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Stability of Rotation Relations of Three Unitaries with
the Flip Action in C*-Algebras*

Zhijie WANG! Junyun HU! Jiajie HUA?

Abstract The authors show that if © = (6,;) is a 3 x 3 totally irrational real skew-
symmetric matrix, where 6;, € [0,1) for 5,k = 1,2,3, then for any £ > 0, there exists
0 > 0 satisfying the following: For any unital C*-algebra A with the cancellation property,
strict comparison and nonempty tracial state space, any four unitaries ui,uz,us,w € A

such that (1) |Juru; — ™k ujug| < 8, wujw™t = u;l, w? = 14 for 5,k = 1,2,3; (2)
7(aw) = 0 and 7((urujufu;)™) = ™%k for all n € N, all a € C*(u1, uz,us), j, k= 1,2,3
and all tracial states 7 on A, where C™* (u1, u2, us) is the C'*-subalgebra generated by w1, uz

and us, there exists a 4-tuple of unitaries w1, u2, us, w in A such that

U, wual=a7t, @ =1a

27160 53,
= ik
¢ J

Uk
and
lui — ;| <e, [w—wl <e
for j,k = 1,2,3. The above conclusion is also called that the rotation relations of three
unitaries with the flip action is stable under the above conditions.
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1 Introduction

The notion of stability appears in many forms throughout mathematics. Following Hyers
and Ulam (see [29]), a general sense of this notion can be expressed as follows: Are elements that
“almost” satisfy some equations “close” to some elements that exactly satisfy the equations?

An example of a concrete stability problem is the following.

For a given € > 0, is there a § > 0, depending only on ¢, such that if ¢ and b are two n x n

self-adjoint matrices with ||al|,]|b|| < 1 satisfying
|lab — ba|| < 6,
then there exists a pair of self-adjoint matrices a and bin M, such that

ab="ba, |a—a|<e and |b—b| <e?
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This is an old and famous question in matrix and operator theory (see [2, 9, 39]), which popular-
ized by Halmos (see [22]). In the 1990’s Lin affirmatively solved this question (see [20, 31]). The
corresponding questions for a pair of unitary matrices and for a triple of self-adjoint matrices
are all false, as pointed out by Voiculescu [40-41]. However the story does not end here. An
obstruction has been found by Exel and Loring [11] in the corresponding question for a pair of
unitary matrices. The answer becomes yes if this obstruction vanishes. See also [11-13, 15-16].

A natural generalization for pairs of almost commuting unitary matrices is to see what
happens for pairs of unitaries that almost commute up to a scalar with norm 1. It turns out
that similar conclusion holds, and in fact one can deal with more general ambient C*-algebras
rather than just matrix algebras. More precisely, in [26] the third-named author and Lin proved
the following.

Theorem 1.1 (see [26]) Let 6 be a real number in (—%,1). Then, for any £ > 0, there is
a 6 > 0, depending only on € and 6, such that if u and v are two unitaries in any unital simple

separable C*-algebra A with tracial rank zero satisfying

uv — ™ vul| <6 and

T(log(uvu*v®)) = 2mif (1.1)

for all tracial state T on A, then there exists a pair of unitaries u and v in A such that

= 2™, |u—al|<e and |jv -7 <e.

Note that the trace condition (1.1) is also necessary.

Let # € R. We call a pair of unitaries u, v with uv = e>™%pu to satisfy the rotation relation
with respect to 6, since the universal C*-algebra generated by such unitaries is the rotation
algebra Ag. So another way to phrase Theorem 1.1 is to say that the rotation relation is stable
in unital simple separable C*-algebras with tracial rank zero, providing that the trace condition
(1.1) is satisfied.

In [27], the third-named author and Wang further studied the stability of the rotation
relations of three unitaries and proved the following theorem.

Theorem 1.2 (see [27]) Let © = (0x)3x3 be a non-degenerate real skew-symmetric matriz
(here non-degeneracy is equivalent to dimg(spang(1,012,613,023)) > 3, see [1, Lemma 3.1]),
where O, € [0,1) for j,k = 1,2,3. Then, for any € > 0, there exists 6 > 0 satisfying the
following: For any unital simple separable C*-algebra A with tracial rank at most one, any
three unitaries ui,us,usz € A such that

upuj — ™ iy ug|| <6, 4,k =1,2,3,
there exists a triple of unitaries uy,us,us € A such that
Upty = ™0 and U —uj| <e, g k=1,2,3
if and only if

7(logg,, (ukujuju;)) = 2mib,  for j,k=1,2,3 and all tracial state T on A,

where log@j,c is defined as in Definition 3.4 of the present paper.
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In [23], the third-named author extended Theorem 1.2 to the stability of more general
relations of three unitaries in any unital simple separable C*-algebra with tracial rank at most
one.

Let o : u — u~', v — v~ ! be the flip automorphism on Ag. Notice that Ay X, Zs is the
universal C*-algebra generated by a triple of unitaries u, v and 1w satisfying

uv = >, ur* =u*, row* =v* and 12 =1.

The crossed products Ay X, Zo which are considered as the noncommutative spheres have been
studied. See, for example, [3-5, 10, 18-19, 30, 42]. So in [24], the author studied the stability of
rotation relation of two unitaries with the flip action. More precisely, the third-named author
proved the following theorem.

Theorem 1.3 (see [24]) Let 0 € (0,1) be an irrational number. Then, for any ¢ > 0,
there exists & > 0 satisfying the following: For any unital C*-algebra A with the cancellation
property, strict comparison and nonempty tracial state space, any three unitaries u,v,w € A
such that

(1) Jluv — 2™ u| < §, wuw™

(2) T(aw) = 0 and 7((vvu*v*)") = ™" for alln € N, all a € C*(u,v) and all tracial state

T on A, where C*(u,v) is the C*-subalgebra generated by u and v,

1 1 —1 —1

=u !, wow Tt =07 w? =1y,

there exists a triple of unitaries u,v,w € A such that

uw =¥, @2 =1, wuw '=u', wvw '=v"' and

lu-al <&, lo-ol<e |w—a]<e

In Theorem 1.3, the C*-algebra A does not need to be simple. In the meantime the can-
cellation property and strict comparison are more general conditions, many C*-algebras have
the cancellation property and strict comparison. For example, a unital simple C*-algebra with
tracial rank at most one as in Theorem 1.2 has the cancellation property and strict comparison
(see [32]). Readers can refer to [6, 25, 28] for more stability problems.

Let © = (0;) be 3 x 3 real skew-symmetric matrix. Let Ag be the universal C*-algebra
generated by unitaries uj, ug, ug subject to the relations

Ugll; = ez’rief’“ujuk
for j,k =1,2,3. Let o : u; — uj_l, j = 1,2,3 be the flip automorphism on Ag (it is worth
mentioning that the only canonical action by a nontrivial finite cyclic group on a simple 3-
dimensional torus Ag is the flip action by Zs by [21, Theorem 1.4]). Notice that Ag X4 Zs is
the universal C*-algebra generated by a 4-tuple of unitaries uj, us, ug and to satisfying

27Ti9jk

Ul =e ujug, tou;jw’ =u;  and w?2=1 for jk=1,2,3.

