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On Energy Gap Phenomena of the Whitney Spheres in
C™ or CP™*
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Abstract Zhang (2021), Luo and Yin (2022) initiated the study of Lagrangian subman-
ifolds satisfying V*T = 0 or V*V*T = 0 in C" or CP", where T' = V*h and h is the
Lagrangian trace-free second fundamental form. They proved several rigidity theorems for
Lagrangian surfaces satisfying V*T = 0 or V*V*T = 0 in C? under proper small energy
assumption and gave new characterization of the Whitney spheres in C2. In this paper,
the authors extend these results to Lagrangian submanifolds in C" of dimension n > 3 and
to Lagrangian submanifolds in CP".

Keywords Lagrangian submanifolds, Whitney spheres, Gap theorem, Conformal
maslov form
2000 MR Subject Classification 53C24, 53C42

1 Introduction

Assume that N™(4c) is the standard complex space form with standard complex structure
J, Kéhler form w and metric (,), i.e., N*(0) = C" and N"(4) = CP". A real n-dimensional
submanifold of N™(4¢) is a Lagrangian submanifold if J is an isometric map between its tan-
gent bundle and normal bundle. The most canonical and important examples of Lagrangian
submanifolds of C™ or CP" are the Lagrangian subspaces and Whitney spheres. The Whitney
spheres in C™ are defined by the following example (cf. [28]).

Example 1.1
(br,A :S” = C"
(xla e 7xn+l) = 72(1.171.1‘%71-‘1-17 o, Ty xnxn+l) + Aa
1_|_xn+l
where S" = {(21,-++ ,@n41) € R"zf + .- + 22, = 1}, r is a positive number and A is a

vector of C™.

The Whitney spheres in CP" are defined by the following example (cf. [8, 11]).
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Example 1.2
¢g:S" - CP", 0>0

(z1, ,7p) sinh fcosh 6(1 + x2 1) + izy41
(xlv"'azn-i-l)’_)[( - - ) - 2 ):|7
cosh 0 + isinh 0z, 41 cosh 26 + sinh 20z? |
where S” = {(21,++ ,Tnq1) ER" T | 2f 4+ 422 =1}

The Lagrangian subspaces and Whitney spheres ¢, 4 in C™ or the real projective space RP"™
and Whitney spheres ¢g in CP" play a similar role with that of totally umbilical hypersurfaces
in a real Euclidean space R"*! or in the unit sphere S"*!, and they are locally characterized by
vanishing of the following so called Lagrangian trace free second fundamental form the following
example (cf. [7-8, 11, 24]).

RV, W) = h(V, W) — HLH{W, WYH + (JV, HYJW + (JW, H)JV}, (1.1)

where h denotes the second fundamental form and H = %h denotes the mean curvature vector
field.

Various characterizations of the Lagrangian subspaces, RP" or Whitney spheres in C™ or
CP™ were obtained in [2, 6-7, 9-10, 12-13, 18, 20, 24]. In particular, Castro, Montealegre, Ros
and Urbano [6, 9, 24] introduced and studied Lagrangian submanifolds with conformal Maslov
form in C™ or CP", that is Lagrangian submanifolds in C" or CP" with the 2-form T = 0,
where in local orthonormal basis

Ty o= SR = —— (i - S 9). (12)

They proved that the only compact(nonminimal) Lagrangian submanifolds in C™ or CP" with
conformal Maslov form (i.e., 7' = 0) and null first Betti number are the Whitney spheres. The
Whitney spheres in C™ also play an important role in the study of Lagrangian mean curvature
flow (cf. [5, 25]).

Recently, Zhang [32], Luo and Yin [21] initiated the study of Lagrangian submanifolds in
C"™ or CP" satisfying V*T' = 0 or V*V*T = 0. In particular, they proved the following results.

Theorem 1.1 (cf. [32]) Assume that ¥ — C? is a properly immersed complete Lagrangian
surface satisfying V*T = 0. Then there exists a constant €9 > 0 such that if

- 1
24, < 1 27 _
/E|h| du <ep and R1—1>I-I|—100 RQ/ |h|*dp =0,

where ¥ r := X N Br(0) and Br(0) denotes the ball centered at 0 in C* with radius R, then %
1s either a Lagrangian plane or a 2-dimensional Whitney sphere.

