
Chin. Ann. Math. Ser. B

44(4), 2023, 517–532
DOI: 10.1007/s11401-023-0029-6

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2023

Regular and Maximal Graphs with Prescribed Tripartite

Graph as a Star Complement∗

Xiaona FANG1 Lihua YOU2

Abstract Let G be a graph of order n and µ be an adjacency eigenvalue of G with
multiplicity k ≥ 1. A star complement H for µ in G is an induced subgraph of G of
order n − k with no eigenvalue µ, and the subset X = V (G − H) is called a star set for
µ in G. The star complement provides a strong link between graph structure and linear
algebra. In this paper, the authors characterize the regular graphs with K2,2,s (s ≥ 2) as
a star complement for all possible eigenvalues, the maximal graphs with K2,2,s as a star
complement for the eigenvalue µ = 1, and propose some questions for further research.
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1 Introduction

Let G be a simple graph with vertex set V (G) = {1, 2, · · · , n} = [n] and edge set E(G). The

adjacency matrix of G is an n×n matrix A(G) = (aij), where aij = 1 if vertex i is adjacency to

vertex j, and 0 otherwise. We use the notation i ∼ j to indicate that i, j are adjacent and the

notation dG(i) (simply, d(i)) to indicate the degree of vertex i in G. The adjacency eigenvalues

of G are just the eigenvalues of A(G). For more details on graph spectra, see [5]. The join of

two graphs G and H , denoted by G▽H , is the graph obtained from G and H by connecting

each vertex of G to all vertices of H .

Let µ be an eigenvalue of G with multiplicity k. A star set for µ in G is a subset X of

V (G) such that |X | = k and µ is not an eigenvalue of G −X , where G − X is the subgraph

of G induced by X = V (G) \ X . In this situation H = G − X is called a star complement

corresponding to µ. Star sets and star complements exist for any eigenvalue of a graph, and

they need not to be unique. The basic properties of star sets are established in [6, Chapter 7].

There is another equivalent geometric definition for star sets and star complements. Let

G be a graph with vertex set V (G) = {1, · · · , n} and adjacency matrix A = A(G). Let

{e1, · · · , en} be the standard orthonormal basis of Rn and P be the matrix which represents

the orthogonal projection of Rn onto the eigenspace E(µ) = {x ∈ Rn : Ax = µx} of A with

respect to {e1, · · · , en}. Since E(µ) is spanned by the vectors Pej (j = 1, · · · , n), there exists

Manuscript received December 14, 2021. Revised October 11, 2022.
1School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.
E-mail: xiaonafang@m.scnu.edu.cn

2Corresponding author. School of Mathematical Sciences, South China Normal University, Guangzhou
510631, China. E-mail: ylhua@scnu.edu.cn

∗This work was supported by the National Natural Science Foundation of China (No. 11971180, 12271337)
and the Guangdong Provincial Natural Science Foundation (No. 2019A1515012052).



518 X. N. Fang and L. H. You

X ⊆ V (G) such that the vectors Pej (j ∈ X) form a basis for E(µ). Such a subset X of V (G)

is called a star set for µ in G. In this situation H = G−X is called a star complement for µ.

For any graph G of order n with distinct eigenvalues λ1, · · · , λm, there exists a partition

V (G) = V1∪· · ·∪Vm such that Vi is a star set for eigenvalue λi (i = 1, · · · ,m). Such a partition

is called a star partition of G. For any graph G, there exists at least one star partition (see

[8]). Each star partition determines a basis for Rn consisting of eigenvectors of an adjacency

matrix. It provides a strong link between graph structure and linear algebra.

In [8], it was proved that if Y ⊂ X then X \ Y is a star set for µ in G − Y . Thus the

induced subgraph G − Y also has H = G − X as a star complement for µ. If G has H as a

star complement for µ, and G is not a proper induced subgraph of some other graph with star

complement H for µ, then G is a maximal graph with star complement H for µ, or it is an

H-maximal graph for µ. In general, there will be various different maximal graphs, possibly of

different orders, but sometimes there is a unique maximal graph.

Let G be a simple graph. The complement and the line graph of G are denoted by G

and L(G). Let Pn, Cn, Sn, Kn, Km,n, Km,n,r be a path, cycle, star, complete graph, complete

bipartite graph and complete tripartite graph, respectively (see [4] for more detailed definitions),

Sm,n be the double star obtained from stars Sm and Sn by joining their centers, Rt and Qt be

defined in [7].

There are a lot of literatures about using star complements to construct and characterize

certain graphs. Maximal graphs with a prescribed graph such as Sm, Km, Sm,n, K2,5, K2,s,

K1,1,t, Ct, Pt, L(Rt), L(Rt), L(Qt), L(Qt), K1,s, K1,1,s or unicyclic graph as a star complement

for given eigenvalues (for example, µ = 1,−2) were well studied in the literatures (see [2–3, 7,

10, 15, 17–18, 23–24] and so on). Regular graphs with a prescribed graph such as K2,5, Kt,s,

K1▽hKq, K1,1,t, K1,1,1,t, sK1 ∪Kt, Pt(µ = 1), Kr,r,r(µ = 1) or Kr,s ∪ tK1(µ = 1) as a star

complement were well studied in the literatures (see [1, 11, 13–16, 19, 22–24] and so on). In this

paper, we introduce the fundamental properties of the theory of star complements in Section

2, characterize the regular graphs with the tripartite graph K2,2,s(s ≥ 2) as a star complement

for all possible eigenvalues in Section 3, the maximal graphs with K2,2,s as a star complement

for µ = 1 in Section 4, and propose some questions for further research in Section 5.

2 Preliminaries

In this section, we introduce some results of star sets and star complements that will be

required in the sequel. The following fundamental result combines Reconstruction Theorem

(see [6, Theorem 7.4.1]) with its converse (see [6, Theorem 7.4.4]).

Theorem 2.1 (see [6]) Let X be a set of vertices in the graph G. Suppose that G has

adjacency matrix
(

AX BT

B C

)

,

where AX is the adjacency matrix of the subgraph induced by X. Then X is a star set for µ in

G if and only if µ is not an eigenvalue of C and

µI −AX = BT(µI − C)−1B. (2.1)

Note that if X is a star set for µ, then the corresponding star complement H(= G−X) has

adjacency matrix C, and (2.1) tells us that G is determined by µ, H and the H-neighbourhood
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of vertices in X , where the H-neighbourhood of vertex u ∈ X , denoted by NH(u), is defined as

NH(u) = {v | v ∼ u, v ∈ V (H)}.
It is usually convenient to apply (2.1) in the form

m(µ)(µI −AX) = BTm(µ)(µI − C)−1B,

where m(x) is the minimal polynomial of C. This is because m(µ)(µI−C)−1 is given explicitly

as follows.

