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Abstract Let (X,G) be a dynamical system (G-system for short), that is, X is a topolog-
ical space and G is an infinite topological group continuously acting on X. In the paper,
the authors introduce the concepts of Hausdorff sensitivity, Hausdorff equicontinuity and
topological equicontinuity for G-systems and prove that a minimal G-system (X,G) is ei-
ther topologically equicontinuous or Hausdorff sensitive under the assumption that X is a
T3-space and they provide a classification of transitive dynamical systems in terms of e-
quicontinuity pairs. In particular, under the condition that X is a Hausdorff uniform space,
they give a dichotomy theorem between Hausdorff sensitivity and Hausdorff equicontinuity
for G-systems admitting one transitive point.
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1 Introduction

For a discrete dynamical system (X, f), which means that X is a compact metric space

with some metric d and f : X → X is a continuous mapping, the concept of equicontinu-

ity is frequently used in the description of the complexity of discrete dynamical systems (see

[19, 24]). Recall that (X, f) is equicontinuous if for each ε > 0, there exists δ > such that

d(fn(x), fn(y)) < ε for all x, y ∈ X with d(x, y) < δ. From the definition of equicontinuity, it is

easy to see that every equicontinuous system admits simple orbit behaviors. Sensitivity as the

opposite-side of equicontinuity is also an important concept of discrete dynamical systems as

it usually becomes a kernel component of some chaos such as Devaney’s chaos (see [8, 12–13,

18, 20, 22, 31]). The Auslander-Yorke Dichotomy Theorem connecting these two concepts is as

follows.

Theorem 1.1 (Auslander-Yorke Dichotomy Theorem) A minimal discrete dynamical sys-

tem (the orbit of each point is dense in the underlying space) is either equicontinuous or sensi-

tive.

Up to now, there are many other forms of equicontinuity and sensitivity, such as mean

equicontinuity, density-equicontinuity, density-sensitivity and multi-sensitivity and various cor-

Manuscript received January 20, 2022. Revised June 8, 2022.
1Department of Mathematics, Nanchang University, Nanchang 330031, China.
E-mail: xst15970503289@163.com yjdaxf@163.com

∗This work was supported by the National Natural Science Foundation of China (Nos. 12061043,
11661054).



502 S. T. Xie and J. D. Yin

responding analogues of the Auslander-Yorke Dichotomy Theorem have been proved (see [14,

17, 20–21]).

Recently, there has appeared a trend to study the complexity of dynamical systems in the

setting that the underlying space is unnecessarily metrizable or compact, namely, it is just

a topological space. The notion of uniformity on a nonempty set which induces a topology

attracts widespread attention of many authors and there are various results on equicontinuity

and sensitivity of a continuous mapping on a topological space with a compatible uniformity

(see [10, 28] and see Section 3 for the details of uniformity). For example, the authors in [16]

introduced the notion of even continuity and obtained that if F is an evenly continuous family

of mappings from a topological space X to a regular space Y and C is the topology of pointwise

convergence, then the C-closure F of F is evenly continuous and C is jointly continuous of F (see

[6, 23, 26] for more results on even continuity). The notion of topological equicontinuity was

introduced in [27] and the authors proved that if F is a family of mappings from a topological

space X to a topological space Y and is topologically equicontinuous at x ∈ X , then, given

K ⊂ O ⊂ Y with K compact and O open, there is a neighborhood U of x such that f(U) ⊂ O

whenever f ∈ F and f(U) meets K. And in [6], the authors pointed out that for topological

spacesX and Y with a fixed compatible quasi-uniformityQ in Y and for a family F of mappings

from X to Y , the notions of even continuity, topological equicontinuity and Q-equicontinuity

(i.e., equicontinuity with respect to the topology of X and Q) are compared. Moreover, it was

shown that Q-equicontinuity implies even continuity, and if Q is locally symmetric, it implies

topological equicontinuity too. The definitions of equicontinuity, topological equicontinuity

and even continuity were proved to be equivalent in [6, 27] if the involved space is compact.

In [10], the authors made a classification of even continuity and topological equicontinuity of a

dynamical system and introduced the concept of eventual sensitivity under the condition that

the underlying space is a compact Hausdorff space. Besides, the authors gave a dichotomy

between eventual sensitivity and equicontinuity, that is, a transitive dynamical system is either

equicontinuous or eventually sensitive. The concept of Hausdorff sensitivity was introduced by

Good and Maćıas in [11] and it was proved that sensitivity and Hausdorff sensitivity coincide if

the underlying space is a compact Hausdorff space. Moreover, the authors proved in [10] that

a minimal dynamical system (X, f) is either topological equicontinuous or Hausdorff sensitive

if X is a T3-space. The concept of Hausdorff equicontinuity was introduced by Wang in [28]

and it was proved that the notions of Hausdorff equicontinuity and equicontinuity, Hausdorff

sensitivity and sensitivity are mutually equivalent if X is a compact Hausdorff space.

The study of group actions on metric spaces (sometimes, topological spaces) is an extremely

interesting topic of topological dynamical systems and ergodic theory. For instance, in [25], the

author introduced the concepts of sensitivity and equicontinuity for a group action on a compact

metric space and proved that such an action is transitive if it admits an ergodic invariant

probability measure with full support and it is either minimal and equicontinuous or sensitive.

In [7], the authors gave some applications of topological equicontinuity and even continuity
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to topologized semigroups and topologized groupoids acting on compact metric spaces. It was

turned out in [7] that a semitopological group is a paratopological group if and only if it has the

evenly continuous family of right translations (see [7, Theorem 5.2]). In this paper, we prove

that the main results of [10] are also true under the framework that G is an infinite topological

group which continuously acts on a Hausdorff uniform space X whose topology is induced by

a uniformity on X .

The paper is organized as follows. In Section 2, we give some basic notions of this paper.

In Section 3, we introduce the notions of Hausdorff equicontinuity and Hausdorff sensitivity of

group actions and we give a dichotomy theorem about Hausdorff equicontinuity and Hausdorff

sensitivity. Finally, in Section 4, we study the topological equicontinuity and even continuity

and obtain some properties about them. Besides, we give the Auslander-Yorke Dichotomy

Theorem between topological equicontinuity and Hausdorff sensitivity and a classification of

topologically transitive dynamical systems in terms of equicontinuity pairs.

