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Abstract Let M be an open Riemann surface and G : M → Pn(C) be a holomorphic

map. Consider the conformal metric on M which is given by ds2 = ‖G̃‖2m|ω|2, where

G̃ is a reduced representation of G, ω is a holomorphic 1-form on M and m is a positive
integer. Assume that ds2 is complete and G is k-nondegenerate(0 ≤ k ≤ n). If there are
q hyperplanes H1, H2, · · · ,Hq ⊂ Pn(C) located in general position such that G is ramified
over Hj with multiplicity at least γj(> k) for each j ∈ {1, 2, · · · , q}, and it holds that

q∑

j=1

(
1−

k

γj

)
> (2n− k + 1)

(
mk

2
+ 1

)
,

then M is flat, or equivalently, G is a constant map. Moreover, one further give a curvature
estimate on M without assuming the completeness of the surface.

Keywords Picard-type theorem, Holomorphic map, Riemann surface, Curvature
estimate
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1 Introduction

In complex analysis, the Little Picard Theorem says that a non-constant meromorphic

function on C cannot omit more than two points in C ∪ {∞}.

For a minimal surface X : M → R3, if we choose an isothermal coordinate (u, v) and by

letting z = u + iv, one can make M into a Riemann surface. The induced metric ds2 on M

through X from the standard inner product on R3 can be represented as ds2 = (1 + |g|2)2|ω|2,

where ω is a holomorphic 1-form and g : M → C ∪ {∞} is the Gauss map of M which is a

meromorphic function.

In 1986, Fujimoto (see [7, Corollary 1.3]) proved an analogous result to the Little Picard

Theorem in complex analysis: The Gauss map of a complete non-flat minimal surface in R3

cannot omit more than four points on the unit sphere. As one knows, the Gauss map of a

complete minimal surface in Euclidean space carries many similar value distribution properties
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as the meromorphic functions on the complex plane C. In 2013, Kawakami [13] obtained the

following result as an extension of Fujimoto’s result.

Theorem 1.1 (see [13, Corollary 2.2]) Let M be an open Riemann surface with the con-

formal metric

ds2 = (1 + |g|2)m|ω|2,

where ω is a holomorphic 1-form, g is a meromorphic function on M and m ∈ N. Let

α1, · · · , αq ∈ C∪{∞} be distinct and γ1, · · · , γq ∈ N∪{∞}. Suppose the metric ds2 is complete

and
q∑

j=1

(
1−

1

γj

)
> m+ 2.

If all αj-points of g have multiplicity at least γj, then g is a constant.

In above theorem, the geometric interpretation of the 2 in m+ 2 is the Euler characteristic

of the Riemann sphere. Indeed, if m = 0, ds2 = |ω|2 becomes a flat metric. Owing to the

completeness of ds2, the universal cover of M is the whole complex plane C. Let π : C → M

be the universal covering map, and g can be seen as a holomorphic map from C into P1(C)

by replacing g with g ◦ π. By setting γj = ∞(1 ≤ j ≤ q), it recovers the well-known Little

Picard Theorem. As an application of this theorem, Kawakami [13] also obtained an analogue

of a special case of the Ahlfors islands theorem (see [1] for details of this theorem) for the

meromorphic function g on with the complete conformal metric ds2.

In 1983, Nochka [15] introduced the notion of so-called Nochka weights and obtained a

result, which solved the longstanding Cartan’s conjecture as follows.

Theorem 1.2 (see [15, Theorem 2]) Let G be a holomorphic map from C into Pn(C).

Assume that G is k-nondegenerate for some k with 1 ≤ k ≤ n. If there are q hyperplanes

H1, H2, · · · , Hq ⊂ Pn(C) located in general position such that G is ramified over Hj with mul-

tiplicity at least γj for each j ∈ {1, 2, · · · , q}, then

q∑

j=1

(
1−

k

γj

)
≤ 2n− k + 1.

Fujimoto [8] and Ru [19] proved that Gauss map of a complete non-flat minimal surfaces

immersed in Rn omits at most n(n+1)
2 hyperplanes in Pn−1(C) located in general position. Ros

[17] gave a simple and unified proof of the curvature estimate for minimal surface in R3 whose

Gauss map image omits five points. Later, Osserman and Ru [16] obtained a version of the

curvature estimate for minimal surfaces in higher dimension.

Theorem 1.3 (see [16, Theorem 1.1]) Let X : M → Rn be a minimal surface. Suppose that

its Gauss map G omits more than
n(n+1)

2 hyperplanes in Pn−1(C), located in general position.

Then there exists a constant C, depending on the set of omitted hyperplanes, but not the surface,

such that

|K(p)|
1
2 ≤

C

d(p)
,

where K(p) is the Gauss curvature of the surface at p, and d(p) is the geodesic distance from p

to the boundary of M .
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After that, the case of ramification in above theorem was also verified by Liu and Pang [14].

Motivated by the study of the Gauss map of minimal surface, value distribution properties of a

holomorphic map on Riemann surface M with ramification are investigated. One first shows a

Picard-type theorem for holomorphic maps on M by using the Ahlfors’ method in Nevanlinna

theory. Furthermore, a curvature estimate on M whose metric is induced from a non-constant

holomorphic map G : M → Pn(C) is given.

2 Main Results

Let M be an open Riemann surface and G : M → Pn(C) be a holomorphic map. Take a

locally reduced representation G̃ = (g0, g1, · · · , gn) of G, and write ‖G̃‖2 =
n∑

j=0

|gj |
2. Let

ds2 = ‖G̃‖2m|ω|2

be the conformal metric on M , where m ∈ N, and ω = ηdz is a holomorphic 1-form.

