Regular and Maximal Graphs with Prescribed Tripartite Graph as a Star Complement*

Xiaona FANG¹ Lihua YOU²

Abstract Let G be a graph of order n and μ be an adjacency eigenvalue of G with multiplicity $k \geq 1$. A star complement H for μ in G is an induced subgraph of G of order n - k with no eigenvalue μ , and the subset X = V(G - H) is called a star set for μ in G. The star complement provides a strong link between graph structure and linear algebra. In this paper, the authors characterize the regular graphs with $K_{2,2,s}$ ($s \geq 2$) as a star complement for all possible eigenvalues, the maximal graphs with $K_{2,2,s}$ as a star complement for the eigenvalue $\mu = 1$, and propose some questions for further research.

 Keywords Adjacency eigenvalue, Star set, Star complement, Regular graph, Maximal graph
 2000 MR Subject Classification 05C50

1 Introduction

Let G be a simple graph with vertex set $V(G) = \{1, 2, \dots, n\} = [n]$ and edge set E(G). The adjacency matrix of G is an $n \times n$ matrix $A(G) = (a_{ij})$, where $a_{ij} = 1$ if vertex i is adjacency to vertex j, and 0 otherwise. We use the notation $i \sim j$ to indicate that i, j are adjacent and the notation $d_G(i)$ (simply, d(i)) to indicate the degree of vertex i in G. The adjacency eigenvalues of G are just the eigenvalues of A(G). For more details on graph spectra, see [5]. The join of two graphs G and H, denoted by $G \nabla H$, is the graph obtained from G and H by connecting each vertex of G to all vertices of H.

Let μ be an eigenvalue of G with multiplicity k. A star set for μ in G is a subset X of V(G) such that |X| = k and μ is not an eigenvalue of G - X, where G - X is the subgraph of G induced by $\overline{X} = V(G) \setminus X$. In this situation H = G - X is called a star complement corresponding to μ . Star sets and star complements exist for any eigenvalue of a graph, and they need not to be unique. The basic properties of star sets are established in [6, Chapter 7].

There is another equivalent geometric definition for star sets and star complements. Let G be a graph with vertex set $V(G) = \{1, \dots, n\}$ and adjacency matrix A = A(G). Let $\{e_1, \dots, e_n\}$ be the standard orthonormal basis of \mathbb{R}^n and P be the matrix which represents the orthogonal projection of \mathbb{R}^n onto the eigenspace $\mathcal{E}(\mu) = \{x \in \mathbb{R}^n : Ax = \mu x\}$ of A with respect to $\{e_1, \dots, e_n\}$. Since $\mathcal{E}(\mu)$ is spanned by the vectors Pe_j $(j = 1, \dots, n)$, there exists

Manuscript received December 14, 2021. Revised October 11, 2022.

¹School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.

E-mail: xiaonafang@m.scnu.edu.cn

 $^{^2 \}rm Corresponding author. School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China. E-mail: ylhua@scnu.edu.cn$

^{*}This work was supported by the National Natural Science Foundation of China (No. 11971180, 12271337) and the Guangdong Provincial Natural Science Foundation (No. 2019A1515012052).

 $X \subseteq V(G)$ such that the vectors Pe_j $(j \in X)$ form a basis for $\mathcal{E}(\mu)$. Such a subset X of V(G) is called a star set for μ in G. In this situation H = G - X is called a star complement for μ .

For any graph G of order n with distinct eigenvalues $\lambda_1, \dots, \lambda_m$, there exists a partition $V(G) = V_1 \cup \dots \cup V_m$ such that V_i is a star set for eigenvalue λ_i $(i = 1, \dots, m)$. Such a partition is called a star partition of G. For any graph G, there exists at least one star partition (see [8]). Each star partition determines a basis for \mathbb{R}^n consisting of eigenvectors of an adjacency matrix. It provides a strong link between graph structure and linear algebra.

In [8], it was proved that if $Y \subset X$ then $X \setminus Y$ is a star set for μ in G - Y. Thus the induced subgraph G - Y also has H = G - X as a star complement for μ . If G has H as a star complement for μ , and G is not a proper induced subgraph of some other graph with star complement H for μ , then G is a maximal graph with star complement H for μ , or it is an H-maximal graph for μ . In general, there will be various different maximal graphs, possibly of different orders, but sometimes there is a unique maximal graph.

Let G be a simple graph. The complement and the line graph of G are denoted by \overline{G} and L(G). Let P_n , C_n , S_n , K_n , $K_{m,n}$, $K_{m,n,r}$ be a path, cycle, star, complete graph, complete bipartite graph and complete tripartite graph, respectively (see [4] for more detailed definitions), $S_{m,n}$ be the double star obtained from stars S_m and S_n by joining their centers, R_t and Q_t be defined in [7].

There are a lot of literatures about using star complements to construct and characterize certain graphs. Maximal graphs with a prescribed graph such as S_m , K_m , $S_{m,n}$, $K_{2,5}$, $K_{2,s}$, $K_{1,1,t}$, C_t , P_t , $\overline{L(R_t)}$, $L(R_t)$, $\overline{L(Q_t)}$, $L(Q_t)$, $\overline{K_{1,s}}$, $\overline{K_{1,1,s}}$ or unicyclic graph as a star complement for given eigenvalues (for example, $\mu = 1, -2$) were well studied in the literatures (see [2–3, 7, 10, 15, 17–18, 23–24] and so on). Regular graphs with a prescribed graph such as $K_{2,5}$, $K_{1,s}$, $K_1 \nabla h K_q$, $K_{1,1,t}$, $K_{1,1,t}$, $\overline{sK_1 \cup K_t}$, $P_t(\mu = 1)$, $K_{r,r,r}(\mu = 1)$ or $K_{r,s} \cup tK_1(\mu = 1)$ as a star complement were well studied in the literatures (see [1, 11, 13–16, 19, 22–24] and so on). In this paper, we introduce the fundamental properties of the theory of star complements in Section 2, characterize the regular graphs with the tripartite graph $K_{2,2,s}(s \ge 2)$ as a star complement for all possible eigenvalues in Section 3, the maximal graphs with $K_{2,2,s}$ as a star complement for $\mu = 1$ in Section 4, and propose some questions for further research in Section 5.

2 Preliminaries

In this section, we introduce some results of star sets and star complements that will be required in the sequel. The following fundamental result combines Reconstruction Theorem (see [6, Theorem 7.4.1]) with its converse (see [6, Theorem 7.4.4]).

Theorem 2.1 (see [6]) Let X be a set of vertices in the graph G. Suppose that G has adjacency matrix

$$\begin{pmatrix} A_X & B^{\mathrm{T}} \\ B & C \end{pmatrix},$$

where A_X is the adjacency matrix of the subgraph induced by X. Then X is a star set for μ in G if and only if μ is not an eigenvalue of C and

$$\mu I - A_X = B^{\mathrm{T}} (\mu I - C)^{-1} B.$$
(2.1)

Note that if X is a star set for μ , then the corresponding star complement H(=G-X) has adjacency matrix C, and (2.1) tells us that G is determined by μ , H and the H-neighbourhood of vertices in X, where the H-neighbourhood of vertex $u \in X$, denoted by $N_H(u)$, is defined as $N_H(u) = \{v \mid v \sim u, v \in V(H)\}.$

It is usually convenient to apply (2.1) in the form

$$m(\mu)(\mu I - A_X) = B^{\mathrm{T}}m(\mu)(\mu I - C)^{-1}B,$$

where m(x) is the minimal polynomial of C. This is because $m(\mu)(\mu I - C)^{-1}$ is given explicitly as follows.

Proposition 2.1 (see [7, Proposition 0.2]) Let C be a square matrix with minimal polynomial

$$n(x) = x^{d+1} + c_d x^d + c_{d-1} x^{d-1} + \dots + c_1 x + c_0.$$

If μ is not an eigenvalue of C, then

$$m(\mu)(\mu I - C)^{-1} = a_d C^d + a_{d-1}C^{d-1} + \dots + a_1C + a_0I,$$

where $a_d = 1$ and for $0 < i \le d$, $a_{d-i} = \mu^i + c_d \mu^{i-1} + c_{d-1} \mu^{i-2} + \dots + c_{d-i+1}$.

In order to find all the graphs with a prescribed star complement for μ , we need to find all solution A_X , B for given μ and C. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^t$, where t = |V(H)|, let

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathrm{T}} (\mu I - C)^{-1} \mathbf{y}.$$
 (2.2)

Let \mathbf{b}_u be the column of B for any $u \in X$. By Theorem 2.1, we have the following corollary.

