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Abstract The authors prove that a 3-dimensional small cover M is a Haken manifold

if and only if M is aspherical or equivalently the underlying simple polytope is a flag

polytope. In addition, they find that M being Haken is also equivalent to the existence of

a Riemannian metric with non-positive sectional curvature on M .
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1 Introduction

The notion of small cover is introduced by Davis and Januszkiewicz [5] as an analog of

a smooth projective toric variety in the category of closed manifolds with Z2-torus actions

(Z2 = Z/2Z). An n-dimensional small cover is a closed n-manifold M with a locally standard

(Z2)
n-action whose orbit space can be identified with a simple convex polytope P in a Euclidean

space. A polytope is called simple if every codimension-k face is the intersection of exactly k

distinct facets (codimension-one faces) of the polytope. Two polytopes in a Euclidean space

are called combinatorially equivalent if there exists a bijection between their posets of faces

with respect to the inclusion. All polytopes considered in this paper are convex, so we omit the

word “convex” for brevity. Moreover, in most cases, we make no distinction between convex

polytopes that are combinatorially equivalent.

The (Z2)
n-action on the small cover M determines a (Z2)

n-valued characteristic function

λ on the set of facets of P , which encodes all the information of the isotropy groups of the

non-free orbits. More specifically, for a facet F of P , the rank-one subgroup 〈λ(F )〉 ⊂ (Z2)
n

generated by λ(F ) is the isotropy group of the codimension-one submanifold π−1(F ) of M ,

where π : M → P is the orbit map of the (Z2)
n-action. The function λ is non-degenerate in

the sense that the values of λ on any n facets that are incident to a vertex of P form a linear

basis of (Z2)
n. Conversely, we can recover the manifold M by gluing 2n copies of P according

to the function λ. For any proper face f of P , define:

Gf = the subgroup of (Z2)
n generated by the set {λ(F ) | f ⊂ F}. (1.1)
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Moreover define GP = {0} ⊂ (Z2)
n. Then M is homeomorphic to the following quotient space

P × (Z2)
n/ ∼, (1.2)

where (p, g) ∼ (p′, g′) if and only if p = p′ and g−1g′ ∈ Gf(p), and f(p) is the unique face of P

that contains p in its relative interior.

It is shown in [5] that many important topological invariants of M can be easily computed

in terms of the combinatorial structure of P and the characteristic function λ. For example, we

can determine the fundamental group π1(M) ofM as follows. LetWP be a right-angled Coxeter

group with one generator sF and relations s2F = 1 for each facet F of P , and (sF sF ′)2 = 1

whenever F, F ′ are adjacent facets of P . Note that if F ∩F ′ = ∅, sF sF ′ has infinite order inWP

(see [2, Proposition 1.1.1]). According to [5, Lemma 4.4], WP is isomorphic to the fundamental

group of the Borel construction M(Z2)n = E(Z2)
n ×(Z2)n M of M . It is shown in [5, Corollary

4.5] that the homotopy exact sequence of the fibration M → M(Z2)n → B(Z2)
n gives a short

exact sequence

1 → π1(M)
ψ

−→WP
φ

−→ (Z2)
n → 1, (1.3)

where φ(sF ) = λ(F ) for any facet F of P , and ψ is induced by the canonical map M →֒

M × E(Z2)
n → M(Z2)n . So π1(M) is isomorphic to the kernel of φ which is a finite index

subgroup of WP . It follows that a small cover M is never simply connected.

Let F(P ) denote the set of facets of P . For any proper face f of P , we have the following

definitions.

• Define F(f⊥) = {F ∈ F(P ) | dim(f ∩ F ) = dim(f)− 1}. In other words, F(f⊥) consists

of those facets of P that intersect f transversely.

• We call Mf = π−1(f) the facial submanifold of M corresponding to f . It is easy to see

that Mf is a small cover over the simple polytope f , whose characteristic function, denoted by

λf , is determined by λ as follows. Let

ρf : (Z2)
n → (Z2)

n/Gf ∼= (Z2)
dim(f)

be the quotient homomorphism. Then we have

λf (f ∩ F ) = ρf (λ(F )), ∀F ∈ F(f⊥). (1.4)

A submanifold Σ of a manifold M is called π1-injective if the inclusion of Σ into M induces

a monomorphism in the fundamental group.