Proposition 2.1 (see [7, Proposition 0.2]) Let C be a square matrix with minimal polyno-

mial

m(x) = xd+1 + cdx
d + cd−1x

d−1 + · · ·+ c1x+ c0.

If µ is not an eigenvalue of C, then

m(µ)(µI − C)−1 = adC
d + ad−1C

d−1 + · · ·+ a1C + a0I,

where ad = 1 and for 0 < i ≤ d, ad−i = µi + cdµ
i−1 + cd−1µ

i−2 + · · ·+ cd−i+1.

In order to find all the graphs with a prescribed star complement for µ, we need to find all

solution AX , B for given µ and C. For any x,y ∈ Rt, where t = |V (H)|, let

〈x,y〉 = xT(µI − C)−1y. (2.2)

Let bu be the column of B for any u ∈ X . By Theorem 2.1, we have the following corollary.

Corollary 2.1 (see [8, Corollary 5.1.8]) Suppose that µ is not an eigenvalue of the graph

H, where |V (H)| = t. There exists a graph G with a star set X for µ such that G−X = H if

and only if there exist (0, 1)-vectors bu (u ∈ X) in Rt such that

(1) 〈bu, bu〉 = µ for all u ∈ X, and

(2) 〈bu, bv〉 =
{

−1, u ∼ v
0, u ≁ v

for all pairs u, v in X.

In view of the two equations in Corollary 2.1, we have the following lemma.

Lemma 2.1 (see [6]) Let X be a star set for µ in G, and H = G−X.

(1) If µ 6= 0, then V (H) is a dominating set for G, that is, the H-neighbourhood of any

vertex in X is non-empty.

(2) If µ /∈ {−1, 0}, then V (H) is a location-dominating set for G, that is, the H-neighbour-

hoods of distinct vertices in X are distinct and non-empty.

It follows from (2) of Lemma 2.1 that there are only finitely maximal graphs with a prescribed

star complement for µ /∈ {−1, 0}. If µ = 0 and X has distinct vertices u and v with the same

neighbourhood in G, then u and v are called duplicate vertices. If µ = −1 and X has distinct

vertices u and v with the same closed neighbourhood in G, then u and v are called co-duplicate

vertices (see [9]).

Recall that if the eigenspace E(µ) is orthogonal to the all-1 vector j, then µ is called a

non-main eigenvalue, and we have the following results.

Lemma 2.2 (see [7, Proposition 0.3]) The eigenvalue µ is a non-main eigenvalue if and

only if

〈bu, j 〉 = −1 for all u ∈ X, (2.3)

where j is the all-1 vector.
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Lemma 2.3 (see [8, Corollary 3.9.12]) In an r-regular graph, all eigenvalues other than r

are non-main.

3 Regular Graphs with K2,2,s as a Star Complement

In this section, all the regular graphs with K2,2,s as a star complement for all possible

eigenvalues are determined.

In the rest of this paper, we let H ∼= K2,2,s (s ≥ 2), and (U, V,W ) be a tripartition of the

graph K2,2,s with U = {u1, u2}, V = {v1, v2}, W = {w1, w2, · · · , ws}. We say that a vertex

u ∈ X is of type (a, b, c) if it has a neighbours in U , b neighbours in V , c neighbours in W , thus

(a, b, c) 6= (0, 0, 0) and 0 ≤ a ≤ 2, 0 ≤ b ≤ 2, 0 ≤ c ≤ s.

Let C be the adjacency matrix of H ∼= K2,2,s. Then C has the minimal polynomial

m(x) = x(x + 2)(x2 − 2x− 4s).

Since µ is not an eigenvalue of C, we have µ /∈ {0,−2} and µ2 − 2µ 6= 4s. From Proposition

2.1, we have

m(µ)(µI − C)−1 = C3 + µC2 + (µ2 − 4s− 4)C + (µ3 − 4(s+ 1)µ− 8s)I. (3.1)

If µ is a non-main eigenvalue of G, then by (2.3) we have

µ(µ+ 2)(2c− 4s− 2µ+ (a+ b)(s+ µ) + cµ+ µ2) = 0. (3.2)

Using (3.1) to compute 〈bu,bu〉 = µ, we obtain the following equation

− µ5 + (4s+ 4)µ3 + 8sµ2 + 2µ(µ+ 2)(ac+ bc) + (4s+ µ(2 + s))(a2 + b2)

+ 2abµ(µ+ s) + 4c2(2 + µ) + (a+ b+ c)(µ3 − 4(s+ 1)µ− 8s) = 0. (3.3)

Let u, v be distinct vertices in X of type (a, b, c), (α, β, γ), respectively, ρuv = |NH(u) ∩
NH(v)|, and auv = 1 or 0 according as u ∼ v or u ≁ v. Using (3.1) to compute 〈bu,bv〉 = −auv,
we have

auv(µ
4 − (4s+ 4)µ2 − 8sµ) + µ(µ+ 2)(αc+ βc+ γa+ γb) + (4s+ µ(2 + s))(αa + βb)

+ µ(µ+ s)(αb + βa) + 4γc(2 + µ) + ρuv(µ
3 − 4(s+ 1)µ− 8s) = 0. (3.4)

Lemma 3.1 If u, v are of the same type (a, b, c), then ρuv = a+ b+ c− µ2 − auvµ.

Proof Let α = a, β = b, γ = c in (3.4). Subtracting (3.3) from (3.4), we have

(µ+ 2)(µ2 − 2µ− 4s)(µ2 + auvµ+ ρuv − a− b− c) = 0.

Since (µ + 2)(µ2 − 2µ − 4s) 6= 0, we have µ2 + auvµ + ρuv − a − b − c = 0. Thus ρuv =

a+ b+ c− µ2 − auvµ.

Lemma 3.2 If u and v are of different types (a, b, c) and (b, a, c), then ρuv = a + b + c −
µ2 − auvµ− (a−b)2

µ+2 .

Proof Let α = b, β = a, γ = c in (3.4). Subtracting (3.3) from (3.4), we have

(µ2 − 2µ− 4s)((a− b)2 − (µ+ 2)(a+ b+ c− ρuv − µ2 − auvµ)) = 0.