The crossed products Ag X, Zo have been studied by many researchers. See, for example, [7,
10]. So in this paper, we will study the stability of rotation relations of three unitaries with the
flip action. Specifically, we prove the following theorem.

Theorem 1.4 Let © = (0;1) be a 3 x 3 totally irrational real skew-symmetric matriz, where
Ok € 10,1) for j,k = 1,2,3. Then, for any € > 0, there exists 6 > 0 satisfying the following:
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For any unital C*-algebra A with the cancellation property, strict comparison and nonempty

tracial state space, any four unitaries uy,us,us, w € A such that
2mi0ikyjugl| < 8, wujwt = uj_l, w? =1y for j,k=1,2,3,

(2) 7(aw) = 0 and T((upujupu;)") = e?™n%ik for allm € N, all a € C*(uy,u2,u3), j,k =
1,2,3 and all tracial state 7 on A, where C*(u1, ua,us) is the C*-subalgebra generated by uy, us

(1) flugu; —e

and ug, there exists a 4-tuple of unitaries uy,us,us, w € A such that

Uyt = >0k, wuyw !

1:17;, @ =14 and |u; -4l <e, |w—w|<e

for j,k=1,2,3.

The above theorem can be regarded as a generalization of Theorems 1.2—1.3.

This paper is organized as follows. In Section 2, we list some notations and known results.
In Section 3, by using the flip invariant projections on Ag, we obtain four projections in the
crossed product C*-algebra Ag X, Za, which are four of the twelve generators of Ky-group
of Ag X4 Zo. In Section 4, we consider some other projections which are other generators of
Ko-group of Ag X4 Zo. In the last section, we prove our main results by using the existence
theorem and the uniqueness theorem in the theory of C*-algebras classification.

2 Preliminaries

In this section, we will give some symbols and definitions to be used later.

Let n > 2 be an integer and 7,, denote the space of n x n real skew-symmetric matrices.

Definition 2.1 (see [37]) Let © = (Ojk)nxn € Tn. The noncommutative torus Ae is the
uniwversal C*-algebra generated by unitaries uy, Us, - - - , U, subject to the relations

upl; = e271'10j

Fujug

for1 < j,k <n.(Of course, if all ;1 are integers, it is not really noncommutative.) Throughout
this paper, we will use Uy, ug, -+ U, to represent the n generators of Ao, sometimes without
special emphasis. In particular, given 0 € R, we also let Ay denote the universal C*-algebra
generated by a pair of unitaries u and v subject to uv = > .

For any © = (0;x)nxn in T, Ae has a canonical tracial state 7g given by the integration
over the canonical action of Z™ (see [38, page 4] for more details). We denote this trace by 7o
OI TAg -

Definition 2.2 A skew symmetric real n x n matriz © is nondegenerate if whenever x € 2"

27i(x,0y

satisfies e ) =1 for all y € Z", then x = 0. Otherwise, we say © is degenerate.

The following theorem shows the structure and the K-theory of Ag when © is nondegenerate.

Theorem 2.1 (see [33]) Let © be in T, with n > 2. The C*-algebra Ag is simple if and
only if © is nondegenerate. Moreover, if Ag is simple, then it is a unital AT algebra and has
the unique tracial state 1o, and Ko(Ae) = K1(Ag) = 72"

Definition 2.3 Let © = (6,;) € T,. We say © is totally irrational if 6,5, 1 < j <k <n
are irrational and rational independent.
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Note that if © is totally irrational, then © is nondegenerate.

Definition 2.4 (see [34]) Let 6 € (0,1). Choose € such that 0 <e <0 <0+ <1. Set

1, 0<t<e,
e<t<,

LO+e—t), 0<t<O+e,

, O+e<t<l1

£
2mwity 1a
CORR
0

and
0, 0<t<8,

g(®™) = S [F(e2™)(1 — f(e*™)]3, §<t<0+e,
0, 0+e<t<Ll

Then f and g are the real-valued functions on the circle which satisfy
(1) g(e?™) - g(e>m=") = 0,
(2) (e21) - [£(e) + (40| = g(e™) and
(3) J(e) = [F(e*4)]2 + [g(e2 )2 + [glem =),
Let u, v be the canonical generators of Ag. The Rieffel projection in Ag is the projection

p=g(wo" + f(u) +vg(u).
Theorem 2.2 and Proposition 2.1 below are surely well known.

Theorem 2.2 Let § € [0,1). Let C(T) denote the C*-algebra of all continuous complex
functions on the circle and let z be the identity function of C(T). Let o: Z ~ C(T) be the
action determined by o(z) = e*™%2. Then Ay is naturally isomorphic to the crossed product
C(T) %, Z. Moreover, there is a short exact sequence induced from the Pimsner-Voiculsecu
siz-term exact sequence from this crossed product:

0 — Ko(C(T)) =% Ko(Ag) -% K1(C(T)) — 0.

Definition 2.5 (see [27, Definition 3.2]) Let 6 € [0,1). Let u, v be the canonical generators
of Ag. If 0 # 0, we define by, € Ko(Ap) to be the equivalent class of the Rieffel projection
as constructed in Definition 2.4. If = 0, we let by, € Ko(Ag) be the bott element (see [26,
Definition 2.7]).

Proposition 2.1 Let 0 € [0,1) and T4, be the canonical tracial state on Ag. Let by, €
Ko(Ag) be defined as in Definition 2.5. Then 7Ta,(byy) = 0. Moreover, if 9: Ko(Ag) —
K1(C(T)) is the homomorphism defined as in Theorem 2.2, then O(byv) = [z], where z is the
identity function of C(T).

Definition 2.6 (see [17]) For 0 < e < 2 and 0 € [0,1), the soft rotation algebras S¢p is
defined to be the universal C*-algebra generated by a pair of unitaries uz 9 and v. g subject to
luc ove0 — €™, gu. || < e. In particular, we have Sy g = Ayp.

Definition 2.7 For 0 < e < 2 and 0 € [0,1), let B.g be the universal C*-algebra gen-
erated by unitaries x,,n € 7, subject to the relations ||zn11 — ™0z, || < e. Let 0.9 be the
automorphism of Be g specified by o¢9(xn) = Tni1-
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Proposition 2.2 (see [17, Proposition 2.2]) For 0 < e < 2, B. g X, , Z is isomorphic to
Se0.

)

Theorem 2.3 (see [17, Theorem 2.3|, [14, Theorem 2.4]) Assume 0 < e < 2. Let z denote
the canonical generator of C*-algebra C(T). Identify Ag as the crossed product of C(T) by the
action o of 7 induced by o(z) = e*™%2. Then

(1) Let 4% : B.g — C(T) be the unique homomorphism such that ¥¢(z,) = e*"™92 for all
n € Z. Then ¢ induces a homotopy equivalence between B. g and C(T).