2 Preliminaries of G-Systems

Throughout the paper, by a dynamical system (X,G) (G-system for short) we mean that

X is a topological space, G is an infinite topological group and Γ : G × X → X defined as

(g, x) 7→ gx for all g ∈ G and x ∈ X , is a continuous mapping satisfying:

(1) Γ (e, x) = x for each x ∈ X , where e is the identity element of G;

(2) Γ (g1, Γ (g2, x)) = Γ (g1g2, x) for all g1, g2 ∈ G and x ∈ X .

Each g ∈ G can be regarded as a homeomorphism from X to itself if there is no confusion.

For more details of G-systems, we refer the readers to see [2].

Let (X,G) be a G-system and x ∈ X . The orbit of x under the action of G is denoted by

Gx = {gx : g ∈ G}. A subset Λ of X is G-invariant if gx ∈ Λ for each x ∈ Λ and each g ∈ G,

i.e., GΛ = Λ. Let U, V ⊂ X , define the hitting time set of U and V by

N(U, V ) = {g ∈ G : gU ∩ V 6= ∅}

and the recurrence time set of x entering U by

N(x, U) = {g ∈ G : gx ∈ U}.

A point y ∈ X is called an ω-limit point of x if N(x, U) is infinite for every neighborhood

U of y. The collection of all ω-limit points of x is called the ω-limit set of x and we denote it

by ωG(x). It is easy to show that ωG(x) is G-invariant for each x ∈ X and ωG(x) = ωG(gx)

for each g ∈ G. Moreover, if X is compact, then ωG(x) 6= ∅ for each x ∈ X by the Cantor’s

intersection theorem (see [27]).

For x ∈ X , the closure of the orbit Gx of x under G in X , denoted by Gx, is the union of

Gx and ωG(x), i.e., Gx = Gx ∪ ωG(x). The interior of a subset A of X is denoted by intX(A).

A point x ∈ X is called a transitive point of (X,G) if Gx = X . We denote the set of

transitive points of (X,G) by Trans(X,G). The non-wandering set of x, denoted by ΩG(x),
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is defined as: y ∈ ΩG(x) if and only if for each neighborhood U of x and each neighborhood

V of y and every F ∈ Fin(G), there exists g ∈ G − F := {g : g ∈ G, g /∈ F}, such that

gU ∩ V 6= ∅, where Fin(G) denotes the collection of all finite subsets of G. Clearly, for each

x ∈ X , ωG(x) ⊆ ΩG(x).

A G-system(X,G) is called

(i) transitive if N(U, V ) 6= ∅ for each pair of nonempty open sets U and V ;

(ii) minimal if Gx = X for every x ∈ X ; equivalently, there is no proper nonempty closed

G-invariant subset of X .

A point x ∈ X is called minimal if the subset system (Gx,G) of (X,G) is minimal.

Lemma 2.1 (see [5]) Let (X,G) be a G-system, where X is a Hausdorff space without

isolated points. Then (X,G) is transitive if and only if N(U, V ) is infinite for each pair of

nonempty open subsets U and V of X.

Under the assumption that X is a Hausdorff space without isolated points, for a transitive

system (X,G), it is easy to derive that ΩG(x) = X for every x ∈ X by Lemma 2.1.

For sake of convenience, we denote by Nx the collection of all neighborhoods of x in X .

3 Hausdorff Equicontinuity and Hausdorff Sensitivity of G-Systems

3.1 Uniform spaces

Let X be a nonempty set. Denote the diagonal of X×X by △= {(x, x) : x ∈ X}. Given two

subsets A and B of X ×X , the inverse of A is denoted by A−1 = {(y, x) : (x, y) ∈ A} and the

composition of A and B is defined as A ◦B = {(x, z) : There exists y ∈ X such that (x, y) ∈

A and (y, z) ∈ B}. Use nA to denote

n times
︷ ︸︸ ︷

A ◦A ◦ · · · ◦A. If A ⊆ X ×X contains the diagonal △,

then we call the set A an entourage of the diagonal △.

Definition 3.1 (see [30]) A uniformity D on a nonempty set X is a collection of entourages

of the diagonal satisfying the following conditions:

(1) D1, D2 ∈ D ⇒ D1 ∩D2 ∈ D.

(2) D ∈ D, D ⊆ E ⇒ E ∈ D.

(3) D ∈ D ⇒ E ◦ E ⊆ D for some E ∈ D.

(4) D ∈ D ⇒ E−1 ⊆ D for some E ∈ D.

Meanwhile, we call the pair (X,D) a uniform space. D is separating if
⋂

D∈D

D =△, at the

same time, we say that X is separated. A sub-collection E of D is called a base for D if for every

D ∈ D, there exists E ∈ E such that E ⊆ D. Obviously, if D is separating, then
⋂

E∈E

E =△ for

each base E of D. An entourage D of the diagonal △ is called symmetric if D = D−1.

Clearly, each base E of a uniformity D has the following properties:

(1) If D1, D2 ∈ D, then there exists E ∈ E such that E ⊆ D1 ∩D2.
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(2) D ∈ D ⇒ E ◦ E ⊆ D for some E ∈ E .

(3) D ∈ D ⇒ E−1 ⊆ D for some E ∈ E .

For an entourage D ∈ D and a point x ∈ X , write D[x] = {y ∈ X : (x, y) ∈ D}. For x ∈ X ,

the collection Ux = {D[x] : D ∈ D} is a neighborhood base at x which induces a topology of

X . This topology can be also induced by a base E of D in the same manner. The topology is

Hausdorff if and only if D is separating.

Lemma 3.1 (see [9]) For a compact Hausdorff space X, there is a unique uniformity D

which induces the topology of X.

In the following, when we say that (X,G) is a G-system, it always means that X is a

Hausdorff space and G is an infinite group continuously acting on X . Let α, β be two open

covers of X . We say that β refines α if for each B ∈ β, there exists A ∈ α such that B ⊂ A.

Lemma 3.2 (see [11]) Let X be a compact Hausdorff space and let D be the unique uni-

formity of X that induces the topology of X. Then for every open cover U of X, there exists a

symmetric entourage V ∈ D such that CV := {V [x] : x ∈ X} refines U .

Lemma 3.3 (see [11]) Let X be a compact Hausdorff space and let D be the unique unifor-

mity of X which induces the topology of X. If U is an open cover of X, then
⋃

U∈U

U × U ∈ D.