Theorem 1.1 (see [20, Corollary 1.4]) Let M be a small cover over a simple polytope P .

For a facet F of P , the facial submanifold MF is π1-injective in M if and only if F is not

contained in any 3-belt on P .

For any k ≥ 3, a k-belt on a simple polytope P is a cyclic sequence (F1, · · · , Fk) of k different

facets of P in which any two consecutive facets have nonempty intersection and no three facets

in (F1, · · · , Fk) can share a common face.
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A simple polytope P is called a flag polytope if a collection of facets of P have common

intersection whenever they pairwise intersect. In particular, a flag simple polytope cannot have

a 3-belt. Note that if dim(P ) = 3, P is a flag polytope if and only if P is not the 3-simplex ∆3

and has no 3-belts (so in particular P has no 3-gon facets).

By [6, Theorem 2.2.5], a small cover M over a simple polytope P is aspherical if and only

if P is a flag polytope. The following theorem gives another description of a small cover being

aspherical.

Theorem 1.2 (see [20, Proposition 3.6]) A small cover M is aspherical if and only if all

the facial submanifolds of M are π1-injective in M .

In this paper, we focus our study on the geometry and topology of 3-dimensional small

covers. The following is the main theorem of the paper.

Theorem 1.3 (see Theorem 2.1) Let M be a small cover over a 3-dimensional simple

polytope P . The following statements are all equivalent.

(i) P is a flag polytope.

(ii) M is aspherical.

(iii) M is P2-irreducible and M ≇ RP 3.

(iv) M is Haken.

(v) M admits a Riemannian metric with non-positive sectional curvature.

Remark 1.1 If P is a flag simple polytope, [6, Theorem 2.2.3] says that every small cover

M over P admits a piecewise Euclidean metric which is non-positively curved (in the sense of

Aleksandrov) as a metric space. But the above theorem tells us that when dim(P ) = 3, M can

actually admit a non-positively curved (smooth) Riemannian metric. It is interesting to see

whether this is true in higher dimensions.

Remark 1.2 There is a notion of Haken n-manifolds, n > 3, defined and studied by

Foozwell and Rubinstein [8–10], in analogy with the classical Haken manifolds in dimension

3. According to the discussion in [9, Section 5.2], any small cover over an n-dimensional flag

simple polytope is a Haken n-manifold in that sense.

The construction of small covers in (1.2) can be generalized in the following way. A (Z2)
r-

coloring on a simple polytope P is a map µ : F(P ) → (Z2)
r where the image of µ contains a

linear basis of (Z2)
r. We call µ non-degenerate if at any vertex v of P , the elements {µ(F ) | v ∈

F ∈ F(P )} are linearly independent in (Z2)
r. We can construct a closed manifold M(P, µ)

from P and µ by a similar rule as in (1.2). When r = dim(P ), M(P, µ) is just a small cover

over P .

Let µ̃(Fi) = ei, 1 ≤ i ≤ m where F(P ) = {F1, · · · , Fm} and {e1, · · · , em} is a basis of

(Z2)
m, M(P, µ̃) is called the real moment-angle manifold of P , denoted by RZP . It is easy to

see that for every nondegenerate (Z2)
r-coloring on P , RZP is a regular (Z2)

m−r-covering of

M(P, µ).

The paper is organized as follows. In Section 2, we determine what kind of small covers

and more generally what kind of M(P, µ) in dimension 3 are Haken manifolds (see Theorems
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2.1–2.2). In Section 3, we prove a few more results related to the fundamental groups of small

covers that can be easily derived from other people’s work.

2 3-Dimensional Small Covers and Haken Manifolds

First of all, let us recall some basic concepts in the theory of 3-manifolds. A connected

3-manifold is called prime if it cannot be obtained as a connected sum of two 3-manifolds

neither of which is the 3-sphere. A connected 3-manifold is called irreducible if every embedded

2-sphere bounds a 3-ball. A prime 3-manifold is irreducible except it is a S2-bundle over S1.