(2) Let @Y be the homomorphism defined by

0l S0 = So0 = Ao, Plucp) =uop=u, @l(vep) = 0o = 0.
Then we have the following commutative diagram:

0 ——> Ko(Bey) — Ko(Sep) —2> K1 (Bey) —0

v l o?, l ¥l l

0 —— Ko(C(T)) — Ko(As) —2> K1 (C(T)) —0,

)

where all vertical maps are isomorphisms and all rows are derived from the Pimsner-Voiclescu
exact sequences.

Definition 2.8 Let § € [0,1). Let u, v be the canonical generators of Ag. We define b? to
be the element in Ko(Se0) given by b = (¢ )71 (by,y), where o is defined as in Theorem 2.3.

It follows immediately from the definition that 9(b?) = [x¢] in K1 (Be).

Definition 2.9 Let A be a unital C*-algebra and let w and v be two unitaries in A such that
|uv — e*™yul| < e < 2. There is a homomorphism &9, : Szo — A such that ¢f, ,(uz9) = u

and ¢, ,(v-0) =v. We define b, , = (6% ,).0(b?). Note that b, does not depend on e as long
as |juv — e yu|| < e < 2.

Definition 2.10 An AF-algebra is a C*-algebra which is (isomorphic to) the inductive limit
of a sequence of finite dimensional C*-algebras.

Given © € 7,. Let a denote the flip automorphism on Ag satisfying a(u;) = uj_1 for
j=1,2,--- ,n. By abuse of notations, we still use a to denote the flip automorphism on the
subalgebra Ay, of Ag for 1 <j <k <n.

Next we recall that the structure of the crossed product algebra Ag x4 Zo.

Theorem 2.4 (see [10]) Let © € T, be nondegenerate. Let o : Ag — Ae be the flip
automorphism. Then Ag X4 Zs is a unital simple AF-algebra with the unique tracial state, and

Ko(Ao %o Z3) 2 732", Ki(Ae Xa Zs) = 0.

Notation 2.1 Let A be a unital C*-algebra. Denote by T'(A) the tracial state space of A.
Denote by Aff(T'(A)) the space of all real affine continuous functions on T(A). If 7 € T(A), we
will use 7% or even T to denote the trace 7 ® Tr on My(A) for all integer k > 1, where T is
the unnormalized trace on the matrix algebra My. Denote by pa : Ko(A) —Aff(T(A)) the order
preserving map induced by pa([p])(7) = 79" (p) for all projections p € A®@ My, n =1,2,---.
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We define the dimension function d, associated to 7 € T(A) by d,(a) = nh—%o r(aw) for
any positive element a € My(A), where 7 is regarded as an unnormalized trace on My(A). In
particular, if @ = p is a projection, then d,(p) = 7(p).

Let U(A) be the group of all unitary elements of A. Let u € A be a unitary, define Adu(a) =
u*au for all a € A. For any a € A, denote by spec(a) the spectrum of a.

We always use X (1 | to represent the characteristic function on (3,+00).

Definition 2.11 We say that a C*-algebra A has strict comparison if for any two positive
elements a,b € My (A) with d.(a) < d;(b) for any 7 € T(A), there exist r, € Mp(A),n € N

such that lim r}br, = a.
n—oo

Let A be a C*-algebra with strict comparison and p,q € My (A) be two projections. If
7(p) < 7(q) for all 7 € T'(A), then there exists s € My (A) such that p = s*s and ss* < q.

Definition 2.12 Let A and C be two C*-algebras and let A — C be a linear map. Let
0 >0 and G C A be a finite subset. We say L is G-6-multiplicative if

[[L(ab) — L(a)L(b)|| <6  for all a,b € G.

For convenience, if L: A — C'is a linear map, we will use the same symbol L to denote the
induced map L ® id,: A®@ M,, = C ® M,.

It is well known that if a € M, (A) is an ‘almost’ projection, then it is norm close to a
projection. Two norm close projections are unitarily equivalent. So [a] € Ky(A) is well-defined.
If L: A — C is an ‘almost’ homomorphism, we shall use [L] to denote the induced (partially
defined) map on the K-theories. From [32, Remark 4.5.1], we can know that for any finite set
P C Kop(A), there is a finite subset G C A and § > 0 such that, for any unital completely
positive G-d-multiplicative linear map L, [L] is well defined on P.

3 From the Flip Invariant Projection to Some Obstacles to Stability

In this section, we first construct an a-invariant projection pg(u, v) in Ay for 0 € [%, 1), then
by this a-invariant projection we can construct a projection Py(u,v,1) in Ay X, Zo which is
one of the six generators of Ko(Ag Xa Z2) and Ta,xz,(Py(u,0,10)) = & for 6 € (0,1), where
TAy%aZ, 18 the canonical tracial state on Ap Xqo Zo. Let © = (0j,) € T3. Then we think of
Ay, Mo Z2,1 < j <k <3, as subalgebras of Ag X4 Z2 to obtain four projections in Ag Xq Zs
which are four of the twelve generators of Ko(Ae X, Z2). Finally, we obtain some obstacles to
the stability of rotation relations of three unitaries with the flip action.

Next we begin with the construction of the a-invariant projection, which is taken from [42].

The functions fy and gs chosen here will be those constructed by Connes [8].

Set

(1-0)""t, 0<t<1-9,
fe(e27rit): 1, 1_9§t§9,
(1-6)7'(1-1t), 6<t<1
and
omit 0, <t<9,
ge(e ): 2mit 2t 1
[fo(e®™)(1 — fo(e*™))]z, 6 <t<1.

Then fy and gy are the real-valued continuous functions on the circle which satisfy
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(1) ge(GQﬂit) go e27'ri(t—0)) _ 0,
(2) gg(e%it) [fg(e%it) + fe(e%ri(t—@))] _ gg(e%it) and
(3) fg(e%it) _ [fe(e27rit)]2 + [ge(e%it)]z + [gg(e2”i(t+9))]2.

Lemma 3.1 (see [42], [24, Lemma 3.1]) Given 6 € [3,1). Let u,v and 1o be the generators
of Ag Xo Zo satisfying

270

*

wo = ™1,  ur* =u*, wow* =v*, w?=1.

*

Then there exists a projection pg(u,v) = uge(v) + fo(v) + go(v)u* in Ay satisfying rwpg(u,v) =

po(u,v)r0 and T4, (pe(u,v)) =0, where fg,go are real-valued continuous functions on the circle
and Ta, is the canonical tracial state on Ayg.

For 0 € (O, %) and uv = ™%y, we have 1 — 6 € (%, 1) and vu = >™(1=%yy. By applying

1

2

p1—g(v,u). Then we also have 74, (po(11,0)) = 74,(1 —p1_g(o,u)) =1— (1 -0) = 6.

