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Abstract For stationary hypersonic-limit Euler flows passing a solid body in three-
dimensional space, the shock-front coincides with the upwind surface of the body, hence
there is an infinite-thin layer of concentrated mass, in which all particles hitting the body
move along its upwind surface. By proposing a concept of Radon measure solutions of
boundary value problems of the multi-dimensional compressible Euler equations, which in-
corporates the large-scale of three-dimensional distributions of upcoming hypersonic flows
and the small-scale of particles moving on two-dimensional surfaces, the authors derive
the compressible Euler equations for flows in concentration layers, which is a stationary
pressureless compressible Euler system with source terms and independent variables on
curved surface. As a by-product, they obtain a formula for pressure distribution on sur-
faces of general obstacles in hypersonic flows, which is a generalization of the classical
Newton-Busemann law for drag/lift in hypersonic aerodynamics.
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1 Introduction

Mathematical analysis of flow fields of supersonic gas passing bodies in three dimensional

space is one of the fundamental problems in aerodynamics. It is a great challenge to both theory

and computation of partial differential equations (PDE for short), since the flow contains shocks

and behaves very singularly near the boundary of the body. To focus on the mechanical effects,

we consider only compressible Euler flows of polytropic gases, thus neglecting viscosity, heat

transfer and ionization. Then as Mach number of the upcoming supersonic flow increases,

it is observed that shock-fronts approach the upwind part of the body’s boundary surface,

thus the shock layer, i.e., the region bounded by shock-fronts and the body, becomes narrower

and narrower. If the upstream Mach number is infinite, the shock-fronts coincide with the

upwind surface and the shock layer is infinitely thin (see [1, Section 3.2, p.58]). However,
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by the hyperbolic nature of supersonic flow, the downstream flow is totally determined by

the upstream, hence none gas particles across shock-fronts can rebound from the shock layer.

Therefore, concentration of mass occur unavoidably on the upwind surface of the body. Thus the

flow field contains two different scales: One for distribution of upstream gas in three dimensional

space, the other for flow in concentration layer which is essentially two-dimensional. It is

necessary to derive the PDE governing the flow in the mass-concentration layer, to obtain a

precise description of hypersonic flows passing bodies.

This paper is devoted to solving this problem by studying Radon measure solutions of

boundary value problems of multidimensional compressible Euler equations. We propose a def-

inition, and then construct Radon measure solutions with regular parts (absolutely continuous

with respect to the Lebesgue measure of R3) to describe the upcoming hypersonic flow, and

singular parts (weighted Dirac measures supported on the upwind surface of the body) to char-

acterize the infinite-thin shock layer. From the weights of the Dirac measures, we obtain mass

density and velocity of the flow in a concentration layer, which satisfy a hyperbolic system of

balance laws on a curved surface. The system resembles the compressible pressureless Euler

equations, but with source terms manifesting addition of mass and momentum to each point

of the concentration layer, from the upstream hypersonic flow. The distribution of the pres-

sure on the upwind surface could also be solved from the system, whose integration over the

surface provides the lift/drag force exerting to the body by the hypersonic flow. It provides

a generalization of the classical Newton’s sine-squared pressure law for straight wedge/cone in

hypersonic flow, and its modification by Busemann for curved wedge/cone when centrifugal

force of particles moving restrictively on a curved surface is considered in [1, Sections 3.2 and

3.4]. This justified the concept of Radon measure solution and the study of Radon measure

solutions from the point view of physics and applications.

We briefly review some related previous works. There are now some significant results on

supersonic flow passing bodies, see, for example, [3–7, 10] and references therein. These works

are all devoted to studying flow fields with shocks. It is somewhat surprising that there is

no theoretical studies of hypersonic flows with concentrations from mathematical point of view

before the work [18], which considered hypersonic-limit flow passing straight wedges and proved

rigorously the Newton’s sine-squared pressure law. Later the authors generalize the ideas to

study hypersonic limit flow passing curved wedges/cones, and straight cones with arbitrary

cross-sections and attacking angles (see [12–13, 16–17]). These works lead us to solve the gen-

eral case presented in this paper. Mathematically, we are investigating solutions of compressible

Euler equations which are measures, rather than functions. It is interesting to notice that, how-

ever, there is a rather long history on measure solutions of hyperbolic conservation laws, debut

by Korchinski [14] in 1977, and later rediscovered, named as “delta shocks” and thoroughly

studied by Chinese scholars led by Tong Zhang, see, for example, [11, 15, 19–20] and references

therein. All these works consider the Cauchy problems, rather than the initial-boundary value

problem firstly studied in [18]. It seems that measure solution is inevitable for a general theory

of hyperbolic systems of conservation laws, since for large initial data or weakly hyperbolic

equations resonance of eigenvalues and eigenvectors may occur so the solution will go to infinite

and concentration appears, see [2, Remark 3], and [8, Section 9.6, as well as p.339].