Corollary 2.1 (see [8, Corollary 5.1.8]) Suppose that μ is not an eigenvalue of the graph H, where |V(H)| = t. There exists a graph G with a star set X for μ such that G - X = H if and only if there exist (0, 1)-vectors \boldsymbol{b}_u $(u \in X)$ in \mathbb{R}^t such that

(1)
$$\langle \boldsymbol{b}_u, \boldsymbol{b}_u \rangle = \mu$$
 for all $u \in X$, and

(2) $\langle \boldsymbol{b}_u, \boldsymbol{b}_v \rangle = \begin{cases} -1, & u \sim v \\ 0, & u \nsim v \end{cases}$ for all pairs u, v in X.

In view of the two equations in Corollary 2.1, we have the following lemma.

Lemma 2.1 (see [6]) Let X be a star set for μ in G, and H = G - X.

(1) If $\mu \neq 0$, then V(H) is a dominating set for G, that is, the H-neighbourhood of any vertex in X is non-empty.

(2) If $\mu \notin \{-1,0\}$, then V(H) is a location-dominating set for G, that is, the H-neighbourhoods of distinct vertices in X are distinct and non-empty.

It follows from (2) of Lemma 2.1 that there are only finitely maximal graphs with a prescribed star complement for $\mu \notin \{-1, 0\}$. If $\mu = 0$ and X has distinct vertices u and v with the same neighbourhood in G, then u and v are called duplicate vertices. If $\mu = -1$ and X has distinct vertices u and v with the same closed neighbourhood in G, then u and v are called co-duplicate vertices (see [9]).

Recall that if the eigenspace $\mathcal{E}(\mu)$ is orthogonal to the all-1 vector **j**, then μ is called a non-main eigenvalue, and we have the following results.

Lemma 2.2 (see [7, Proposition 0.3]) The eigenvalue μ is a non-main eigenvalue if and only if

$$\langle \boldsymbol{b}_u, \boldsymbol{j} \rangle = -1 \quad \text{for all } u \in X,$$

$$(2.3)$$

where j is the all-1 vector.

Lemma 2.3 (see [8, Corollary 3.9.12]) In an r-regular graph, all eigenvalues other than r are non-main.

3 Regular Graphs with $K_{2,2,s}$ as a Star Complement

In this section, all the regular graphs with $K_{2,2,s}$ as a star complement for all possible eigenvalues are determined.

In the rest of this paper, we let $H \cong K_{2,2,s}$ $(s \ge 2)$, and (U, V, W) be a tripartition of the graph $K_{2,2,s}$ with $U = \{u_1, u_2\}$, $V = \{v_1, v_2\}$, $W = \{w_1, w_2, \cdots, w_s\}$. We say that a vertex $u \in X$ is of type (a, b, c) if it has a neighbours in U, b neighbours in V, c neighbours in W, thus $(a, b, c) \ne (0, 0, 0)$ and $0 \le a \le 2$, $0 \le b \le 2$, $0 \le c \le s$.

Let C be the adjacency matrix of $H \cong K_{2,2,s}$. Then C has the minimal polynomial

$$m(x) = x(x+2)(x^2 - 2x - 4s).$$

Since μ is not an eigenvalue of C, we have $\mu \notin \{0, -2\}$ and $\mu^2 - 2\mu \neq 4s$. From Proposition 2.1, we have

$$m(\mu)(\mu I - C)^{-1} = C^3 + \mu C^2 + (\mu^2 - 4s - 4)C + (\mu^3 - 4(s + 1)\mu - 8s)I.$$
(3.1)

If μ is a non-main eigenvalue of G, then by (2.3) we have

$$\mu(\mu+2)(2c-4s-2\mu+(a+b)(s+\mu)+c\mu+\mu^2) = 0.$$
(3.2)

Using (3.1) to compute $\langle \mathbf{b}_u, \mathbf{b}_u \rangle = \mu$, we obtain the following equation

$$-\mu^{5} + (4s+4)\mu^{3} + 8s\mu^{2} + 2\mu(\mu+2)(ac+bc) + (4s+\mu(2+s))(a^{2}+b^{2}) + 2ab\mu(\mu+s) + 4c^{2}(2+\mu) + (a+b+c)(\mu^{3}-4(s+1)\mu-8s) = 0.$$
(3.3)

Let u, v be distinct vertices in X of type (a, b, c), (α, β, γ) , respectively, $\rho_{uv} = |N_H(u) \cap N_H(v)|$, and $a_{uv} = 1$ or 0 according as $u \sim v$ or $u \nsim v$. Using (3.1) to compute $\langle \mathbf{b}_u, \mathbf{b}_v \rangle = -a_{uv}$, we have

$$a_{uv}(\mu^4 - (4s+4)\mu^2 - 8s\mu) + \mu(\mu+2)(\alpha c + \beta c + \gamma a + \gamma b) + (4s+\mu(2+s))(\alpha a + \beta b) + \mu(\mu+s)(\alpha b + \beta a) + 4\gamma c(2+\mu) + \rho_{uv}(\mu^3 - 4(s+1)\mu - 8s) = 0.$$
(3.4)

Lemma 3.1 If u, v are of the same type (a, b, c), then $\rho_{uv} = a + b + c - \mu^2 - a_{uv}\mu$.

Proof Let $\alpha = a, \beta = b, \gamma = c$ in (3.4). Subtracting (3.3) from (3.4), we have

$$(\mu+2)(\mu^2 - 2\mu - 4s)(\mu^2 + a_{uv}\mu + \rho_{uv} - a - b - c) = 0.$$

Since $(\mu + 2)(\mu^2 - 2\mu - 4s) \neq 0$, we have $\mu^2 + a_{uv}\mu + \rho_{uv} - a - b - c = 0$. Thus $\rho_{uv} = a + b + c - \mu^2 - a_{uv}\mu$.

Lemma 3.2 If u and v are of different types (a, b, c) and (b, a, c), then $\rho_{uv} = a + b + c - \mu^2 - a_{uv}\mu - \frac{(a-b)^2}{\mu+2}$.

Proof Let $\alpha = b$, $\beta = a$, $\gamma = c$ in (3.4). Subtracting (3.3) from (3.4), we have

$$(\mu^2 - 2\mu - 4s)((a-b)^2 - (\mu + 2)(a+b+c - \rho_{uv} - \mu^2 - a_{uv}\mu)) = 0.$$

Since $\mu^2 - 2\mu - 4s \neq 0$, we have $(a - b)^2 - (\mu + 2)(a + b + c - \rho_{uv} - \mu^2 - a_{uv}\mu) = 0$. Thus $\rho_{uv} = a + b + c - \mu^2 - a_{uv}\mu - \frac{(a - b)^2}{\mu + 2}$.

Lemma 3.3 Let $X_1 = \{u \in X \mid u \text{ is of type } (a, b, c)\}$. If there are vertices $u, v \in X_1$, s.t. $u \sim v$ and vertices $u', v' \in X_1$, s.t. $u' \sim v'$, then $\mu \in \mathbb{Z}$.

Proof From Lemma 3.1, we have $\rho_{u'v'} = a + b + c - \mu^2 \in \mathbb{Z}$ by $u' \nsim v'$ and $\rho_{uv} = a + b + c - \mu^2 - \mu \in \mathbb{Z}$ by $u \sim v$. Thus $\mu = \rho_{u'v'} - \rho_{uv} \in \mathbb{Z}$.

Lemma 3.4 Let $X_1 = \{u \in X \mid u \text{ is of type } (a, b, c)\}$, $X_2 = \{u \in X \mid u \text{ is of type } (b, a, c)\}$. If there are vertices $u \in X_1$, $v \in X_2$, s.t. $u \sim v$ and vertices $u' \in X_1$, $v' \in X_2$, s.t. $u' \nsim v'$, then $\mu \in \mathbb{Z}$.

Proof From Lemma 3.2, we have $\rho_{u'v'} = a + b + c - \mu^2 - \frac{(a-b)^2}{\mu+2} \in \mathbb{Z}$ by $u' \nsim v'$ and $\rho_{uv} = a + b + c - \mu^2 - \mu - \frac{(a-b)^2}{\mu+2} \in \mathbb{Z}$ by $u \sim v$. Thus $\mu = \rho_{u'v'} - \rho_{uv} \in \mathbb{Z}$.