A 3-manifold is P2-irreducible if it is irreducible and contains no 2-sided RP 2. It is clear that

an orientable manifold is P2-irreducible if and only if it is irreducible. The following are some

well known facts in the theory of 3-manifolds.

Fact-1 A closed connected orientable 3-manifold M is aspherical if and only if M is irre-

ducible and if π1(M) is infinite (this is a consequence of the Sphere theorem and the Poincaré

conjecture).

Fact-2 Any aspherical 3-manifold is P2-irreducible (see [12, Proposition 3.10]).

Fact-3 Any double cover of a P2-irreducible 3-manifold is still P2-irreducible (see [13,

Lemma 10.4]).

Fact-4 If a closed connected 3-manifold M satisfies π1(M) ∼= G1 ∗ G2, then M is the

connected sum of two manifolds M1 and M2 where π1(Mi) ∼= Gi, i = 1, 2 (see [13, Chapter 7]

on Kneser’s conjecture).

Fact-5 Any 2-sided RP 2 in a compact 3-manifold M is always nontrivial in the second

homotopy group π2(M) of M (see [12, Proposition 3.10]).

Notice that Fact-1, Fact-2 and Fact-3 together imply that a closed connected 3-manifold M

is aspherical if and only if M is P2-irreducible and if π1(M) is infinite.

A compact connected surface Σ properly embedded in a 3-manifold M is called incompress-

ible in M if Σ is not homeomorphic to S2 or D2 and for any embedded 2-disk D in M with

D ∩ Σ = ∂D, ∂D also bounds a disk in Σ.

A Haken manifold is a compact, P2-irreducible 3-manifold that contains a properly embedded

two-sided incompressible surface. In particular, a compact orientable 3-manifold is Haken if it is

irreducible that contains an orientable, incompressible surface. Note that RP 3 is P2-irreducible

but not Haken.

Let Σ be a properly embedded compact connected surface in M that is not homeomorphic

to S2 or D2. If Σ is π1-injective, then Σ is incompressible. But conversely an incompressible

surface in a 3-manifold is not necessarily π1-injective. However, if we assume that Σ is two-sided

in M , the loop theorem implies that Σ is incompressible if and only if Σ is π1-injective (see [13,

p. 59]).

Let π : M → P be a small cover over a 3-dimensional simple polytope P whose characteristic

function is λ. We have the following classification.

• If the fundamental group of M is finite, then P has to be 2-neighborly (see [15, Corollary

2.6]). This implies that P is a 3-simplex and M = RP 3.

• If the fundamental group of M is infinite:
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− If P is a flag polytope, then M is aspherical, hence P2-irreducible (by Fact-2).

− If P 6= ∆3 is not a flag polytope, then P must have a 3-belt. Up to a change

of basis of (Z2)
3, the value of the characteristic function λ on the 3-belt must be one of the

patterns shown in Figures 1–3, where D is a triangle in P that intersects the 3-belt of

P transversely.
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Figure 1 Characteristic function around a 3-belt.
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Figure 2 Characteristic function around a 3-belt.
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Figure 3 Characteristic function around a 3-belt.

• If λ has a local pattern shown in Figure 1 or Figure 2, then M is the connected sum of

two 3-manifolds along the 2-sphere π−1(D). So M is not irreducible.

• If λ has a local pattern shown in Figure 3, then π−1(D) is a disjoint union of two copies

of two-sided RP 2’s in M . So M is not P2-irreducible.

By definition, a 3-manifold is not irreducible implies that it is not P2-irreducible. So the

above classification tells us that M ≇ RP 3 is P2-irreducible if and only if P is a flag polytope.

Theorem 2.1 Let M be a small cover over a 3-dimensional simple polytope P . The fol-

lowing statements are all equivalent.

(i) P is a flag polytope.

(ii) M is aspherical.

(iii) M is P2-irreducible and M 6= RP 3.

(iv) M is Haken.

(v) M admits a Riemannian metric with non-positive sectional curvature.
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Proof The equivalence of (i) and (ii) is given by [6, Theorem 2.2.5]. The equivalence of (i)

and (iii) is proved in the above discussion.

(iv)⇒(iii). It follows from the definition of Haken manifold and the fact that RP 3 is not

Haken.