We prove the following result.

Theorem 2.1 Let M be an open Riemann surface and G : M → Pn(C) be a holomorphic

map. Consider the conformal metric on M which is given by ds2 = ‖G̃‖2m|ω|2, where G̃

is a reduced representation of G, ω is a holomorphic 1-form on M and m is a nonnegative

integer. Assume that ds2 is complete and G is k-nondegenerate(0 ≤ k ≤ n). If there are q

hyperplanes H1, H2, · · · , Hq ⊂ Pn(C) located in general position such that G is ramified over

Hj with multiplicity at least γj(> k) for each j ∈ {1, 2, · · · , q}, and it holds that

q∑

j=1

(
1−

k

γj

)
> (2n− k + 1)

(mk

2
+ 1

)
,

then M is flat, or equivalently, G is a constant map.

Remark 2.1 As discussed in Introduction of this paper, the universal cover of complete

Riemann surface M is the whole complex plane C in the case of m = 0. We thus get that k-

nondegenerate holomorphic map G of C omits at most 2n−k+1 hyperplanes in Pn(C) located

in general position. So, Theorem 2.1 recovers the Nochka’s result (i.e., Theorem 1.2).

From Theorem 2.1, one gets immediately the following corollary which is an extension of [5,

Corollary 1].

Corollary 2.1 Let M be an open Riemann surface and G : M → Pn(C) be a nonconstant

holomorphic map. Take a reduced representation G̃ of G, and let

ds2 = ‖G̃‖2m|ω|2

be the conformal metric defined on M , where ω is a holomorphic 1-form and m is a positive

integer. Assume that ds2 is complete. If there are q hyperplanes H1, H2, · · · , Hq ⊂ Pn(C)

located in general position such that G is ramified over Hj with multiplicity at least γj(> n) for

each j ∈ {1, 2, · · · , q}, then

q∑

j=1

(
1−

n

γj

)
≤

n+ 1

2
(mn+ 2).
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Proof To see how Theorem 2.1 implies the above Corollary 2.1, one knows that if G is

not constant, then G is always k-nondegenerate with some 1 ≤ k ≤ n. From Theorem 2.1,

G is ramified over a set of hyperplanes {Hj}
q
j=1 with multiplicity at least γj(> n) for each

j ∈ {1, 2, · · · , q}, and

q∑

j=1

(
1−

k

γj

)
≤ (2n− k + 1)

(mk

2
+ 1

)
. (2.1)

Set

Q(k) = (2n− k + 1)
(mk

2
+ 1

)

= −
m

2

(
k2 −

(
2n+ 1−

2

m

)
k
)
+ 2n+ 1.

Obviously, max
1≤k≤n,k∈N

Q(k) = max{Q(n− 1), Q(n)}. Note that m ∈ N+ and

Q(n− 1) =
n+ 1

2
(mn+ 2) + 1−m,

Q(n) =
n+ 1

2
(mn+ 2).

Hence, Q(k) = (2n − k + 1)
(
mk
2 + 1

)
≤ n+1

2 (mn + 2) holds for all 1 ≤ k ≤ n. Together with

(2.1), we thus prove Corollary 2.1.

Let M be an open Riemann surface with a conformal metric ds2 = µ2|dz|2, where µ is a

smooth positive function in terms of a holomorphic local coordinate. Define the Gauss curvature

K(p) of the metric ds2 of M at p by

K(p) := −
∆ logµ

µ2
.

A curve Γ(t)(0 ≤ t < 1) in Riemann surface M is said to be divergent if for every compact

subset K, there exists t0 < 1 such that Γ(t) 6∈ K for any t > t0 (see [6]). We define the distance

d(p)(≤ ∞) from a point p ∈ M to the boundary of M as the greatest lower bound of the lengths

of all continuous curves which are divergent in M .

Motivated by the results of [9, 12, 16], we give a curvature estimate for the surface M with

the metric ds2 = ‖G̃‖2m|ω|2 which is not necessary complete.

Theorem 2.2 (Curvature estimate) Let M be an open Riemann surface and G : M →

Pn(C) be a holomorphic map. Take a reduced representation G̃ of G, and let

ds2 = ‖G̃‖2m|ω|2

be the conformal metric on M , where m is a positive integer and ω is a holomorphic 1-form.

If there are q hyperplanes H1, H2, · · · , Hq ⊂ Pn(C) located in general position such that G is

ramified over Hj with multiplicity at least γj for each j ∈ {1, 2, · · · , q}, and

q∑

j=1

(
1−

n

γj

)
>

n+ 1

2
(mn+ 2),
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then there exists a constant C, depending on the set of hyperplanes, such that

|K(p)|
1
2 ≤

C

d(p)
, (2.2)

where K(p) is the Gauss curvature of M at p with respect to the conformal metric ds2, and

d(p) is the geodesic distance from p to the boundary of M .

Remark 2.2 If ds2 in Theorem 2.2 is complete, then d(p) ≡ ∞ for any p ∈ M . So (2.2) is

a trivial result.

3 Basic Notions and Auxiliary Results

Prior to proving our main results, we introduce some preliminary definitions and auxiliary

results.