In the following Section 2 we formulate the aforementioned problem of hypersonic limit flow

passing a three-dimensional body (Definition 2.2), and derive the PDE for concentration layers,

namely (2.53)–(2.57). The generalized Newton-Busemann formula is given by (2.61). These are
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the main contributions of this paper. The last Section 3 presents some comments and problems

in this direction for possible studies in the future.

2 The Steady Compressible Euler Equations of Concentration Layers

This section is the main part of this paper. After a mathematical formulation of hypersonic-

limit flows passing bodies, which is named Problem (A), we propose a definition of its Radon

measure solutions. Then by studying a special Radon measure solution with a layer of con-

centrated mass on the boundary of the body, we derive the desired PDE governing motions

of particles moving along solid upwind surfaces. As a by-product, we obtain the generalized

Newton-Busemann law. Some specific examples are given at the end of this section.

2.1 Preliminaries

In the Euclidean space R
3 equipped with the standard Cartesian coordinates r = (x, y, z),

let B be a surface given by the parametrization

r = r(x, s)
.
= (x, b1(x, s), b2(x, s))

with (x, s) ∈ P .
= (R+ ∪ {0}) × I. Here I is a set of real numbers. The functions b1, b2 are

supposed to be C2, i.e., their all up to second order derivatives are continuous. For I = R, B
represents the boundary surface of a ramp (see Figure 1), and for I = S1 .

= R/2πZ (the unit

circle), B is a conical surface (see Figure 2). The solid obstacle bounded by B is denoted by

O, which is an open set in R
3. For the case of a ramp, it is given by O = {(x, y, z) : x ≥

0, y < b1(x, z), z ∈ R}. While for the conical body, since b1(x, s), b2(x, s) are periodic with

respect to s, for fixed x > 0, we suppose the simple Jordan curve {y = b1(x, s), z = b2(x, s)}
encloses a bounded domain Σ′

x on the (y, z)-plane. Then O =
⋃
x≥0

({x} × Σ′
x). For each case,

we choose the orientation following the “right-hand rule”, so that the positive direction of the

plane {x = x0} is the same as the x-axis, and that as s increases, for any fixed x0 > 0, the

section of the solid body Σx0

.
= O ∩ {x = x0} always lies at the left-hand side of the curve

{y = b1(x0, s), z = b2(x0, s)}. For simplicity of writing, we assume that ∂I = ∅. These enable

us to apply the divergence theorem later correctly and in a simple way. The space occupied

by gas is then the closed set G .
= {x ≥ 0} \ O. We also write I .

= G ∩ {x = 0} as the initial

boundary, where the upcoming uniform supersonic flow is given. Hence the boundary of G is

∂G = I ∪ B.
The tangent vectors on B are given by

rx = (1, ∂xb1, ∂xb2), (2.1)

rs = (0, ∂sb1, ∂sb2). (2.2)

Hence a normal vector is

n = (n1, n2, n3)
.
= rx × rs = (∂xb1∂sb2 − ∂xb2∂sb1,−∂sb2, ∂sb1). (2.3)

In the following, for some computations, we assume that n1 > 0. A surface element with this

property is called upwind. Note that n
|n| is the unit normal on B pointing into O. Here by |n|

we mean the Euclidean norm of the vector n.
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Figure 1 A ramp.

Figure 2 A conical body.

The first fundamental form of the surface B is

dl2 = dr · dr = Edx2 + 2Fdxds+Gds2, (2.4)

where

E
.
= rx · rx = 1 + (∂xb1)

2 + (∂xb2)
2,

F
.
= rx · rs = ∂xb1∂sb1 + ∂xb2∂sb2, (2.5)

G
.
= rs · rs = (∂sb1)

2 + (∂sb2)
2.

It is easy to check that

EG− F 2 = |n|2, (2.6)

hence the area element of B is

dH2 = |n|dxds, (2.7)
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where H2 is the two-dimensional Hausdorff measure on B.
Let U = (u, v, w) be a vector field in R

3. We now consider its decomposition along B, with
respect to the moving frames {rx, rs, n}. Suppose that

U = µrx + νrs + ωn. (2.8)

Then as rx⊥n, rs⊥n, one has

ω =
U · n
|n|2 . (2.9)

If U is a tangent vector on B, namely ω = 0, from (2.8) we have

u = µ, v = (∂xb1)µ+ (∂sb1)ν, w = (∂xb2)µ+ (∂sb2)ν (2.10)

or

µ =
1

n1
(v∂sb2 − w∂sb1), ν =

1

n1
(−v∂xb2 + w∂xb1). (2.11)

Let φ(x, y, z) ∈ C1
c (R

3) be a compactly supported continuously differentiable function. Set

φ̃ = φ̃(x, s)
.
= φ(x, b1(x, s), b2(x, s)). (2.12)

Direct differentiation shows that

(∂xb1)φy + (∂xb2)φz = φ̃x − φx, (∂sb1)φy + (∂sb2)φz = φ̃s.