Let $H \cong K_{2,2,s}$ $(s \ge 2)$, and (U, V, W) be a tripartition of the graph $K_{2,2,s}$ as above. Let U_i be the set of vertices of type (1, 2, s) in X adjacent to $u_i \in U$, V_i be the set of vertices of type (2, 1, s) in X adjacent to $v_i \in V$, and W_i be the set of vertices of type (2, 2, 1) in X adjacent to $w_i \in W$. We obtain an r-regular graph G(r) with $V(G(r)) = X \cup V(H)$, $X = U_1 \cup U_2 \cup V_1 \cup V_2 \cup W_1 \cup \cdots \cup W_s$, where $|U_i| = |V_j| = \frac{(r+1)(s-1)}{4s-3} - 1$, $|W_i| = \frac{r+1}{4s-3} - 1$, $U_i(V_j, W_k)$ induces a clique for $1 \le i, j \le 2, 1 \le k \le s$ and for any i, j, k, each vertex in U_i is adjacent to all vertices in V_j and W_k , each vertex in V_j is adjacent to all vertices in W_k .

For subsets V', V'' of V(G), we write E(V', V'') for the set of edges between V' and V''. The greatest common divisor of a and b is denoted by (a, b). For $\mu = -1$, we have the following theorem.

Theorem 3.1 If G is an r-regular graph with $H \cong K_{2,2,s}$ $(s \ge 2)$ as a star complement for the eigenvalue $\mu = -1$, then $r \equiv -1 \pmod{4s-3}$ and $G \cong G(r)$.

Proof Since $K_{2,2,s}$ is connected and $V(K_{2,2,s})$ is a dominating set (see Lemma 2.1), we know G is connected. Let (U, V, W) be a tripartition of the graph $K_{2,2,s}$ defined as above, $u \in X$ be a vertex of type (a, b, c), thus $(a, b, c) \neq (0, 0, 0)$ and $0 \le a \le 2$, $0 \le b \le 2$, $0 \le c \le s$. By Lemma 2.3, we know that $\mu = -1$ is a non-main eigenvalue of G, thus from (3.2), we have

$$4s - c - (a + b)(s - 1) - 3 = 0.$$
(3.5)

Let $\mu = -1$ in (3.3). We have

$$4s - (4s - 3)(a + b + c) - 2ac - 2bc + (3s - 2)(a^2 + b^2) + 4c^2 - 2ab(s - 1) - 3 = 0.$$
(3.6)

Since $0 \le a \le 2, 0 \le b \le 2$, we can consider the following 9 cases, say, $(a, b) \in \{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)\}$. For example, if a = b = 0, combining (3.5) and (3.6), we have $\begin{cases} c = 0 \\ s = \frac{3}{4} \end{cases}$ or $\begin{cases} c = -\frac{1}{3} \\ s = \frac{2}{3} \end{cases}$, it is a contradiction with the fact that $c \in \mathbb{N}$ and $s \in \mathbb{N}$. Finally, we find that the possible types of vertices in X are (2, 2, 1), (1, 2, s), (2, 1, s), and the feasible solution of (3.4) are shown in Table 1.

We observe that when u, v are of different types, they must be adjacent; when u, v are of the same type, $u \sim v$ if and only if they have the same *H*-neighbourhood. Thus u, v are co-duplicate vertices. We can add arbitrarily many co-duplicate vertices when constructing graphs with a prescribed star complement for -1.

Now we partition the vertices in X. Let U_i be the set of vertices of type (1, 2, s) in X adjacent to $u_i \in U$, V_i be the set of vertices of type (2, 1, s) in X adjacent to $v_i \in V$, and W_i

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(a, b, c)	$(lpha,eta,\gamma)$	a_{uv}	ρ_{uv}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2, 2, 1)	(2, 2, 1)	0	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2, 2, 1)	(2, 2, 1)	1	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1, 2, s)	(1, 2, s)	0	s+2
(2,1,s) $(2,1,s)$ 1 $s+3$	(1, 2, s)	(1, 2, s)	1	s+3
	(2, 1, s)	(2, 1, s)	0	s+2
	(2, 1, s)	(2, 1, s)	1	s+3
(2,2,1) $(1,2,s)$ 1 4	(2, 2, 1)	(1, 2, s)	1	4
(2,2,1) $(2,1,s)$ 1 4	(2, 2, 1)	(2, 1, s)	1	4
(1,2,s) $(2,1,s)$ 1 $s+2$	(1, 2, s)	(2, 1, s)	1	s+2

Table 1 The feasible solution of (3.4).

be the set of vertices of type (2,2,1) in X adjacent to $w_i \in W$. It is clear that any two vertices in U_i (V_i or W_i) are co-duplicate vertices. We do not exclude the possibility that some of the sets U_i, V_i, W_i are empty. Then for any $u_i \in U$, we have

$$d_G(u_i) = 2 + s + |U_i| + \sum_{i=1}^{s} |W_i| + \sum_{i=1}^{2} |V_i|,$$

and for any $v_i \in V$, we have

$$d_G(v_i) = 2 + s + |V_i| + \sum_{i=1}^{s} |W_i| + \sum_{i=1}^{2} |U_i|$$

Since G is r-regular, we have |E(X,U)| = |E(X,V)| and then $\sum_{i=1}^{2} |V_i| = \sum_{i=1}^{2} |U_i|$. Thus $|U_1| = |U_2| = |V_1| = |V_2|$ by $d_G(u_1) = d_G(u_2) = d_G(v_1) = d_G(v_2)$. Similarly, for any $w_i \in W$, we have

$$d_G(w_i) = 4 + |W_i| + \sum_{i=1}^2 |V_i| + \sum_{i=1}^2 |U_i|.$$

Thus $|W_1| = |W_2| = \cdots = |W_s|$ by $d_G(w_1) = d_G(w_2) = \cdots = d_G(w_s)$. Then we have

$$r = d_G(w_1) = 4 + |W_1| + 4 \cdot |U_1|$$
 and $r = d_G(u_1) = 2 + s + s \cdot |W_1| + 3 \cdot |U_1|$.

It turns out that

$$|W_1| = \frac{r+1}{4s-3} - 1, \quad |U_1| = \frac{(s-1)(r+1)}{4s-3} - 1.$$

Since $|W_1| \in \mathbb{N}, |U_1| \in \mathbb{N}$ and

$$(s-1, 4s-3) = (s-1, 4s-3-3(s-1)) = (s-1, s) = 1,$$

we have $r \equiv -1 \pmod{4s-3}$. Consequently, we obtain an r-regular graph G(r).

In the following, we consider the case $\mu \notin \{0, -1\}$. The following lemma lists all possible types of vertices in X.

Lemma 3.5 Let G be a graph with $H \cong K_{2,2,s}$ $(s \ge 2)$ as a star complement for μ . If μ is a non-main eigenvalue of G and $\mu \notin \{0, -1\}$, then the following statements hold.

Class	(a,b,c)	S
Ι	$(0, 0, \frac{\mu^3 + 2\mu^2}{\mu - 2})$	$\frac{\mu^4 + 5\mu^3 + 4\mu}{4\mu - 8}$
II	$(1, 1, \frac{\mu^3 + 2\mu^2 - 2}{\mu})$	$\frac{\mu^4 + 5\mu^3 + 4\mu^2 - 2\mu - 4}{2\mu}$
III	$(0, 1, \frac{\mu^3 + 2\mu^2 - 1}{\mu - 1}), (1, 0, \frac{\mu^3 + 2\mu^2 - 1}{\mu - 1})$	$\frac{\mu^4 + 5\mu^3 + 2\mu^2 - 2}{3\mu - 3}$
IV	$(0,2,\mu^2+2\mu), (2,0,\mu^2+2\mu)$	$\frac{\mu^3}{2} + \frac{5\mu^2}{2} + 2\mu$
V	$(1, 2, \mu^2 + \mu - 1), (2, 1, \mu^2 + \mu - 1)$	$\mu^3 + 4\mu^2 + 2\mu - 2$

Table 2 The possible types of vertices in X.

(1) The possible types of vertices in X are shown in Table 2.

(2) If G is regular, then all vertices in X are of the same class of the five classes shown in Table 2.

Proof Let $u \in X$ be a vertex of type (a, b, c), thus $(a, b, c) \neq (0, 0, 0)$ and $0 \leq a \leq 2$, $0 \leq b \leq 2, 0 \leq c \leq s$. Since μ is not an eigenvalue of H, we have $\mu \neq 0, -2$ and $\mu^2 - 2\mu \neq 4s$. Now we apply (3.2)–(3.3). When a = b = 2, since $\mu \neq 0, -1, -2$, we have $s = \frac{\mu^2}{4} - \frac{\mu}{2}$, which is a contradiction to $\mu^2 - 2\mu \neq 4s$.

When
$$a = b = 0$$
, since $\mu \neq 0, -2, s \geq 2 \in \mathbb{N}$ and $c \in \mathbb{N}$, we have
$$\begin{cases} c = \frac{\mu^3 + 2\mu^2}{\mu - 2}, \\ s = \frac{\mu^4 + 5\mu^3 + 4\mu}{4\mu - 8}. \end{cases}$$

Similarly, we can prove other cases in Table 2 and thus (1) holds.