Since µ2 − 2µ − 4s 6= 0, we have (a − b)2 − (µ + 2)(a + b + c − ρuv − µ2 − auvµ) = 0. Thus

ρuv = a+ b+ c− µ2 − auvµ− (a−b)2

µ+2 .
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Lemma 3.3 Let X1 = {u ∈ X | u is of type (a, b, c)}. If there are vertices u, v ∈ X1, s.t.

u ∼ v and vertices u′, v′ ∈ X1, s.t. u′ ≁ v′, then µ ∈ Z.

Proof From Lemma 3.1, we have ρu′v′ = a + b + c − µ2 ∈ Z by u′ ≁ v′ and ρuv =

a+ b+ c− µ2 − µ ∈ Z by u ∼ v. Thus µ = ρu′v′ − ρuv ∈ Z.

Lemma 3.4 Let X1 = {u ∈ X | u is of type (a, b, c)}, X2 = {u ∈ X | u is of type (b, a, c)}.
If there are vertices u ∈ X1, v ∈ X2, s.t. u ∼ v and vertices u′ ∈ X1, v

′ ∈ X2, s.t. u′ ≁ v′,

then µ ∈ Z.

Proof From Lemma 3.2, we have ρu′v′ = a + b + c − µ2 − (a−b)2

µ+2 ∈ Z by u′ ≁ v′ and

ρuv = a+ b+ c− µ2 − µ− (a−b)2

µ+2 ∈ Z by u ∼ v. Thus µ = ρu′v′ − ρuv ∈ Z.

Let H ∼= K2,2,s (s ≥ 2), and (U, V,W ) be a tripartition of the graph K2,2,s as above. Let

Ui be the set of vertices of type (1, 2, s) in X adjacent to ui ∈ U , Vi be the set of vertices

of type (2, 1, s) in X adjacent to vi ∈ V , and Wi be the set of vertices of type (2, 2, 1) in

X adjacent to wi ∈ W . We obtain an r-regular graph G(r) with V (G(r)) = X ∪ V (H),

X = U1 ∪ U2 ∪ V1 ∪ V2 ∪W1 ∪ · · · ∪Ws, where |Ui| = |Vj | = (r+1)(s−1)
4s−3 − 1, |Wi| = r+1

4s−3 − 1,

Ui(Vj ,Wk) induces a clique for 1 ≤ i, j ≤ 2, 1 ≤ k ≤ s and for any i, j, k, each vertex in Ui is

adjacent to all vertices in Vj and Wk, each vertex in Vj is adjacent to all vertices in Wk.

For subsets V ′, V ′′ of V (G), we write E(V ′, V ′′) for the set of edges between V ′ and V ′′.

The greatest common divisor of a and b is denoted by (a, b). For µ = −1, we have the following
theorem.

Theorem 3.1 If G is an r-regular graph with H ∼= K2,2,s (s ≥ 2) as a star complement for

the eigenvalue µ = −1, then r ≡ −1 (mod 4s− 3) and G ∼= G(r).

Proof Since K2,2,s is connected and V (K2,2,s) is a dominating set (see Lemma 2.1), we

know G is connected. Let (U, V,W ) be a tripartition of the graph K2,2,s defined as above,

u ∈ X be a vertex of type (a, b, c), thus (a, b, c) 6= (0, 0, 0) and 0 ≤ a ≤ 2, 0 ≤ b ≤ 2, 0 ≤ c ≤ s.

By Lemma 2.3, we know that µ = −1 is a non-main eigenvalue of G, thus from (3.2), we have

4s− c− (a+ b)(s− 1)− 3 = 0. (3.5)

Let µ = −1 in (3.3). We have

4s− (4s− 3)(a+ b+ c)− 2ac− 2bc+ (3s− 2)(a2 + b2) + 4c2 − 2ab(s− 1)− 3 = 0. (3.6)

Since 0 ≤ a ≤ 2, 0 ≤ b ≤ 2, we can consider the following 9 cases, say, (a, b) ∈ {(0, 0), (0, 1),
(0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}. For example, if a = b = 0, combining (3.5) and

(3.6), we have

{

c = 0
s = 3

4

or

{

c = − 1
3

s = 2
3

, it is a contradiction with the fact that c ∈ N and s ∈ N.

Finally, we find that the possible types of vertices in X are (2, 2, 1), (1, 2, s), (2, 1, s), and the

feasible solution of (3.4) are shown in Table 1.

We observe that when u, v are of different types, they must be adjacent; when u, v are of the

same type, u ∼ v if and only if they have the same H-neighbourhood. Thus u, v are co-duplicate

vertices. We can add arbitrarily many co-duplicate vertices when constructing graphs with a

prescribed star complement for −1.
Now we partition the vertices in X . Let Ui be the set of vertices of type (1, 2, s) in X

adjacent to ui ∈ U , Vi be the set of vertices of type (2, 1, s) in X adjacent to vi ∈ V , and Wi
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(a, b, c) (α, β, γ) auv ρuv
(2, 2, 1) (2, 2, 1) 0 4
(2, 2, 1) (2, 2, 1) 1 5
(1, 2, s) (1, 2, s) 0 s+ 2
(1, 2, s) (1, 2, s) 1 s+ 3
(2, 1, s) (2, 1, s) 0 s+ 2
(2, 1, s) (2, 1, s) 1 s+ 3
(2, 2, 1) (1, 2, s) 1 4
(2, 2, 1) (2, 1, s) 1 4
(1, 2, s) (2, 1, s) 1 s+ 2

Table 1 The feasible solution of (3.4).

be the set of vertices of type (2, 2, 1) in X adjacent to wi ∈ W . It is clear that any two vertices

in Ui (Vi or Wi) are co-duplicate vertices. We do not exclude the possibility that some of the

sets Ui, Vi, Wi are empty. Then for any ui ∈ U , we have

dG(ui) = 2 + s+ |Ui|+
s

∑

i=1

|Wi|+
2

∑

i=1

|Vi|,

and for any vi ∈ V , we have

dG(vi) = 2 + s+ |Vi|+
s

∑

i=1

|Wi|+
2

∑

i=1

|Ui|.

Since G is r-regular, we have |E(X,U)| = |E(X,V )| and then
2
∑

i=1

|Vi| =
2
∑

i=1

|Ui|. Thus

|U1| = |U2| = |V1| = |V2| by dG(u1) = dG(u2) = dG(v1) = dG(v2).

Similarly, for any wi ∈ W , we have

dG(wi) = 4 + |Wi|+
2

∑

i=1

|Vi|+
2

∑

i=1

|Ui|.

Thus |W1| = |W2| = · · · = |Ws| by dG(w1) = dG(w2) = · · · = dG(ws). Then we have

r = dG(w1) = 4 + |W1|+ 4 · |U1| and r = dG(u1) = 2 + s+ s · |W1|+ 3 · |U1|.