Let H = {[z0 : z1 : · · · : zk] | a0z0 + · · · + akzk = 0} be a hyperplane in Pk(C), here

a = (a0, · · · , ak) ∈ Ck+1 \ {0} is called the normal vector associated to H . Hyperplanes

H1, · · · , Hq are said to be in n-subgeneral position (with n ≥ k) if and only if for every injective

map µ : {0, 1, · · · , n} → {1, · · · , q}, the linear span of those corresponding normal vectors aµ(0),

· · · , aµ(n) is Ck+1. When k = n, then we just say the H1, · · · , Hq are in general position in

Pk(C). It is clearly that if hyperplanes H1, · · · , Hq in Pn(C) are in general position, regarding

Pk(C) ⊂ Pn(C)(k ≤ n), the restricted hyperplanes H1 ∩ Pk(C), · · · , Hq ∩ Pk(C) are located in

n-subgeneral position.

Lemma 3.1 (see [4, 15]) Let {Hj}
q
j=1 be a set of hyperplanes in Pk(C) in n-subgeneral

position. Then there exist some functions ̟(j) and a number θ > 0 such that:

• 0 < ̟(j)θ ≤ 1 for all 1 ≤ j ≤ q.

• q − 2n+ k − 1 = θ
( q∑
j=1

̟(j)− k − 1
)
.

• 1 ≤ n+1
k+1 ≤ θ ≤ 2n−k+1

k+1 .

Here ̟(j) are called the Nochka weights associated to the hyperplanes Hj(1 ≤ j ≤ q).

Let F : ∆R → Pk(C) be a linearly non-degenerate holomorphic map, where ∆R := {z |

|z| < R}(0 < R ≤ ∞). Take a reduced representation F̃ = (f0, f1, · · · , fk) of F , i.e., F̃ : ∆R →

Ck+1 \ {0} and let ‖F̃‖2 =
( k∑
j=0

|fj |
2
)
. Define

F̃s = F̃ (0) ∧ F̃ (1) ∧ · · · ∧ F̃ (s) : ∆R →

s+1∧
Ck+1,

where F̃ (s) = (f
(s)
0 , f

(s)
1 , · · · , f

(s)
k ) is the s-th derivative of F̃ for each 0 ≤ s ≤ k. Obviously,

F̃k+1 ≡ 0. Let P be the natural projection, and Fs = P(F̃s). We call the map Fs the s-th

associated map of F .

For holomorphic functions f0, f1, · · · , fk, one says that

W (f0, f1, · · · , fk) :=

∣∣∣∣∣∣∣∣∣

f0, f1, · · · , fk
f ′
0, f ′

1, · · · , f ′
k

...
...

...
...

f
(k)
0 , f

(k)
1 , · · · , f

(k)
k

∣∣∣∣∣∣∣∣∣



538 Z. X. Liu and Y. Z. Li

is the Wronskian of f0, f1, · · · , fk. Let {εi}
k
i=0 be the standard basis of Ck+1. For 0 ≤ s ≤ k,

one can write

F̃s =
∑

0≤i0<···<is≤k

W (fi0 , fi1 , · · · , fis)εi0 ∧ · · · ∧ εis .

For a hyperplane Hj in Pk(C) with the normal vector aj = (aj0, · · · , ajk), we define for

0 ≤ s ≤ k, 1 ≤ j ≤ q,

‖(F̃s, Hj)‖
2 =

∑

0≤i1<···<is≤k

∣∣∣
∑

t6=i1,··· ,is

ajtW (ft, fi1 , · · · , fis)
∣∣∣
2

. (3.1)

From above, we see that ‖(F̃s, Hj)‖ ≡ 0 if and only if

∑

t6=i1,··· ,is

ajtW (ft, fi1 , · · · , fis) ≡ 0

for all i1, · · · , is. Then if F is linearly non-degenerate, ‖(F̃s, Hj)‖ 6≡ 0 for all 0 ≤ s ≤ k and

1 ≤ j ≤ q. Indeed, if (F̃s, Hj) ≡ 0 for some s and j, then

W
( ∑

t6=i1,··· ,is

ajtft, fi1 , · · · , fis

)
=

∑

t6=i1,··· ,is

ajtW (ft, fi1 , · · · , fis) ≡ 0,

i.e.,

W ((F̃ ,Hj), fi1 , · · · , fis) ≡ 0

for all i1, · · · , is. This implies that (F̃ ,Hj), fi1 , · · · , fis are linearly dependent, which contradicts

the linearly non-degeneracy of F .

From (3.1), when s = 0 or k, one gets the following:

‖(F̃ ,Hj)‖ = ‖(F̃0, Hj)‖ = |aj0f0 + aj1f1 + · · ·+ ajkfk|

and

‖(F̃k, Hj)‖ = ‖F̃k‖ = |W (f0, f1, · · · , fk)|.

Note that for every z ∈ C, (F̃s, Hj)(z) denote some complex vectors for 1 ≤ s ≤ k − 1 while

(F̃s, Hj)(z) denote some complex numbers when s = 0 or k. In addition, F is ramified over H

with multiplicity at least γ if all zeros of (F̃ ,Hj) have orders at least γ. If γ = ∞, one says

that the map F omits the hyperplane H .

The following result was obtained by Ru, which plays an important role in the proof of

Theorem 2.1.