Lemma 3.1, p1_g(b,u) is a projection in Ag. So when 0 € (0, 3), we define py(u,0) = 1 —

Remark 3.1 Let 6 € (0,1) is an irrational number. So (74, ). is injective map from K(Ag)
to R by [36]. Note that

(749 )+ (bu,v) = (T4,)«([po(u, 0)]) = 6,
we have by, = [pe(u,0)] in Ko(Ag).

Proposition 3.1 (see [24, Proposition 3.3]) For 6 € [3,1), let Py(u,v,1) = ipg(u,v) +
%pg(u, v)to, where u, v, and pp(u,v) are as in Lemma 3.1. Then Py(u,v,t0) is a projection in

C*-algebra Ag X o, Zo.

Proposition 3.2 (see [24, Proposition 3.4]) For 6 € (0, 1), let u,v and 1 be the generators
of Ag X Zo satisfying

27i0 *

uo = ™%y, wuw* =u*, o' =v*, =1

Let Py(u,0,t0) = % + %m — P1_g(v,u,10), where Pi_g(v,u,t0) is as in Proposition 3.1. Then
Py(u,v,10) is also a projection in C*-algebra Ag Xy, Zo.

Let © = (0;1) € T3. Notice that Ag X Zs is the universal C*-algebra generated by a 4-tuple
of unitaries uj, us, u3 and v satisfying

weuy = 2™k, ot =u5 and w?=1 forj k=123
Now we think of Ag,, Xo Z2,1 < j <k < 3, as subalgebras of Ag X4 Z2, and then we have the
following theorem.

Theorem 3.1 Let © = (0,,) € T3 be totally irrational, where 0;, € [0,1) for j,k =1,2,3.
Then Ko(Ae X Zg) is isomorphic to Z'2, which is generated by the K -theory classes of the
elements:

1 1 1 1 .
1, Q1= 5(1 +w), Q2= 5(1 —ww), Q3= 5(1 — ), Q4= 5(1 — ™2y 1510),

1

1 ~ 1 i
Qs = 5(L+uzw), Qs = 5(1 - M), Q7 = F(1- ™ Uz ),

Py, (uz,u1,10), P, (€™ us, ™50y ugto),  Ppy, (us,ug, ), Poy, (uz, U2, 10).
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Moreover, Tag .z, takes the following values (in this order) on these classes:

b2 b2 i3 o3
27 27 27 27

N =

1
) 27

N =

L,

)

N =

1
) 27

N =

)

N =

Proof By [7, Corollary 7.2], we know that
[1]3 [Ql]a [Q2]a [Q3]a [Q4]a [Q5]7 [Q6]7 [Q7]7 [P912 (u27 ug, m)]v [P912 (eﬂ'iezqu’ eﬂ-ielsul? u3m)]v

[P913 (U3, ug, m)] and [P923 (u3v Uz, m)]

are generators of Ko(Ag X Z2). (The expression of the last four generators here is slightly
different from that in [7], we can refer to [24, Theorem 3.6] for our expression.)
Note that T4, x,z, is the canonical tracial state on Ag X Za, we have

TAox.z(at0) =0 for any a € C*(ug,us,us).
So
1 .
TAoxaZs(Q)) = 5 for j=1,2,---,7.

For 615 € [%, 1),

1 1
TA@ X olio (P012 (u27 u17 m)) = TA@ X oLio (5]9912 (u27 ul) + 5]7012 (UQ, ul)m)

1
= TAoxaZs (519912 (u27 ul))

b2
= (3.1)

For 60,5 € (0, %),

1 1
TAo xaZs (Poys (U2, U1,10)) = TAg %2, (— + -t — P1—012(u17u25m))

2 2
1
= TAoXaZs (5 — Pi_g,, (u1,us, m))
1 1-012 012
- = == 3.2
2 2 2 ( )

Similar calculations show that

) . 0
Thoxazs (Poys (€M uy, ™00 ug0)) = 222,
013
TAo Xl (P913 (U3, ug, m)) = 7
and
0a3
TAe Xl (P923 (u37 uz, m)) = 7

Next we will obtain some obstacles to the stability of rotation relations of three unitaries
with the flip action.
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Definition 3.1 Let § € (0,1). Let A be a unital C*-algebra and u,v be a pair of unitaries
i A. We define

10— vgr0(u) — fio(u) — gr-o(u)u)

HU v o) — fio(u?) — g o(w )], 0<6< 2,
eg(u,v) =

S1(ug0(0) + Jolw) + 9o 0)u")

+(u*go(v*) + fo(v*) + go(v*)u)], % < <1.

Notice that if uv = e®™%u, then eg(u,v) is a projection. In particular, we have eq(u,v) =
pe(u,U).

It is clear that ep(u,v) is always self-adjoint.

Proposition 3.3 (see [24, Proposition 3.8]) Let 6 € (0,1). There is a g > 0 such that,
for any unital C*-algebra A, any pair of unitaries u,v in A with

2710

luv — =™ vu|| < do,

we have

eo(u, v))? — eq(u, v)|| < i.

In particular, the spectrum of eg(u,v) has a gap at %

Definition 3.2 Let § € (0,1). Let o > 0 be chosen as in Proposition 3.3. Let A be a
unital C*-algebra and let u,v be a pair of unitaries in A with |[uv — e*™%vu|| < 5o. We define
Ro(u,v) = X(%A—oo)(e@(uﬂ v)).

Proposition 3.4 (see [24, Propostion 3.10]) Let 6 € (0,1) be an irrational number. Let

0o > 0 be chosen as in Proposition 3.3. Let A be a unital C*-algebra and let u,v be a pair of

unitaries in A with

200 < do.

|luv — e
Then b5, ,, = [Rg(u,v)].

Definition 3.3 Let 6 € (0,1). Let 9 > 0 be chosen as in Proposition 3.3. Let A be a unital
C*-algebra and let u,v and w be a triple of unitaries in A such that

2710

[|luv — ™ vu|| < do

and

We define Ro(u,v,w) = 3 Rg(u,v) + 3 Ro(u,v)w. We know from the following discussion of [24,
Definition 3.11] that w commutes with Rg(u,v). So Rg(u,v,w) is a projection. In particular, if

w =%, wuw P =u"t, wow ' =0v' and w? =14,

then Rg(u,v,w) = Py(u,v,w).
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Definition 3.4 Let § € [0,1). Denote by log, the continuous branch of logarithm defined
on Fy = {e* : t € (2m0 — 7,270 + )} with values in {ri:r € (270 — 7,270 + )} such that
logy(e?™%) = 27i 6. Note that if u is any unitary in some C*-algebra A such that ||u—e?™%|| < 2,
then spec(u) has a gap at €™+ ™ thuslog,(u) is well defined. In particular, if 0 = 0, we simply
write log(u) for log,(u).