Now we show (2) holds. If X contains both vertices of Class I and vertices of Class II in Table 2, then we have

$$s = \frac{\mu^4 + 5\mu^3 + 4\mu}{4\mu - 8} = \frac{\mu^4 + 5\mu^3 + 4\mu^2 - 2\mu - 4}{2\mu}.$$
(3.7)

Thus $\frac{(\mu^3 - 3\mu^2 - 4\mu + 4)(\mu + 2)^2}{4\mu(\mu - 2)} = 0$. Since $\mu \neq -2$, we have $\mu^3 - 3\mu^2 - 4\mu + 4 = 0$. We substitute the solution of equation $\mu^3 - 3\mu^2 - 4\mu + 4 = 0$ into (3.7), and find s is not an integer, it is a contradiction. Thus X cannot contain both vertices of Class I and vertices of Class II.

Similarly, we can prove that any other two classes of vertices in Table 2 cannot exist in X at the same time, except for Class IV and Class V. In the following we show if the vertices in X are of Class IV and Class V, then G is not regular.

From Table 2, we have

$$s = \frac{\mu^3}{2} + \frac{5\mu^2}{2} + 2\mu = \mu^3 + 4\mu^2 + 2\mu - 2.$$

Thus $\frac{(\mu-1)(\mu+2)^2}{2} = 0$. Since $\mu \neq -2$, we have $\mu = 1$ and s = 5. Thus the vertices in X are of type (0,2,3), (2,0,3), (1,2,1), (2,1,1). Now we consider the regular graph with $K_{2,2,5}$ as a star complement for $\mu = 1$.

From (3.4), we have Table 3. Since $\rho_{uv} \in \mathbb{N}$, the vertices of type (a, b, c) and (α, β, γ) shown in Table 3 cannot exist in X at the same time. If the types of vertices in X are $\{(0,2,3)\}, \{(1,2,1)\}$ or $\{(0,2,3), (1,2,1)\}$, then $d_G(u_1) < d_G(v_1)$; if the types of vertices in X are $\{(2,0,3)\}, \{(2,1,1)\}$ or $\{(2,0,3), (2,1,1)\}$, then $d_G(u_1) > d_G(v_1)$. Clearly, the above cases imply a contradiction with the regularity of graph G. Thus there is no regular graph with $K_{2,2,5}$ as a star complement for $\mu = 1$.

(a, b, c)	(α,β,γ)	$ ho_{uv}$
(0, 2, 3)	(2, 1, 1)	$\frac{7}{3} - a_{uv}$
(2, 0, 3)	(1, 2, 1)	$\frac{7}{3} - a_{uv}$
(0, 2, 3)	(2, 0, 3)	$\frac{8}{3} - a_{uv}$
(1, 2, 1)	(2, 1, 1)	$\frac{8}{3} - a_{uv}$

Table 3 The infeasible solution of (3.4).

Therefore, if G is a regular graph with $H \cong K_{2,2,s}$ $(s \ge 2)$ as a star complement for μ , then the vertices in X are of only one class.

Now we characterize the regular graphs with the tripartite graph $K_{2,2,s}$ $(s \ge 2)$ as a star complement.

Theorem 3.2 Let $s \ge 2$. If the r-regular graph G has $H \cong K_{2,2,s}$ as a star complement for an eigenvalue μ of multiplicity k, then one of the following holds:

(1) $\mu = -1, r \equiv -1 \pmod{(4s-3)}$ and $G \cong G(r)$;

(2) $\mu = 4$, s = 74 and G is a 76-regular graph of order 189;

(3) $\mu = 1, r = 6, s = 2 \text{ and } G \cong L(K_5);$

(4) $\mu = -3$, r = 6, s = 3 and $G \cong K_{3,3,3}$.

Proof Since μ is not an eigenvalue of $H \cong K_{2,2,s}$ $(s \ge 2)$, we have $\mu \ne 0, -2$ and $\mu^2 - 2\mu \ne 4s$. If $\mu \ne -1$, then $\mu \notin \{-1,0\}$, and by Lemma 2.1, $V(K_{2,2,s})$ is a location-dominating set, thus G is connected by the fact that $H \cong K_{2,2,s}$ is connected.

Case 1 $\mu = -1$. By Theorem 3.1, (1) holds.

Case 2 $\mu = r$. Since r is an eigenvalue with multiplicity 1, we have |X| = 1. Since G is regular, we have $d_G(u_1) = d_G(u_2) = d_G(v_1) = d_G(v_2)$. Let $X = \{u\}$. Then either $u \sim u_1$, $u \sim u_2$, $u \sim v_1$, $u \sim v_2$, or $u \nsim u_1$, $u \nsim u_2$, $u \nsim v_1$, $u \nsim v_2$.

If $u \sim u_1$, $u \sim u_2$, $u \sim v_1$, $u \sim v_2$, then

$$d_G(u_1) = d_G(u_2) = d_G(v_1) = d_G(v_2) = s + 3,$$

which implies that $d_G(u) = s + 3$. It follows that the vertex u is adjacent to s - 1 vertices of W, and thus vertices w_1, w_2, \dots, w_s can not have the same degree. It is a contradiction.

If $u \nsim u_1$, $u \nsim u_2$, $u \nsim v_1$, $u \nsim v_2$, then

$$d_G(u) = d_G(u_1) = d_G(u_2) = d_G(v_1) = d_G(v_2) = s + 2,$$

which means the vertex u is adjacent to s+2 vertices of W. It is a contradiction by the fact that |W| = s. Thus there is no regular graph G with $K_{2,2,s}$ as a star complement for the eigenvalue r.

Case 3 $\mu \notin \{-1, r\}.$

By Lemma 2.3, μ is non-main. From Lemma 2.1, we know the *H*-neighbourhoods of distinct vertices in *X* are distinct and non-empty. By Lemma 3.5, *X* contains vertices of only one class. Now we consider the following five subcases.

Subcase 3.1 The vertices in X are of Class I.

Let $u \in X$. If X induces an independent set, then we have r = c = 2 + s by $d_G(u) = d_G(u_1)$. Since $c = \frac{\mu^3 + 2\mu^2}{\mu - 2}$, $s = \frac{\mu^4 + 5\mu^3 + 4\mu}{4\mu - 8}$, we have $2 + s - c = \frac{(\mu + 4)(\mu^2 - \mu + 2)}{4} = 0$. Thus $\mu = -4$ by $\mu \in \mathbb{R}$, and then $s = \frac{10}{3}$. It is a contradiction.

If X induces a clique, then we have $r = c + k - 1 = 2 + s = 4 + \frac{kc}{s}$ by $d_G(u) = d_G(u_1) = d_G(u_1)$ $d_G(w_1) = d_G(w_2) = \cdots = d_G(w_s)$, where k = |X|. Thus $k = 3 + s - c = \frac{(s-2)s}{c}$. From Table 2, we have

$$c(3+s-c) - (s-2)s = -\frac{\mu(\mu+2)(\mu^6 + 4\mu^5 + 5\mu^4 + 14\mu^3 - 12\mu^2 + 72\mu + 32)}{16(\mu-2)^2} = 0.$$

Since $\mu \neq 0, -2$, we have $\mu^6 + 4\mu^5 + 5\mu^4 + 14\mu^3 - 12\mu^2 + 72\mu + 32 = 0$, then the value of s obtained by substituting the solution of the equation is not an integer. It is a contradiction.

Otherwise, from Lemma 3.3, we have $\mu \in \mathbb{Z}$. Since $c = \mu^2 + 4\mu + 8 + \frac{16}{\mu-2}$, we have $\frac{16}{\mu-2} \in \mathbb{Z}$. Thus $\mu - 2 \in \{\pm 1, \pm 2, \pm 4, \pm 8, \pm 16\}$. Since $\mu \neq 0, -2$ and $c, s \in \mathbb{Z}^+$, by Table 2, the possible values of s and c are shown in Table 4. Considering the regularity of graph G, we have

μ	s	c
3	57	45
18	2097	405
4	74	48
10	470	150
6	150	72

Table 4 The possible values of s and c.

 $r = 2 + s = 4 + \frac{kc}{s}$ by $d_G(u_1) = d_G(w_1) = d_G(w_2) = \dots = d_G(w_s)$. Thus $k = \frac{(s-2)s}{c} \in \mathbb{Z}^+$. Only when $\mu = 4$, s = 74 and c = 48, k is an integer. In this case, k = 111, r = 76, n = 189and $\rho_{uv} = \begin{cases} 32, & u \approx v, \\ 28, & u \sim v. \end{cases}$

Subcase 3.2 The vertices in X are of Class II.