Definition 3.2 (see [29]) Let X be a compact Hausdorff space and let D be the unique

uniformity of X which induces the topology of X. A G-system (X,G) is said to have sensitive

dependence on initial conditions (sensitivity for short) if there exists a symmetric D ∈ D such

that

ND(U) = {g ∈ G : There exist x, y ∈ U such that (gx, gy) /∈ D} 6= ∅

for each nonempty open U ⊆ X. We refer to such a D as a sensitivity entourage.

Definition 3.3 (see [3]) Let (X,G) be a G-system, where X is a compact Hausdorff space

whose topology is induced by the unique uniformity D of X. A point x ∈ X is called an

equicontinuity point of (X,G) if for each symmetric entourage D ∈ D, there exists U ∈ Nx

such that (gx, gy) ∈ D for every g ∈ G and every y ∈ U . Meanwhile, we say that (X,G) is

equicontinuous at x.

Denote the set of all equicontinuity points of (X,G) by Eq(X,G). If (X,G) is equicontinuous

at every point of X , then we say that (X,G) is equicontinuous, i.e., for all symmetric E ∈ D,

there exists a symmetric D ∈ D such that for all x, y ∈ X , if (x, y) ∈ D, then (gx, gy) ∈ E

for each g ∈ G. Therefore, a G-system (X,G) is equicontinuous if and only if Eq(X,G) = X .

x ∈ X is called a sensitive point if x /∈ Eq(X,G).

Proposition 3.1 If X is a compact Hausdorff space and (X,G) is sensitive with a sen-

sitivity entourage D ∈ D, where D is the unique compatible uniformity on X, then ND(U) is

infinite for each nonempty open U ⊆ X.
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Proof Suppose that there is a nonempty open U ⊆ X such that ND(U) is finite, say

ND(U) = {g1, g2, · · · , gk}. Choose E ∈ D such that 2E ⊆ D by Definition 3.1(3). Let

x ∈ U and D′ ∈ D such that for each y ∈ X , if (x, y) ∈ D′, then (gix, giy) ∈ E for each

i ∈ {1, 2, · · · , k}. Write W = U∩D′[x], then W is a neighborhood of x. Therefore, ND(W ) 6= ∅.

But giW ⊆ E[gix] for all i ∈ {1, 2, · · · , k} which means that if a, b ∈ W , then (gia, gib) ∈ D

for all i ∈ {1, 2, · · · , k}. Thus there exist gn ∈ G and a0, b0 ∈ W such that (gna0, gnb0) /∈ D.

Clearly, gn 6= gi for each i ∈ {1, 2, · · · , k} and gn ∈ ND(W ) ⊂ ND(U). This is contrary to

ND(U) := {g1, g2, · · · , gk}.

In the following Definition 3.4, we introduce the concept of Hausdorff sensitivity ofG-systems

which was given firstly by Good and Maćıas in [11] for a single continuous self-mapping on a

topological space. And we prove that for a G-system, Hausdorff sensitivity and sensitivity are

equivalent if the involved space is compact.

Definition 3.4 A G-system (X,G) is said to be Hausdorff sensitive if there exists a finite

open cover U of X such that for any x ∈ X and any V ∈ Nx, there exists y ∈ V with x 6= y

and g ∈ G such that {gx, gy} * U for all U ∈ U .

Example 3.1 Let X = R and (X, T ) be a topological space with the topology induced by

the usual metric of R. It is easy to verify that (X, T ) is a Hausdorff space. Let A = [0,+∞),

T0 = A ∩ T and T1 = T ∪ T0. Then (X, T1) is also a Hausdorff space since T ⊂ T1. Let G = R

be the additive group of reals. Define Γ : G×X → X by Γ (r, x) = r + x for all r ∈ G, x ∈ X .

Then (X,G) is a G-system and it is not hard to see that (X,G) is Hausdorff sensitive if we

note that U = {(−∞, 0), [0,+∞)} is a finite open cover of X .

Remark 3.1 A G-system (X,G) is Hausdorff sensitive if and only if there exists a finite

open cover U of X such that for each nonempty open set V of X , there exist x, y ∈ V with

x 6= y and g ∈ G such that {gx, gy} * U for all U ∈ U .

Proposition 3.2 Under the assumption that X is compact, a G-system (X,G) is sensitive

if and only if it is Hausdorff sensitive.

Proof Suppose that D is a compatible uniformity of X by Lemma 3.1. Let V ∈ D and set

CV := {V [x] : x ∈ X}.

Assume that (X,G) is Hausdorff sensitive. Let U be a finite open cover of X given by the

definition of Hausdorff sensitivity. Since X is compact, by Lemma 3.2, there exists a symmetric

V ∈ D such that CV covering X refines U . Let x ∈ X and W ∈ Nx. Then there exist x′ ∈ W

and g ∈ G such that {gx, gx′} * U for all U ∈ U . This implies that (gx, gx′) /∈ V . Otherwise,

{gx, gx′} ⊂ V [gx] ⊂ U ′ for some U ′ ∈ U , a contradiction. Therefore, (X,G) is sensitive.

Suppose that (X,G) is sensitive. Let V ∈ D be a sensitivity entourage. Let V ′ ∈ D be sym-

metric satisfying 2V ′ ⊆ V . Since CV ′ coversX and X is compact, there exist x1, x2, · · · , xn ∈ X

such that U = {intX(V ′[xj ])}
n
j=1

is a finite open subcover. We show that U satisfies the defini-

tion of Hausdorff sensitivity. Let x ∈ X and let A be an open subset of X containing x. Then,
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there exists W ∈ D such that W [x] ⊂ A. Hence, there exist x′ ∈ W [x] and g ∈ G such that

(gx, gx′) /∈ V which indicates that for each i ∈ {1, 2, · · · , n}, {gx, gx′} * V ′[xi]. Otherwise,

there exists l ∈ {1, 2, · · · , n} such that {gx, gx′} ⊆ V ′[xl]. Thus (gx, gx
′) ∈ V , a contradiction.

Therefore, for each i ∈ {1, 2, · · · , n}, {gx, gx′} * V ′[xi] which shows that (X,G) is Hausdorff

sensitive.

In the following Definition 3.5, we introduce the concept of Hausdorff equicontinuity point

for G-systems which was given firstly by Wang in [28] for a single continuous self-mapping

on a topological space. And we point out that for a G-system, equicontinuity and Hausdorff

equicontinuity are equivalent if the involved space is compact.