(i)⇒(iv). If P is a flag polytope, then M is aspherical hence P2-irreducible (by Fact-2).

Choose an arbitrary facet F of P . Then F is an n-gon with n ≥ 4 since P is flag. By Theorem

1.2, the facial submanifoldMF is an embedded π1-injective surface inM . Then sinceMF is not

simply connected, MF is an incompressible surface of M . Note that the Euler characteristic

χ(MF ) = 4− n ≤ 0.

F

F
~

U
F

Figure 4 A small neighborhood of a facet F in P .

Let F̃ be a section of P parallel to F in a small neighborhood UF of F in P (see Figure

4). Let π : M → P be the orbit map. By the definition of small covers, it is easy to see that

π−1(UF ) is a tubular neighborhood of MF in M . By abuse of notation, we let

M
F̃
= π−1(F̃ ) = the boundary of π−1(UF ).

Clearly M
F̃
is a double cover of MF . Let η :M

F̃
→MF denote the double covering map.

• If η is a trivial double cover, then MF is two-sided. So MF is a two-sided incompressible

surface in M .

• If η is a non-trivial double cover, it is easy to see that M
F̃

is an embedded two-sided

connected surface in M . Moreover, we can show that M
F̃

is an incompressible surface of

M . Indeed, let i1 : MF →֒ M and i2 : M
F̃

→֒ M be the inclusion maps. Since η is a

covering map, the homomorphism η∗ : π1(MF̃
) → π1(MF ) is injective. Then since MF is π1-

injective, the composition (i1)∗ ◦ η∗ : π1(MF̃
) → π1(M) is also injective. On the other hand,

the map i2 is homotopic to i1 ◦ η via the deformation retraction of π−1(UF ) onto MF . Then

(i2)∗ : π1(MF̃
) → π1(M) is also injective. So M

F̃
is π1-injective. In addition, since F is not a

3-gon, MF is not RP 2. So M
F̃
is not S2. Therefore, M

F̃
is an incompressible surface of M .

By the above argument, we can always find a two-sided incompressible surface (with non-

positive Euler characteristic) in M . So M is a Haken manifold.

(v)⇒(ii). If M admits a non-positive sectional curvature, the Cartan-Hadamard theorem

implies that its universal covering space is diffeomorphic to an Euclidean space, which implies

that M is aspherical.

(ii)⇒(v). By [11], every finitely generated Coxeter group W is virtually special (i.e., there

exists a finite index subgroup of W that is isomorphic to a subgroup of a finitely generated

right-angled Artin group). Then since π1(M) is isomorphic to a subgroup of the right-angled
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Coxeter group WP (see (1.3)), π1(M) is also virtually special. Moreover, by [18, Corollary 1.4]

a compact aspherical 3-manifold has virtually special fundamental group if and only if it admits

a Riemannian metric of non-positive sectional curvature (also see [16]). This finishes the proof.

For a non-degenerate (Z2)
r-coloring µ on a 3-dimensional simple polytope P , we may ask

when M(P, µ) is Haken as well. To answer this question, we first prove a lemma.

Lemma 2.1 Suppose π :M2 → M1 is a double covering where M1 and M2 are both closed

connected 3-manifolds. Then the following statements are equivalent.

(i) M1 is P2-irreducible and M1 6= RP 3 or S3.

(ii) M2 is P2-irreducible and M2 6= S3.

Proof (i)⇒(ii). This follows from the Fact-3.

(ii)⇒(i). Since M2 6= S3, M1 cannot be RP 3. And since M2 is connected, M1 cannot be

S3 either. For any embedded 2-sphere S in M1, it is clear that π
−1(S) consists of two disjoint

2-spheres S̃1 and S̃2 in M2. Then since M2 is irreducible, S̃1 and S̃2 both bound some 3-balls

in M2. This implies that S is the zero element in π2(M1). Then by [12, Proposition 3.10], S

bounds a 3-ball in M1. So M1 is irreducible.