It turns out that

|W1| =
r + 1

4s− 3
− 1, |U1| =

(s− 1)(r + 1)

4s− 3
− 1.

Since |W1| ∈ N, |U1| ∈ N and

(s− 1, 4s− 3) = (s− 1, 4s− 3− 3(s− 1)) = (s− 1, s) = 1,

we have r ≡ −1 (mod 4s− 3). Consequently, we obtain an r-regular graph G(r).

In the following, we consider the case µ /∈ {0,−1}. The following lemma lists all possible

types of vertices in X .

Lemma 3.5 Let G be a graph with H ∼= K2,2,s (s ≥ 2) as a star complement for µ. If µ is

a non-main eigenvalue of G and µ /∈ {0,−1}, then the following statements hold.
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Class (a, b, c) s

I
(

0, 0, µ
3+2µ2

µ−2

)

µ4+5µ3+4µ
4µ−8

II
(

1, 1, µ
3+2µ2−2

µ

)

µ4+5µ3+4µ2−2µ−4
2µ

III
(

0, 1, µ
3+2µ2−1
µ−1

)

,
(

1, 0, µ
3+2µ2−1
µ−1

)

µ4+5µ3+2µ2−2
3µ−3

IV (0, 2, µ2 + 2µ), (2, 0, µ2 + 2µ) µ3

2 + 5µ2

2 + 2µ

V (1, 2, µ2 + µ− 1), (2, 1, µ2 + µ− 1) µ3 + 4µ2 + 2µ− 2

Table 2 The possible types of vertices in X.

(1) The possible types of vertices in X are shown in Table 2.

(2) If G is regular, then all vertices in X are of the same class of the five classes shown in

Table 2.

Proof Let u ∈ X be a vertex of type (a, b, c), thus (a, b, c) 6= (0, 0, 0) and 0 ≤ a ≤ 2,

0 ≤ b ≤ 2, 0 ≤ c ≤ s. Since µ is not an eigenvalue of H , we have µ 6= 0,−2 and µ2 − 2µ 6= 4s.

Now we apply (3.2)–(3.3). When a = b = 2, since µ 6= 0,−1,−2, we have s = µ2

4 −
µ
2 , which is

a contradiction to µ2 − 2µ 6= 4s.

When a = b = 0, since µ 6= 0,−2, s(≥ 2) ∈ N and c ∈ N, we have

{

c = µ3+2µ2

µ−2 ,

s = µ4+5µ3+4µ
4µ−8 .

Similarly, we can prove other cases in Table 2 and thus (1) holds.

Now we show (2) holds. If X contains both vertices of Class I and vertices of Class II in

Table 2, then we have

s =
µ4 + 5µ3 + 4µ

4µ− 8
=

µ4 + 5µ3 + 4µ2 − 2µ− 4

2µ
. (3.7)

Thus (µ3−3µ2−4µ+4)(µ+2)2

4µ(µ−2) = 0. Since µ 6= −2, we have µ3 − 3µ2 − 4µ + 4 = 0. We substitute

the solution of equation µ3 − 3µ2 − 4µ + 4 = 0 into (3.7), and find s is not an integer, it is a

contradiction. Thus X cannot contain both vertices of Class I and vertices of Class II.

Similarly, we can prove that any other two classes of vertices in Table 2 cannot exist in X

at the same time, except for Class IV and Class V. In the following we show if the vertices in

X are of Class IV and Class V, then G is not regular.

From Table 2, we have

s =
µ3

2
+

5µ2

2
+ 2µ = µ3 + 4µ2 + 2µ− 2.

Thus (µ−1)(µ+2)2

2 = 0. Since µ 6= −2, we have µ = 1 and s = 5. Thus the vertices in X are

of type (0, 2, 3), (2, 0, 3), (1, 2, 1), (2, 1, 1). Now we consider the regular graph with K2,2,5 as a

star complement for µ = 1.

From (3.4), we have Table 3. Since ρuv ∈ N, the vertices of type (a, b, c) and (α, β, γ)

shown in Table 3 cannot exist in X at the same time. If the types of vertices in X are

{(0, 2, 3)}, {(1, 2, 1)} or {(0, 2, 3), (1, 2, 1)}, then dG(u1) < dG(v1); if the types of vertices in

X are {(2, 0, 3)}, {(2, 1, 1)} or {(2, 0, 3), (2, 1, 1)}, then dG(u1) > dG(v1). Clearly, the above

cases imply a contradiction with the regularity of graph G. Thus there is no regular graph with

K2,2,5 as a star complement for µ = 1.
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(a, b, c) (α, β, γ) ρuv

(0, 2, 3) (2, 1, 1) 7
3 − auv

(2, 0, 3) (1, 2, 1) 7
3 − auv

(0, 2, 3) (2, 0, 3) 8
3 − auv

(1, 2, 1) (2, 1, 1) 8
3 − auv

Table 3 The infeasible solution of (3.4).

Therefore, if G is a regular graph with H ∼= K2,2,s (s ≥ 2) as a star complement for µ, then

the vertices in X are of only one class.

Now we characterize the regular graphs with the tripartite graph K2,2,s (s ≥ 2) as a star

complement.

Theorem 3.2 Let s ≥ 2. If the r-regular graph G has H ∼= K2,2,s as a star complement

for an eigenvalue µ of multiplicity k, then one of the following holds:

(1) µ = −1, r ≡ −1 (mod (4s− 3)) and G ∼= G(r);

(2) µ = 4, s = 74 and G is a 76-regular graph of order 189;

(3) µ = 1, r = 6, s = 2 and G ∼= L(K5);

(4) µ = −3, r = 6, s = 3 and G ∼= K3,3,3.

Proof Since µ is not an eigenvalue of H ∼= K2,2,s (s ≥ 2), we have µ 6= 0,−2 and

µ2 − 2µ 6= 4s. If µ 6= −1, then µ /∈ {−1, 0}, and by Lemma 2.1, V (K2,2,s) is a location-

dominating set, thus G is connected by the fact that H ∼= K2,2,s is connected.

Case 1 µ = −1. By Theorem 3.1, (1) holds.

Case 2 µ = r. Since r is an eigenvalue with multiplicity 1, we have |X | = 1. Since G

is regular, we have dG(u1) = dG(u2) = dG(v1) = dG(v2). Let X = {u}. Then either u ∼ u1,

u ∼ u2, u ∼ v1, u ∼ v2, or u ≁ u1, u ≁ u2, u ≁ v1, u ≁ v2.