Let $u \in X$. If X induces an independent set, then we have $r = 2 + c = 2 + s + \frac{k}{2}$ by $d_G(u) = d_G(u_1) = d_G(u_2)$. Thus $k = 2(c-s) \le 0$. It is a contradiction.

If X induces a clique, then $r = 2 + c + k - 1 = 2 + s + \frac{k}{2} = 4 + \frac{kc}{s}$ by $d_G(u) = d_G(u_1) = d_G(u_2) = d_G(w_1) = d_G(w_2) = \cdots = d_G(w_s)$, and thus $k = 2(s - c + 1) = \frac{c-3}{(\frac{c}{s}-1)}$. From Table 2, we have

$$2(s-c+1)(c-s) - s(c-3) = -\frac{(\mu-1)(\mu+2)^2(\mu^5 + 4\mu^4 + 4\mu^3 + \mu^2 - 4\mu - 2)}{2\mu^2} = 0.$$

Since $\mu \neq -2$, we have $\mu = 1$ or $\mu^5 + 4\mu^4 + 4\mu^3 + \mu^2 - 4\mu - 2 = 0$. If $\mu^5 + 4\mu^4 + 4\mu^3 + \mu^2 - 4\mu - 2 = 0$, then the value of s obtained by substituting the solution of the equation is not an integer, it implies $\mu = 1$, and thus c = 1, s = 2, k = 4. By Lemma 3.1, we have

$$\rho_{uv} = \begin{cases} 2, & u \not\sim v, \\ 1, & u \sim v. \end{cases}$$
(3.8)

Since $G[X] = K_4$, only $\{N_H(u) \mid u \in X\} = \{\{u_1, v_1, w_1\}, \{u_2, v_1, w_2\}, \{u_1, v_2, w_2\}, \{u_2, v_2, w_1\}\}$ satisfies (3.8). Thus $G \cong L(K_5)$.

Otherwise, we have $\mu \in \mathbb{Z}$ by Lemma 3.3. Notice that $c = \mu^2 + 2\mu - \frac{2}{\mu} \in \mathbb{Z}$, then $\frac{2}{\mu} \in \mathbb{Z}$. Since $\mu \neq -1, -2$, we have $\mu = 1, c = 1, s = 2$ or $\mu = 2, c = 7, s = 16$ by Table 2. Considering the regularity of the graph G, we have $r = 2 + s + \frac{k}{2} = 4 + \frac{kc}{s}$ by $d_G(u_1) = d_G(u_2) = d_G(w_1) = d_G(w_1)$

 $d_G(w_2) = \cdots = d_G(w_s)$. Thus $k = \frac{s-2}{(\frac{c}{s}-\frac{1}{2})} \in \mathbb{Z}^+$. If $\mu = 2$, then k = -224, which implies $\mu = 1$ and s = 2 by $k \in \mathbb{Z}^+$. Counting the edges between X and V(H), we have 3k = 6(r-4). Thus $r = \frac{k}{2} + 4 \in \mathbb{Z}^+$ which means k is an even number. Since $\rho_{uv} \neq 0$ by (3.8) and for each vertex u of type (1, 1, 1), there exists another vertex v of type (1, 1, 1) with $\rho_{uv} = 0$, we have $k \leq \frac{\binom{2}{1}\binom{2}{1}\binom{2}{1}}{2} = 4$. Thus k = 2 or 4. When k = 2, we have r = 5 and G[X] is a 2-regular graph, which contradicts with k = |X| = 2. When k = 4, we have r = 6 and $G[X] = K_4$. Thus $G \cong L(K_5)$.

Subcase 3.3 The vertices in X are of Class III. Let

$$X_{1} = \left\{ u \in X \mid u \text{ is of type } \left(0, 1, \frac{\mu^{3} + 2\mu^{2} - 1}{\mu - 1} \right) \right\},$$
$$X_{2} = \left\{ u \in X \mid u \text{ is of type } \left(1, 0, \frac{\mu^{3} + 2\mu^{2} - 1}{\mu - 1} \right) \right\}.$$

Considering the regularity of the graph G, we have $|X_1| = |X_2| = \frac{k}{2}$. If one of the following three conditions holds: (1) $G[X_1] \ncong K_{\frac{k}{2}}$ and $G[X_1] \ncong \frac{k}{2}K_1$; (2) $G[X_2] \ncong K_{\frac{k}{2}}$ and $G[X_2] \ncong \frac{k}{2}K_1$; (3) $G[E(X_1, X_2)] \ncong K_{\frac{k}{2}, \frac{k}{2}}$ and $E(X_1, X_2) \neq \emptyset$, then from Lemmas 3.3–3.4, we have $\mu \in \mathbb{Z}$. From Lemma 3.2, we have $\frac{1}{\mu+2} \in \mathbb{Z}$ by $\rho_{uv} \in \mathbb{Z}$. Since $\mu \neq -1$, we have $\mu = -3$, then $s = \frac{19}{6}$. It is a contradiction.

Otherwise, we have both (4), (5) and (6) hold: (4) $G[X_1] \cong K_{\frac{k}{2}}$ or $G[X_1] \cong \frac{k}{2}K_1$; (5) $G[X_2] \cong K_{\frac{k}{2}}$ or $G[X_2] \cong \frac{k}{2}K_1$; (6) $G[E(X_1, X_2)] \cong K_{\frac{k}{2}, \frac{k}{2}}$ or $E(X_1, X_2) = \emptyset$.

Since G[X] is regular, there are four cases: (a) $G[X] = kK_1$; (b) $G[X] = K_k$; (c) $G[X_1] = K_{\frac{k}{2}}, G[X_2] = K_{\frac{k}{2}}$ and $E(X_1, X_2) = \emptyset$; (d) $G[X_1] = \frac{k}{2}K_1, G[X_2] = \frac{k}{2}K_1$ and $G[E(X_1, X_2)] = K_{\frac{k}{2}, \frac{k}{2}}$. For any of these four cases, there is no regular graph G with $K_{2,2,s}$ as a star complement. Since the proof is similar, we only prove case (a), omitting the proof of the other three cases.

Now we show if $G[X] = kK_1$, there is no regular graph G with $K_{2,2,s}$ as a star complement. In fact, if $G[X] = kK_1$, we have $r = 1 + c = 2 + s + \frac{k}{4} = 4 + \frac{kc}{s}$ by $d_G(u) = d_G(u_1) = d_G(u_2) = d_G(w_1) = d_G(w_2) = \cdots = d_G(w_s)$. Thus $k = 4(c - s - 1) = \frac{s(c-3)}{c}$. From Table 2, we have

$$4c(c-s-1) - s(c-3) = -\frac{5\mu^7 + 23\mu^6 + 9\mu^5 - 33\mu^4 + 10\mu^3 - 6\mu + 4}{3(\mu-1)^2} = 0$$

Thus $5\mu^7 + 23\mu^6 + 9\mu^5 - 33\mu^4 + 10\mu^3 - 6\mu + 4 = 0$. However, the value of s obtained by substituting the solution of the equation is not an integer. It is a contradiction.

Subcase 3.4 The vertices in X are of Class IV.

Let $X_1 = \{u \in X \mid u \text{ is of type } (0, 2, \mu^2 + 2\mu)\}, X_2 = \{u \in X \mid u \text{ is of type } (2, 0, \mu^2 + 2\mu)\}.$ Considering the regularity of graph G, we have $|X_1| = |X_2| = \frac{k}{2}$.

If c = 2, then $\mu = \pm\sqrt{3} - 1$ and s = 3. Since $r = \frac{k}{2} + 2 + 3 = 4 + \frac{2k}{3}$ by $d_G(u_1) = d_G(u_2) = d_G(w_1) = d_G(w_2) = d_G(w_3)$, we have k = 6. However, from Lemma 3.1, we have $\rho_{uv} = \pm\sqrt{3}(a_{uv} - 2) + a_{uv} \notin \mathbb{Z}$. Hence, the star set X can only contain one vertex of type (0, 2, 2) and one vertex of type (2, 0, 2), which contradicts with k = 6.

If $c \neq 2$, we have $\mu = \frac{2s-3c}{c-2}$ by Table 2, then $\mu \in \mathbb{Q}$ by the fact that $s, c \in \mathbb{Z}$. Notice that μ is an algebraic integer, then $\mu \in \mathbb{Z}$. Since $\rho_{uv} \in \mathbb{Z}$ for $u \in X_1$ and $v \in X_2$, from Lemma 3.2, we have $\frac{4}{u+2} \in \mathbb{Z}$. Since $\mu \neq 0, -1$, we have $\mu \in \{-6, -4, -3, 2\}$.