It follows that

φy =
1

n1
(φ̃x∂sb2 − φ̃s∂xb2 − φx∂sb2), (2.13)

φz =
1

n1
(φ̃s∂xb1 − φ̃x∂sb1 + φx∂sb1). (2.14)

Then we obtain easily that

U · ∇φ = uφx + vφy + wφz =
1

n1
U · nφx + µφ̃x + νφ̃s, (2.15)

where µ and ν are given by (2.11). Notice that this identity holds no matter U · n = 0 or not.

Next we utilize Green’s theorem to calculate
∫

B

(µφ̃x + νφ̃s) dH2 =

∫

P

(µφ̃x + νφ̃s)|n| dxds

=

∫

P

[∂x(φ̃µ|n|) + ∂s(φ̃ν|n|)] dxds−
∫

P

φ̃[∂x(µ|n|) + ∂s(ν|n|)] dxds

=

∫

∂P

φ̃µ|n| ds− φ̃ν|n| dx−
∫

P

φ̃[∂x(µ|n|) + ∂s(ν|n|)] dxds

= −
∫

I

(φ̃µ|n|)(0, s) ds−
∫

B

φ̃
1

|n| [∂x(µ|n|) + ∂s(ν|n|)] dH2

= −
∫

I

(φ̃µ|n|)(0, s) ds−
∫

B

φ̃div̟ dH2, (2.16)
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where in the last line we have set

̟
.
= µrx + νrs = µ∂x + ν∂s, (2.17)

and the forth equality utilized the assumption ∂I = ∅. Recall the definition of divergence

operator in a Riemannian manifold with the metric dl2 (see (2.4)):

div̟
.
=

1

|n| [∂x(µ|n|) + ∂s(ν|n|)].

Notice that by considering a vector field as an operator on scalar functions, (2.10) can also be

written as 1

u = ̟(x), v = ̟(b1), w = ̟(b2). (2.18)

We then could calculate the integral
∫
B U · ∇φdH2, where U : B → R

3 is a C1 vector field,

and φ ∈ C1
c (R

3). By (2.15), we have
∫

B

U · ∇φdH2 =

∫

B

1

n1
U · nφx dH2 +

∫

B

(µφ̃x + νφ̃s) dH2

=

∫

B

1

n1
U · nφx dH2 −

∫

B

div (̟)φ̃ dH2 −
∫

I

(φ̃µ|n|)(0, s) ds. (2.19)

2.2 Radon measure solutions of three-dimensional compressible Euler equations

The three-dimensional steady compressible Euler equations consist of the following conser-

vation of mass, momentum and energy (see [8, (3.3.29) in p.62]):

Div (ρU) = 0, (2.20)

Div (ρU ⊗ U) +∇p = 0, (2.21)

Div (ρUH) = 0, (2.22)

where ρ, p and H are the density, the pressure and total enthalpy of the gas, respectively,

and U = (u, v, w) is the velocity. We use Div and ∇ to denote respectively the divergence and

gradient operator in R
3, and the tensor product U⊗U is given by the matrix U⊤U in Cartesian

coordinates. For a polytropic gas, the state function is

p =
γ − 1

γ
ρ ·

(
H − 1

2
|U |2

)
, (2.23)

where γ > 1 is the adiabatic exponent. Then the sonic speed is csonic
.
=

√
γp
ρ
, and the Mach

number is defined by Mach
.
= |U|

csonic
. After some unidimensional scalings, we may assume that

the uniform upcoming supersonic flow is given by

ρ = ρ0 = 1, U = U0 = (1, 0, 0), H = H0 on I (2.24)

with H0 > 1
2 a constant. The Mach number of this upstream flow is (see [18, (8) in p. 4])

Mach,0 =
1

(γ − 1)
(
H0 − 1

2

) .

1Here ̟(x) means the vector field ̟ = µ∂x + ν∂s acting on the function x, rather than the value of ̟ at x,
which does not make sense in this paper.
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Hence the hypersonic-limit, namely Mach,0 → +∞, is the limit γ → 1, and for hypersonic-limit

flow, we may take γ = 1 in (2.23). Therefore the limiting hypersonic gas is pressureless. It is

known that the resultant pressureless Euler equations (2.20)–(2.22), constituting a system of

conservation laws, are hyperbolic along the x-axis, but only weakly hyperbolic, in the sense that

all the eigenvalues are real and coincident, and the associated eigenvectors are not complete in

the state space R
5.