Lemma 3.2 (see [20, Main Lemma]) Let F = [f0 : · · · : fk] : ∆R → Pk(C) be a non-

degenerate holomorphic map, H1, H2, · · · , Hq be hyperplanes in Pk(C) in n-subgeneral position,

and ̟(j) be their Nochka weights. Take a reduced representation F̃ = (f0, f1, · · · , fk) of F . If

F is ramified over Hj with multiplicity at least γj for each j ∈ {1, 2, · · · , q} and

q∑

j=1

(
1−

k

γj

)
> 2n− k + 1,

N >
2q(k2 + 2k)

q∑
j=1

̟(j)
(
1− k

γj

)
− (k + 1)

,
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then there exists a positive constant C such that

‖F̃‖

q∑
j=1

̟(j)(1− k
γj

)−(k+1)− 2q(k2+2k−1)
N

k−1∏
s=0

q∏
j=1

‖(F̃s, Hj)‖
4
N ‖F̃k‖

1+ 2q
N

q∏
j=1

|(F̃ ,Hj)|
̟(j)(1− k

γj
)

≤ C
( 2R

R2 − |z|2

) 1
2k(k+1)+ 2q

N

k∑
s=0

s2

.

To prove Theorem 2.2, one needs some results on the geometric orbifolds introduced by

Campana in [2]. In this paper, we use some notations and results of geometric orbifold as

shown in [3, 18]. An orbifold consists of a compact irreducible complex space together with a

Weil Q-divisor. Let (X,D) be an orbifold with D :=
∑
j∈I

(
1 − 1

γj

)
Hj , where γj ∈ N ∪ {∞} are

multiplicities and Hj are distinct hyperplanes. One also say D is an orbifold structure on X .

Orbifold can be regarded as a complex space endowed with an additional structure in the form

of a certain Weil Q-divisor. A holomorphic map f from the unit disk ∆ = {z ∈ C : |z| < 1} to an

orbifold (X,D) is an orbifold morphism if f(∆) 6⊂ supp(D) and multz(f
∗Hj) ≥ γj(1 ≤ j ≤ q)

for z ∈ ∆ with f(z) ∈ supp(Hj).

Lemma 3.3 (see [18, Theorem 5.3]) Let H1, H2, · · · , Hq be q hyperplanes in general position

in Pn(C) with q > 2n. Let D :=
∑

1≤j≤q

(
1− 1

γj

)
Hj with deg(D) =

∑
1≤j≤q

(
1− 1

γj

)
> q− q

n
+1+ 1

n
.

Then every orbifold morphism f : C → (Pn(C), D) is constant.

Lemma 3.4 (see [18, Theorem 5.1]) Let H1, H2, · · · , Hq be q hyperplanes in general position

in Pn(C) with q > 2n. Let D :=
∑

1≤j≤q

(
1− 1

γj

)
Hj with deg(D) =

∑
1≤j≤q

(
1− 1

γj

)
> q− q

n
+1+ 1

n
.

Then (Pn(C), D) is hyperbolic and hyperbolically imbedded in Pn(C).

Lemma 3.5 (see [11, Proposition 10]) Let ds2 be a Hermitian metric on X compact. As-

sume that the orbifold (X,D) is hyperbolic and hyperbolically imbedded in X, then the set of

all orbifold morphisms f : ∆ → (X,D) is relatively compact in Hol(∆, X), where Hol(∆, X)

denotes the set of all holomorphic maps of ∆ into X.

Lemma 3.6 (see [3, Proposition 7]) Let fn : (X,∆) → (X ′,∆′) be a sequence of orbifold

morphisms. Assume that {fn}, regarded as a sequence of holomorphic maps from X to X ′,

converges locally uniformly to a holomorphic map f : X → X ′. Then either f(X) ⊂ Supp(∆′)

or f is an orbifold morphism from (X,∆) to (X ′,∆′).

4 The Proof of Theorem 2.1

The following lemma is needed for the proof of Theorem 2.1.

Lemma 4.1 (see [10, Lemma 1.6.7]) Let dσ2 be a conformal flat metric on an open Riemann

surface M . Then for each point p ∈ M , there exists a local diffeomorphism Φ of a disk ∆R =

{w ∈ C | |w| < R}(0 < R ≤ ∞) onto an open neighborhood of p with Φ(0) = p such that Φ

is local isometry (i.e., the pullback Φ∗(dσ2) is equal to the standard Euclidean metric ds2E on

∆R), and there exists a point a0 with |a0| = 1, the Φ-image Γa0 of the line La0 = {w = a0t :

0 < t < R} is divergent in M .
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Based on the similar method as shown in [5, Theorem 1] (also see the arguments in [16,

19–20]), we prove Theorem 2.1 and show the details as follows.

By taking the universal cover of M if necessary, one can assume that M is simply connected.

It follows from the uniformization theorem that M is conformally equivalent to unit disc ∆ or

C. For the case of m = 0, ds2 = |ω|2 becomes a flat metric. Owing to the completeness of ds2,

the universal cover of M is the whole complex plane C. Assume π : C → M is the universal

covering map. G can be regarded as the holomorphic map from C into Pn(C) by replacing G

with G ◦ π, one thus knows G is a constant map by Theorem 1.2.

For the case of m ∈ N+, one has that G is a constant map by using Theorem 1.2 again

if M is conformally equivalent to C. So it suffices to consider the case that M is conformally

equivalent to unit disc ∆. If G is nonconstant, then there exists k(1 ≤ k ≤ n) such that the

image of G is contained in Pk(C) ⊂ Pn(C), but not in any subspace whose dimension is lower

than k. In other words, G can be regarded as a linearly non-degenerate map from ∆ into

Pk(C). Take a reduced representation G̃ = (g0, g1, · · · , gk) of G and let H̃j := Hj ∩ Pk(C),

1 ≤ j ≤ q. Obviously, hyperplanes H̃1, · · · , H̃j , · · · , H̃q are in n-subgeneral position in Pk(C).

