYU,okC*). Then we have

¢A1"'Ak (X), ifX S U,

AU%:;EQ(Al (X—y)(bAz...Ak)B(X)da—aB(Y) = {0’ fo ¢ U (35)

Proof For a fixed point x ¢ U, applying Lemma 3.2 to ®(y) = ¢(x) to get

/ Z Z Eaty (X —¥)Pay.n,(x)do*P (y) =0
ou S5

by Dy ®(y) = 0. It implies (3.5) holds for x ¢ U by symmetrization.
When x € U, let B(x,e) = {y € R%" : |y — x| < e} C U with ¢ sufficiently small. Applying
Lemma 3.2 to ®(y) = ¢(x) and the domain U \ B(x,¢), we have

X — x a.ocB _
/aU\aB<x o) za: zB:g(ml( Y)®as--4,5(x)d0" (y) =0,
ie.,
/BU Z Z Eany (X —¥)Pay.a,5(x)do*E (y)
/63( ZzgaAl V)b Ay, 5(x)do?B (y). (3.6)

[e3

Obviously, we have Z,p|x — y|?> = —2u(x —y),,5- Then the right hand side of (3.6) equals to

; % P A /83(1,5) (_32%1)02(1,41 x —y[*do*"(y)
— ; % Gy, B(X) /83()(76) %an Ix — y|2doB ()
= ; XB: Pz ,,5(X) /B(m) %Z“Bzam [x — y[*dv(y)
= ZB: Pz AB(X) ~/B(x,s) %ﬁ&x — y|*do(y)
= %|B(Xaa)|¢Az~~~AkAl(X) =0a,..4,(X) (3.7)

3n _6n

by using Stokes’ formula and (3.2) in the first identity, where |B(x,¢)| = TG s the volume
of the ball B(x,¢) in R%". The lemma is proved.

Proof of Theorem 1.1 For any fixed x € U, applying Lemma 3.2 to ®(y) = ¢(y) and the
domain U \ B(x,¢) to get

/BU /ans) Zzgaf‘l Y)ba,...a,5(y)do*B

N Z /U\B@c,s) Eany (X = ¥)(Drd(¥))%,...a, dv.
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By symmetrizing indices Ay, --- , Ay, we have
{/ _/ }Zzga(fh (X_Y)QbAgmAk)B(y)da'o‘B
oU 6B(x75) o 5
S [ VP .
o JU\B(x,)

Since ZAB¢(y) a,...4, B is locally bounded and |Eap(x — y)| = O(]x — y|~5"*1), we find that

Jim Zaj /B o S 0= PO, do3) = O

e—0

On the other hand,

g%z Z/ Ean, (X —y)[Pa,.-a,B(y) — ¢A2,..A,€B(X)]doo‘B(y) =0,

o« B IOB(x,e)

since |£(y) = Fx)] < [lfllcr|x — y| for any y € OB(x,2) and [ € C}(B(x,2)).
This together with Lemma 3.3 and symmetrizing the indices Ay, -+ , Ay imply that

lim /33( ZXB:SQ(Al(X — ¥)Baya)5(Y)A0P(¥) = da,..a, ().

e—0 X,E) o

The theorem is proved by letting ¢ — 0 in (3.8).

4 The k-Monogenic Functions and Penrose Integral Formula

Samann and Wolf [21] have established the Penrose integral formula in terms of homoge-
neous coordinates of CP”. We can get the contour integral formula (1.8) over R®" by taking
nonhomogeneous coordinates of CP?. We check that Pf satisfies the equation Dj, (Pf) =0 Dby
direct differentiation.

Theorem 4.1 For any holomorphic function f on C* 3\ {wiwsws = 0}, the ®*C*-valued
function Pf on R®™ given by (1.8) is k-monogenic.