Theorem 3.2 (see [27, Theorem 4.14]) Let A be a unital C*-algebra with T(A) # 0 and
0 € [0,1). Then for any u,v € U(A) with |uv — e*™%vu| < 2 and with S, defined as in
Definition 2.9, we have

1

pa(b? () = ﬂr(logg(uvu*v*)) forall T € T(A). (3.3)
' T

The formula (3.3) is called the generalized Exel trace formula. The case where A is the

matrix algebra and 6 = 0 is proved in [14]. The case where A is an arbitrary unital C*-algebra

and 6 = 0 is proved in [26, Theorem 3.7]. Next, we use the generalized Exel trace formula to

describe some obstacles to stability.

Lemma 3.2 Let © = (0;) € T3 be totally irrational, where 0j, € [0,1) for j,k = 1,2,3.
Let A be a unital C*-algebra with T(A) # 0, let &g be chosen as in Proposition 3.3 (select the
smallest §y according to 612,013, 023). For any u1,ua,us and w € U(A) salisfying

(1) flugu; — 2™ 0mwjuy | < do < 2, wujw™ =uj ', w? =14 for all jk=1,2,3,

(2) T7(aw) =0 for all a € C*(u1,uz2,u3) and all T € T(A),

we have

pa([Roy, (uz, ur, w)])(7) = 3pa(bi22,,)(7)

pa([Ro,, (€720 uz, e™15uy, uw)])( ) =3P (bfi?smw eriosg ) () = 17 (108, (u2urudug)),
pa([Roys (us, ur, w)])(1) = 5pa(0)12,,)(7) = 4,,1 7(logg,, (usuruzui)), and

pa([Roas (uz, uz, w)) (1) = 5pa(bi22,,)(T) = 1557 (logy,, (usuzuius))

for all T € T(A), where bﬁ » s defined as in Definition 2.9, and Rg(u,v,w) is defined as in
Definition 3.3.

471'1 (10g912 (u2u1u2ul ))

3PA
l
2

Proof Since ||upu; — ™%k uy|| < &, we have

pa([Re,, (uz, u1, w)])(7) = PA([%Relz(uzaul) + %Relz(uzaul)w])ﬁ)
By assumption that 7(aw) = 0 for all a € C*(u1, uz,us) and all 7 € T(A), we have
T(Ro,, (uz,ui)w) =0
for all 7 € T'(A). So

pa([Rowsz u, w))(7) = ([ Rowa 2, w)] ) (7).

Furthermore, by the generalized Exel trace formula of Theorem 3.2 and Proposition 3.4, we

conclude that

1 1
pa([Ray (02,11, w))() = 5040052, )(7) = 71084, (wpwruui)) for all 7 € T(A).
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Similarly, we have

pA([R912 (eﬂ-ie% U2, eﬂ-ielsulv U3’LU)])(T)

1 . ) 1 . .
A ( {—Rg12 (e™02345, e™013;,) 4 §R912 (e™023qy, e’”e”ul)ww} ) (1)

1 . .
= Pa ( |:§R012 (eﬂ-1023u27 eﬂ1913U1):| ) (T)

1 ) ) ) )
= (l0gg,, (€77 uz) (€™ (€% uz) (7 ur) )
= RTOOgew(WUlU;UT)),
pa([Roys (uz, ur, w)])(T)

1 1 -
= §PA(bﬁls?ju1)(T) = 4—7717(10%913 (uguiuzui))

and

1 1 ko k
Pa([Ross (us, uz, w))(7) = 5pa(Vi3,) (1) = =7 (10gg,, (usususus))

for all 7 € T'(A).

Lemma 3.3 (see [24, Lemma 4.3]) Let 6 € [0,1). For any unital C*-algebra A with T(A) #
0, any two unitaries u,v € A with ||uv — > Poul| < 2, if 7((wvu*v*)") = >0 for alln € N
and all 7 € T(A), then T(logy(uvu*v*)) = 2716 for all 7 € T'(A).

Lemma 3.4 Let © = (0;) € T3 be totally irrational, where 0j, € [0,1) for j,k = 1,2,3.
Let A be a unital C*-algebra with T(A) # (), let 6y be chosen as in Proposition 3.3 (select the
smallest §y according to 612,013, 023). For any uy,us,us and w € U(A) satisfying
2mif 1=uj_1, w? =14 for all j,k=1,2,3,

(2) T(aw) = 0 and 7((upujuju;)™) = ™% for all a € C*(uy,ug,us), all n € N, j,k =
1,2,3 and all T € T(A),

(1) JJugu; — e* ™k ujug|| < do < 2, wu;w™

we have
_ 912 7Ti923 7Ti913 _ 912
pA([R912 (uQvulvw)])(T) - 77 pA([R912 (e Uz, ¢ u17u3w)])(7_) - 77
0 0
pa([Royy (us, ur,w)))(7) = =2 and  pa([Ra, (us, uz, w)])(r) = =2

for all T € T(A), where Ro(u,v,w) is defined as in Definition 3.3.

Proof By combining Lemmas 3.2-3.3, we get the conclusion.

4 Some Other Projections

Lemma 4.1 Let © = (0,1) € T3, where 6;, € [0,1) for j,k = 1,2,3. For any unital C*-
algebra A, any four unitaries uy,us, uz,w € A, if ||ugu; — > ity juy|| < 2, wujw ! = uj_l
and w? =14 for j,k =1,2,3, then

(1) Q1 = 1(1+w), Qo = 1(1—ww), Qs = 1(1—upw) and Qs = 1(1+usw) are projections
n A,
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() Qi = 31 — e Puunw) + (1 - e 2uugw)), Qs = F((1 - e Buuzw) + (1 -
e™013y uzw)*) and Q7 = %((1 — e™020u3w) + (1 — ™28 uyuzw)*) are self-adjoint elements

and the spectra of Q4, Qﬁ, Q7 have a gap at 1

Proof (1) It is easy to verify that Ql, Qg, Qg, @5 are projections.
(2) We only prove that the case of Q4. The proofs that the cases of Qg and @7 are similar.
We compute that

~ 1 ) ‘ .
(Qa)" = (Z((l — ™12 u5w) + (1 — ememulqu)*))
1 .
Z(( _ 7”012’UJ1U2’UJ) + (1 _ eﬂ1912u1u2w)*)
= Qu.