We now formulate a boundary value problem of the pressureless Euler equations (2.20)–

(2.22) in the domain G, subjected with the initial data (2.24), and the slip condition

U · n = 0 on B. (2.25)

For simplicity, in the sequel we call it Problem (A). This is a mathematical model of stationary

limiting hypersonic Euler flows passing three-dimensional obstacles O.

The above formulation of Problem (A) is deduced for classical solutions, namely C1 flow

fields without singularities. We now rewrite it for integrable weak solutions, to allow for flow

fields with discontinuities, thus motivate our definition of Radon measure solutions later.

We write the Lebesgue measure in R
n as Ln. Locally integrable functions (ρ, U,H) (with

respect to the Lebesgue measure L3) are called weak solutions to Problem (A), provided that:

• For any φ ∈ C1
c (R

3), there hold

∫

G

ρU · ∇φdL3 +

∫

I

ρ0u0φdL2 = 0, (2.26)

∫

G

ρHU · ∇φdL3 +

∫

I

ρ0u0H0φdL2 = 0. (2.27)

• For any vector field ϕ ∈ C1
c (R

3;R3), there holds

∫

G

ρU ⊗ U : ∇ϕdL3 +

∫

G

p DivϕdL3 +

∫

I

ρ0(1, 0, 0)U0 ⊗ U0ϕdL2

=

∫

B

pϕ · n

|n| dH
2. (2.28)

In (2.28), ϕ is considered as a column vector, and ∇ϕ is the Jacobian matrix. Recall that

‘:’ means the standard inner product of matrices A and B, namely, A : B
.
= tr(AB). For

pressureless flow, we shall take p in the second integrand in the left-hand-side of (2.28) to be zero,

while to take into account of the effects of solid boundary B, the p in the right-hand-side of (2.28)

shall be calculated if we study concentration of mass. This is the essential difference from the

treatment of Cauchy problems of steady pressureless Euler equations. To guarantee uniqueness

and stability of weak solutions, one also needs certain entropy admissibility conditions, such as

the Lax E-condition. However, for our purpose in this paper, we do not need such conditions

presently. Hence they were ignored.

There is a Newton theory of infinite-thin shock layers for Problem (A), for which the shock

front coincides with the upwind boundary of the obstacle, and mass concentrates on its bound-

ary. This theory is fundamental in hypersonic aerodynamics, see [1, Chapter 3] and [9, Chapter

III]. We wish to derive the PDE governing motions of particles in the concentration layer. To

this end, we need to introduce Radon measure solutions to Problem (A).

We review some basic facts about Radon measures. Let F be the Borel σ-algebra of R3. By

Riesz representation theorem, a (signed) Radon measure m on (R3,F) is a continuous linear
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functional on Cc(R
3), the space of compactly supported continuous functions, expressed by

〈m,φ〉 =
∫

R3

φdm, ∀φ ∈ Cc(R
3). (2.29)

The restrictions of Lebesgue measure L3 on a measurable set Ω ∈ F , denoted by L3⌊(Ω), is a
Radon measure. The other important example is the following weighted Dirac measure WδS
supported on a lower dimensional sub-manifold S of R3. Suppose that the Hausdorff dimension

of S is k, and W is a locally integrable function on S, with respect to the Hausdorff measure

Hk. Then we define

〈WδS , φ〉 .
=

∫

S

WφdHk. (2.30)

Hence the weight W may be considered as the density of mass on S. Particularly, for a subset

Ω ∈ F , we have

WδS(Ω) =

∫

S∩Ω

W dHk,

which is the mass contained in Ω. Note that WδS is singular with respect to the Lebesgue

measure L3 if k 6= 3.

For a (signed) measure m and a nonnegative Radon measure ρ, if m is absolutely continuous

with respect to ρ, we write it as m ≪ ρ. The Radon-Nikodym derivative is denoted by dm
dρ ,

namely, it is a ρ-measurable function, and there holds

∫

Ω

dm =

∫

Ω

dm

dρ
dρ, ∀Ω ∈ F .

To define Radon measure solutions of the Euler equations, we start from the simple but

typical case that m is an incompressible vector field in R
3, namely,

Divm = 0. (2.31)

By a weak solution of (2.31) in G, we mean that m is a locally integrable vector-valued function

on (R3,F ,L3) so that the following makes sense:

∫

G

m · ∇φdL3 +

∫

I

m · (1, 0, 0)φdL2 =

∫

B

φm · n

|n| dH
2. (2.32)

Motivated by this formula, we propose the following definition.