Remark 1.1 Though it was assumed properness in the above theorem, we see from the
proof in [32] that we only need assume that ¥ is complete.

Theorem 1.2 (cf. [21]) Assume that ¥ — C? is a Lagrangian sphere satisfying V*V*T =
0. Then there exists a constant eg > 0 such that if

/ BPdp < eo,
>

then X is a 2-dimensional Whitney sphere.
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The aim of this paper is to extend the above results to higher dimensional Lagrangian
submanifolds in C" and to Lagrangian submanifolds in CP". In fact we have the following

theorem.

Theorem 1.3 Assume that M™ — C"(n > 3) is a complete Lagrangian submanifold. We
have
(i) if M™ satisfies V*T = 0, then there exists a constant 9 > 0 such that if

- 1 )
n < 1 —_— =
/M|h| dp <eg and Rl_l)r}rloo 7 /MR |h|*dp = 0,

where My denotes the geodesic ball in M™ with radius R, then M™ is either a Lagrangian
subspace or a Whitney sphere;
(ii) if M™ is a Lagrangian sphere satisfying V*V*T = 0, then there exists a constant g > 0

such that if
[ rdn <o,
M

then M™ is a Whitney sphere.

We would like to point out that compared with the 2-dimensional case, the proof of Theorem
1.3 is much more complicated. Firstly, in the 2-dimensional case we just need to test over a
simple Simons’ type identity, but in the case of dimension n > 3 we need to estimate the
nonlinear terms in a much more complicated Simons’ type equality to get a Simons’ type
inequality (cf. (3.17)) and then test over it. Secondly, in the higher dimensional case we need
to adapt the original Michael-Simon inequality to get (4.4) and use it to absorb the “bad term”
at the right hand of (3.17).

Similarly, for Lagrangian submanfiods in CP", we have the following theorem.

Theorem 1.4 Assume that M™ — CP"(n > 2) is a complete Lagrangian submanifold. We
have
(i) if M™ satisfies V*T = 0, then there exists a constant g > 0 such that if

~ 1
/ |h|"dp <ep and  lim = / |h|?dp = 0,
M Mg

R— 400
where Mp denotes the geodesic ball in M™ with radius R, then M™ is the real projective space
RP™ or a Whitney sphere;
(ii) if M™ is a Lagrangian sphere satisfying V*V*T = 0, then there exists a constant g > 0

such that if
[ e <o,
M

then M™ is the real projective space RP" or a Whitney sphere.

Note that similar L? pinching theorems for minimal submanifolds in a unit sphere were
initiated by Shen [26], and later investigated by Wang [27], Lin and Xia [19]. L3 pinching
theorems for minimal submanifolds in a Euclidean space was investigated by Ni [23] and Yun
[31]. Generalizations of L% pinching theorems to submanifolds with parallel mean curvature
vector field in a sphere or in a Euclidean space were obtained by Xu [29] and Xu and Gu [30].
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Our results could be seen as extensions of their results to more general submanifolds in the
Lagrangian setting.

The rest of this paper is organized as follows. In Section 2 we give some preliminaries
on Lagrangian submanifolds in N™(4c¢). In Section 3 we prove a Simons’ type inequality for
Lagrangian submanifolds in N™(4¢), which plays a crucial role in the proof of Theorems 1.3-1.4.
Theorem 1.3 is proved in Section 4 and Theorem 1.4 is proved in Section 5.

2 Preliminaries

In this section we collect some basic formulas and results of the Lagrangian submanifolds
in a complex space form (cf. [1, 3]).

Let N™(4c¢) be a complete, simply connected, n-dimensional Kéhler manifold with constant
holomorphic sectional curvature 4c. Let M™ be an n-dimensional Lagrangian submanifolds in
N"™(4c). We denote also by g the metric on M™. Let V (resp. V) be the Levi-Civita connection
of M™ (resp. N"(4c)). The Gauss and Weingarten formulas of M"™ < N"(4c) are given,
respectively, by

VxY =VxY +h(X,Y) and VxV =-AyX 4+ VYV, (2.1)

where X, Y € TM™ are tangent vector fields, V € T+M™ is a normal vector field; V' is the
normal connection in the normal bundle T+M™; h is the second fundamental form and Ay is
the shape operator with respect to V. From (2.1), we easily get

(M(X,Y), V)= (Av X,Y)). (2.2)

The mean curvature vector H of M" is defined by H = Ltraceh.