So Q% is a self-adjoint element.
Since

(Qa)° = (l((l — ™" ugupw) + (1 - e”w”ulww)*))g

4
1 . . 2
= (1(2 — ez yw — e ’”elzugulw))
1 T(i912 —7Tii912 T(i912 T(i912 7Ti‘912
= 1—6(4 — 2e ULUW — 2€ UsULW — 2€ uLUsWw + e UL U2 WE UL ULW
T(i912 —7Tii912 —7Tii912 —7Tii912 7ri012
+e U1 U2We UsULW — 2€ UULW + € U2UWe U U2 W

+ e ™02y we ™02 g, w)

1 . ; 1 —
16(6 46912 o — e ™2 0y w + e27r1912ulu2u1 1u2 L
—2mif —1, —1
+e T 2u0uquy Uy ),
we have
~ 9 =
[(Q4)" — Qall
1 16 —if 2 1 Ti6 —if
= 1(2 — ™2 uw — e Lusuw) ) — 1(2 — ™2 upw — e 2uguqw)
1 . 1 o 1
= ”1_6(_2 + eQT(lelguluzul 1’(},2 1 +e 2771012u2u1u2 1u1 1)”
< 1 27’I’i912
< §||u2u1 —e urus||
- 1
1

So % is not in the spectrum of Q4 and spec(Q4) C ( — %, %) U (%, %)

Lemma 4.2 Let © = (0;,) € T3, where 6;, € [0,1) for j,k = 1,2,3. For any unital C*-
algebra A with T(A) # 0, any four unitaries ul, ug, us, w € A, if the following are satisfied:

(1) Nlugu; — e2™iry juy|| < 2, wujw=t = u; Yand w? =14 for j,k=1,2,3,

(2) T(aw) = 0 and T((upujuju;)") = 627””07’“ for allm € N, all a € C*(uy,usz,us), all
TeT(A) and j,k=1,2,3,
then X3 +Oo)(Q]) is a projection in A and T(x (1, +Oo)(Q])) =3 forallT € T(A) and j = 4,6,7,

where QJ is defined as in Lemma 4.1.
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Proof Since |jupuj — ity ug| < 2, wujw™! = uj_l and w? = 14 for j,k = 1,2,3,
by applying Lemma 4.1, % is not in the spectrum of @; for j = 4,6,7. So X(%;ﬁ-oo)(Qj) is a
projection in A.

We only prove that T(X( 1 +Oo)(C~24)) = 1 forallT € T(A). The proofs that T(X(%,Jroo)(@g)) =

1and 7 T(X(1, +OO)(Q7)) 5 are similar.
Next we first show that 7(Qq)") = 1 foralln € N and all 7 € T'(A).
Forn=2k+1,k=0,1,2,--- | by assumption and

(e 012 uqw + € ’”012u2u1w)2 2’”912uluzu1u2 +2+e 2”‘912uzu1u2u1,

we have
7((€™012 9 ugw + e~ ™012q501w)")
= 7((e*™ 912 uguiug 4+ 2 + e 2 02y uiut)F (€2 U ugw + e T2y w))
=0
and
7Ti912 —T(i912 2] — 2] A
T((€™ 2 ujugw + € uguiw)?) =24 for j=1,2,---.
So
A 1 7Ti012 —7Ti912 n
T((Q4)™) = youl T((2—e U UL W — € uguw)™)
1 n
=m Z CI 2" (=1 (€™ 2 uyugw + e~ ™02 upuiw)?)
j=0
L
_ 4_ Z 2] on— 2] ﬂ1912u1u2w + e—ﬂ1012u2u1w)2j)
=0
1 E
_ C2ign
T oyn Z 2
=0
k
1 0 1
=52 G =5, (4.1)
2n < 2
7=0
where CJ are the coefficients of the binomial expansion for j = 0,--- ,n.
Forn =2k, k=1,2,---, by assumption we have

(™20 upw + e~ 2ypu w)") = 4% = 2",

Now for any 0 < € < 1, by applying the Stone-Weierstrass theorem, there exists a polynomial
P(x) =ao+ a1z + -+ + apa™ on the spectrum of Q4 such that

)

||X(%7+oo P”speC(Q4 g

Note that
€
llaoll = llao — Ol = [[P(0) = X(1 100)(O) [ < g
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let Py(z) = a1z + -+ + a,z™, then we have

g
1P(2) = Pi(2)lpecgey = llaoll < 5

and

121(1) = 1 < [|1P1(2) = PO+ 11X (4 400y (1) = P < 7

Next we let P(z) = Py(z)/P;(1), then P(0) =0, P(1) = 1 and

Hﬁ ~ X($,400) ”spec(@l)
= [[Pr()/Pr(1) = X(1 100) (@)l spec(@n)
(Pr(z) = P(2)) 4+ (P(2) = X(2 100) () T (X(2,400) () = X(4 100 (@) PL(1))]
[P (1]

< m < E. (42)

It follows from (4.1) and (4.2) that

SH

1

(07(@a) + -+ anr (@) = 5P = 5.

r(P(Qu)) = ;

1
Py(1)

By (4.2) and the arbitrariness of ¢, we can get T(X(%)+OO)(QV4)) =1 forall 7 € T(A).

5 Stability of Rotation Relations of Three Unitaries with the Flip
Action

Let A be a C*-algebra. Suppose that p is a projection in M, (A) and ¢ is a projection in
M, (A). Then p ~q g if there is an element v in M, ,(A) with p = v*v and ¢ = vv*.

Definition 5.1 (see [38, Definition 7.3.1]) A C*-algebra A is said to have the cancellation
property if for every pair of projections p,q in |J M,(A),
n=1

[pl =gl in Ko(A) if and only if p ~o q.

It is known that many C*-algebras have the cancellation property, for example, every C*-
algebra of stable rank one has the cancellation property by [35]. (A unital C*-algebra A is said
to have stable rank one, if the group of invertible elements in A is dense in A.)

Let us give a brief outline of our strategy of proving the stability of rotation relations of three
unitaries with the flip action. Suppose u1, us, u3 and w are four unitaries in a unital C*-algebra
1 1

for j = 1,2,3, w2 = 14. Then there is an almost homomorphism from Ag X, Zs to A. Now

A, where w1, us, uz almost satisfy the rotation relation with respect to ©, and wu;w™

the stability of the rotation relations of three unitaries with the flip action is equivalent to that
this almost homomorphism is close to an actual homomorphism.

The latter problem is usually divided into two parts: The existence part and the uniqueness
part. An almost homomorphism will induce an ‘almost’ homomorphism between the invariants
of the two C*-algebras, where the invariant consists of the K-theories. It is usually easier to
show that an ’almost’ homomorphism of the invariants is close to an actual homomorphism.
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The existence part says that a homomorphism at the invariant level lifts to a homomorphism
at the C*-algebra level. The uniqueness part says that, two almost homomorphisms which
induces ‘almost’ the same maps on the invariants are almost unitary equivalent. Therefore,
conjugating suitable unitaries, one shows that an almost homomorphism is close to an actual
homomorphism.

The following is sometime called the existence and uniqueness theorem for homomorphisms
from AF-algebras to unital C*-algebras with the cancellation property.

Theorem 5.1 (see [24, Theorem 5.3]) Let A be a unital AF-algebra, and let C be a unital
C*-algebra with the cancellation property. Suppose that v : Ko(A) — Ko(C) is a unital positive
homomorphism. Then there is a unital homomorphism h: A — C such that h, = .