Definition 3.5 Let (X,G) be a G-system. A point x ∈ X is called a Hausdorff equicon-

tinuity point of (X,G) if for each finite open cover U of X, there exists V ∈ Nx such that

{gx, gy} ⊆ U for some U ∈ U whenever g ∈ G and y ∈ V . In particular, if (X,G) contains a

Hausdorff equicontinuity point, then (X,G) is called almost Hausdorff equicontinuous.

Denote the set of Hausdorff equicontinuity points of (X,G) by Heq(X,G).

Definition 3.6 A G-system (X,G) is said to be Hausdorff equicontinuous if for each finite

open cover U of X, there exists a finite open cover V of X and some V ∈ V such that for every

g ∈ G and all {x, y} ⊆ V , {gx, gy} ⊆ U for some U ∈ U .

Remark 3.2 If X is compact, then a G-system (X,G) is Hausdorff equicontinuous if and

only if each point of X is Hausdorff equicontinuous.

In the following proposition, we prove that for a G-system, equicontinuity and Hausdorff

equicontinuity are equivalent if the underlying space X is compact and Hausdorff. But this

result is not true if the involved space is not compact, see [28, Example 3.6].

Proposition 3.3 Under the assumption that X is compact, a G-system (X,G) is equicon-

tinuous if and only if it is Hausdorff equicontinuous.

Proof Suppose that D is a compatible uniformity of X by Lemma 3.1.

Assume that (X,G) is equicontinuous. Let U = {U1, U2, · · · , Um} be a finite open cover ofX .

Let D =
m⋃

i=1

Ui × Ui. Since X is compact, by Lemma 3.3, D ∈ D. As (X,G) is equicontinuous,

there exists a symmetric entourage D1 ∈ D such that (gx, gy) ∈ D for every g ∈ G and every

(x, y) ∈ D1. Let D2 ∈ D be symmetric satisfying 2D2 ⊆ D1. Then {intX(D2[x]) : x ∈ X}

is an open cover of X . Since X is compact, there exist x1, x1, · · · , xn ∈ X such that U =

{intX(D2[xj ])}nj=1
is a finite subcover of {intX(D2[x]) : x ∈ X}. If {x, y} ⊆ intX(D2[xj ]) for

some xj , then (x, y) ∈ D1. This implies that {gx, gy} ⊆ Ui for some Ui ∈ U and every g ∈ G

whenever {x, y} ⊆ intX(D2[xj ]) for some xj . Therefore, (X,G) is Hausdorff equicontinuous.

Suppose that (X,G) is Hausdorff equicontinuous. For each symmetric D ∈ D, there is a

symmetric D1 ∈ D satisfying 2D1 ⊆ D. Since {intX(D1[x]) : x ∈ X} covers X and X is

compact, there exist x1, x1, · · · , xn ∈ X such that U = {intX(D1[xj ])}nj=1
is a finite subcover of
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{intX(D1[x]) : x ∈ X}. As (X,G) is Hausdorff equicontinuous, there exists a finite open cover

V of X such that {gx, gy} ⊆ U for some U ∈ U and every g ∈ G whenever {x, y} ⊆ V for some

V ∈ V . Let D2 =
⋃

V ∈V

V × V . By Lemma 3.3, D2 ∈ D. Then whenever (x, y) ∈ D2, we have

{gx, gy} ⊆ U for some U ∈ U . This implies that (xj , gx), (xj , gy) ∈ D1 for some xj . Hence,

(gx, gy) ∈ D which implies that (X,G) is equicontinuous.

Example 3.2 Let X = {a, b, c} be a topological space with the discrete topology. Then X

is compact and Hausdorff. Define f : X → X by f(a) = b, f(b) = c and f(c) = a. Clearly, f

is a homeomorphism. Let G be the group generated by {f, f−1, Id}, where Id is the identity

map on X . Then (X,G) is a G-system. It is not hard to verify that each point of X is

an equicontinuity point of (X,G), by Remark 3.2 and Proposition 3.3, each point of X is a

Hausdorff equicontinuity point of (X,G).

Lemma 3.4 Let (X,G) be a G-system. If there exists a transitive point of (X,G) which is

not Hausdorff equicontinuous, then (X,G) is Hausdorff sensitive.

Proof Suppose that x0 is a transitive point of (X,G) which is not Hausdorff equicontinuous.

Then there is a finite open cover U of X , for each V ′ ∈ Nx0
, there exist g ∈ G and y ∈ V ′

such that {gx0, gy} * U for every U ∈ U . For any x ∈ X and V ∈ Nx, there exists g1 ∈

G such that g1x0 ∈ V . Noting that g−1

1
V is a neighbourhood of x0. It follows that there

exist g2 ∈ G and y ∈ g−1

1
V such that {g2x0, g2y} * U for every U ∈ U . It can be verified

that {g2g
−1

1
(g1x0), g2g

−1

1
x} * U or {g2g

−1

1
x, g2g

−1

1
(g1y)} * U . Indeed, suppose on contrary

{g2g
−1

1
(g1x0), g2g

−1

1
x} ⊆ U and {g2g

−1

1
x, g2g

−1

1
(g1y)} ⊆ U , then {g2x0, g2y} ⊆ U which is a

contradiction. Hence, (X,G) is Hausdorff sensitive.

Theorem 3.1 Let (X,G) be a G-system. If (X,G) contains a transitive point and (X,G)

is almost Hausdorff equicontinuous, then Trans(X,G) = Heq(X,G).

Proof Suppose that x ∈ X is a transitive point of (X,G) and z ∈ X is a Hausdorff

equicontinuity point of (X,G). For each finite open cover U of X , there exists V ∈ Nz such

that {gz, gy} ⊆ U for some U ∈ U whenever g ∈ G and y ∈ V . Then, there exists D ∈ D such

that D[z] ⊂ V . Let D1 ∈ D be symmetric such that D1 ◦D1 ⊂ D. As x is a transitive point

of (X,G), there exists g′ ∈ G such that g′x ∈ D1[z] ⊂ D[z] which shows that for each g ∈ G,

{gg′x, gz} ⊂ U . Let U1 = (g′)−1(D1[g
′x]), then for any p ∈ U1, we have (g′x, g′p) ∈ D1 which

together with (z, g′x) ∈ D1 implies that (z, g′p) ∈ D. Hence, {gg′x, gg′p} ⊂ U , which indicates

that x is a Hausdorff equicontinuity point.