Definition 2.1 A Radon measure m defined on G is a solution to (2.31), subjected to the

boundary conditions

m · (1, 0, 0)⌊(I) = m1,0dL2, (2.33)

m · n

|n| ⌊(B) = WδB (2.34)

(where m1,0 and W are functions), if there holds

〈m,∇φ〉 +
∫

I

m1,0φdL2 = 〈WδB, φ〉. (2.35)
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Now suppose that m has the following regular-singular decomposition

m = mrL3⌊(G) +msδB, (2.36)

where mr is a continuous vector field on G and continuously differentiable in G \ B, such that

Divmr = 0 in G \ B, (2.37)

mr · (1, 0, 0)|I = m1,0, (2.38)

and ms : B → R
3 is a C1 vector field, defined only on the surface B. Substituting (2.36) into

the left-hand side of (2.35), it follows from (2.32), (2.37) and (2.19) that

〈m,∇φ〉 +
∫

I

m1,0φdL2

=

∫

G

mr · ∇φdL3 +

∫

B

ms · ∇φdH2 +

∫

I

m1,0φdL2

=

∫

B

φmr ·
n

|n| dH
2 +

∫

B

ms · ∇φdH2

=

∫

B

φ̃
[
mr ·

n

|n| − div (̟)
]
dH2 +

∫

B

1

n1
ms · nφx dH2 −

∫

I

(φ̃µ|n|)(0, s) ds.

Here we used (2.8) and (2.17), where ̟ = µrx + νrs, φ̃ = φ|B and

ms = ̟ +
ms · n
|n|2 n.

Then from (2.35) we get

∫

B

φ̃
[
mr ·

n

|n| − div (̟)−W
]
dH2 +

∫

B

1

n1
ms · nφx dH2

−
∫

I

(φ̃µ|n|)(0, s) ds = 0. (2.39)

Since we assumed that n1 > 0, which means ∂x is not a tangent vector on B, by arbitrariness

of the test function φ, we deduce that

µ(0, s) = 0, on I, (2.40)

div̟ = mr ·
n

|n| −W, in B, (2.41)

ms · n = 0, in B. (2.42)

These could be considered as generalized Rankine-Hugoniot conditions of concentration layers,

which totally characterize Radon measure solutions of problem (2.31), (2.33)–(2.34) with the

form (2.36). Notice that (2.42) guarantees ̟ to be indeed a vector field on the surface B. Note
that (2.40)–(2.42) make sense for n1 ≥ 0.

We apply the ideas presented above to define and calculate Radon measure solutions of

Problem (A).

Definition 2.2 We say vector-valued Radon measures m,m1,m2,m3,m4 : (G,F) → R
3,

and a locally H2-integrable function σ on B determine a Radon measure solution (ρ, U,H) to

Problem (A), provides that
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(i) ρ : (G,F) → R+ ∪ {0} is a nonnegative Radon measure, and the vector field U , the

function H are measurable with respect to ρ. Furthermore, m,m1,m2,m3,m4 are all absolutely

continuous with respect to ρ, with the Radon-Nikodym derivatives satisfying that

U
.
= (u, v, w) =

dm

dρ
, UH =

dm4

dρ
, (2.43)

Uu =
dm1

dρ
, Uv =

dm2

dρ
, Uw =

dm3

dρ
; (2.44)

(ii) for any test function φ ∈ C1
c (R

3), there hold

〈m,∇φ〉 +
∫

I

ρ0u0φdL2 = 0, (2.45)

〈m1,∇φ〉+
∫

I

ρ0u
2
0φdL2 =

〈
σ
n1

|n|δB, φ
〉
, (2.46)

〈m2,∇φ〉 =
〈
σ
n2

|n|δB, φ
〉
, (2.47)

〈m3,∇φ〉 =
〈
σ
n3

|n|δB, φ
〉
, (2.48)

〈m4,∇φ〉+
∫

I

ρ0u0H0φdL2 = 0. (2.49)

We observe that σ is a pressure distribution on B which measures the impact of particles

hitting the obstacle, and

F
.
=

∫

B

σ
n

|n| dH
2 (2.50)

is the force of lift/drag acting on the obstacle O in the limiting hypersonic flow, that is of

fundamental importance in aerodynamics. We will present more explicit expressions of σ below,

see (2.61). It is straightforward to see that, by (2.53)–(2.56) and the divergence theorem, one

could calculate (2.50) by simply measuring the fluxes along ∂B.