Theorem 5.2 (see [24, Theorem 5.4]) Let A be a unital AF-algebra. Then, for any e >0
and any finite subset F C A, there exists § > 0, a finite subset P C Ko(A) and a finite
subset G C A satisfying the following: If L1, Lo : A — C, where C' is a unital C*-algebra with
the cancellation property, are two G-d-multiplicative contractive completely positive linear maps
such that

[Lillaer) = [La2]lap),

where G(P) is the subgroup generated by P, then there is a unitary u € C such that
Aduo Ly ~, Ly on F.

Proposition 5.1 Let © = (0,;) € T3. Let uy,us,u3 and o be the canonical generators of
Ag X Zs as in Lemma 3.1. Then, for any finite subset G C Ao X Za, any n > 0 and any
e > 0, there is a § > 0 such that: For any unital C*-algebra A, any four unitaries ui, us, us
and w in A satisfying

ibuugl| <6,  wujwTt = uj_l and w?=14 forj k=1,2,3,

||ukuj _ e27'ri9
there is a unital G-n-multiplicative c.p.c. (completely positive contractive) map L : Ag X o Lo —
A such that

IL(uj) —ujll <e and ||L(vw)—w| <e forj=1,2,3.

Proof Assume that the proposition is false. Let {0,,}5°_; be a sequence of positive numbers

decreasing to 0. Then there is a finite subset G C Ag X4 Za, some €,1 > 0 such that for any

(m) (o)

m, there is a unital C*-algebra A,, and four unitaries u; ,ugm), w(™ in A,, satisfying

||u,(€m)u§-m) - eQ’Tieikujm)u,(cm)H < O, w(m)ug»m)(w(m))_l = (ug-m))_l and  (w(™)% =1,

for 5,k = 1,2,3, but for any unital G-n-multiplicative c.p.c. map ¢, : Ag X Zo — A, we
have

Im(uj) —ul™| > ¢ forsome j=1,2,3 or [gp(t0) —w™]| >e.

Set C = [[ An/ @ Ay Let m: [[ A — C be the canonical quotient map. Let u; =
m=1 m=1 m=1
;m)),w = (w™) ¢ ml_:[1Am for j = 1,2,3. Then m(uy), m(usz), m(us) and 7(w) are unitaries

(u

satisfying
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-1 1 2

W(uk)w(uj):eQ’Tiejkﬂ(uj)w(uk), m(w)m(u;)m(w) ™" = m(u;)~ and w(w)? =14

for j,k = 1,2,3. Therefore there is a unital homomorphism ¢ : Ag X Zs — C. By the Choi-
Effros lifting theorem, we can lift ¢ to a unital c.p.c. map

F= (61,62, bms---): Ao MaZs = II Am.

m=1

In particular, each coordinate map ¢,, is unital completely positive, and we can also assume
that they are contractive by normalization. By choosing m large enough, we can make sure
that ¢,, are G-p-multiplicative. From our construction,

i ) (m)) _ - . —_—
lim (g () —u™ | =0 forj=1,2,3 and  lim ||¢m(w) —w™ | =0.
This is a contradiction.

The following follows from functional calculus and the fact that norm close projections are

equivalent.

Lemma 5.1 Let © = (0,,) € T3 be totally irrational, where 05, € [0,1) for j,k = 1,2,3.
Let u1,uz,u3 and w be the canonical generators of Ag Xqo Zs as in Theorem 3.1. Let [Q;] for
g =1,---,7, [P.912 (ug,uq, m)], [P912 (e”ie?sug, e”ielsul, ugm)], [P.913 (ug, uq, m)], [szg (ug, ug, m)]
be the elements of Ko(Ae X Z2) as defined in Theorem 3.1. Then there exists a finite subset
G C Ag Xo Za, 6 > 0 and € > 0, such that: For any unital C*-algebra A, any four unitaries
ui,uz,uz and w in A, if L : Ae Xo Zo — A is a G-0-multiplicative contractive completely

positive linear map such that
[L(uj) —ujl| <e  forj=1,2,3 and |[L(w)-w|<e,
then

[LI(1]) = [al, [2J(1Qs) = [Q;] forj =1, 7, [L)([Pas (2, w1,10)]) = [Ray, (uz, ur, w)],
]([P912 (eﬂie%u?v eﬂ-iemulv u3m)]) = [R912 (eﬂie%u?v eﬂi913u1’ U3’w)],

[L]([P913 (u37 ug, m)]) = [R913 (’LL3, Uy, w)]v [L]([P923 (U3, u2)7 m]) = [R923 (’LL3, U2, w)]

=

Proof We only prove that [L]([Q1]) = [@1], the remaining proofs are similar, and we ignore
them.

Note that Q1 = £ (1+1w), then L(Q1) = $(L(1)+ L(w)). Since Q= 1(1+w), for o, w* € G
we have

L(Q1) ~ Gy = (L) + Lw)) ~ (1 +w)

N =N =N =
Y

(L(1) = 1) + (L(w) — w))

(L(row™) — ww”) + (L(w) — w))

| —

%

[NES
- N

N —
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Th
s 6 3¢

[L(Q1) — @1l < >t

Now we take sufficiently small § and ¢ such that ||L(Q1) — Q1 < 1. Since L(Q;) and Q; are
projections, we get that [L]([Q1]) = [Q1].

Next we will prove our main theorem.

Theorem 5.3 Let © = (0j;) € Tz be totally irrational, where 6, € [0,1) for j, k =
1,2,3. Then, for any € > 0, there exists § > 0 satisfying the following: For any unital C*-
algebra A with the cancellation property, strict comparison and T(A) # 0, any four unitaries
u, Uz, uz, w € A such that
(1) flugu; — 2™ 0rujuy || < 6, wujw™ =u; ', w? =14 for j,k=1,2,3,

(2) m(aw) = 0 and 7((wpujupu;)") = e?™nir for all a € C*(uy,uz2,u3), alln € N, j k =
1,2,3 and all T € T(A),

there exists a 4-tuple of unitaries uy,us,us, w € A such that

o~ ~ ~~ o~ ~_1 ~
U U, WU W 1=uj . wr=1yx

ﬂk 'D:j — e27719

and
uj =l <e, [w-wl|<e
for j,k=1,2,3.

Proof Let B = Ag X 7Zs. Let 75 denote the canonical tracial state on B and let uy, us, ug, to
be the canonical generators of B as in Lemma 3.1. By Theorems 2.4 and 3.1, B is a unital
simple AF-algebra with

Ko(B) = Z[1p] + Z[Q1] + Z[Q2] + Z[Qs] + Z[Q4] + Z[Q5] + Z[Q6] + Z[Q7] + Z[Py,, (u2, w1, )]
+ Z[Py,, (eﬂiez‘o’ug, e™iay usto)] + Z[Py,, (u3, u1,0)] + Z[Py,, (u3, uz, )] (5.1)

and
Ko(B)y ={c € Ko(B) | (B)«(c) > 0}.