Proof Take p® := Y 2*Bwp with wg = 1. When o = 4] + A,
B
Z(4myc)pDP” = Z Zamsoyp? T Bup
B
= 237 6L, (6408 — B5A)wp = 26, (688wp — 6wo) (4.1)
B

by (2.6). For a fixed A, ---, A, B, differentiate the contour integral formula (1.8) to get

Z(4m+C)D(Pf)A2“'AkB (X)

af
= dwl/ dng/ dws - wa, " wAwB ) —=Z(4mt0)pP”
~/|w1|—1 |wz|=1 |ws|=1 ’ § ; dp

of of
=2/ dwl/ de/ dws - wa, - wa,wp WD — ——HwWC (4.2)
lwr|=1 |wa|=1 |ws|=1 * (3p4 +C dpim+D )
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by (4.1). For fixed Aa,- -, A, set

0
HAB(4m+C)(x) = / dw1/ dw2/ dws - wa, -+ wa,WAWR /
Jwi]=1 |wa|=1 |ws|=1

6p4m+C )
Obviously, we have

Hapm+c)(X) = Hpaamso)(X)-
We can rewrite (4.2) as

Vam+c)p(Pf)ay-a,5(X) = 2(Hppam40)(X) — Hpo(am4p)(X))- (4.3)
Then we get

1
(Dx(P))arT4, = ZZ(MJFA)B(PJC)AQMA;CB(X) = Z EaABCDZ(4m+C)D(Pf)A2---AkB(X)
B B,C,D

Z e*BOP(Hppam+oy (%) — Hpc(am+p)(X))

B,C,D

by raising indices and using (2.4), (4.3) in the second and third identity, respectively. Since
ABCD

€

is antisymmetric in indices and H 4 pm+c) is symmetric in A and B, we have

Z(‘:ABCDHBD(ZLTHA-C) =0 and ZaABCDHBC(4m+D) = 0.
B,D 8.0

So (Dx(Pf))%,...a, =0, ie., (Pf)(x) is k-monogenic on R

Now we give some concrete k-monogenic functions.

Corollary 4.1 For fized nonnegative integers qi,q2, g3 and m;, j = 0,1,--- ,n — 1, the
OFC*-valued polynomial ¢ with

¢A1"'Ak (X)
> 1.

Bl
= ol Blys!
aptoay+-toap_1tar=q  j=0 JBJ Vi
Bo+Bi1++Bn—1taz=aq2
Yo+ttt yn—1taz=q3
aj+Bj+v;=m;,0<a;,Bv; <m;
0, else

(20125 (D)% (24025, when Ja| = |a] — |m]

(4.4)
is k-monogenic, where ay, is the number of h in {Ay,--- , Ar}, h=1,2,3, |a| = a1 + a2 + a3,
n—1
lal = q1 + g2 + g3, [m| = 3~ m;.
3=0

Proof Choose

n—1

[T (p¥)™
f(wlaUJQ,CUg’u.’pa’,..),_ 7=0

- (45)
w1111+1wgz+1wgg+1

holomorphic on C*" 3\ {wjwaws = 0} for fixed nonnegative integers g1, g2, g3 and m;, j = 0,
1,---

,n — 1. Note that
2mi, if s = —1,
/ widwp, =
|wn|=1

0, otherwise
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for h = 1,2,3. Recall that wy = 1. Substitute f in (4.5) into the Penrose type contour integral
formula (1.8) to get

n—1

[T (*)™
(Phaen ) = [

Jj=0
den / e / dog -way -~ way i+l g2+l ga+1
w1 ]=1 lwa|=1 lws|=1 Wy Wy Wy

n—1

.|

m;!

z/ dw1/ dw2/ dws - wi'wy?ws® ( Z ﬁ
Jwr|=1 |wa|=1 |wsl=1 ;! B!

J=0  a;j+Bj+yi=m;
0<a;, 85,7 <m;

(Z(4j)1w1)aj (Z(4j)2o.)2)ﬂj (Z(4j)3w3)71 )
o‘)1112-1‘1“)1212-i-lo‘);))k),-i-l

n—1
. m;! 44 ) 45 . ; .
= (2ni)® Z H WJ*W!('Z( D1y (5(4)2)B5 (4 (49)3);
aotaittan—1tai=q  j=0 I
Bo+Pi+ - +Brn-1+a2=qz
Yo+yit+-+Yn—1+az=qs
a;+Bj+vi=m;,0<0;,857; <my
only if |a| = |q| — |m| and ¢; —a; > 0 (j = 1,2, 3). Otherwise, it vanishes. By Theorem 4.1, we
know (P f)(x) is k-monogenic on R". The corollary is proved.
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