Suppose that x ∈ X is a Hausdorff equicontinuity point of (X,G) which is not a transitive

point of (X,G), then Gx $ X . Let x0 ∈ X − Gx be a transitive point of (X,G). As X

is regular (see [15, Corollary 8.14]), there exists V1 ∈ Nx0
such that V1 ⊆ X − Gx. Then

U = {X − V1, X −Gx} is a finite open cover of X . As x is a Hausdorff equicontinuity point of

(X,G), there exists V2 ∈ Nx such that {gx, gy} ⊂ X − V1 or {gx, gy} ⊂ X −Gx for all y ∈ V2

and all g ∈ G. However, for any g ∈ G, gx /∈ X −Gx, then {gx, gy} * X −Gx for any y ∈ V2.
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As x0 is a transitive point of (X,G), there exists g1 ∈ G such that g1x0 ∈ V2. It can be verified

that X = Gx0 ⊆ X − V1 which contradicts that V1 is nonempty. Hence, x is a transitive point

of (X,G).

Theorem 3.2 If a G-system (X,G) admits at least one transitive point, then one of the

following statements exactly holds :

(1) If Heq(X,G) 6= ∅, then (X,G) is almost Hausdorff equicontinuous and Heq(X,G) =

Trans(X,G) ;

(2) if Heq(X,G) = ∅, then (X,G) is Hausdorff sensitive.

Proof If Heq(X,G) 6= ∅ and note that (X,G) has at least one transitive point, then (1)

holds by Theorem 3.1. Otherwise, Lemma 3.4 yields that (X,G) is Hausdorff sensitive.

4 Topological Equicontinuity and Even Continuity of G-Systems

4.1 Topological equicontinuity of G-systems

In this section, we introduce the concept of topological equicontinuity of G-systems, which

can be regarded as a generalization of equicontinuity introduced firstly by Royden in [27].

Definition 4.1 Let (X,G) be a G-system and x ∈ X. (x, y) ∈ X × X is called an e-

quicontinuity pair of (X,G) if for each O ∈ Ny, there exist U ∈ Nx and V ∈ Ny satisfying : If

g ∈ N(U, V ), then gU ⊆ O. If (x, y) ∈ X×X is an equicontinuity pair of (X,G), then y is called

correspondingly an equicontinuity partner of x. (X,G) is called topologically equicontinuous if

each element of X ×X is an equicontinuity pair of (X,G).

Example 4.1 Let X = R and (X, T ) be a topological space with the topology induced

by the usual metric of R. It can be verified that (X, T ) is a Hausdorff space. Let G = Z be

the integer additive group. Define Γ : G × X → X by Γ (z, r) = z + r for each z ∈ G and

r ∈ X . Then (X,G) is a G-system. It is not hard to verify that each point of X × X is an

equicontinuity pair of (X,G).

Denote the set of equicontinuity pairs of (X,G) by EqP (X,G). Clearly, (X,G) is topo-

logically equicontinuous if and only if EqP (X,G) = X × X . Let x ∈ X . If for all y ∈ X ,

(x, y) ∈ EqP (X,G), then we say that (X,G) is topologically equicontinuous at x ∈ X or x is a

topological equicontinuity point of (X,G).

In the rest of this section, for the sake of description, we always assume that X is a Hausdorff

space and (X,G) is a G-system.

Proposition 4.1 If (x, y) ∈ EqP (X,G), then (x, gy) ∈ EqP (X,G) for all g ∈ G.

Proof Let g ∈ G, O ∈ Ngy, then g−1O ∈ Ny . Since (x, y) ∈ EqP (X,G), there exist

U ∈ Nx and V ∈ Ny such that for each g′ ∈ N(U, V ), g′U ⊆ g−1O. Then gV ∈ Ngy . For any

g1 ∈ G satisfying g1U ∩ gV 6= ∅, it has that g−1g1U ∩ V 6= ∅. Then g−1g1U ⊆ g−1O which

means that g1U ⊆ O. The proof is completed.
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Proposition 4.2 Let x, y ∈ X, F ∈ Fin(G), O ∈ Ny and F1 = {g ∈ F : gx = y}. Then

there exist U ∈ Nx and V ∈ Ny such that N(U, V ) ∩ F = F1 and gU ⊆ V ⊆ O for all g ∈ F1.

Proof Without loss of generality, assume that F1 6= ∅. If F1 = F , then the result is clear

since we can take V = O and U =
⋂

g∈F

g−1O.

If F1 6= F , for each g ∈ F − F1, gx 6= y. By the Hausdorff property of X , pick Ugx ∈ Ngx

and Vg ∈ Ny such that Ugx ∩ Vg = ∅. Take

V =
( ⋂

g∈F−F1

V
)

∩O, U =
( ⋂

g∈F−F1

g−1Ugx

)

∩
( ⋂

g∈F1

g−1V
)

.

Then U ∈ Nx and V ∈ Ny are desired.

Corollary 4.1 Let x, y ∈ X and F ∈ Fin(G). Then for every O ∈ Ny, there exist U ∈ Nx

and V ∈ Ny such that if g ∈ N(U, V ) ∩ F , then gU ⊆ O.

Proof The result follows obviously from Proposition 4.2.

Proposition 4.3 Let x, y ∈ X. If y /∈ ΩG(x), then (x, y) ∈ EqP (X,G).

Proof Let O ∈ Ny, as y /∈ ΩG(x), there exist U ∈ Nx, V ∈ Ny and F ∈ Fin(G) such that

for each g ∈ G− F , gU ∩ V = ∅. By Corollary 4.1, there exist U ′ ∈ Nx and V ′ ∈ Ny such that

for any g ∈ F , if gU ′ ∩ V ′ 6= ∅, then gU ′ ⊆ O. Assume U ′ ⊆ U and V ′ ⊆ V ∩O, then for every

g ∈ G− F , gU ′ ∩ V ′ = ∅ and thus the result follows from the arbitrariness of O ∈ Ny.

By Definition 4.1 and Proposition 4.3, if (x, y) /∈ EqP (X,G), then there exists O ∈ Ny such

that for all U ∈ Nx and V ∈ Ny, there exists g ∈ N(U, V ) satisfying gU * O. Meanwhile, O is

called a splitting neighborhood of y with regard to x.