Furthermore, one may assume that each H̃j is given by

H̃j : aj0z0 + aj1z1 + · · ·+ ajkzk = 0, 1 ≤ j ≤ q.

For each j(1 ≤ j ≤ q), ˜̟ (j) is the Nochka weight associated to the hyperplane H̃j . By

Lemma 3.1, one has

0 < ˜̟ (j)θ ≤ 1

and

q − 2n+ k − 1 = θ
( q∑

j=1

˜̟ (j)− k − 1
)
.

Hence

2
( q∑

j=1

˜̟ (j)
(
1− k

γj

)
− k − 1

)

mk(k + 1)
=

2θ
( q∑

j=1

˜̟ (j)− k − 1−
q∑

j=1

˜̟ (j) k
γj

)

θmk(k + 1)

≥

2
(
q − 2n+ k − 1−

q∑
j=1

k
γj

)

θmk(k + 1)

=

2
( q∑

j=1

(
1− k

γj

)
− 2n+ k − 1

)

θmk(k + 1)
.

Together with θ ≤ 2n−k+1
k+1 ,

2
( q∑

j=1

˜̟ (j)
(
1− k

γj

)
− k − 1

)

mk(k + 1)
≥

2
( q∑

j=1

(
1− k

γj

)
− 2n+ k − 1

)

mk(2n− k + 1)
.

The condition
q∑

j=1

(
1− k

γj

)
> (2n− k + 1)

(
mk
2 + 1

)
implies

2
( q∑

j=1

˜̟ (j)
(
1− k

γj

)
− k − 1

)

mk(k + 1)
> 1,
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which is equivalent to

q∑

j=1

˜̟ (j)
(
1−

k

γj

)
− k − 1−

mk

2
(k + 1) > 0.

We thus choose some N such that

q∑
j=1

˜̟ (j)
(
1− k

γj

)
− k − 1− mk

2 (k + 1)

2m
q

+ k2 + 2k − 1 +m
k∑

s=0
s2

<
2q

N
<

q∑
j=1

˜̟ (j)
(
1− k

γj

)
− k − 1− mk

2 (k + 1)

k2 + 2k − 1 +m
k∑

s=0
s2

.

Let

β :=

q∑

j=1

˜̟ (j)
(
1−

k

γj

)
− (k + 1)−

2q

N
(k2 + 2k − 1)

and

τ :=
m

β

(1
2
k(k + 1) +

2q

N

k∑

s=0

s2
)
.

From how to choose the N , one has

0 < τ < 1, 0 < Nβ(1− τ) < 4m.

Since G : ∆ → Pk(C) is linearly non-degenerate, none of the ‖(G̃s, H̃j)‖, 0 ≤ s ≤ k, 1 ≤ j ≤

q, vanishes identically. Thus, by (3.1) for each ‖(G̃s, H̃j)‖, there exist i1, i2, · · · , is such that

ξjs :=
∑

t6=i1,··· ,is

ajtW (gt, gi1 , · · · , gis) (4.1)

does not vanish identically. Here, let ξj0 = (G̃, H̃j). Note that every ξjs is a holomorphic

function and has only isolated zeros.

For the holomorphic 1-form ω of the conformal metric ds2, one can write it as ω = ηdz,

where η is a no-where vanishing holomorphic function. We define a new metric

dσ2 =
(

q∏
j=1

|(G̃, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖G̃k‖1+
2q
N

q∏
j=1

( k−1∏
s=0

|ξjs|
) 4

N

) 2m
(1−τ)β

|η|
2

1−τ |dz|2 (4.2)

on the subset M0 := ∆\
{
p ∈ ∆ | either G̃k = 0 or

q∏
j=1

k−1∏
s=0

|ξjs| = 0
}
.

Notice that {
z :

q∏

j=1

|(G̃, H̃j)|(z) = 0
}
⊆ {z : ‖G̃k‖(z) = 0}.

In fact, one may assume that (G̃, H̃j) =
k∑

i=0

ajigi, here (aj0, aj1, · · · , ajk) is the normal vector

associated to Hj . For any zero point z0 of (G̃, H̃j), (G̃, H̃j)(z0) = 0 and (G̃, H̃j)
(s)(z0) = 0 for
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1 ≤ s ≤ k sinceG is ramified overHj with multiplicity at least γj(> k) for each j ∈ {1, 2, · · · , q}.

Without loss of generality, we assume that aj0 6= 0. Then

aj0‖G̃k‖ = aj0|W (g0, g1, · · · , gk)| =

∣∣∣∣∣∣∣∣∣∣

(G̃, H̃j), g1, · · · , gk

(G̃, H̃j)
′, g′1, · · · , g′k

...
...

...
...

(G̃, H̃j)
(k), g

(k)
1 , · · · , g

(k)
k

∣∣∣∣∣∣∣∣∣∣

vanishes at z0. So, dσ
2 is a flat metric on M0.

Fix a point p0 ∈ M0, by Lemma 4.1, there exists a local diffeomorphism Φ of a disk

∆R = {w ∈ C : |w| < R}(0 < R ≤ ∞) onto an open neighborhood of p0 with Φ(0) = p0 such

that Φ is local isometry. Furthermore, there exists a point a0 with |a0| = 1, the Φ-image Γa0

of the line La0 = {w = a0t : 0 < t < R} is divergent in M0. On the other hand, G ◦ Φ is a

holomorphic map from ∆R into Pn(C) and R is finite by Theorem 1.2.