IfM1 contains an embedded surface Σ which is a 2-sided RP 2, then π−1(Σ) is either an em-

bedded 2-sphere or a disjoint union of two 2-sided RP 2s in M2. But since M2 is P2-irreducible,

π−1(Σ) has to be an embedded 2-sphere and so bounds a 3-ball in M2. This implies that Σ

represents the zero element in π2(M1). But this contradicts the Fact-5. So M1 cannot contain

any 2-sided RP 2. Then M1 is P2-irreducible. The lemma is proved.

Theorem 2.2 Let P be a 3-dimensional simple polytope and µ be a non-degenerate (Z2)
r-

coloring on P . The following statements are all equivalent.

(i) P is a flag polytope.

(ii) M(P, µ) is aspherical.

(iii) M(P, µ) is P2-irreducible and M(P, µ) 6= RP 3 or S3.

(iv) M(P, µ) is Haken.

(v) M(P, µ) admits a Riemannian metric with non-positive sectional curvature.

Proof First of all, we choose an arbitrary small cover M over P (the existence of M is

guaranteed by the Four Color theorem).

(i)⇔(ii). By [6, Theorem 2.2.5], P is a flag polytope if and only if M is aspherical. Then

since RZP is a covering space of both M and M(P, µ), M is aspherical if and only if M(P, µ)

is aspherical.

(ii)⇒(iii). This follows from Fact-2.

(iii)⇒(i). Since RZP is a regular (Z2)
m−r-covering of M(P, µ), we can think of RZP as the

total space of an (m− r)-stage iterated double covering of M(P, µ). Then by Lemma 2.1, the

conditions on M(P, µ) given in (iii) implies that RZP is P2-irreducible and RZP 6= S3 (since

P cannot be the 3-simplex). Moreover, since RZP is a regular (Z2)
m−3-covering of the small

cover M , we can think of RZP as the total space of an (m− 3)-stage iterated double covering
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of M . Then using Lemma 2.1 again we can deduce that M is P2-irreducible and M 6= RP 3. So

by Theorem 2.1, P is a flag polytope.

(iv)⇒(iii). This follows from the definition of Haken manifolds.

(i)⇒(iv). If P is a flag polytope, thenM(P, µ) is aspherical hence P2-irreducible (by Fact-2).

It remains to prove that M(P, µ) has a two-sided incompressible surface. Let π : M → P and

πµ : M(P, µ) → P be the projections. In addition, let ξ : RZP →M and ξµ : RZP → M(P, µ)

be the regular (Z2)
m−3-covering map and regular (Z2)

m−r-covering map, respectively. Clearly

π ◦ ξ = πµ ◦ ξµ : RZP → P is the natural projection. So we have the following diagram.

RZP
ξ

}}zz
zz
zz
zz ξµ

$$J
JJ

JJ
JJ

JJ

M

π
""D

DD
DD

DD
DD

M(P, µ)

πµ

zztt
tt
tt
tt
tt

P

Let F be an arbitrary facet of P . By the proof of Theorem 2.1, MF = π−1(F ) is a π1-

injective embedded surface of M with non-positive Euler characteristic.

• Let NF be a connected component of π−1
µ (F ) in M(P, µ).

• Let ΣF be a connected component of ξ−1(MF ) in RZP .

It is easy to see that ξ|ΣF
: ΣF → MF and ξµ|ΣF

: ΣF → NF are both regular coverings

whose deck transformation groups are Z2-tori.

Claim-1 ΣF is a π1-injective embedded surface of RZP .

Let i : MF → M and ĩ : ΣF → RZP be the inclusion maps. Obviously we have ξ ◦ ĩ =

i ◦ ξ|ΣF
: ΣF →M .

ΣF

ξ|ΣF

��

ĩ
// RZP

ξ

��

MF
i

// M

So the induced homomorphisms on the fundamental groups satisfy

ξ∗ ◦ ĩ∗ = i∗ ◦ (ξ|ΣF
)∗ : π1(ΣF ) → π1(M).

By our construction, ξ∗ : π1(RZP ) → π1(M), (ξ|ΣF
)∗ : π1(ΣF ) → π1(MF ) and i∗ :

π1(MF ) → π1(M) are all injective. So ĩ∗ : π1(ΣF ) → π1(RZP ) must also be injective. Claim-1

is proved.