If u ∼ u1, u ∼ u2, u ∼ v1, u ∼ v2, then

dG(u1) = dG(u2) = dG(v1) = dG(v2) = s+ 3,

which implies that dG(u) = s + 3. It follows that the vertex u is adjacent to s − 1 vertices of

W , and thus vertices w1, w2, · · · , ws can not have the same degree. It is a contradiction.

If u ≁ u1, u ≁ u2, u ≁ v1, u ≁ v2, then

dG(u) = dG(u1) = dG(u2) = dG(v1) = dG(v2) = s+ 2,

which means the vertex u is adjacent to s+2 vertices ofW . It is a contradiction by the fact that

|W | = s. Thus there is no regular graph G with K2,2,s as a star complement for the eigenvalue

r.

Case 3 µ /∈ {−1, r}.
By Lemma 2.3, µ is non-main. From Lemma 2.1, we know the H-neighbourhoods of distinct

vertices in X are distinct and non-empty. By Lemma 3.5, X contains vertices of only one class.

Now we consider the following five subcases.

Subcase 3.1 The vertices in X are of Class I.
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Let u ∈ X . If X induces an independent set, then we have r = c = 2+s by dG(u) = dG(u1).

Since c = µ3+2µ2

µ−2 , s = µ4+5µ3+4µ
4µ−8 , we have 2 + s − c = (µ+4)(µ2−µ+2)

4 = 0. Thus µ = −4 by

µ ∈ R, and then s = 10
3 . It is a contradiction.

If X induces a clique, then we have r = c + k − 1 = 2 + s = 4 + kc
s

by dG(u) = dG(u1) =

dG(w1) = dG(w2) = · · · = dG(ws), where k = |X |. Thus k = 3 + s− c = (s−2)s
c

. From Table 2,

we have

c(3 + s− c)− (s− 2)s = −µ(µ+ 2)(µ6 + 4µ5 + 5µ4 + 14µ3 − 12µ2 + 72µ+ 32)

16(µ− 2)2
= 0.

Since µ 6= 0,−2, we have µ6 + 4µ5 + 5µ4 + 14µ3 − 12µ2 + 72µ + 32 = 0, then the value of s

obtained by substituting the solution of the equation is not an integer. It is a contradiction.

Otherwise, from Lemma 3.3, we have µ ∈ Z. Since c = µ2 + 4µ + 8 + 16
µ−2 , we have

16
µ−2 ∈ Z. Thus µ− 2 ∈ {±1,±2,±4,±8,±16}. Since µ 6= 0,−2 and c, s ∈ Z+, by Table 2, the

possible values of s and c are shown in Table 4. Considering the regularity of graph G, we have

µ s c
3 57 45
18 2097 405
4 74 48
10 470 150
6 150 72

Table 4 The possible values of s and c.

r = 2 + s = 4 + kc
s

by dG(u1) = dG(w1) = dG(w2) = · · · = dG(ws). Thus k = (s−2)s
c
∈ Z+.

Only when µ = 4, s = 74 and c = 48, k is an integer. In this case, k = 111, r = 76, n = 189

and ρuv =

{

32, u ≁ v,
28, u ∼ v.

Subcase 3.2 The vertices in X are of Class II.

Let u ∈ X . If X induces an independent set, then we have r = 2 + c = 2 + s + k
2 by

dG(u) = dG(u1) = dG(u2). Thus k = 2(c− s) ≤ 0. It is a contradiction.

If X induces a clique, then r = 2 + c + k − 1 = 2 + s + k
2 = 4 + kc

s
by dG(u) = dG(u1) =

dG(u2) = dG(w1) = dG(w2) = · · · = dG(ws), and thus k = 2(s− c+ 1) = c−3
( c

s
−1) . From Table 2,

we have

2(s− c+ 1)(c− s)− s(c− 3) = − (µ− 1)(µ+ 2)2(µ5 + 4µ4 + 4µ3 + µ2 − 4µ− 2)

2µ2
= 0.

Since µ 6= −2, we have µ = 1 or µ5+4µ4+4µ3+µ2−4µ−2 = 0. If µ5+4µ4+4µ3+µ2−4µ−2 = 0,

then the value of s obtained by substituting the solution of the equation is not an integer, it

implies µ = 1, and thus c = 1, s = 2, k = 4. By Lemma 3.1, we have

ρuv =

{

2, u ≁ v,
1, u ∼ v.

(3.8)

Since G[X ] = K4, only {NH(u) | u ∈ X} = {{u1, v1, w1}, {u2, v1, w2}, {u1, v2, w2}, {u2, v2, w1}}
satisfies (3.8). Thus G ∼= L(K5).

Otherwise, we have µ ∈ Z by Lemma 3.3. Notice that c = µ2 + 2µ − 2
µ
∈ Z, then 2

µ
∈ Z.

Since µ 6= −1,−2, we have µ = 1, c = 1, s = 2 or µ = 2, c = 7, s = 16 by Table 2. Considering

the regularity of the graph G, we have r = 2+ s+ k
2 = 4+ kc

s
by dG(u1) = dG(u2) = dG(w1) =
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dG(w2) = · · · = dG(ws). Thus k = s−2
( c

s
− 1

2
)
∈ Z+. If µ = 2, then k = −224, which implies

µ = 1 and s = 2 by k ∈ Z+. Counting the edges between X and V (H), we have 3k = 6(r− 4).

Thus r = k
2 + 4 ∈ Z+ which means k is an even number. Since ρuv 6= 0 by (3.8) and for each

vertex u of type (1, 1, 1), there exists another vertex v of type (1, 1, 1) with ρuv = 0, we have

k ≤ (21)(
2

1)(
2

1)
2 = 4. Thus k = 2 or 4. When k = 2, we have r = 5 and G[X ] is a 2-regular

graph, which contradicts with k = |X | = 2. When k = 4, we have r = 6 and G[X ] = K4. Thus

G ∼= L(K5).

Subcase 3.3 The vertices in X are of Class III.

Let

X1 =
{

u ∈ X | u is of type
(

0, 1,
µ3 + 2µ2 − 1

µ− 1

)}

,

X2 =
{

u ∈ X | u is of type
(

1, 0,
µ3 + 2µ2 − 1

µ− 1

)}

.

Considering the regularity of the graph G, we have |X1| = |X2| = k
2 . If one of the following

three conditions holds: (1) G[X1] ≇ K k

2

and G[X1] ≇ k
2K1; (2) G[X2] ≇ K k

2

and G[X2] ≇ k
2K1;

(3) G[E(X1, X2)] ≇ K k

2
, k
2

and E(X1, X2) 6= ∅, then from Lemmas 3.3–3.4, we have µ ∈ Z.