2.3 The Euler equations of concentration layers and generalized Newton-Busemann

law

By (2.43)–(2.44), we suppose that

ρ = ̺0L3⌊(G) + ̺δB,

m = ̺0U0L3⌊(G) + ̺ŨδB,

m1 = ̺0u0U0L3⌊(G) + ̺ũŨδB, (2.51)

m2 = ̺0v0U0L3⌊(G) + ̺ṽŨδB,

m3 = ̺0w0U0L3⌊(G) + ̺w̃ŨδB,

m4 = ̺0H0U0L3⌊(G) + ̺hŨδB,

where (see (2.24) and (2.10))

U0 = (u0, v0, w0) = (1, 0, 0), ̺0 = 1, Ũ = (ũ, ṽ, w̃) = ̟ = µrx + νrs,

and by (2.18),

ũ = ̟(x), ṽ = ̟(b1), w̃ = ̟(b2). (2.52)
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Direct applications of (2.41) to (2.45)–(2.49) yield

div (̺̟) =
n1

|n| , (2.53)

div (̺ũ̟) =
n1

|n| (1− σ), (2.54)

div (̺ṽ̟) = −n2

|n|σ, (2.55)

div (̺w̟̃) = −n3

|n|σ, (2.56)

div (̺h̟) =
n1

|n|H0. (2.57)

We also remember (2.40), which implies now that ̺µ(0, s) = 0 (note that for the moment,

ms = ̺Ũ = ̺µrx + ̺νrs). By the formulation of Problem (A), it is expected that µ is nonzero,

i.e., particles hitting at the tip of the body B ∩ {x = 0} and then moving transversally. This

means that

̺(0, s) = 0 on I. (2.58)

So there is no concentration initially at the tip, which is natural. Furthermore, by the initial

value H = H0 in (2.24), and conservation of mass (2.53), (2.57) holds for h ≡ H0. Once we

solve from (2.53)–(2.56) the unknowns ̟, ̺ and σ, we could get a Radon measure solution to

Problem (A), with ρ given by (2.51), H = H0, and U = U0⌊(G \B) +̟⌊(B). Here f⌊(A) is the
function obtained by restricting a function f to the set A.

In the following, we try to write (2.54)–(2.56) in an intrinsic way. Recalling the following

formula valid on Riemannian manifolds

div (φ̟) = φdiv̟ +̟(φ), ∀φ ∈ C1,

one has, utilizing (2.54)–(2.56),

div
[n1

|n|̺ũ̟ +
n2

|n|̺ṽ̟ +
n3

|n|̺w̟̃
]

=
n2
1

|n|2 (1− σ)− n2
2

|n|2σ − n2
3

|n|2σ + ̺
[
ũ̟

(n1

|n|
)
+ ṽ̟

(n2

|n|
)
+ w̟̃

(n3

|n|
)]

. (2.59)

Since

n1

|n| ũ+
n2

|n| ṽ +
n3

|n| w̃ = 0, (2.60)

it follows that, recalling (2.18),

σ =
n2
1

|n|2 + ̺
[
̟(x)̟

( n1

|n|
)
+̟(b1)̟

(n2

|n|
)
+̟(b2)̟

(n3

|n|
)]

=
n2
1

|n|2 − ̺|n|
|n|2 (n1̟

2(x) + n2̟
2(b1) + n3̟

2(b2)). (2.61)

Here ̟2(x) means ̟(̟(x)), etc. The second equality holds by acting ̟ on (2.60) and then

applying Leibniz rule. The right-hand sides of (2.61) depend only on ̺,̟ and the second-order
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derivatives of b1, b2. Hence the surface is required to be C2. We call this generalized Newton-

Busemann pressure law, as from it we could derive the Newton’s sine-squared law for straight

wedge/cone and Busemann’s pressure formula for curved wedge/cone in hypersonic flows.

On the contrary, if (2.61) holds, then by (2.60), we still have (2.59), which implies that as

long as two equations in (2.54)–(2.56) hold, then the third also holds. For example, if n1 > 0,

we could solve the closed system (2.53), (2.55)–(2.56) and (2.61).

2.4 Examples

2.4.1 Ramps

We firstly consider the special case of a ramp: Taking s = z, b1 = b(x, z) and b2 = z. Then

n = (∂xb,−1, ∂zb), |n| =
√
1 + (∂xb)2 + (∂zb)2.

In the local coordinates (x, z) of the surface B, we could write (2.53)–(2.54) and (2.56) as

∂x(ϑµ) + ∂z(ϑν) = ∂xb, (2.62)

∂x(ϑµ
2) + ∂z(ϑµν) = (∂xb)(1 − σ), (2.63)

∂x(ϑµν) + ∂z(ϑν
2) = −(∂zb)σ, (2.64)

where ϑ
.
= |n|̺, ̟ = µ∂x + ν∂z , and some straightforward computation shows that (2.61) is

reduced to

σ =
(∂xb)

2

|n|2 +
ϑ

|n|2 (µ
2∂xxb+ 2µν∂xzb+ ν2∂zzb). (2.65)

Note that by (2.7), ϑ represents the density of mass measured by the Lebesgue measure