Now we show $\mu \neq -4, -6, 2$. If $\mu = -4$, then $s = 0 \notin \mathbb{Z}^+$, it is a contradiction. If $\mu = -6$, then $s = -30 \notin \mathbb{Z}^+$. If $\mu = 2$, then c = 8 and s = 18. Considering the regularity of graph G,

we have $r = \frac{k}{2} + 2 + 18 = 4 + \frac{8k}{18}$ by $d_G(u_1) = d_G(u_2) = d_G(w_1) = d_G(w_2) = \cdots = d_G(w_{18})$. Hence $k = -288 \notin \mathbb{Z}^+$, it is a contradiction.

Therefore, $\mu = -3$, and thus c = s = 3. Considering the regularity of graph G, we have $r = \frac{k}{2} + 2 + 3 = 4 + k$ by $d_G(u_1) = d_G(u_2) = d_G(w_1) = d_G(w_2) = d_G(w_3)$. So k = 2, r = 6. Since $\rho_{uv} = \begin{cases} 0, & u \not\sim v \\ 3, & u \sim v \end{cases}$, we have $G[X] = K_2$ and

$$\{N_H(u) \mid u \in X\} = \{\{u_1, u_2, w_1, w_2, w_3\}, \{v_1, v_2, w_1, w_2, w_3\}\}$$

Thus $G \cong K_{3,3,3}$.

Subcase 3.5 The vertices in X are of Class V.

Let $X_1 = \{u \in X \mid u \text{ is of type } (1, 2, \mu^2 + \mu - 1)\}, X_2 = \{u \in X \mid u \text{ is of type } (2, 1, \mu^2 + \mu - 1)\}$. Considering the regularity of graph G, we have $|X_1| = |X_2| = \frac{k}{2}$. If c = 0, then $\mu = \frac{\pm\sqrt{5}-1}{2}$ and s = 1, which contradicts with $s \ge 2$. If $c \ne 0$, we have $\mu = \frac{s-1}{c} - 3$ by Table 2, then $\mu \in \mathbb{Q}$. Notice that μ is an algebraic integer, then $\mu \in \mathbb{Z}$. Since $\rho_{uv} \in \mathbb{Z}$ for $u \in X_1$ and $v \in X_2$, from Lemma 3.2, we have $\frac{1}{\mu+2} \in \mathbb{Z}$. Since $\mu \ne -1$, we have $\mu = -3$, and then s = 1, c = 5 > s, which implies a contradiction by $0 \le c \le s$.

Combining the above arguments, we complete the proof.

Remark 3.1 The graph $L(K_5)$ is strongly regular with parameters (10, 6, 3, 4), and the spectrum is $[-2^5, 1^4, 6]$; the graph $K_{3,3,3}$ is strongly regular with parameters (9, 6, 3, 6), and the spectrum is $[-3^2, 0^6, 6]$.

4 Maximal Graphs with $K_{2,2,s}$ as a Star Complement for $\mu = 1$

In this section, we characterize the maximal graphs with $K_{2,2,s}$ as a star complement for the eigenvalue $\mu = 1$.

Lemma 4.1 Let $s \ge 2$. Then $K_{2,2,2}$, $K_{2,2,5}$, $K_{2,2,6}$ and $K_{2,2,20}$ are the only graphs among $K_{2,2,s}$ which can be star complements for $\mu = 1$.

Proof Let G be the maximal graph with $H \cong K_{2,2,s}$ as a star complement for $\mu = 1$. Then G is connected since $K_{2,2,s}$ is connected and $V(K_{2,2,s})$ is a location-dominating set (see Lemma 2.1). Let $u \in X$ be a vertex of type (a, b, c), thus $(a, b, c) \neq (0, 0, 0)$ and $0 \le a \le 2, 0 \le b \le 2$, $0 \le c \le s$. We distinguish the following six cases.

Case 1 a = b = 0.

By (3.3), we have $12s(1-c) + 12c^2 - 3c + 3 = 0$. Clearly, $c \neq 1$. So

$$\frac{3c+1}{4c-4} = s - c \in \mathbb{Z}.$$
(4.1)

Notice that $0 < \frac{3c+1}{4c-4} < 1$ whenever c > 5, and in this case s-c is not an integer, a contradiction. So $0 \le c \le 5$, then we have c = 5 and s = 6 by $s \in \mathbb{Z}$ and (4.1).

Case 2 a = b = 1.

By (3.3), we have $12c^2 + 9c + 3 - 12cs = 0$. Clearly, $c \neq 0$. So

$$\frac{3c+1}{4c} = s - c \in \mathbb{Z}.$$
(4.2)

If c > 1, we have $0 < \frac{3c+1}{4c} < 1$, which contradicts with $s - c \in \mathbb{Z}$. So c = 1, and thus s = 2 by (4.2).

Case 3 a = b = 2.

By (3.3), we have $12s(1-c) + 12c^2 + 21c + 15 = 0$. Clearly, $c \neq 1$. So

$$\frac{3c+13}{4c-4} = s - c - 2 \in \mathbb{Z}.$$
(4.3)

Notice that $0 < \frac{3c+13}{4c-4} < 1$ whenever c > 17, and in this case s - c - 2 is not an integer, a contradiction. For $0 \le c \le 17$, we have c = 17 and s = 20 by $s \in \mathbb{Z}$ and (4.3).

Case 4 a = 0, b = 1 or a = 1, b = 0.

By (3.3), we have $s(5-12c) + 12c^2 + 3c + 2 = 0$. So $\frac{4c-7}{12c-5} = c - s + 1 \in \mathbb{Z}$.

If $c \ge 2$, we have $0 < \frac{4c-7}{12c-5} < 1$, which contradicts with $c - s + 1 \in \mathbb{Z}$. If c = 1 or c = 0, we have $s \notin \mathbb{Z}$, which implies a contradiction.

Case 5 a = 0, b = 2 or a = 2, b = 0.

By (3.3), we have $s(8 - 12c) + 12c^2 + 9c + 5 = 0$. So $\frac{5c+13}{12c-8} = s - c - 1 \in \mathbb{Z}$. If c > 3, we have $0 < \frac{5c+13}{12c-8} < 1$, which contradicts with $s - c - 1 \in \mathbb{Z}$. If $0 \le c \le 3$, then we have c = 3 and s = 5 by $s \in \mathbb{Z}$.

Case 6 a = 1, b = 2 or a = 2, b = 1.

By (3.3), we have $s(5-12c) + 12c^2 + 15c + 8 = 0$. So $\frac{8c+13}{12c-5} = s - c - 1 \in \mathbb{Z}$.

If $c \ge 5$, we have $0 < \frac{8c+13}{12c-5} < 1$, which contradicts with $s-c-1 \in \mathbb{Z}$. If $0 \le c \le 4$, we have c = 1 and s = 5 by $s \in \mathbb{Z}$.

Combining the above six cases, we complete the proof.

Theorem 4.1 Let $\mu = 1$. Then the graphs $L(K_5)$, G_1 and G_2 (see Figure 1 are the three non-isomorphic maximal graphs with $K_{2,2,2}$ as a star complement for μ ; $K_2 \nabla GQ(2,4)$ is the unique maximal graph with $K_{2,2,5}$ as a star complement for μ ; G_3 (see Figure 1) is the unique maximal graph with $K_{2,2,6}$ as a star complement for μ .

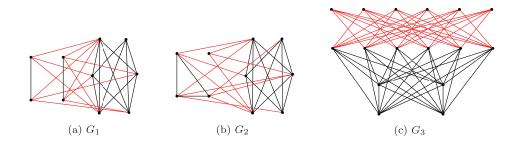


Figure 1 Graphs G_1 , G_2 and G_3 .