T n

For Lagrangian submanifolds in N™(4c), we have

VJY = JVxY, (2.3)

A;xY = —Jh(X,Y) = Asy X. (2.4)

The above formulas immediately imply that g(h(X,Y"), JZ) is totally symmetric.
To utilize the moving frame method, we will use the following range convention of indices:

iajakal7m7p78:17"';n; l*:Z‘f'netC

Now, we choose a local adapted Lagrangian frame {e1, -+ ,en, €1+, - ,ep«} in N™(4c) in
such a way that, restricted to M™, {e1,---,e,} is an orthonormal frame of M™, and {e;« =
Jer, - ,ens = Jep} is a orthonormal frame of M™ < N™(4c¢). Let {01, -+ ,0,} be the dual
frame of {eq1,---,en}. Let 6;; and 6;+;+~ denote the connection 1-forms of TM" and T-M™,
respectively.

Put h¥| = g(h(ei, €;), Jer). It is easily seen that

K2

WY =h =Rl Vi gk (2.5)
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Denote by Riju = g(R(ei, ej)er, ex) and Rjjpi- = g(R(es, ej)er, ep+) the components of
the curvature tensors of V and V+ with respect to the adapted Lagrangian frame, respectively.
Then, we get the Gauss, Ricci and Codazzi equations, respectively,

Riji = (0051 — 0udjx) + Z( R — R R), (2.6)
Rijete = c(Sixdj — Subsn) + Y (i B — Wi By, (2.7)
W = hs (2.8)

where h;’;k is the components of the covariant differentiation of h, defined by

S hpi0r=adhy > R 0+ Y R O+ Y b0 (2.9)
=1 =1 =1

=1

Then from (2.5) and (2.8), we have

Wi = Pl = Mo s = Mo - (2.10)
We also have Ricci identity
T = W = D M Reip + Y B Rijip + Y by Rk e, (2.11)
k=1 k=1 k=1
where h?;,*lp is defined by
PR L R DL SR DI R R DI AL
p p p p p
The mean curvature vector H of M™ < N"™(4c) is
H=t S hee) = e, =Ly
n 4 1y €4 ) n & i "
i=1 k=1 i
Letting ¢ = j in (2.9) and carrying out summation over i, we have
HY 0, =dH* +> H" 01,
!
and we further have
HY =ni, (2.12)

for any ¢, k.

3 A Simons’ Type Inequality

In this section, inspired by Chao and Dong [10], we will derive a new Simons’ type inequality
for Lagrangian submanifolds in N™(4c).
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We assume that M™ < N™(4c) is a Lagrangian submanifold and n > 2, where N™(4c¢) is the
the standard complex space form of constant holomorphic sectional curvature 4¢ with standard
complex structure J, Kahler form w and metric (, ).

Firstly, we define a trace-free tensor AH(X ,Y') defined by

R(X,Y)=h(X,Y) - %{(X, YVVH + (JX, H)JY + (JY, H)JX} (3.1)
for any tangent vector fields X,Y on M™.
With respect to Lagrangian frame {e1,--- ,en, €1+, -+, €, } in N™(4c), we have
R =hn - +2(Hm 8ij + H" Gjm + H Gy
=hp -, (3.2)
where 1" = B {H™ 6; + H' §jm + H7 8}

The first covariant derivatives of ﬁ?} are defined by

n

Z R0y = AR+ 3R O+ S R 0+ Y RO (3.3)
=1 =1 =1

The second covariant derivatives of E;? are defined by

n n n n n
D hTa = dh > R0+ > R0+ Y B0k Y bl 0. (3.4)
1=1 =1 1=1 =1 1=1
On the other hand, we have the following Ricci identities

13 kp zg pk = Z hl] Rllkp + Z h’Ll RleZD + Z hzg Rpem *kp- (35)

The following proposition links those geometric quantities together.

Lemma 3.1 Let M™ < N"™(4c) be a Lagrangian submanifold. Then the Lagrangian trace-
free second fundamental form h satisfies

3n?

B2 = 02 = 2, (36)

Z W, = (nHZ — divJH gi;). (3.7)

Proof (3.6) and (3.7) can be immediately obtained from (3.2).