From Lemma 3.2, we have 1
µ+2 ∈ Z by ρuv ∈ Z. Since µ 6= −1, we have µ = −3, then s = 19

6 .

It is a contradiction.

Otherwise, we have both (4), (5) and (6) hold: (4) G[X1] ∼= K k

2

or G[X1] ∼= k
2K1; (5)

G[X2] ∼= K k

2

or G[X2] ∼= k
2K1; (6) G[E(X1, X2)] ∼= K k

2
, k
2

or E(X1, X2) = ∅.

Since G[X ] is regular, there are four cases: (a) G[X ] = kK1; (b) G[X ] = Kk; (c) G[X1] =

K k

2

, G[X2] = K k

2

and E(X1, X2) = ∅; (d) G[X1] =
k
2K1, G[X2] =

k
2K1 and G[E(X1, X2)] =

K k

2
, k
2

. For any of these four cases, there is no regular graph G with K2,2,s as a star complement.

Since the proof is similar, we only prove case (a), omitting the proof of the other three cases.

Now we show if G[X ] = kK1, there is no regular graph G with K2,2,s as a star complement.

In fact, if G[X ] = kK1, we have r = 1+ c = 2+ s+ k
4 = 4+ kc

s
by dG(u) = dG(u1) = dG(u2) =

dG(w1) = dG(w2) = · · · = dG(ws). Thus k = 4(c− s− 1) = s(c−3)
c

. From Table 2, we have

4c(c− s− 1)− s(c− 3) = −5µ7 + 23µ6 + 9µ5 − 33µ4 + 10µ3 − 6µ+ 4

3(µ− 1)2
= 0.

Thus 5µ7 + 23µ6 + 9µ5 − 33µ4 + 10µ3 − 6µ + 4 = 0. However, the value of s obtained by

substituting the solution of the equation is not an integer. It is a contradiction.

Subcase 3.4 The vertices in X are of Class IV.

Let X1 = {u ∈ X | u is of type (0, 2, µ2 + 2µ)}, X2 = {u ∈ X | u is of type (2, 0, µ2 + 2µ)}.
Considering the regularity of graph G, we have |X1| = |X2| = k

2 .

If c = 2, then µ = ±
√
3 − 1 and s = 3. Since r = k

2 + 2 + 3 = 4 + 2k
3 by dG(u1) =

dG(u2) = dG(w1) = dG(w2) = dG(w3), we have k = 6. However, from Lemma 3.1, we have

ρuv = ±
√
3(auv − 2) + auv /∈ Z. Hence, the star set X can only contain one vertex of type

(0, 2, 2) and one vertex of type (2, 0, 2), which contradicts with k = 6.

If c 6= 2, we have µ = 2s−3c
c−2 by Table 2, then µ ∈ Q by the fact that s, c ∈ Z. Notice that µ

is an algebraic integer, then µ ∈ Z. Since ρuv ∈ Z for u ∈ X1 and v ∈ X2, from Lemma 3.2, we

have 4
µ+2 ∈ Z. Since µ 6= 0,−1, we have µ ∈ {−6,−4,−3, 2}.

Now we show µ 6= −4,−6, 2. If µ = −4, then s = 0 /∈ Z+, it is a contradiction. If µ = −6,
then s = −30 /∈ Z+. If µ = 2, then c = 8 and s = 18. Considering the regularity of graph G,
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we have r = k
2 + 2 + 18 = 4 + 8k

18 by dG(u1) = dG(u2) = dG(w1) = dG(w2) = · · · = dG(w18).

Hence k = −288 /∈ Z+, it is a contradiction.

Therefore, µ = −3, and thus c = s = 3. Considering the regularity of graph G, we have

r = k
2 + 2 + 3 = 4 + k by dG(u1) = dG(u2) = dG(w1) = dG(w2) = dG(w3). So k = 2, r = 6.

Since ρuv =

{

0, u ≁ v
3, u ∼ v

, we have G[X ] = K2 and

{NH(u) | u ∈ X} = {{u1, u2, w1, w2, w3}, {v1, v2, w1, w2, w3}}.

Thus G ∼= K3,3,3.

Subcase 3.5 The vertices in X are of Class V.

Let X1 = {u ∈ X | u is of type (1, 2, µ2+µ− 1)}, X2 = {u ∈ X | u is of type (2, 1, µ2+µ−
1)}. Considering the regularity of graph G, we have |X1| = |X2| = k

2 . If c = 0, then µ = ±
√
5−1
2

and s = 1, which contradicts with s ≥ 2. If c 6= 0, we have µ = s−1
c
− 3 by Table 2, then µ ∈ Q.

Notice that µ is an algebraic integer, then µ ∈ Z. Since ρuv ∈ Z for u ∈ X1 and v ∈ X2, from

Lemma 3.2, we have 1
µ+2 ∈ Z. Since µ 6= −1, we have µ = −3, and then s = 1, c = 5 > s,

which implies a contradiction by 0 ≤ c ≤ s.

Combining the above arguments, we complete the proof.

Remark 3.1 The graph L(K5) is strongly regular with parameters (10, 6, 3, 4), and the

spectrum is [−25, 14, 6]; the graph K3,3,3 is strongly regular with parameters (9, 6, 3, 6), and the

spectrum is [−32, 06, 6].

4 Maximal Graphs with K2,2,s as a Star Complement for µ = 1

In this section, we characterize the maximal graphs with K2,2,s as a star complement for

the eigenvalue µ = 1.

Lemma 4.1 Let s ≥ 2. Then K2,2,2, K2,2,5, K2,2,6 and K2,2,20 are the only graphs among

K2,2,s which can be star complements for µ = 1.

Proof Let G be the maximal graph with H ∼= K2,2,s as a star complement for µ = 1. Then

G is connected since K2,2,s is connected and V (K2,2,s) is a location-dominating set (see Lemma

2.1). Let u ∈ X be a vertex of type (a, b, c), thus (a, b, c) 6= (0, 0, 0) and 0 ≤ a ≤ 2, 0 ≤ b ≤ 2,

0 ≤ c ≤ s. We distinguish the following six cases.

Case 1 a = b = 0.

By (3.3), we have 12s(1− c) + 12c2 − 3c+ 3 = 0. Clearly, c 6= 1. So

3c+ 1

4c− 4
= s− c ∈ Z. (4.1)

Notice that 0 < 3c+1
4c−4 < 1 whenever c > 5, and in this case s−c is not an integer, a contradiction.

So 0 ≤ c ≤ 5, then we have c = 5 and s = 6 by s ∈ Z and (4.1).

Case 2 a = b = 1.