Proof Let s = 2. By Case 2 of the proof of Lemma 4.1, we know the vertices in X are of type (1,1,1), thus by Lemma 3.1 we have $\rho_{uv} = \begin{cases} 2, & u \nsim v \\ 1, & u \sim v \end{cases}$. From Lemma 2.1, we know the H-neighbourhoods of distinct vertices in X are distinct and non-empty. Since $\rho_{uv} \neq 0, \{N_H(u) \mid u \in X\}$ can only contain at most one element from each of the following four sets: $\{\{u_1, v_1, w_1\}, \{u_2, v_2, w_2\}\}, \{\{u_1, v_2, w_1\}, \{u_2, v_1, w_2\}\}, \{\{u_1, v_2, w_2\}, \{u_2, v_1, w_1\}\}, \{u_2, v_1, w_1\}, \{u_3, v_2, w_2\}, \{u_4, v_1, w_1\}, \{u_4, v_2, w_2\}, \{u_4, v_1, w_1\}, \{u_4, v_2, w_2\}, \{u_4, v_2, w_1\}, \{u_5, v_1, w_2\}, \{u_6, v_1, w_2\}, \{u_7, v_1, w_1\}, \{u_8, v_1, w_2\}, \{u_8, v_1, w_1\}, \{u_8$ $\{\{u_1, v_1, w_2\}, \{u_2, v_2, w_1\}\}$. Thus $k \leq 4$. Considering the symmetry of $K_{2,2,2}$, there are three non-isomorphic maximal families $\{N_H(u) \mid u \in X\}$ which are shown as follows:

$$\{\{u_1, v_1, w_1\}, \{u_2, v_1, w_2\}, \{u_1, v_2, w_2\}, \{u_2, v_2, w_1\}\};\$$

528

$$\{\{u_1, v_1, w_1\}, \{u_1, v_2, w_1\}, \{u_1, v_2, w_2\}, \{u_1, v_1, w_2\}\}; \\ \{\{u_1, v_1, w_1\}, \{u_1, v_2, w_1\}, \{u_1, v_2, w_2\}, \{u_2, v_2, w_1\}\}.$$

Therefore, the maximal graphs with $K_{2,2,2}$ as a star complement for $\mu = 1$ are $L(K_5)$, G_1 and G_2 .

Let s = 5. Then the vertices in X are of type (0, 2, 3), (2, 0, 3), (1, 2, 1) or (2, 1, 1). From Table 3, we know the vertices in X can contain vertices of type (0, 2, 3) and (1, 2, 1), or contain vertices of type (2, 0, 3) and (2, 1, 1). Observe the symmetry of a and b in (3.4), we only consider the first case. By (3.4), we have Table 5. There are 10 possibilities for the H-neighbourhood of a vertex of each type. By Table 5, we know all 20 possibilities are compatible. Thus |X| = 20and the maximal graph with $K_{2,2,5}$ as a star complement for $\mu = 1$ is $K_2 \nabla GQ(2, 4)$, where GQ(2, 4) is an order-(2, 4) generalized quadrangle.

(a, b, c)	(α, β, γ)	a_{uv}	ρ_{uv}
(0, 2, 3)	(1, 2, 1)	0	3
(0, 2, 3)	(1, 2, 1)	1	2
(0, 2, 3)	(0, 2, 3)	0	4
(0, 2, 3)	(0, 2, 3)	1	3
(1, 2, 1)	(1, 2, 1)	0	3
(1, 2, 1)	(1, 2, 1)	1	2

Table 5 The feasible solution of (3.4) when s = 5.

Let s = 6. Then the vertices in X are of type (0, 0, 5) and $\rho_{uv} = \begin{cases} 4, & u \approx v, \\ 3, & u \sim v \end{cases}$ by Lemma 3.1. Thus $G[X] = 6K_1$ and $\{N_H(u) \mid u \in X\} = \{\{w_2, w_3, w_4, w_5, w_6\}, \{w_1, w_3, w_4, w_5, w_6\}, \{w_1, w_2, w_3, w_5, w_6\}, \{w_1, w_2, w_3, w_4, w_6\}, \{w_1, w_2, w_3, w_4, w_5\}\}$. Thus $G \cong G_3$.

Combining the above arguments, we complete the proof.

Remark 4.1 The graph G_1 is a graph of order 10 with spectrum $[-2^4, -1.46410, 1^4, 5.46410]$; the graph G_2 is a graph of order 10 with spectrum $[-2^4, -1.60555, 1^4, 5.60555]$; the graph $K_2 \nabla GQ(2, 4)$ is a graph of order 29 with spectrum $[-5^6, -3.88819, 0, 1^{20}, 13.88819]$, where generalized quadrangle GQ(2, 4) is strongly regular with parameters (27, 10, 1, 5); the graph G_3 is a graph of order 16 with spectrum $[-6.58872, -2, -1^5, 0^2, 1^6, 7.58872]$.

Now we consider the maximal graph with $K_{2,2,20}$ as a star complement for $\mu = 1$. Let (U, V, W) be a tripartition of the graph $K_{2,2,20}$ with $U = \{u_1, u_2\}, V = \{v_1, v_2\}, W = \{w_1, w_2, \cdots, w_{20}\}$. We know all vertices in X are of type (2, 2, 17) by Case 3 of the proof of Lemma 4.1 and $\rho_{uv} = \begin{cases} 20, & u \approx v, \\ 19, & u \sim v \end{cases}$ by Lemma 3.1. Let $N_W(u) = \{v \mid v \sim u, v \in W\}$ be the W-neighbourhood of vertex $u \in X$ and $\rho'_{uv} = |N_W(u) \cap N_W(v)|$. Then $\rho'_{uv} = \begin{cases} 16, & u \approx v, \\ 15, & u \sim v \end{cases}$ Let \mathcal{F}_{17} be a family of 17-subsets of W, $W^{(3)}$ be the family of all the 3-subsets of W and $\mathcal{F}_3 \subset W^{(3)}$. We say that the family \mathcal{F}_{17} is compatible if $|S_1 \cap S_2| \in \{15, 16\}$ for any distinct sets $S_1, S_2 \in \mathcal{F}_{17}$, equivalently $W \setminus S_1 := \overline{S_1} \notin S_2$. In the following we give an algorithm for finding the maximal compatible families \mathcal{F}_{17} (see Algorithm 1), and then give some examples.

Theorem 4.2 Let G be a graph with $K_{2,2,20}$ as a star complement for $\mu = 1$, (U, V, W) be a tripartition of the graph $K_{2,2,20}$ with |U| = |V| = 2, |W| = 20. Then G is a maximal

Algorithm 1 Maximal Family \mathcal{F}_{17}

1: $\mathcal{F}_{17} \leftarrow \varnothing, \mathcal{F}_3 \leftarrow W^{(3)}$ 2: while $\mathcal{F}_3 \neq \varnothing$ do 3: Select $F \in \mathcal{F}_3$ 4: $\mathcal{F}_{17} \leftarrow \mathcal{F}_{17} \cup \overline{F}$ 5: $\mathcal{F}_3 \leftarrow \mathcal{F}_3 \setminus (\overline{F}^{(3)} \cup \{F\})$ 6: end while 7: return \mathcal{F}_{17}

graph if and only if all vertices in X are of type (2, 2, 17) and the family of W-neighbourhoods $N_W(u)$ $(u \in X)$ can be obtained from Algorithm 1.

Proof If the family of *W*-neighbourhoods $N_W(u)$ $(u \in X)$ can be obtained from Algorithm 1, then *X* will be given. Let \mathcal{F}_{17} be a family obtained from Algorithm 1. Firstly, we prove that \mathcal{F}_{17} is a compatible family. Let $S_i^{(3)}$ be the family of all the 3-subsets of S_i . If there are two sets $S_1, S_2 \in \mathcal{F}_{17}$ such that $|S_1 \cap S_2| = 14$, then $\overline{S_2} \in S_1^{(3)}$. Suppose that in Algorithm 1, S_1 is the first selected into \mathcal{F}_{17} , then after S_1 is selected, the elements in $S_1^{(3)}$ are deleted from \mathcal{F}_3 . Thus $\overline{S_2} \notin \mathcal{F}_3$ and then $S_2 \notin \mathcal{F}_{17}$. It is a contradiction. Secondly, we prove that \mathcal{F}_{17} is maximal. Suppose that \mathcal{F}'_{17} is a compatible family and $\mathcal{F}_{17} \subset \mathcal{F}'_{17}$ with $S_0 \in \mathcal{F}'_{17} \setminus \mathcal{F}_{17}$, then for any $S_1 \in \mathcal{F}'_{17}$, we have $|S_0 \cap S_1| \neq 14$. Since $\mathcal{F}_{17} \subset \mathcal{F}'_{17}$, for any $S_2 \in \mathcal{F}_{17}$, we have $|S_0 \cap S_2| \neq 14$ and $S_0 \neq S_2$. Thus $\overline{S_0} \notin S_2^{(3)} \cup \{\overline{S_2}\}$ and then $\overline{S_0} \in \mathcal{F}_3 \neq \emptyset$ in Algorithm 1. It is a contradiction. So \mathcal{F}_{17} is a maximal compatible family. Therefore, *G* is maximal.