L2 on the (x, z)-plane: The mass of gas contained in an infinitesimal element dxdz in the

concentration layer is ϑdxdz. Thus (2.62)–(2.64) constitute a pressureless Euler system with

source terms on a half Euclidean-plane {x ≥ 0, z ∈ R}.
For a curved ramp, namely, b = b(x) with b(0) = 0, it is natural to assume that ν ≡ 0, and

(2.62)–(2.64) are reduced to the following ordinary differential equations (ODE for short)

d

dx
(ϑµ− b) = 0, (2.66)

d

dx
(ϑµ2) = b′(x) · (1− σ). (2.67)

Then by (2.65),

σ =
(b′(x))2

1 + (b′(x))2
+

ϑµ2

1 + (b′(x))2
b′′(x), (2.68)

and one solves (2.66)–(2.67) to get

̺ = ̺(x) =
b(x)2

∫ x

0
b′(τ)√

1+(b′(τ))2
dτ

, (2.69)

µ = µ(x) =
1

b(x)
√

1 + (b′(x))2

∫ x

0

b′(τ)√
1 + (b′(τ))2

dτ, (2.70)



Euler Equations of Concentration Layers 573

σ = σ(x) =
(b′(x))2

1 + (b′(x))2
+

b′′(x)

(1 + (b′(x))2)
3

2

∫ x

0

b′(τ)√
1 + (b′(τ))2

dτ. (2.71)

They are the same as those results obtained in [13, (2.20), (2.22), (2.18)], and (2.71) is the

Newton-Busemann pressure law (see [1, (3.29) in p.71] and [13, Remark 1.7]). Particularly, for

b(x) = x tan θ0, we have σ = sin2 θ0, namely the Newton’s sine-squared law (see [9, (3.1.1) in

p. 132]).

2.4.2 Cones

Next we consider the case of a conical body. We use the cylindrical coordinates of R
3,

with θ ∈ [0, 2π) the angle between a vector on the (y, z)-plane and the positive y-axis. Then

b1 = R(x, θ) cos θ and b2 = R(x, θ) sin θ, where R(x, θ) is a nonnegative C2 function for x ≥
0, θ ∈ [0, 2π), with period 2π for the θ-variable. There are two particularly interesting cases:

(i) Cylindrically symmetric cone, namely, R depends only on x.

(ii) Self-similar conical flows, namely, R(x, θ) = Θ(θ)x.

For a general conical body, the normal vector on B is

n = (n1, n2, n3) = (RRx,−(Rθ sin θ +R cos θ), Rθ cos θ −R sin θ), (2.72)

thus

|n| =
√
R2 +R2

θ + (RRx)2. (2.73)

We assume that

∂xR(x, θ) > 0, (2.74)

then n1 > 0 if R > 0, and by (2.52),

ṽ = (µRx + νRθ) cos θ −Rν sin θ, w̃ = (µRx + νRθ) sin θ +Rν cos θ.

Recalling that ϑ = |n|̺, (2.53) and (2.55)–(2.56) are reduced to

∂x(ϑµ) + ∂θ(ϑν) = n1, (2.75)

∂x(ϑṽµ) + ∂θ(ϑṽν) = −n2σ, (2.76)

∂x(ϑw̃µ) + ∂θ(ϑw̃ν) = −n3σ, (2.77)

and (2.61) reads now

σ =
R2R2

x

R2(1 +R2
x) +R2

θ

+
ϑ

R2(1 +R2
x) +R2

θ

× (−µ2RRxx + 2µν(RxRθ −RRθx) + ν2(−RRθθ + 2R2
θ +R2)). (2.78)

For cylindrically symmetric cones, namely, R = R(x) with R(0) = 0, we may also assume

that ν ≡ 0, and obtain from (2.75)–(2.77) the ODE

(
ϑµ− 1

2
R2

)′

= 0
(
⇒ ϑµ =

1

2
R(x)2

)
, (2.79)
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(ϑµ2)′ + ϑµ2R
′′

R′

(
1 +

1

1 +R′2

)
=

RR′

1 +R′2
, (2.80)

together with

σ =
RR′2 − ϑµ2R′′

R(1 +R′2)
. (2.81)

Note that ∫
dt

t(1 + t2)
= ln

( t√
1 + t2

)
+ C,

we solve (2.80) to get

ϑµ2 =

√
1 +R′2

R′2

∫ x

0

R(τ)R′(τ)3

(
√
1 +R′(τ)2)3

dτ,

hence

̺ =
1

4

R3R′2

1 +R′2

1
∫ x

0
R(τ)R′(τ)3

(
√

1+R′(τ)2)3
dτ

, (2.82)