Next, we will show Φ-image Γa0 actually is divergent to the boundary of ∆. To this end, we

assume the contrary: The curve Γa0 is divergent to a point z0 which either satisfies ‖G̃k‖(z0) = 0

or |ξjs|(z0) = 0 for some s with 0 ≤ s ≤ k − 1 and j with 1 ≤ j ≤ q. Let dσ = µ|dz|, one has

the following expression from (4.2),

µ
(1−τ)β

m =

q∏
j=1

|(G̃, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖G̃k‖1+
2q
N

q∏
j=1

( k−1∏
s=0

|ξjs|
) 4

N

· |η|
β
m

=

q∏
j=1

|(G̃, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖G̃k‖
·

|η|
β
m

‖G̃k‖
2q
N

q∏
j=1

( k−1∏
s=0

|ξjs|
) 4

N

.

By [20, Lemma 3.1], one gets that

q∏
j=1

‖(G̃,H̃j)‖
˜̟(j)(1− k

γj
)

‖G̃k‖
has no zeros and the multiplicity of

poles of µ is at least δ0 = 4m
Nβ(1−τ)(> 1). We thus get

R =

∫

La0

Φ∗dσ =

∫

Γa0

dσ

=

∫

Γa0

(
q∏

j=1

|(G̃, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖G̃k‖1+
2q
N

q∏
j=1

( k−1∏
s=0

|ξjs|
) 4

N

) m
(1−τ)β

|η|
1

1−τ |dz|

≥ c

∫

Γa0

1

|z − z0|δ0
|dz| = ∞,

which contradicts the fact R < ∞. Therefore Γa0 = Φ(La0) is divergent to the boundary of ∆.

By proving the finiteness of the length of Γa0 with respect to the metric ds2 = ‖G̃‖2m|ω|2,

one gets a contradiction for the completeness of ds2.

Define some functions on {w | |w| < R} as follows:

fs(w) := gs(Φ(w)), 0 ≤ s ≤ k
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and F (w) := G̃ ◦ Φ(w) = (f0(w), f1(w), · · · , fk(w)). For 1 ≤ j ≤ q, 0 ≤ s ≤ k, we define

(F, H̃j) := aj0f0 + · · ·+ ajkfk, Fk := W (f0, f1, · · · fk)

and

ζjs :=
∑

t6=i1,··· ,is

ajtW (ft, fi1 , · · · , fis),

where (i1, · · · , is) is the index in the definition of ξjs in (4.1). Noticing the fact that, for

0 ≤ s ≤ k,

Fs(w) = (F ∧ F ′ ∧ · · · ∧ F (s))(w) = (G̃ ∧ · · · ∧ G̃(s))(z)
( dz

dw

) s(s+1)
2

.

From (4.2) and the selection of τ , one has

Φ∗dσ = Φ∗
(

q∏
j=1

|(G̃, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖G̃k‖1+
2q
N

q∏
j=1

( k−1∏
s=0

|ξjs|
) 4

N

) m
(1−τ)β

· |η(Φ(w))|
1

1−τ |dz|

=
(

q∏
j=1

|(F, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖Fk‖1+
2q
N

q∏
j=1

( k−1∏
s=0

|ζjs|
) 4

N

) m
(1−τ)β

×
∣∣∣
dz

dw

∣∣∣

(
1+

2q
N

)
mk(k+1)

2
+

4mq
N

k−1∑
s=0

s(s+1)
2

(1−τ)β

· |η(Φ(w))|
1

1−τ |dz|

=
(

q∏
j=1

|(F, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖Fk‖1+
2q
N

q∏
j=1

( k−1∏
s=0

|ζjs|
) 4

N

) m
(1−τ)β

∣∣∣
dz

dw
· η(Φ(w))

∣∣∣
1

1−τ

|dw|.

Using the isometry property of Φ, i.e., |dw| = Φ∗dσ, we get

∣∣∣
dw

dz

∣∣∣ =
(

q∏
j=1

|(F, H̃j)|
˜̟ (j)

(
1− k

γj

)

‖Fk‖1+
2q
N

q∏
j=1

( k−1∏
s=0

|ζjs|
) 4

N

)m
β

|η(Φ(w))|. (4.3)

Now, denote by l(Γa0) the length of the curve Γa0 with respect to the metric ‖G̃‖2m|ω|2, then

from (4.3),

l(Γa0) =

∫

Γa0

‖G̃‖m|ω| =

∫

La0

‖G̃(Φ(w))‖m|η(Φ(w))|
∣∣∣
dz

dw

∣∣∣|dw|

=

∫

La0

‖F‖m
(‖Fk‖

1+ 2q
N

q∏
j=1

( k−1∏
s=0

|ζjs|
) 4

N

q∏
j=1

|(F, H̃j)|
˜̟ (j)

(
1− k

γj

)
)m

β

|dw|
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≤

∫

La0

(‖F‖β‖Fk‖
1+ 2q

N

q∏
j=1

( k−1∏
s=0

‖(Fs, H̃j)‖
) 4

N

q∏
j=1

|(F, H̃j)|
˜̟ (j)

(
1− k

γj

)
)m

β

|dw|.

In above inequality, we use the fact that |ζjs| ≤ ‖(Fs, H̃j)‖ for all 0 ≤ s ≤ k, 1 ≤ j ≤ q.