Conversely, let G be a maximal graph, and $\mathcal{F}_{17} = \{S_1, S_2, \cdots, S_k\}$ be the family of Wneighbourhoods of all vertices $u \in X$. Then \mathcal{F}_{17} is a maximal compatible family. Now we show that \mathcal{F}_{17} can be obtained from Algorithm 1. Let F_i be the *i*-th selected element in \mathcal{F}_3 in Algorithm 1 and $\overline{F_i} = S_i$. We will prove that $\{F_1, F_2, \cdots, F_k\}$ satisfies Algorithm 1. For $1 \leq i \leq k$, let $\mathcal{F}_{17,i} = \{S_1, S_2, \cdots, S_i\}$ and $\mathcal{F}_{3,i} = W^{(3)} \setminus (S_1^{(3)} \cup S_2^{(3)} \cup \cdots \cup S_i^{(3)} \cup \{\overline{S_1}, \overline{S_2}, \cdots, \overline{S_i}\})$. Since $\mathcal{F}_{17} = \{S_1, S_2, \cdots, S_k\}$ is compatible, for any $j \leq i$ where i < k, we have $S_{i+1} \neq S_j$ and $|S_j \cap S_{i+1}| \neq 14$. Thus $F_{i+1} \neq \overline{S_j}$, $F_{i+1} = \overline{S_{i+1}} \notin S_j$ and then $F_{i+1} \notin S_1^{(3)} \cup S_2^{(3)} \cup \cdots \cup S_i^{(3)} \cup \{\overline{S_1}, \overline{S_2}, \cdots, \overline{S_i}\}$. Therefore, $F_{i+1} \in \mathcal{F}_{3,i}$ and we can select F_{i+1} in the (i+1)-th step of the algorithm. Next, we prove that after the algorithm proceeds to the *k*-th step, $\mathcal{F}_{3,k} = W^{(3)} \setminus (S_1^{(3)} \cup S_2^{(3)} \cup \cdots \cup S_k^{(3)} \cup \{\overline{S_1}, \overline{S_2}, \cdots, \overline{S_k}\}) = \emptyset$. If $\mathcal{F}_{3,k} \neq \emptyset$, then there exists $F \in \mathcal{F}_{3,k}$, s.t. $F \notin S_1^{(3)} \cup S_2^{(3)} \cup \cdots \cup S_k^{(3)} \cup \{\overline{S_1}, \overline{S_2}, \cdots, \overline{S_k}\}$. Thus for any $i \in [k]$, $\overline{F} \neq S_i$, $|\overline{F} \cap S_i| \neq 14$ and then $\{S_1, S_2, \cdots, S_k, \overline{F}\}$ is compatible, which contradicts with G is maximal. To sum up, \mathcal{F}_{17} can be obtained from Algorithm 1.

It is easy to verify that the following two examples can be obtained from Algorithm 1.

Example 4.1 Let G_4 be a maximal graph with $H = K_{2,2,20}$ as a star complement for $\mu = 1$ where all vertices in X are of type (2, 2, 17) and the family of W-neighbourhoods $N_W(u)$ $(u \in X)$ is $\{S \mid S \subset W \setminus \{w_1\}, |S| = 17\}$. Then G_4 is a graph of order 195 and it is easy to show that G_4 is the graph of the maximum order among all maximal graphs with $K_{2,2,20}$ as a star complement for $\mu = 1$ by Erdős-Ko-Rado Theorem (see [12, Theorem 4.1]).

Example 4.2 Let G_5 be a maximal graph with $H = K_{2,2,20}$ as a star complement for $\mu = 1$ where all vertices in X are of type (2, 2, 17) and the family of W-neighbourhoods $N_W(u)$ $(u \in X)$ is $\overline{\{w_2, w_3, w_4\}} \cup \mathcal{F}$, where $\mathcal{F} = \{\overline{F} \mid F \subset W, |F| = 3, w_1 \in F, F \cap \{w_2, w_3, w_4\} \neq \emptyset\}$. Then G_5 is a graph of order 76, which is the graph with the second largest order among all maximal graphs with $K_{2,2,20}$ as a star complement for $\mu = 1$ by Hilton-Milner Theorem (see [12, Theorem 8.1]).

5 Concluding Remarks

In Theorem 3.2, we characterize the regular graphs with $K_{2,2,s}(s \ge 2)$ as a star complement for an eigenvalue $\mu \in \mathbb{R}$. But the existence and structure of G in (2) of Theorem 3.2 are not clear, which is a question worth investigating. In Section 4, we characterize the maximal graphs with $K_{2,2,s}$ as a star complement for $\mu = 1$. The structure of maximal graphs with $K_{2,2,s}$ as a star complement for other eigenvalues is also an interesting question worth studying. Thus, we propose the following problems.

Question 5.1 Can we give a specific characterization of the structure of G in (2) of Theorem 3.2?

Question 5.2 Let $\mu \neq 1$. What are the maximal graphs with $K_{2,2,s}$ as a star complement for the eigenvalue μ ?

Acknowledgement The authors would like to thank the referees for their valuable comments, corrections and suggestions, which lead to an improvement of the original manuscript.

References

- Asgharsharghi, L. and Kiani, D., On regular graphs with complete tripartite star complements, Ars Combin., 122, 2015, 431–437.
- [2] Bell, F. K., Characterizing line graphs by star complements, Linear Algebra Appl., 296, 1999, 15–25.
- [3] Bell, F. K., Line graphs of bipartite graphs with hamiltonian paths, J. Graph Theory, 43, 2003, 137–149.
- [4] Bondy, J. A. and Murty, U. S. R., Graph Theory, Springer-Verlag, New York, 2008.
- [5] Cvetković, D., Doob, M. and Sachs, H., Spectra of Graphs: Theory and Application, 3rd ed., Jonah Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
- [6] Cvetković, D., Rowlinson, P. and Simić, S., Eigenspaces of Graphs, Cambridge University Press, Cambridge, 1997.
- [7] Cvetković, D., Rowlinson, P. and Simić, S., Some characterizations of graphs by star complements, *Linear Algebra Appl.*, 301, 1999, 81–97.
- [8] Cvetković, D., Rowlinson, P. and Simić, S., An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
- [9] Ellingham, M., Basic subgraphs and graph spectra, Australas. J. Combin., 8, 1993, 247–265.
- [10] Fang, X., You, L. and Huang, Y., Maximal graphs with a prescribed complete bipartite graph as a star complement, AIMS Math., 6, 2021, 7153–7169.
- [11] Fang, X., You, L., Wu, R. and Huang, Y., Regular graphs with a complete bipartite graph as a star complement, 2022, arXiv: 2210.04160.
- [12] Frankl, P. and Tokushige, N., Extremal Problems for Finite Sets, Student Mathematical Library, 86, American Mathematical Soc., Providence, RI 2018.
- [13] Ramezani, F. and Tayfeh-Rezaie, B., Graphs with prescribed star complement for the eigenvalue 1, Ars Combin., 116, 2014, 129–145.
- [14] Rowlinson, P., An extension of the star complement technique for regular graphs, *Linear Algebra Appl.*, 557, 2018, 496–507.
- [15] Rowlinson, P. and Jackson, P. S., On graphs with complete bipartite star complements, *Linear Algebra Appl.*, 298, 1999, 9–20.
- [16] Rowlinson, P. and Tayfeh-Rezaie, B., Star complements in regular graphs: Old and new results, *Linear Algebra Appl.*, 432, 2010, 2230–2242.

- [17] Stanić, Z., On graphs whose second largest eigenvalue equals 1 the star complement technique, *Linear Algebra Appl.*, 420(2), 2007, 700–710.
- [18] Stanić, Z. and Simić, S. K., On graphs with unicyclic star complement for 1 as the second largest eigenvalue, Contemporary Geometry and Related Topics, Univ. Belgrade Fac. Math., Belgrade, 2006, 475–484.
- [19] Wang, J., Yuan, X. and Liu, L., Regular graphs with a prescribed complete multipartite graph as a star complement, *Linear Algebra Appl.*, 579, 2019, 302–319.
- [20] Wu, R., You, L., Huang, Y. and Fang, X., Maximal graphs with $\overline{K_{1,s}}$ as a star complement, submitted, 2021.
- [21] Wu, R., You, L., Huang, Y. and Fang, X., Maximal graphs with $\overline{K_{1,1,s}}$ as a star complement, submitted, 2021.
- [22] Yang, Y., Huang, Q. and Wang, J., On a conjecture for regular graphs with complete multipartite star complement, 2021, arXiv: 1912.07594v2.
- [23] Yuan, X., Chen, H. and Liu, L., On the characterization of graphs by star complements, *Linear Algebra Appl.*, 533, 2017, 491–506.
- [24] Yuan, X., Zhao, Q., Liu, L. and Chen, H., On graphs with prescribed star complements, *Linear Algebra Appl.*, 559, 2018, 80–94.