Definition 3.1 (cf. [6-7, 24]) We define a (0,2)-tensor T in local orthonormal basis as
follows :

T, = %Zﬁgﬁ*m - (nH ZHm gw) (3.8)

Remark 3.1 T is a trace-free tensor and symmetric. 7' = 0 if and only if JH is a conformal
vector field.
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In the following we will derive a Simons’ type identity for A|ﬁ|2. First we have the following
lemma.

Lemma 3.2 Let M™ < N™(4c) be a Lagrangian immersion. Then

SRR =+ 2B, VT + > B (R Ruje + B Rugje + by Rieme i) (3.9)

ijmk iyj,mk,l

Proof By using the Codazzi equation (2.8) and (3.2), the definition of & under local

coordinates is just
~m* = n m* i m* i*
hij,k = ik,j + n——|—2(61kH3 + 6kaj - 5in,k - 5ij)k) (310)

With the help of Ricci identity (3.5), (3.8) and (3.10), we have

n .
th kk —thkjk +Z—7’L+2 mH ik +6km 5ZJHkk _5ij,kk)
k
= Z hik7kj + Zﬁ%*Rlijk + ZTL??*lejk + Zﬁé;]{l*m*jk
k Kl
n .
+ Z 5 Gur H i G H e — 033 H . = S H )
_thk ij +Zhlk Rllgk"’Zth leﬂk+zhle*m - ik
kil k,l kil
+Z n+ 2 5ZkHJ"“ + Okm H 513H 5ij,iI:k)+nTim,j- (3.11)

Then, by using (3.8) and the fact that h is trace free and tri-symmetric, we have

Z By hm Kk = Z h (AR Ruig + I Rukgr + hiy Rieme i)

i,5,m,k i,7,m,k
+ > B [Tnji + Tijom] 1Y B Tim
m,i,J m,i,J
> AR Ruj + i Rigk + hlg Rieme ji]
i,jmk
(n+2) Z h5 Tijom-

m Z,j
Thus, we obtain the assertion.
Next, by using Lemma 3.2,

1 ~
§A|h|2 IVRI>+ > By Ry,

ijmk

= |VA? + (n+2)(h,VT)
+ > RRE R+ Y RIRE Rugr+ Y BT R Rk, (3.12)

,5,k,m,l i,5,k,m,l i,5,k,m,1

I 11 117
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Note that by the symmetry of Rk T =III. Hence we only need to compute I and II. Direct

ij
computations show that

I=c Z h hkl (51j51;€ 51;.351] Z h hf; —Ef;ﬁz)
,5,k,m,l kalt
+ Z Ry hyg (R zg chy +ngh hlkc Clkhm +cl] e — kacﬁj)
i,5,k,m,lt
:c|ﬁ|2+ﬁ|h| \H|? + Z R R R HY
jklmt
+ > R Ry (hiphl, — highl) + Z R R HTHY (3.13)
i,5,k,m,l,t i,7,k,m

where in the second equality we used the following identities derived by direct computations

Tm*Im* Tttt Nm _ t*
E hij Kl hljcik_ E hij Kl ngh = E h H,

i,7,k,m,l,t i,7,k,m,lt ] k,,m,t
_ "’m*"’m* t*""t* _ t*
E h lkcm = E hij hi clkhij = E h H )
i,7,k,m,lt i,7,k,m,lt j k,,m,t
and since
n2

> e = WZ (S ;H 61)(Sein HY dir))
t

n2

= —— (G k H H 85 + 2HY HI 5,
CEDIE (&ijikl ik + k

+ 2Hi*Hk*5jl =+ |H|25ik5jl)7

where & stands for the cyclic sum, thus

2
E TmFTm* ottt n 712 2 E Tm* rri* rrk*
hij hkl clj Cik = (7’L—|- 2)2 |h| |H| n—+ 2 YY) h ik H" H ’

,5,k,m, 1.t ,5,k,m

Nm*~m* t* t* o m* i* k*
E h”Lj h’kl Clkcij = E h ik H" H” .

i,9,k,m, Lt ,4,k,m

Similarly we have

Z h N- [ 6lg6kk 6[195]%@ —I—Zh —hf;h}?j)

i,7,k,m,l

= (n—1)c|h>+ Z h " (nh CHY —l—nclet
i,7,k,m,lt

* *

~t*~t* Nt* +* t*~t* t
- hlkhkj - hlkckj - Clkhkj - Clkckj)