Let € > 0 be given. For § > 0 and F = {1p,u1,us,u3,w}. Let ; > 0, G C B be a finite

subset, and let P = {[15],[Q1], [Q2], (@3], [Qu], [@s), [Qe], [Q7], [Pos, (2, w1, w0)], [Po, (€720,
e™913 11 uzm)], [P, (43, 11, 10)], [Pays (U3, 12, 10)]} C Ko(B) be a finite subset required by Theo-
rem 5.2.

By applying Lemma 5.1, we can choose finite subset Go C B, 0 < &g < § and d2 > 0, so that
whenever w1, us, ug and w are unitaries in A and L : B — A is a Ga-do-multiplicative completely
positive contractive linear map such that

|L(u;) —u;|| <eo forj=1,2,3 and |[L(w)—w| < eo,
then
[LI([) = L), [Z)(Q)) = Q] forj=1,---.7, (5.2)

[L]([P912 (u27 Uy, m)]) = [R912 (u27 U1, w)]v

L]([Py,, (e’“e23 Ug, e™1013qy us)]) = [Ry,, (e’“e23 Ug, e™013q usw)], (5.4)
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[L]([P913(U3,U1,m)]) = [R.913(U3,u1,w)], [L]([P.923(U3,112,m)]) = [R923(u37u27w)]' (5.5)

Let dp be chosen as in Proposition 3.3 (select the smallest §y according to 612,613, 6a23). Let
G = G1 UGy and 03 = min{dg, d1,02}. Find a positive number § < 3 according to G, 3 (in
place of ) and g9 > 0 (in place of ¢) as in Proposition 5.1.

Now suppose that A is a unital C*-algebra with the cancellation property and strict com-
parison. Let w1, us,us, w € A be unitaries such that

(1) Jupu; — 2™k ujug]| < 6, wujw™' = u; "t and w? = 14 for j,k =1,2,3,

(2) T(aw) = 0 and 7((upujuju;)") = e?™inbir for allm € N, all a € C*(u,v), all 7 € T(A)
and 5,k =1,2,3.

Define k : Ko(B) — Ko(A) by

A1) = [al, w(Q) = Q)] forj=1,--.7,
K([Poys (uz, u1, w)]) = [Roy, (uz, ur, w)],

A[Payy (72, €™ 01 uw)]) = [Ro,, (7% ug, ™, uzw)],

A([Pays (3,1, 10)]) = [Roy (us, ur, w)], ([ Pon, (3, 1z, 0)]) = [Rasg (u3, uz, w))

We claim that this is a positive homomorphism. Indeed, let [p] € K¢(B) be a positive element.
Then (78).([p]) > 0. There are integers n;,j = 1,---,12 such that

[p] = n1[1B] + n2[Q1] 4+ n3[Q2] + na[Qs] + 15 [Qa] + n6[Q5] + n7[Q6] + ns[Q7]
“+ ng [P912 (UQ, up, ro)] + nlo[P912 (eﬂ-ie%uQ7 e”iemul, ugm)] + n11 [P913 (ug, up, m)]

+ n12[Pay, (U3, Uz, ).

It follows from Lemma 3.4 that

1 . 012
o ((Bop (2., w)]) = (Lo, (o)) = 222
7o ([Roy, (€792 ug, ™13 0 ugw)]) = RTOOgelg (uguruguy)) = %v
1 - 013
T*([R913 (U3, uy, w)]) = RTOOgels (U3U1U3u1)) = 77
1 . x B3
T*([R923 (U3,UQ,’LU)]) = RT(logezg (U3UQU31L2)) = 5

for all 7 € T(A). By Lemma 4.2, 7,.([Q4]) = 7.([Qs]) = 7([Q7]) = 1 for all 7 € T(A). By the
assumption that 7(aw) = 0 for all a € C*(u1, ug,us) and all 7 € T'(A4), we have

(@) = 7(1Qa]) = 72(Gs]) = (@) = 5

for all 7 € T'(A).
Now for any 7 € T'(A), we can compute that

o (6([p) = mame([1a]) + na7 ([Q1]) + 137 ([Q2]) + na7s ([Q3]) + ns7s ([Qa))
+ 7167*([@5]) + TW'*([@G]) =+ Tlsm([@ﬂ) +noTi([Rg,, (u2, ur, w)])
+ 1107w ([Ro,, (€7 ug, €30y, ugw)]) + na1 7 ([Ro,, (us, ur, w)))

+ n12Tx ([R923 (u3, ug, w)])
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1 1 1 1

1 it it it it it Lz Lz

+ na 2—|—n3 2—|—n4 2—|—n5 2—|—ns 2—|—n7 2—|—n8 5
012 012 013 023
+n9'7+n10'7+n11'7+n12 T

=n1(78)+([18]) + n2(78)«([Q1]) + n3(78)+([Q2]) + na(75)+([Q3))
+15(78)+ ([Q4]) + 16(75)([@5]) + n7(75)([Q6]) + ns(75)+([Q7])
+19(78)+ ([Pa, (w2, u1,1)]) + 1110 (78) 4 ([Pa, (€722 ug, €511, ug10)])
+n11(7B *([Pels(uaaulam)])+nlz(TB)*([Pezg(uaauzam)])

= (78)«([p]

Since A has strict comparison, this shows that x([p]) is positive. Therefore, by Theorem 5.1

)
) >

there is a unital homomorphism h : B — A such that
hyo = K. (5.6)
By Proposition 5.1, there is a unital G-ds-multiplicative c.p.c. map L : B — A such that
IL(u;) —ujll <eo for j=1,2,3 and [L(w)—w| < eo. (5.7)

It follows from (5.2) and (5.4)~(5.6) that [h]|x,(5) = [L]|k,(5)- Therefore, by Theorem 5.2
there exists a unitary s € A such that

Is*h(u;)s — L(u;)|| < g for j =1,2,3 and |s*h(t)s — L(w)| < % (5.8)

Let
u; =s"h(uj)s for j=1,2,3 and w = s"h(t)s.

Then, since A is a homomorphism,

Uty = M0k, wuw Tt =u; " and @? =14 for j,k=1,2,3.

By (5.7)—(5.8), we have
[lu; — ;]| <e forj=1,2,3 and ||w—w| <e.

Remark 5.1 The condition (2) of Theorem 5.3 is only a sufficient condition to get the
conclusion. We will study the necessary and sufficient condition in the subsequent paper.

Remark 5.2 It is natural to ask what happens if there are n+1 unitary elements uy, ug, - - -,
Up,w in A for n >4 and |Juguj — e*™ ik u uy || < 4, wujw?
in Theorem 5.3. Notice that when © € 7, for n > 4, the generators of Ko(Ag X Z2) are more
complicated, the conditions of our Theorem 5.3 seem to be insufficient to get the conclusion in

the case n > 4.

, w> =14 for j,k=1,2,--- ,n as
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