By (3.3), we have 12c2 + 9c+ 3− 12cs = 0. Clearly, c 6= 0. So

3c+ 1

4c
= s− c ∈ Z. (4.2)

If c > 1, we have 0 < 3c+1
4c < 1, which contradicts with s− c ∈ Z. So c = 1, and thus s = 2 by

(4.2).
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Case 3 a = b = 2.

By (3.3), we have 12s(1− c) + 12c2 + 21c+ 15 = 0. Clearly, c 6= 1. So

3c+ 13

4c− 4
= s− c− 2 ∈ Z. (4.3)

Notice that 0 < 3c+13
4c−4 < 1 whenever c > 17, and in this case s − c − 2 is not an integer, a

contradiction. For 0 ≤ c ≤ 17, we have c = 17 and s = 20 by s ∈ Z and (4.3).

Case 4 a = 0, b = 1 or a = 1, b = 0.

By (3.3), we have s(5 − 12c) + 12c2 + 3c+ 2 = 0. So 4c−7
12c−5 = c− s+ 1 ∈ Z.

If c ≥ 2, we have 0 < 4c−7
12c−5 < 1, which contradicts with c− s+ 1 ∈ Z. If c = 1 or c = 0, we

have s /∈ Z, which implies a contradiction.

Case 5 a = 0, b = 2 or a = 2, b = 0.

By (3.3), we have s(8 − 12c) + 12c2 + 9c+ 5 = 0. So 5c+13
12c−8 = s− c− 1 ∈ Z.

If c > 3, we have 0 < 5c+13
12c−8 < 1, which contradicts with s − c − 1 ∈ Z. If 0 ≤ c ≤ 3, then

we have c = 3 and s = 5 by s ∈ Z.
Case 6 a = 1, b = 2 or a = 2, b = 1.

By (3.3), we have s(5 − 12c) + 12c2 + 15c+ 8 = 0. So 8c+13
12c−5 = s− c− 1 ∈ Z.

If c ≥ 5, we have 0 < 8c+13
12c−5 < 1, which contradicts with s− c− 1 ∈ Z. If 0 ≤ c ≤ 4, we have

c = 1 and s = 5 by s ∈ Z.
Combining the above six cases, we complete the proof.

Theorem 4.1 Let µ = 1. Then the graphs L(K5), G1 and G2 (see Figure 1 are the three

non-isomorphic maximal graphs with K2,2,2 as a star complement for µ; K2▽GQ(2, 4) is the

unique maximal graph with K2,2,5 as a star complement for µ; G3 (see Figure 1) is the unique

maximal graph with K2,2,6 as a star complement for µ.

Figure 1 Graphs G1, G2 and G3.

Proof Let s = 2. By Case 2 of the proof of Lemma 4.1, we know the vertices in

X are of type (1, 1, 1), thus by Lemma 3.1 we have ρuv =

{

2, u ≁ v
1, u ∼ v

. From Lemma 2.1,

we know the H-neighbourhoods of distinct vertices in X are distinct and non-empty. Since

ρuv 6= 0, {NH(u) | u ∈ X} can only contain at most one element from each of the following

four sets: {{u1, v1, w1}, {u2, v2, w2}}, {{u1, v2, w1}, {u2, v1, w2}}, {{u1, v2, w2}, {u2, v1, w1}},
{{u1, v1, w2}, {u2, v2, w1}}. Thus k ≤ 4. Considering the symmetry of K2,2,2, there are three

non-isomorphic maximal families {NH(u) | u ∈ X} which are shown as follows:

{{u1, v1, w1}, {u2, v1, w2}, {u1, v2, w2}, {u2, v2, w1}};
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{{u1, v1, w1}, {u1, v2, w1}, {u1, v2, w2}, {u1, v1, w2}};
{{u1, v1, w1}, {u1, v2, w1}, {u1, v2, w2}, {u2, v2, w1}}.

Therefore, the maximal graphs with K2,2,2 as a star complement for µ = 1 are L(K5), G1 and

G2.

Let s = 5. Then the vertices in X are of type (0, 2, 3), (2, 0, 3), (1, 2, 1) or (2, 1, 1). From

Table 3, we know the vertices in X can contain vertices of type (0, 2, 3) and (1, 2, 1), or contain

vertices of type (2, 0, 3) and (2, 1, 1). Observe the symmetry of a and b in (3.4), we only consider

the first case. By (3.4), we have Table 5. There are 10 possibilities for the H-neighbourhood of

a vertex of each type. By Table 5, we know all 20 possibilities are compatible. Thus |X | = 20

and the maximal graph with K2,2,5 as a star complement for µ = 1 is K2▽GQ(2, 4), where

GQ(2, 4) is an order-(2, 4) generalized quadrangle.

(a, b, c) (α, β, γ) auv ρuv
(0, 2, 3) (1, 2, 1) 0 3
(0, 2, 3) (1, 2, 1) 1 2
(0, 2, 3) (0, 2, 3) 0 4
(0, 2, 3) (0, 2, 3) 1 3
(1, 2, 1) (1, 2, 1) 0 3
(1, 2, 1) (1, 2, 1) 1 2

Table 5 The feasible solution of (3.4) when s = 5.

Let s = 6. Then the vertices inX are of type (0, 0, 5) and ρuv =

{

4, u ≁ v,
3, u ∼ v

by Lemma 3.1.

Thus G[X ] = 6K1 and {NH(u) | u ∈ X} = {{w2, w3, w4, w5, w6}, {w1, w3, w4, w5, w6}, {w1, w2,

w4, w5, w6}, {w1, w2, w3, w5, w6}, {w1, w2, w3, w4, w6}, {w1, w2, w3, w4, w5}}. Thus G ∼= G3.

Combining the above arguments, we complete the proof.

Remark 4.1 The graphG1 is a graph of order 10 with spectrum [−24,−1.46410, 14, 5.46410];
the graph G2 is a graph of order 10 with spectrum [−24,−1.60555, 14, 5.60555]; the graph

K2▽GQ(2, 4) is a graph of order 29 with spectrum [−56,−3.88819, 0, 120, 13.88819], where gen-
eralized quadrangle GQ(2, 4) is strongly regular with parameters (27, 10, 1, 5); the graph G3 is

a graph of order 16 with spectrum [−6.58872,−2,−15, 02, 16, 7.58872].