~ —2
RPIH? + = > R

n
2
(n + 2) ijlmt

n—2 e S FmtEm
n+2 Zh i HY H" - Z hij hig hk]? (3.14)

= (n—1)c/h* +

ijml i,7,k,m,l,t
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where in the third equality we used the following identities derived by direct computations

g ) e
no YRR HT = +2|h|| |+—Zh iHTH
i,7,k,m,lt z]ml
Z h?; ﬁhf;c?j: Z h kgclk_ Z hi;
i,5,k,m,l,t i,5,k,m,l,t zglmt
and since
2
chkcjk QZ (St kH 618) (S n H' 651.))
= L(G kg HY HI S+ 2HY HY 65,
(n+2)2 7k 7
+ 2H7 H* 61y + |H|?*6,1.011),
thus
m? - n+6 PR
h = _|hP|H]? + R R HITHY
‘J)%lt lz Clkckj (n+2)2| | | | ZZ li
~ n ~
HI:I:c|h|2+7|h|2|H|2+ o
oEs va 2 M
+ > hp Uhl Efghgj)
J,kmlt
h I HYHY 3.15
TL+2 T 92 lj;m k ( )

Set A, = (hi}). Then it follows from (3.9) and (3.12)-(3.15) that

2
A 2 p T 24 (n+ Delh? + " |h2|H?
hf? = (n+2)(h, VT) + |VA|* + (n + 1)clh| +(n+2)|h|| |
+ Ztr(Az* Aj* — Aj* Ai*)Q - Z(U‘Ai* Aj* )2
.5 i-,j
+n Y R h;HZ*+ Z Ry R HTH (3.16)
1,5,l,m,t i,5,k,m

Next we estimate terms on the right hand side of (3.16). We will need the following lemma.

Lemma 3.3 (cf. [17]) Let By, -, By be symmetric (n X n)-matrices (m > 2). Denote
Sk = trace(Bt By), where Bt is the transposal matriz of B, N(Bp) := Sm := Smm, S =
> S;. Then

=1
3
EkN(BmBk — BiBm)+ Y Si < 552.

Now we are prepared to estimate the right hand side of (3.16), mainly the last two terms
on the last line of (3.16).
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We re-choose {e;}"_; such that Z hl HY = )\;0;;, denote by
5H=Z(Zhl*Hl*) =D N Sk = ()
Jsi J gl

then |h|2 = 3 S;-. Using Lemma 3.3 and the above fact, we have the following estimates for
the right hand side of (3.16),

1, ~ ~ ~ ~ n? ~ 3~
_A 2> 2 T 2 1 2 2H2__ 4
G AR 2 (-4 208 VT) 4 (VR o+ (0 + el + 2 [BPLHP = 5[0
+nZ)\5’l*+—Zx\2
2
~ ~ - ~ 3 ~
> 2 T 2 1 2 n 2H2__ 4
> (n+2) (R, V) + VA + (n + )elhl? + o2 B HI” = A
SRRSO
7 712 712 n 7121 1712 n—|—3 4
> (n+2)(h,VT)+ |Vh|* 4+ (n+ 1)c|h|” + |h|*|H|* — |h|
(n+2)
n 2
+§Z(|H|)\i+5i*)
~ ~ - ~ 3 ~
> 2 T 2 1 2 n 2H2__ 4
> (n+2) (R, V) + VA + (n + )elhl? + o g B HI” = A
4 = Z)\JrS Z
7 712 712 n’ e n—|—3 4
> (n+2)(h,VT)+ |Vh|* 4+ (n+ 1)c|h|” + (n+2)|h| |H|* — |h| (3.17)

where in the last inequality we have used [2[* = (3 Sl-*)Q > 52

4 Proof of Theorem 1.3

In this section we will use C to denote constants depending only on n, which may vary line
by line. We have the following lemma.