Noticing that 0 < τ < 1, we conclude from Lemma 3.2 that

l(Γa0) ≤ C

∫ R

0

( 2R

R2 − |w|2

)τ

|dw| < ∞,

which contradicts the completeness of the metric ‖G̃‖2m|ω|2. We thus complete the proof of

Theorem 2.1.

5 The Proof of Theorem 2.2

Lemma 5.1 (see [16, Lemma 2.1]) Let ∆r be the disk centered at the origin with radius r,

0 < r < 1, and let R be the hyperbolic radius of ∆r in the unit disc. Let ds2 = µ2(z)|dz|2 be

any conformal metric on ∆r with the property that geodesic distance from the origin to a point

z on |z| = r is greater than or equal to R. If the Gauss curvature K of the metric ds2 satisfies

−1 ≤ K ≤ 0, then the distance of any point to the origin in the metric ds2 is greater than or

equal to the hyperbolic distance.

Lemma 5.2 (see [16, Lemma 2.2]) Let {ds2l } be a sequence of conformal metrics on the unit

disc ∆ whose curvatures satisfy −1 ≤ Kl ≤ 0. Suppose that ∆ is a geodesic disk of radius Rl

with respect to the metric ds2l , where Rl → ∞, and that the metric {ds2l } converges, uniformly

on compact sets, to a metric ds2. Then all distances to the origin with respect to ds2 are greater

than or equal to the corresponding hyperbolic distances in ∆. In particular, ds2 is complete.

The following result was obtained by the author and Chen et al, which is needed for the

proof of Theorem 2.2.

Proposition 5.1 (see [5, Proposition 1]) Let M be an open simply connected Riemann

surface and let G(l) : M → Pn(C) be a sequence of holomorphic maps. Fix a globally reduced

representation G̃(l) = (g
(l)
0 , g

(l)
1 , · · · , g

(l)
n ) of G(l) (such representation exists because M is simply

connected) and let ‖G̃(l)‖2 =
n∑

j=0

|g
(l)
j |2. Define a sequence of the conformal metrics ds2l on M

as follows :

ds2l = ‖G̃(l)‖2m|dz|2,

where m ∈ N. Denote by Kl the Gauss curvature of M with respect to the above metric. Assume

that {G(l)} converges to a non-constant holomorphic map G uniformly on every compact subset

of M and {|Kl|} is uniformly bounded. Then one of the following statements must be true.

(i) There is a subsequence {Kli} of {Kl} which converges to zero;

(ii) for each 0 ≤ j ≤ n, there exists a subsequence {g
(li)
j } of {g

(l)
j } which converges to a

holomorphic function φj on M . Furthermore, φ0, · · · , φn have no common zeros.
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Proof of Theorem 2.2 The proof of Theorem 2.2 basically follows the argument in [5]

(see also the arguments in [16]) by using Proposition 5.1. We include our proof here for the

convenience of the reader.

If ds2 is complete, i.e., d(p) = ∞ holds for all p ∈ M . Then by Theorem 2.1, G is a constant

and |K(p)|
1
2 = 0. Hence (2.2) is a trivial result. We may assume that the metric ds2 is not

complete on M .

If (2.2) does not hold, one can construct a sequence of open Riemann surfaces Ml (one

may assume that Ml is simply connected by taking universal cover of Ml if necessary), points

pl ∈ Ml and a sequence of holomorphic map G(l) : Ml → Pn(C) such that |Kl(pl)|d
2
l (pl) → ∞,

and such that G(l) is ramified over a fixed set of hyperplanes {Hj}
q
j=1 with multiplicity at least

γj for each j ∈ {1, 2, · · · , q}. For each l, Kl(pl) denotes the Gauss curvature of the surface Ml

at pl with respect to the metric ds2l = ‖G̃(l)‖2m|ω(l)|2, G̃(l) = (g
(l)
0 : g

(l)
1 : · · · : g

(l)
k ) is a reduced

representation of G(l), and dl(pl) is the geodesic distance from pl to the boundary of Ml with

respect to the metric ds2l . It is worth pointing out that the Gauss curvature Kl is independent

of the universal cover of Ml. In fact, for a conformal metric dσ on M , it shows that

dσ = µ(z)|dz| = µ(z(w))
∣∣∣
dz

dw

∣∣∣|dw|

and

K(dσ2) = −
∆w log

(
µ(z(w))

∣∣ dz
dw

∣∣)
(
µ(z(w))

∣∣ dz
dw

∣∣)2 = −
∆z logµ

µ2
◦ z(w) = K(dσ2(z(w))).

By using a similar method in [16] (also see [5]), one may assume that the surfaces Ml and

points pl can be chosen such that Kl(pl) = − 1
4 , −1 ≤ Kl ≤ 0 on Ml for all l, and dl(pl) → ∞

when l → ∞. And the uniformization theorem implies that Ml is either conformally equivalent

to C or to the unit disc ∆.

For the case Ml is the complex plane C, G(l) is an orbifold morphism of C into (Pn(C), D),

where D :=
∑

1≤j≤q

(
1 − 1

γj

)
Hj with deg(D) =

∑
1≤j≤q

(
1 − 1

γj

)
. Then by Lemma 3.3, G(l) is a

constant. Indeed, the holomorphic map G(l) : C → Pn(C) is ramified over Hj with multiplicity

at least γj for each j, and
q∑

j=1

(
1−

n

γj

)
>

n+ 1

2
(mn+ 2),

thus we obtain
q∑

j=1

(
1−

1

γj

)
> q −

q

n
+

n+ 1

n
+

m(n+ 1)

2
.