Claim-2 NF is a π1-injective embedded surface of M(P, µ).
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Let iµ : NF →M(P, µ) be the inclusion map.

ΣF

ξµ|ΣF

��

ĩ
// RZP

ξµ

��

NF
iµ

// M(P, µ)

Then since ξµ ◦ ĩ = iµ ◦ ξµ|ΣF
: ΣF →M(P, µ), we have

(ξµ)∗ ◦ ĩ∗ = (iµ)∗ ◦ (ξµ|ΣF
)∗ : π1(ΣF ) → π1(M(P, µ)).

By our assumption, ĩ∗ : π1(ΣF ) → π1(RZP ), (ξµ)∗ : π1(RZP ) → π1(M(P, µ)) and (ξµ|ΣF
)∗ :

π1(ΣF ) → π1(NF ) are all injective. But these conditions do not directly imply the injectivity

of (iµ)∗ : π1(NF ) → π1(M(P, µ)). Note that the Euler characteristic of NF is non-positive.

So π1(NF ) is torsion-free. Then the kernel of (iµ)∗ : π1(NF ) → π1(M(P, µ)) is either trivial

or an infinite subgroup of π1(NF ). On the other hand, since ΣF is a finite-sheeted covering

of NF , the image of (ξµ|ΣF
)∗ is a finite index subgroup of π1(NF ). If (iµ)∗ is not injective,

then ker(iµ)∗ is an infinite group. So the intersection of the image of (ξµ|ΣF
)∗ and ker(iµ)∗ is

a finite index subgroup of ker(iµ)∗ hence also an infinite group. But this contradicts the fact

that (iµ)∗ ◦ (ξµ|ΣF
)∗ = (ξµ)∗ ◦ ĩ∗ is injective. Therefore, (iµ)∗ has to be injective. Claim-2 is

proved.

Finally, ifNF is two-sided inM(P, µ), thenNF is a two-sided π1-injective embedded connect-

ed surface with non-positive Euler characteristic in M(P, µ). So M(P, µ) is a Haken manifold.

Otherwise if NF is one-sided in M(P, µ), let ÑF be the boundary of a tubular neighborhood of

NF in M(P, µ). Using the similar argument as in the proof of (i)⇒(iv) in Theorem 2.1, we can

prove that ÑF is a two-sided π1-injective embedded connected surface with non-positive Euler

characteristic in M(P, µ). So we finish the proof.

(v)⇒(ii). This follows from the Cartan-Hadamard theorem.

(ii)⇒(v). It is shown in [5] that π1(RZP ) is isomorphic to the commutator subgroup

[WP ,WP ] of WP . Then since WP is virtually special, so is π1(RZP ). Moreover, since RZP is a

regular (Z2)
m−r-covering of M(P, µ), π1(RZP ) is a finite index subgroup of π1(M(P, µ)). This

implies that π1(M(P, µ)) is also virtually special. So by [18, Corollary 1.4], M(P, µ) admits a

Riemannian metric with non-positive sectional curvature.

Remark 2.1 Recently, more results on the existence of incompressible surfaces in M(P, µ)

are obtained in Erokhovets [7].

3 More Results Related to the Fundamental Groups of Small Covers

3.1 Borel conjecture for small covers

A closed manifoldM is said to be topologically rigid if any homotopy equivalence fromM to

another closed manifold is homotopic to a homeomorphism. In particular, if M is topologically

rigid, any closed manifold homotopy equivalent to M is homeomorphic to M .
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Borel Conjecture Closed aspherical manifolds are topologically rigid.

Proposition 3.1 For any n 6= 4, the Borel Conjecture holds for n-dimensional aspherical

small covers.

Proof Haken 3-manifolds are known to satisfy the Borel Conjecture (see [19]). So by

Theorem 2.1, the Borel Conjecture holds for aspherical small covers in dimension 3. In fact,

Thurston’s Geometrization Conjecture implies that every closed 3-manifold with torsion-free

fundamental group is topologically rigid. So in particular, the Borel Conjecture holds in di-

mension 3 (see [14, Theorem 0.7]).