Lemma 4.1 Assume that M™ is a complete Lagrangian submanifold in C™, and let v be a
cut-off function on M™ with ||Vv| L., =T, then we have

[ (RP + PR
M

< c/ (V*T, H4w>72du+0/ |ﬁ|472du+CF2/ |h|*d. (4.1)
M M

{»>0}

Proof Multiplying (3.17) by 2 we get

1 - -
—/ YAhPdp > (n+2)/ (hv?, VT)dp
2 M M
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+ [ VB / B2 H g — Rl (42)

Note that
: /M VAR = — /M<V7MV7 @ Ty, (4.3)

and by the definition of T and integral by parts

/ (hy?, VT)dp = —/ (T,*V*h) — 2/ (T @ Vy,yh)dp
M M M
= —n/ (T, T)y*dp — 2/ (T ® Vv, vh)dp
M M

1 , ) ~
=-n /M <T, n—H(nVHJw —divJHg)y >du -2 /M (T ® Vv,vh)du

712

=— /<T,VH_JCU>’YQC1/L—2/ (T ® Vy,vh)du
n+2 Juy M

_ /<V*THM> 2, 4+ 2 /(THw®V Jyd

=y ) VT Hw dut 2 | (T Haw® Vy)ydu

—2/ (T ® Vv, vh)du
M

Therefore since |T'| < C|Vh]|, |h| < C|h| and |[V~| < T we have

2
Vh|2y2 + — B2 H|*yd
[ VAR e R
S—/ (Vﬁ,wVv@Bdu—nQ/ (V*T,HJwMQdu—QnQ/ (T, H ow & Vy)ydu
M M M

~ 3 ~
+2(n—|—2)/ (T @ Vv, yh)dp + i/ I74y2du
M 2 M

3 [ -~ 1 .
< _n? /M<V*T, Howoydu+ 8 /M Rl du+ /M VA 2A2dy + CT? / Ih[2du.

{v>0}

We will need the following Michael-Simon inequality.

Theorem 4.1 (cf. [15, 22]) Assume that M™ is a compact submanifold of R™ P with or

without boundary. Assume that v € CY(M™) is a nonnegative function such that v = 0
OM™, if OM™ is not an empty set. Then

(/Mv" ldu) - <C’/ Vol + v|H|dpy,

where H is the mean curvature vector field of M™.

2(n-1)
Now assume that n > 3. In the above Michael-Simon inequality we let v = f n-2" 2 , then
Holder inequality we easily get

on

by

(] ) - )T <C [ ViR PP (4.4)
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Therefore by letting f = |h|y in (4.4) we obtain

n—2

[ s ([ nan) " ( [ )

<o [ irran)™( [ [wORRP+ PR )
< c(/M |ﬁ|”du)%(/M|vﬁ|2vzdu+F2 /{V>
<o [ Iipran) (U + P )

+cr2(/M |ﬁ|"du);/{

From (3.17) and (4.5) we have

2du + / (H P [
0} M

N |n|?dp. (4.5)
y>

[ (SRP + PR

M

<c / (VT H o)y du+ O / (R du) " (VAP + [HEP2du) + OT? / R Pdp,
M M {y>0}

which implies that if there exists ¢( sufficiently small such that

/ Brdu < <o,
M

we have
/ (VA2 + | HI2R[2)y2dp < c/ VT, H4w>”y2du+CT2/ h2du. (4.6)
M M {7>0}

Case 1 If V*T = 0, note that for any R > 0 we can choose v € C}(Mg(po)) such that
7=1on Mg (po) where M, (po) denotes geodesic ball of radius r with center pg € M™, and

r< %, therefore by letting R — +00 we get

[ IR+ P RO =0,

M

which implies that h =0 and M" is either a Lagrangian subspace or a Whitney sphere by
[7,24] or H =0,Vh =0 and M"™ is a Lagrangian subspace by [16].

Case 2 If V*V*T = 0 and M™ is a Lagrangian sphere, then by Dazord [14], there exists a
smooth function f on M™ such that H.w = df, and let v =1 on M™, then we have

/ VAP & [HP2[RPdp < © / (VT df)du
M M
- —0/ VAV Tdp
M
p— 07

which implies that h =0 and M" is either a Lagrangian subspace or a Whitney sphere by
[7,24] or H =0,Vh =0 and M™" is a Lagrangian subspace by [16].
This completes the proof of Theorem 1.3.
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5 Proof of Theorem 1.4

The proof of Theorem 1.4 is quite similar with the proofs of Theorem 1.2 in [32], Theorem
1.5 in [21] and Theorem 1.3 in the present paper. Therefore we will only give a outline of the
proof and omit some details. In this section we will use C' to denote constants depending only
on n which may vary line by line.