Definition 4.2 Let x, y ∈ X and (x, y) ∈ EqP (X,G). (x, y) is called a trivial equicontinuity

pair of (X,G) if y /∈ ΩG(x). Otherwise, (x, y) is called a nontrivial equicontinuity pair of (X,G).

Proposition 4.4 Each (x, y) ∈ EqP (X,G) is either a trivial equicontinuity pair of (X,G)

or y ∈ ωG(x).

Proof Assume that (x, y) is a nontrivial equicontinuity pair of (X,G) and y /∈ ωG(x), then

there exist O ∈ Ny and F ∈ Fin(G) such that for all g ∈ G− F , gx /∈ O. However, y ∈ ΩG(x),

and thus for each U ∈ Nx and V ∈ Ny, there exists g ∈ G − F such that gU ∩ V 6= ∅. Then

there exists g ∈ N(U, V ) such that gU * O which is in contradiction with (x, y) ∈ EqP (X,G).

Remark 4.1 Proposition 4.4 shows that (x, y) ∈ X ×X is a nontrivial equicontinuity pair

of (X,G) if and only if (x, y) ∈ EqP (X,G) and y ∈ ωG(x).

Proposition 4.5 If (X,G) is topologically equicontinuous at x ∈ X, then ωG(x) = ΩG(x).

Proof Obviously, ωG(x) ⊆ ΩG(x). It suffices to prove that ΩG(x) ⊆ ωG(x). Suppose

y ∈ ΩG(x), by the given condition, (x, y) ∈ EqP (X,G) and therefore from Definition 4.2, (x, y)

is a nontrivial equicontinuity pair of (X,G). Then y ∈ ωG(x) by Remark 4.1.
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Theorem 4.1 Suppose that X has no isolated points. Then (X,G) is transitive if and only

if there are no trivial equicontinuity pairs of (X,G).

Proof Firstly, we suppose that (X,G) has no trivial equicontinuity pairs.

Let U and V be nonempty open subsets of X . Pick x ∈ U , y ∈ V .

If (x, y) ∈ EqP (X,G), then (x, y) is not a trivial equicontinuity pair of (X,G) and thus

y ∈ ωG(x) by Remark 4.1 which shows that N(U, V ) 6= ∅.

If (x, y) /∈ EqP (X,G), then y ∈ ΩG(x) by Proposition 4.3, and therefore N(U, V ) 6= ∅, i.e.

(X,G) is transitive.

Suppose that (X,G) is transitive. Take arbitrarily (x, y) ∈ X ×X , let U ∈ Nx and V ∈ Ny,

then N(U, V ) is infinite by Lemma 2.1 and X = ΩG(z) for all z ∈ X .

If (x, y) is not an equicontinuity pair of (X,G), then the result holds.

If (x, y) is an equicontinuity pair of (X,G), then (x, y) is a trivial equicontinuity pair of

(X,G) by the given condition, and so y /∈ ΩG(x) by Definition 4.2. This contradicts the fact

that y ∈ ΩG(x) since X = ΩG(x). This contradiction yields the result.

Corollary 4.2 Suppose that (X,G) is a transitive G-system, where X has no isolated points.

If (x, y) ∈ EqP (X,G), then y ∈ ωG(x).

Proof By Theorem 4.1, (x, y) is a nontrivial equicontinuity pair of (X,G), then y ∈ ωG(x)

by Remark 4.1.

Lemma 4.1 Let x, y ∈ X. Suppose (x, y) /∈ EqP (X,G) and O is a splitting neighborhood

of y with regard to x. Then for every U ∈ Nx and V ∈ Ny, HU,V = {g ∈ G : gU ∩ V 6= ∅ and

gU * O} is infinite.

Proof Let U ∈ Nx, V ∈ Ny. Then HU,V 6= ∅ if note (x, y) /∈ EqP (X,G). If HU,V is

finite, say HU,V = {g1, g2, · · · , gn}. By Corollary 4.1, there exist U ′ ∈ Nx and V ′ ∈ Ny such

that for each k ∈ {1, 2, · · · , n}, if gkU ′ ∩ V ′ 6= ∅, then gkU
′ ⊆ O. Without loss of generality,

suppose U ′ ⊆ U , V ′ ⊆ V . Let H1 ={g ∈ G : gU ′ ∩ V ′ 6= ∅ and gU ′ * O}, then H1 6= ∅ if

note (x, y) /∈ EqP (X,G). Thus, there exists gn′ ∈ H1 ⊂ HU,V such that gn′ 6= gi for each

i ∈ {1, 2, · · · , n}. This is contrary to HU,V = {g ∈ G : gU ∩ V 6= ∅ and gU * O}. This

contradiction gives the result.

Lemma 4.2 Let x, y, z ∈ X and z ∈ Gx. If (x, y) /∈ EqP (X,G) and O is a splitting neigh-

borhood of y with regard to x, then (z, y) /∈ EqP (X,G) and O is also a splitting neighborhood

of y with regard to z.

Proof Let W ∈ Nz , V ∈ Ny and g ∈ G such that x ∈ U = g−1W by z ∈ Gx. As

(x, y) /∈ EqP (X,G) and O is a splitting neighborhood of y with regard to x, there exists

g1 ∈ G − {g−1} such that g1U ∩ V 6= ∅ and g1U * O by Lemma 4.1. Then g1g
−1W ∩ V 6= ∅

and g1g
−1W * O. Thus, the result holds.

Remark 4.2 The contrapositive of Lemma 4.2 is : If (x, y) ∈ EqP (X,G) and x ∈ Gz, then
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(z, y) ∈ EqP (X,G).

Corollary 4.3 Let x, y, z ∈ X. If (y, z) is a trivial (resp. nontrivial ) equicontinuity pair

of (X,G) and y ∈ Gx, then (x, z) is a trivial (resp. nontrivial ) equicontinuity pair of (X,G).

In particular, if (x, y) and (y, z) are nontrivial equicontinuity pairs of (X,G), then so is (x, z).

Proof Suppose that (y, z) is a trivial equicontinuity pair of (X,G), then z /∈ ΩG(y) and

(x, z) ∈ EqP (X,G) by Remark 4.2. Let V ∈ Ny, W ∈ Nz and F ∈ Fin(G) such that for all

g ∈ G − F , gV ∩W = ∅. As y ∈ Gx, let g1 ∈ G be such that x ∈ U = g−1

1
V . Then for all

g′ ∈ G − Fg1, g
′U ∩W = ∅, which implies z /∈ ΩG(x). Thus, (x, z) is a trivial equicontinuity

pair of (X,G).