Then there exists a no-where vanishing holomorphic function gl such that ds2l = ((n+1)|gl|
2)m

·|dz|2, i.e., Kl ≡ 0, which contradicts with the fact that Kl(pl) = − 1
4 , a contradiction.

For the other case Ml is conformally equivalent to the unit disc ∆, as discussed in the

same argument above and one thus gets from Lemma 3.4 that (Pn(C), D) is hyperbolically

imbedded in Pn(C). Furthermore, Lemma 3.5 implies that {G(l)} is normal, i.e., there exists

a subsequence of holomorphic maps {G(li)} of {G(l)}, still denoted by {G(l)}, converges to a

holomorphic map g uniformly on every compact subset of the unit disc ∆.
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If g is a constant map, then g maps ∆ into a single point Q. Take a hyperplane H not

containing the point Q, and let U, V be two disjoint neighborhoods of H , Q, respectively. So,

g omits a neighborhood of H in P2(C). Since G(l) converges to a holomorphic map g uniformly

on ∆r(r < 1). So, G(l) also omits a neighborhood of H in Pn(C) for l large enough. Then by

[5, Theorem 3], there exists a constant C such that

|Kl(pl)|
1
2 dl(r) ≤ C, pl ∈ ∆r,

where Kl(pl) is the Gauss curvature of the surface ∆r at point pl, and dl(r) is the geodesic

distance from pl to the boundary of ∆r. Using the condition that Kl(pl) = − 1
4 , we get, for l

large enough,

dl(r) ≤ 2C. (5.1)

On the other hand, one may choose a suitable r < 1 such that the hyperbolic distance R

from z = 0 to |z| = r satisfies

R > 2C. (5.2)

Now, we will use Lemma 5.1 to derive a lower bound for dl(r). The surface Ml is a geodesic

disk of radius Rl(< +∞) and the fact dl(pl) → ∞ when l → ∞ implies that Rl → ∞. So, some

rl(< 1) can be selected such that {w : |w| < rl} has a hyperbolic radius Rl. One thus knows

rl → 1 as l → ∞. Furthermore, we re-parameterize it by letting w = rlz and thus the circle

|z| = 1 corresponds to |w| = rl. By the condition that −1 ≤ Kl(z) ≤ 0 for z ∈ ∆, one knows

−1 ≤ Kl(z(w)) ≤ 0 for all w ∈ {w : |w| < rl}. For these disks {w : |w| < rl}, by Lemma 5.1,

we get for r < 1 that the distance with the metric from the origin to any points on the circle

|w| = rlr, or equivalently, |z| = r, is not less than the hyperbolic distance from the origin to

any points on |w| = rlr. By the choice of R in (5.2), dl(r) ≥ R for l large enough and one

further gets dl(r) > 2C which yields a contradiction for (5.1). Hence, g is not a constant.

Let G̃(l) = (g
(l)
0 , · · · , g

(l)
n ) be a reduced representation of G(l) and ω(l) = ηldz for each l,

where ηl is a no-where vanishing holomorphic function. Hence, the metric ds2l can be written

as the form of

ds2l = (|g
(l)
0 ηl|

2 + · · ·+ |g(l)n ηl|
2)m|dz|2.

By Proposition 5.1, there is a subsequence of {g
(l)
j ηl}, say itself, which converges to φj uniformly

on every compact subset of the unit disc ∆ for each j with 0 ≤ j ≤ n. Furthermore, φ0, · · · , φn

have no common zeros. So we get a holomorphic map [φ0 : · · · : φn] : M → Pn(C). Obviously,

g = [φ0 : · · · : φn]. Note that dl(pl) → ∞ when l → ∞, by Lemma 5.2, the metric ds2 :=
n∑

j=0

|φj |
2|dz|2 is complete on the unit disc ∆. It follows from Lemma 3.6 that g is an orbifold

morphism of ∆ into (Pn(C), D) or g(∆) ⊂ supp(D).

If g is ramified over hyperplanes Hj with multiplicities at least γj for all j = 1, 2, · · · , q, then

Corollary 2.1 implies that g is a constant, a contradiction. So, there exists a set of hyperplanes

{Hj}j∈J , J ⊂ {1, · · · , q} such that g(∆) ⊆
⋂
j∈J

Hj . And g is ramified over hyperplanes Hj

with multiplicities at least γj for all j ∈ {1, 2, · · · , q} \ J . Without loss of generality, one may

assume that J = {1, 2, · · · , k}(1 ≤ k ≤ n) and g(∆) ⊆
k⋂

j=1

Hj = P(V ), where V is a subspace
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of Cn+1 of dimension n + 1 − k. Obviously,
{
Hj ∩

( k⋂
j=1

Hj

)}q

j=k+1
is a set of hyperplanes in

P(V ) located in general position. On the other hand, g can be regarded as a holomorphic map

from ∆ into P(V ), and g is ramified over hyperplanes Hj with multiplicities at least γj for each

k + 1 ≤ j ≤ q. Furthermore, one has the following inequality:

q∑

j=k+1

(
1−

n− k

γj

)
≥

q∑

j=1

(
1−

n

γj

)
−

k∑

j=1

(
1−

n

γj

)

>
n+ 1

2
(mn+ 2)− k

>
n− k + 1

2
(m(n− k) + 2).

Hence, g is a constant by Corollary 2.1, this is a contradiction. We thus complete the proof of

Theorem 2.2.
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