Letting ¢ = 1 in (3.17), we have

n—+3
2

(n+2)

1 ~ ~ ~ ~ ~ ~
S AR > (n 4 2)(h, VT) + VA + (n+ 1[A[* + h*|H|* — It (5.1)

Then similarly with Lemma 4.1 we can obtain the following lemma.
Lemma 5.1 Assume that M™ is a complete Lagrangian submanifold in CP" and ~ is a cut
off function on M™ with |Vvy|lL.. =T, then we have

[ (RE o+ RPIHE + )7
M

< c/ (V*T, HJwM?du—i—C/ |ﬁ|472du+CF2/ |h|2d . (5.2)
M M {v>0}

The same as the previous section, to absorb the “bad term” [ M |ﬁ|472du on the right
hand side of (5.2), we will use the Michael-Simom inequality. In order to do this, we need
isometrically immersed CP" into some Euclidean space R™"™?, which is possible by Nash’s
celebrated embedding theorem. Assume that CP™ has mean curvature Hy as a submanifold in
R™P and M" has mean curvature H as a submanifold in R"*P. Then it is easy to see that
[H|* < |Ho|? + |HI*.

If n = 2, from the original Michael-Simon inequality we see that if M <+ R™*P is compact
with or without boundary then

/M Frap< o /M IV fldp+ /M flHldp)’ (5.3)

for any nonnegative function f € C1(M) with f|oar = 0. Let f = |ﬁ|27 in the above inequality,
we obtain

~ ~ ~ ~ ~ 2
/ Fiy2du < o / Iy + [V 2 + / (R H )
M M M
~ ~ ~ _ ~ 2
<c / P / VR 2du + / (R Py%du) + or / Rn
M M M {y>0}
<c / iPan( / Vi + / (R H %)
M M M
—|—C'maX|H0|2(/ |ﬁ|272du)2+01“2(/ |71|2du)2
cpr M {v>0}
—c / P / Vi + / (R H %)
M M M

+ 0(/M |E|272du)2 + CFQ(/{

~9 2
R (5.4)
>0}
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From (5.2) and (5.4) we see that
[ (TRP o+ RPIHE + )7
M
<c [ (wrmwrdns [ P [ [9hPau [ [RPIHP )
M M M M

~ 2 ~ 2
+c(/ [RP+2dn) +cr2(/ AP d) +cr2/ Ih[2dp.
M {v>0} {v>0}

Therefore if M™ satisfies assumptions of Theorem 1.4, we can similarly with the previous section
obtain that h = 0 and hence M™ is the real projective space RP" or a Whitney sphere, by [11].

If n > 3, similarly with the proof of Theorem 1.3, we can obtain from the Michael-Simon
inequality that

n—2

fezdu) <o | IViPdut [ fHE P (5.5)
M M M

for any nonnegative function f € C1(M™) with f|oa = 0. Therefore by letting f = |ﬁ|7 in the
above inequality we obtain

[ an< ([ ran) ([ (i) T

<o [ Jiraw)" ([ V@R + PR )

< C(/M IfNLI”du) ! ( y VA [2y2dp + T2 /{7>0} R|2dp + /M |F|2|f~z|272du)

< 0(/M |E|”du) (
e Cugeln ([ ira)” [ e cr ([ ara)” [ e

= /M firan) " ( /M (VAP + [H2R2p) + O /M i) /M APy 2dp
+ cr2(/ |ﬁ|"du)% /

M {

From (5.2) and (5.6) we obtain

VR[22 + [H2 2
M

y |h2du. (5.6)
>

[ (RP o+ RPIHE + )
M

n

< 0/ (V*T, Hwa?dquc(/ |E|"du)
M M

FR. N
+c(/ " an) / |h|272du+Cl“2(/ R an) / |h|2du+Cl“2/ Ih[2dp.
M M M {y>0} {y>0}

Therefore if M™ satisfies assumptions of Theorem 1.4, we can similarly with the previous section
obtain that & = 0 and hence M™ is the real projective space RP" or a Whitney sphere, by [11].

/ (VA2 + (WP HP)y2du
M

This completes the proof of Theorem 1.4.
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