Suppose that (y, z) is a nontrivial equicontinuity pair of (X,G), then (y, z) ∈ EqP (X,G)

and z ∈ ωG(y). If y ∈ ωG(x), then z ∈ ωG(x) since ωG(x) is G-invariant. If y ∈ Gx, then

ωG(x) = ωG(y) by ωG(x) = ωG(gx) for each g ∈ G and z ∈ ωG(x). Therefore, z ∈ ωG(x). But

(x, z) ∈ EqP (X,G) by Remark 4.2, then (x, z) is a nontrivial equicontinuity pair of (X,G) by

Remark 4.1.

Suppose that (x, y) and (y, z) are nontrivial equicontinuity pairs of (X,G), then y ∈ ωG(x)

by Remark 4.1. From the above discussion, we obtain that (x, z) is a nontrivial equicontinuity

pair of (X,G).

Corollary 4.4 Let (X,G) be a minimal G-system, then for all x, y ∈ X,

(x, y) ∈ EqP (X,G) ⇒ (z, y) ∈ EqP (X,G) for all z ∈ X.

(x, y) /∈ EqP (X,G) ⇒ (z, y) /∈ EqP (X,G) for all z ∈ X.

Proof As (X,G) is minimal, then Gz = X for every z ∈ X . If (x, y) ∈ EqP (X,G), by

Corollary 4.3, then for all z ∈ X , (z, y) ∈ EqP (X,G) if note x ∈ Gz. If (x, y) /∈ EqP (X,G),

by Lemma 4.2, for all z ∈ X , (z, y) /∈ EqP (X,G) as z ∈ Gx.

The following theorem was firstly proved by Akin et al. in [1] (see [1, Theorem 2.4]). Now

we prove that it is also true for G-systems considered in this paper.

Theorem 4.2 If a G-system (X,G) is transitive and X has no isolated points and there

exists a topological equicontinuity point of (X,G). Then the set of transitive points of (X,G)

coincides with the set of topological equicontinuity points of (X,G). In particular, if (X,G)

is minimal and (X,G) admits a topological equicontinuity point, then (X,G) is topologically

equicontinuous.

Proof Suppose that x ∈ X is a topological equicontinuity point of (X,G), then ωG(x) =

ΩG(x) by Proposition 4.5. Since (X,G) is transitive, ΩG(x) = X . Hence, Gx = X , i.e., x is a

transitive point of (X,G).

Suppose that y ∈ X is a transitive point of (X,G), then Gy = X . Since x is a topolog-

ical equicontinuity point of (X,G), for all z ∈ X , (x, z) is a nontrivial equicontinuity pair of

(X,G) by Theorem 4.1. Note that x ∈ Gy. Therefore, for every z ∈ X , (y, z) is a nontrivial
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equicontinuity pair of (X,G) by Corollary 4.3, i.e., y is a topological equicontinuity point of

(X,G).

If (X,G) is minimal and there is a topological equicontinuity point of (X,G), by the above

discussion, each w ∈ X is a topological equicontinuity point of (X,G), and therefore (X,G) is

topologically equicontinuous.

Theorem 4.3 Suppose that X is a T3-space and x ∈ X is a transitive point of (X,G). If

there exists y ∈ X such that (x, y) /∈ EqP (X,G), then (X,G) is Hausdorff sensitive.

Proof Let x, y ∈ X and (x, y) /∈ EqP (X,G), then there exists O ∈ Ny satisfying: For

all U ∈ Nx and V ∈ Ny, there exists g ∈ G such that gU ∩ V 6= ∅, but gU * O. Let

V1 and V2 be open neighborhoods of y with V1 ⊆ O and V2 ⊆ V1 as X is regular. Then

U = {V1, X − V2} is a finite open cover of X . Let W be an arbitrary nonempty open subset

of X , pick g ∈ G such that x ∈ U = g−1W . Take g1 ∈ G − {g} such that g1U ∩ V2 6= ∅ and

g1U * O (such a g1 exists by Lemma 4.1). Then g1g
−1W ∩V2 6= ∅ and g1g

−1W * O, i.e., there

are a, b ∈ W such that g1g
−1a ∈ V2 and g1g

−1b /∈ O. Then {g1g
−1a, g1g

−1b} ∩ V1 = {g1g
−1a}

and {g1g−1a, g1g
−1b} ∩ {X − V2} = {g1g−1b}. Hence, (X,G) is Hausdorff sensitive.

The next result is the dichotomy theorem between Hausdorff sensitivity and topological

equicontinuity, which can be regarded as a generalization of the classical dichotomy theorem

given by Auslander and Yorke [4] and [10, Corollary 2.25].

Theorem 4.4 (Revisited Auslander-Yorke Dichotomy II) If a G-system (X,G) is minimal

and X is a T3-space. Then (X,G) is either topologically equicontinuous or Hausdorff sensitive.

Proof If (X,G) is not topologically equicontinuous, then there exist x, y ∈ X such that

(x, y) /∈ EqP (X,G), but x is a transitive point of (X,G) if note that (X,G) is minimal. Then

(X,G) is Hausdorff sensitive by Theorem 4.3.

4.2 Even continuity of G-systems

Even continuity was firstly introduced by Kelley in [16] for a family of mappings from a

topological space to another topological space, which is weaker than topological equicontinuity

(see Remark 4.4). In this section, we introduce the concept of even continuity for G-systems

and we obtain some basic properties of even continuity.

In this section, we always assume that (X,G) is a G-system and X is a Hausdorff space.

Definition 4.3 Let x, y ∈ X. If for each O ∈ Ny, there exist U ∈ Nx and V ∈ Ny such

that gU ⊆ O for each g ∈ N(x, V ), then (x, y) is called an even continuity pair of (X,G) and

y is called an even continuity partner of x.

Remark 4.3 If X is a compact Hausdorff space, then the concepts of equicontinuity, topo-

logical equicontinuity and even continuity are mutually equivalent since equicontinuity and even

continuity are equivalent by [16, Theorems 7.22–7.23], and it was proved in [27] that topological

equicontinuity and even continuity are equivalent (see [27, Problems 3b and 5c of Chapter 14]).
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Denote the set of even continuity pairs of (X,G) by EvP (X,G). If for all y ∈ X , (x, y) ∈

EvP (X,G), then we say that (X,G) is evenly continuous at x ∈ X . We say that (X,G) is

evenly continuous if EvP (X,G) = X ×X .