Now we consider the maximal graph with K2,2,20 as a star complement for µ = 1. Let

(U, V,W ) be a tripartition of the graph K2,2,20 with U = {u1, u2}, V = {v1, v2}, W =

{w1, w2, · · · , w20}. We know all vertices in X are of type (2, 2, 17) by Case 3 of the proof of

Lemma 4.1 and ρuv =

{

20, u ≁ v,
19, u ∼ v

by Lemma 3.1. Let NW (u) = {v | v ∼ u, v ∈ W} be the

W -neighbourhood of vertex u ∈ X and ρ′uv = |NW (u) ∩ NW (v)|. Then ρ′uv =

{

16, u ≁ v,
15, u ∼ v.

Let F17 be a family of 17-subsets of W , W (3) be the family of all the 3-subsets of W and

F3 ⊂ W (3). We say that the family F17 is compatible if |S1 ∩ S2| ∈ {15, 16} for any distinct

sets S1, S2 ∈ F17, equivalently W \ S1 := S1 * S2. In the following we give an algorithm for

finding the maximal compatible families F17 (see Algorithm 1), and then give some examples.

Theorem 4.2 Let G be a graph with K2,2,20 as a star complement for µ = 1, (U, V,W )

be a tripartition of the graph K2,2,20 with |U | = |V | = 2, |W | = 20. Then G is a maximal
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Algorithm 1 Maximal Family F17

1:F17 ← ∅, F3 ←W (3)

2: while F3 6= ∅ do
3: Select F ∈ F3

4: F17 ← F17 ∪ F

5: F3 ← F3 \ (F
(3) ∪ {F})

6: end while
7: return F17

graph if and only if all vertices in X are of type (2, 2, 17) and the family of W -neighbourhoods

NW (u) (u ∈ X) can be obtained from Algorithm 1.

Proof If the family of W -neighbourhoods NW (u) (u ∈ X) can be obtained from Algorithm

1, then X will be given. Let F17 be a family obtained from Algorithm 1. Firstly, we prove

that F17 is a compatible family. Let S
(3)
i be the family of all the 3-subsets of Si. If there are

two sets S1, S2 ∈ F17 such that |S1 ∩ S2| = 14, then S2 ∈ S
(3)
1 . Suppose that in Algorithm

1, S1 is the first selected into F17, then after S1 is selected, the elements in S
(3)
1 are deleted

from F3. Thus S2 /∈ F3 and then S2 /∈ F17. It is a contradiction. Secondly, we prove that

F17 is maximal. Suppose that F ′
17 is a compatible family and F17 ⊂ F ′

17 with S0 ∈ F ′
17 \ F17,

then for any S1 ∈ F ′
17, we have |S0 ∩ S1| 6= 14. Since F17 ⊂ F ′

17, for any S2 ∈ F17, we have

|S0 ∩ S2| 6= 14 and S0 6= S2. Thus S0 /∈ S
(3)
2 ∪ {S2} and then S0 ∈ F3 6= ∅ in Algorithm 1. It

is a contradiction. So F17 is a maximal compatible family. Therefore, G is maximal.

Conversely, let G be a maximal graph, and F17 = {S1, S2, · · · , Sk} be the family of W -

neighbourhoods of all vertices u ∈ X . Then F17 is a maximal compatible family. Now we

show that F17 can be obtained from Algorithm 1. Let Fi be the i-th selected element in

F3 in Algorithm 1 and Fi = Si. We will prove that {F1, F2, · · · , Fk} satisfies Algorithm 1.

For 1 ≤ i ≤ k, let F17,i = {S1, S2, · · · , Si} and F3,i = W (3) \ (S(3)
1 ∪ S

(3)
2 ∪ · · · ∪ S

(3)
i ∪

{S1, S2, · · · , Si}). Since F17 = {S1, S2, · · · , Sk} is compatible, for any j ≤ i where i < k,

we have Si+1 6= Sj and |Sj ∩ Si+1| 6= 14. Thus Fi+1 6= Sj , Fi+1 = Si+1 * Sj and then

Fi+1 /∈ S
(3)
1 ∪ S

(3)
2 ∪ · · · ∪ S

(3)
i ∪ {S1, S2, · · · , Si}. Therefore, Fi+1 ∈ F3,i and we can select Fi+1

in the (i+1)-th step of the algorithm. Next, we prove that after the algorithm proceeds to the

k-th step, F3,k = W (3) \ (S(3)
1 ∪ S

(3)
2 ∪ · · · ∪ S

(3)
k ∪ {S1, S2, · · · , Sk}) = ∅. If F3,k 6= ∅, then

there exists F ∈ F3,k, s.t. F /∈ S
(3)
1 ∪ S

(3)
2 ∪ · · · ∪ S

(3)
k ∪ {S1, S2, · · · , Sk}. Thus for any i ∈ [k],

F 6= Si, |F ∩ Si| 6= 14 and then {S1, S2, · · · , Sk, F} is compatible, which contradicts with G is

maximal. To sum up, F17 can be obtained from Algorithm 1.

It is easy to verify that the following two examples can be obtained from Algorithm 1.

Example 4.1 Let G4 be a maximal graph with H = K2,2,20 as a star complement for µ = 1

where all vertices inX are of type (2, 2, 17) and the family ofW -neighbourhoodsNW (u) (u ∈ X)

is {S | S ⊂W \{w1}, |S| = 17}. Then G4 is a graph of order 195 and it is easy to show that G4

is the graph of the maximum order among all maximal graphs with K2,2,20 as a star complement

for µ = 1 by Erdős-Ko-Rado Theorem (see [12, Theorem 4.1]).

Example 4.2 Let G5 be a maximal graph with H = K2,2,20 as a star complement for µ = 1

where all vertices inX are of type (2, 2, 17) and the family ofW -neighbourhoodsNW (u) (u ∈ X)

is {w2, w3, w4}∪F , where F = {F | F ⊂W, |F | = 3, w1 ∈ F, F ∩{w2, w3, w4} 6= ∅}. Then G5 is
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a graph of order 76, which is the graph with the second largest order among all maximal graphs

with K2,2,20 as a star complement for µ = 1 by Hilton-Milner Theorem (see [12, Theorem 8.1]).

5 Concluding Remarks

In Theorem 3.2, we characterize the regular graphs with K2,2,s(s ≥ 2) as a star complement

for an eigenvalue µ ∈ R. But the existence and structure of G in (2) of Theorem 3.2 are not

clear, which is a question worth investigating. In Section 4, we characterize the maximal graphs

with K2,2,s as a star complement for µ = 1. The structure of maximal graphs with K2,2,s as a

star complement for other eigenvalues is also an interesting question worth studying. Thus, we

propose the following problems.

Question 5.1 Can we give a specific characterization of the structure of G in (2) of Theorem

3.2?

Question 5.2 Let µ 6= 1. What are the maximal graphs with K2,2,s as a star complement

for the eigenvalue µ?
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