For higher dimensions, let M be a small cover over a simple polytope P and assume that

M is aspherical. Then P is a flag polytope. Define

LP = P ×WP / ∼,

where (p, ω) ∼ (p′, ω′) if and only if p = p′ and ω′ω−1 belongs to the subgroup of WP that is

generated by {sF |F is a facet of P that contains p}. There is a canonical action of WP on LP

defined by:

ω′ · [(p, ω)] = [(p, ω′ω)], p ∈ P, ω, ω′ ∈WP , (3.1)

where [(p, ω)] is the equivalence class of (p, ω) in LP .

By [3, Corollary 10.2], LP is a simply connected manifold, which is the universal covering

of the small cover M . Moreover, there is a natural piecewise Euclidean cubical metric d� on

LP where the canonical action of WP on LP is isometric. It is shown in [6, Section 1.6] that

the metric d� is non-positively curved (in the sense of Aleksandrov) if and only if P is a flag

polytope (also see [4, Chapter 1]). So in our case (LP , d�) is a CAT(0) space.

Since π1(M) is a finite index subgroup of WP (see (1.3)), π1(M) acts isometrically and

cocompactly on (LP , d�) (also see [20, Proposition 2.4]). Then π1(M) belongs to the class

of groups B defined in Bartels-Lück [1, Theorem A], which implies that the Borel Conjecture

holds for all aspherical small covers in dimension ≥ 5.

The Borel Conjecture is also very likely to hold for 4-dimensional aspherical small covers.

But we do no have any tools to prove this statement.

3.2 Prime decomposition of 3-dimensional small covers

It is well known that every closed, orientable 3-manifold is the connected sum of a unique (up

to homeomorphism) finite collection of prime 3-manifolds (see [13]). The following proposition

tells us that all the prime factors of a 3-dimensional small cover are still small covers.

Proposition 3.2 Let M be a small cover over a 3-dimensional simple polytope P . If M

is orientable, then all the prime factors in the prime decomposition of M are either aspherical

small covers or RP 3.

Proof Let λ be the characteristic function of M . Since M is orientable, we can assume

that the range of λ is in the subset {e1, e2, e3, e1+ e2+ e3} of (Z2)
3, where {e1, e2, e3} is a basis
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of (Z2)
3 (see [17, Theorem 1.7]). If P 6= ∆3 has no 3-belts, M is aspherical by [6, Theorem

2.2.5] and hence prime (see Fact-2).

Now suppose there exist some 3-belts in P . Note that up to a change of basis of (Z2)
3,

the value of λ on any 3-belt on P must be equivalent to one of the pictures in Figures 1–

2. Then M is the connected sum of two closed 3-manifolds N1 and N2 along the embedded

2-sphere π−1(D), each of which is an orientable small cover. Clearly the underlying simple

polytopes of N1 and N2 both have less 3-belts than P . Since P has only finitely many 3-belts,

by iterating this argument, we can write M as a connected sum M1# · · ·#Mk, where each Mi

is an orientable small cover over a simple polytope Pi that has no 3-belts. If Pi = ∆3, Mi must

be RP 3. Otherwise Pi is a flag polytope and so Mi is aspherical. This proves the proposition.

Corollary 3.1 If two 3-dimensional small covers M1 and M2 are orientable and have iso-

morphic fundamental groups, then M1 is homeomorphic to M2.

Proof It is well known that the indecomposable factors of any finitely generated group is

unique up to order and isomorphism (see [13, Section 8]). Suppose

π1(M1) ∼= π1(M2) ∼= G1 ∗ · · · ∗Gk,

where each Gi is indecomposable (cannot be further factored via free product). Then by Fact-4,

there exist prime decompositions:

Mi = Ni,1# · · ·#Ni,k, where π1(Ni,j) ∼= Gj , 1 ≤ j ≤ k, i = 1, 2.

By Proposition 3.2, each Ni,j is either an aspherical small cover or RP 3. Then by Proposition

3.1, N1,j
∼= N2,j for all 1 ≤ j ≤ k. So M1 is homeomorphic to M2.

It is well known that every closed, non-orientable 3-manifold is a connected sum of irreducible

3-manifolds and non-trivial S2 bundles over S1. But it is not clear to us whether the factors

in such a decomposition for a non-orientable 3-dimensional small cover are still small covers or

not.
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