µ =
2

R2

√
1 +R′2

R′2

∫ x

0

R(τ)R′(τ)3

(
√

1 +R′(τ)2)3
dτ (2.83)

and

σ =
R′2

1 +R′2
− R′′

RR′2
√
1 +R′2

∫ x

0

R(τ)R′(τ)3

(
√
1 +R′(τ)2)3

dτ. (2.84)

Particularly, for the straight symmetric cone with zero attacking angle, namely, R(x) = (tan θ0)x,

where θ0 is the half open-angle of the cone, we have the Newton’s sine-squared law (see [1, (3.3)

in p. 59])

σ = sin2 θ0. (2.85)

For self-similar conical flows, namely R = Θ(θ)x, from (2.78), we have

n1 = Θ2x, n2 = −x(Θ′ sin θ +Θcos θ), n3 = x(Θ′ cos θ −Θsin θ),

|n| = x
√

Θ2(1 + Θ2) + Θ′2

and

σ =
Θ4

Θ2(1 + Θ2) + Θ′2
+

ϑν2

Θ2(1 + Θ2) + Θ′2
(Θ2 + 2Θ′2 −ΘΘ′′). (2.86)

The first term does not depend on x. It is reduced to (2.85) if Θ = tan θ0 and (then assuming

naturally that) ν ≡ 0 (no swirl). So generally the second term shall also be independent of x.

This motivates us to suppose that

µ = µ̂(θ), ν =
1

x
ν̂(θ), ϑ = x2ϑ̂(θ). (2.87)

Then

ṽ
.
= v̂ = (µ̂Θ+ ν̂Θ′) cos θ −Θν̂ sin θ,
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w̃
.
= ŵ = (µ̂Θ+ ν̂Θ′) sin θ +Θν̂ cos θ.

It follows that (2.75)–(2.77) read now

(ν̂ϑ̂)′ + 2µ̂ϑ̂ = Θ2, (2.88)

(ν̂ϑ̂v̂)′ + 2ϑ̂µ̂v̂ = σ(Θ′ sin θ +Θcos θ), (2.89)

(ν̂ϑ̂ŵ)′ + 2ϑ̂µ̂ŵ = −σ(Θ′ cos θ −Θsin θ). (2.90)

Hence “(2.89) sin θ − (2.90) cos θ” implies that

(ϑ̂ν̂2Θ)′ + 3Θϑ̂µ̂ν̂ + ϑ̂ν̂2Θ′ = −σΘ′. (2.91)

Similarly “(2.89) cos θ + (2.90) sin θ” yields

[ν̂ϑ̂(µ̂Θ+ ν̂Θ′)]′ + 2ϑ̂µ̂(µ̂Θ+ ν̂Θ′)− ϑ̂ν̂2Θ = σΘ. (2.92)

Thus (2.88) and (2.91)–(2.92) constitute the ODE to determine the self-similar conical flows,

see [17, (3.36)–(3.38), p. 513].

3 Conclusions and Discussions

For a three-dimensional obstacle O moving uniformly in hypersonic limit flows with constant

density and total enthalpy, a concentration layer appears on the upwind boundary surface B
where n1 > 0. The distribution of density and velocity of the flow in the concentration layer

are governed by a first-order hyperbolic system of balance laws, which resembles with the

pressureless compressible Euler equations defined on a given curved surface (i.e., the upwind

boundary of the obstacle), but there are source terms reflecting the fact that particles in the

hypersonic flow hitting the obstacle everywhere on its upwind boundary, leading to changes of

mass and momentum in the concentration layer. A formula (2.61) for distribution of pressure

on the obstacle is presented, which in general depends on the state of the flow in concentration

layer. For wedges or cones, we could derive as special cases the celebrated Newton’s sine-squared

law or Newton-Busemann law of lift/drag in hypersonic aerodynamics. This demonstrates the

approach we took, namely studying Radon measure solutions of compressible Euler equations to

incorporate different scales in the hypersonic flow fields, is not only mathematically interesting,

but also physically significant.

As readers might notice, these ideas and results provoke more questions than what we

answered. It is interesting to study classical or weak solutions of (2.62)–(2.65), under suitable

small perturbations of the background surface (such as a straight wedge), or even construct

Radon measure solution to this system which models concentration of mass on lower dimensional

set, such as delta shocks. There are many interesting discussions and conjectures about this

aspect in [9, Sections 5–6 in Chapter III]. Initial data ̺(0, s) = 0 means that the ‘vacuum’ is

initial data, which leads to a singular Cauchy problem. Efficient numerical methods would also

be useful for applications.

The PDE for free concentration layers, and the case the upcoming flow is not uniform, are

all necessary for further research. Just for the two-dimensional unsteady compressible Euler

equations, there are lots of interesting untouched problems, such as pressureless jet interacting

with supersonic polytropic gas, and studying its multidimensional stability, etc. We wish there

could be more works in this direction of research in the near future.
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