If (x, y) /∈ EvP (X,G), by the definition of even continuity pair, there exists O ∈ Ny such

that for each U ∈ Nx and V ∈ Ny, gU * O for some g ∈ N(x, V ). Meanwhile, we say that O

is an even-splitting neighborhood of y with regard to x.

Remark 4.4 Clearly, every equicontinuity pair of (X,G) is an even continuity pair of

(X,G). But the converse is not true, see such an example given in [7, Remark 6.5(2)].

By Remark 4.4, if (x, y) /∈ EvP (X,G), then every even-splitting neighborhood of y with

regard to x is also a splitting neighborhood of y with regard to x.

Proposition 4.6 If (x, y) ∈ EvP (X,G), then (x, gy) ∈ EvP (X,G) for each g ∈ G.

Proof Let g ∈ G, O ∈ Ngy , then g−1O ∈ Ny. Since (x, y) ∈ EvP (X,G), there exist

U ∈ Nx and V ∈ Ny such that g′U ⊆ g−1O for each g′ ∈ N(x, V ). Then gV ∈ Ngy. For every

g1 ∈ G, if g1x ∈ gV then g−1g1x ∈ V . Then g−1g1U ⊆ g−1O which means that g1U ⊆ O.

Proposition 4.7 Let x, y ∈ X, where X is a Hausdorff space. If y /∈ ωG(x), then (x, y) ∈

EvP (X,G).

Proof Let O ∈ Ny. Since y /∈ ωG(x), there exist V ∈ Ny and F ∈ Fin(G) such that for

each g ∈ G−F , gx /∈ V . By Corollary 4.1, there exist U ′ ∈ Nx and V ′ ∈ Ny such that for each

g ∈ F , if gU ′ ∩ V ′ 6= ∅, then gU ′ ⊆ O. In particular, for each g ∈ F , if gx ∈ V ′, then gU ′ ⊆ O.

We suppose V ′ ⊆ V ∩O, then for every g ∈ G− F , gx /∈ V ′. Therefore, (x, y) ∈ EvP (X,G).

If (x, y) /∈ EvP (X,G), then y ∈ ωG(x) by Proposition 4.7. Therefore, we can introduce

naturally the following definition of nontrivial even continuity pair.

Definition 4.4 Let x, y ∈ X and (x, y) ∈ EvP (X,G). (x, y) ∈ X×X is called a trivial even

continuity pair of (X,G) if y /∈ ωG(x). Otherwise, (x, y) is called a nontrivial even continuity

pair of (X,G).

Remark 4.5 If (x, y) is a nontrivial equicontinuity pair of (X,G), then (x, y) is a nontrivial

even continuity pair of (X,G) by Remarks 4.1 and 4.4. And each (x, y) ∈ EvP (X,G) is either

a trivial even continuity pair of (X,G) or y ∈ ωG(x).

Lemma 4.3 Let x, y ∈ X. Suppose (x, y) /∈ EvP (X,G) and O is an even-splitting neigh-

borhood of y with regard to x. Then for each U ∈ Nx and V ∈ Ny, the set HU,V = {g ∈ G :

gx ∈ V and gU * O} is infinite.

Proof Let U ∈ Nx, V ∈ Ny. Then HU,V 6= ∅ if note (x, y) /∈ EvP (X,G). If HU,V is finite,

say HU,V = {g1, g2, · · · , gn}. By Corollary 4.1, there exist U ′ ∈ Nx and V ′ ∈ Ny such that for

each k ∈ {1, 2, · · · , n}, if gkU
′ ∩ V ′ 6= ∅, then gkU

′ ⊆ O which means that if gkx ∈ V ′ then

gkU
′ ⊆ O. Without loss of generality, suppose U ′ ⊆ U , V ′ ⊆ V . Let H1 ={g ∈ G : gx ∈ V ′
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and gU ′ * O}, then H1 6= ∅ if note (x, y) /∈ EvP (X,G). Thus, there exists gn′ ∈ H1 ⊂ HU,V

such that gn′ 6= gi for each i ∈ {1, 2, · · · , n}. This is contrary to HU,V = {g ∈ G : gx ∈ V and

gU * O}. This contradiction gives the result.

Proposition 4.8 Let x, y ∈ X, (x, y) /∈ EvP (X,G) and O be an even-splitting neighborhood

of y with regard to x. Then for every g ∈ G, (gx, y) /∈ EvP (X,G) and O is also an even-splitting

neighborhood of y with regard to gx.

Proof Let W ∈ Ngx and V ∈ Ny, then x ∈ U = g−1W . Let H ={g1 ∈ G : g1x ∈ V and

g1U * O}, then H is infinite by Lemma 4.3. Take g1 ∈ G − {g−1} such that g1 ∈ H , then

g1g
−1gx ∈ V , g1g

−1W * O. Then (gx, y) /∈ EvP (X,G) by Definition 4.3.

Remark 4.6 Let x, y, z ∈ X . Suppose (x, y) ∈ EvP (X,G) and x ∈ Gz, then by Proposition

4.8, (z, y) ∈ EvP (X,G).

Theorem 4.5 If x ∈ X has no even continuity partners, then x is a transitive point of

(X,G) and (X,G) admits no equicontinuity pairs.

Proof Suppose x ∈ X has no even continuity partners, then for all y ∈ X , (x, y) /∈

EvP (X,G), and thus y ∈ ωG(x) by Definition 4.4, which implies ωG(x) = X , i.e., x is a

transitive point of (X,G).

Pick arbitrarily y, z ∈ X and assume that O is an even-splitting neighborhood of z with

regard to x. Let V ∈ Ny, W ∈ Nz, then there exists g ∈ G such that gx ∈ V since x is a

transitive point of (X,G). By Proposition 4.8, (gx, z) /∈ EvP (X,G) and O is also an even-

splitting neighborhood of z with regard to gx. Hence, there exists g′ ∈ G such that g′gx ∈ W

and g′V * O (i.e., g′V ∩W 6= ∅ and g′V * O) which implies (y, z) /∈ EqP (X,G).
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