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1 Introduction

Assume that Nn(4c) is the standard complex space form with standard complex structure

J , Kähler form ω and metric 〈, 〉, i.e., Nn(0) = Cn and Nn(4) = CP
n. A real n-dimensional

submanifold of Nn(4c) is a Lagrangian submanifold if J is an isometric map between its tan-

gent bundle and normal bundle. The most canonical and important examples of Lagrangian

submanifolds of Cn or CPn are the Lagrangian subspaces and Whitney spheres. The Whitney

spheres in Cn are defined by the following example (cf. [28]).

Example 1.1

φr,A : Sn → C
n

(x1, · · · , xn+1) 7→
r

1 + x2
n+1

(x1, x1xn+1, · · · , xn, xnxn+1) +A,

where S
n = {(x1, · · · , xn+1) ∈ R

n+1|x2
1 + · · · + x2

n+1 = 1}, r is a positive number and A is a

vector of Cn.

The Whitney spheres in CP
n are defined by the following example (cf. [8, 11]).
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Example 1.2

φθ : Sn → CP
n, θ > 0

(x1, · · · , xn+1) 7→
[( (x1, · · · , xn)

cosh θ + isinh θxn+1

,
sinh θcosh θ(1 + x2

n+1) + ixn+1

cosh 2θ + sinh 2θx2
n+1

)]
,

where Sn = {(x1, · · · , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1}.

The Lagrangian subspaces and Whitney spheres φr,A in Cn or the real projective space RPn

and Whitney spheres φθ in CP
n play a similar role with that of totally umbilical hypersurfaces

in a real Euclidean space Rn+1 or in the unit sphere Sn+1, and they are locally characterized by

vanishing of the following so called Lagrangian trace free second fundamental form the following

example (cf. [7–8, 11, 24]).

h̃(V,W ) := h(V,W )−
n

n+ 2
{〈V,W 〉H + 〈JV,H〉JW + 〈JW,H〉JV }, (1.1)

where h denotes the second fundamental form and H = 1

n
h denotes the mean curvature vector

field.

Various characterizations of the Lagrangian subspaces, RPn or Whitney spheres in Cn or

CP
n were obtained in [2, 6–7, 9–10, 12–13, 18, 20, 24]. In particular, Castro, Montealegre, Ros

and Urbano [6, 9, 24] introduced and studied Lagrangian submanifolds with conformal Maslov

form in C
n or CP

n, that is Lagrangian submanifolds in C
n or CP

n with the 2-form T = 0,

where in local orthonormal basis

Tij :=
1

n

∑

m

h̃m∗

ij,m =
1

n+ 2

(
nHi∗

,j −
∑

m

Hm∗

,m gij

)
. (1.2)

They proved that the only compact(nonminimal) Lagrangian submanifolds in Cn or CPn with

conformal Maslov form (i.e., T = 0) and null first Betti number are the Whitney spheres. The

Whitney spheres in C
n also play an important role in the study of Lagrangian mean curvature

flow (cf. [5, 25]).

Recently, Zhang [32], Luo and Yin [21] initiated the study of Lagrangian submanifolds in

Cn or CPn satisfying ∇∗T = 0 or ∇∗∇∗T = 0. In particular, they proved the following results.

Theorem 1.1 (cf. [32]) Assume that Σ →֒ C2 is a properly immersed complete Lagrangian

surface satisfying ∇∗T = 0. Then there exists a constant ε0 > 0 such that if
∫

Σ

|h̃|2dµ ≤ ε0 and lim
R→+∞

1

R2

∫

ΣR

|h|2dµ = 0,

where ΣR := Σ ∩ BR(0) and BR(0) denotes the ball centered at 0 in C2 with radius R, then Σ

is either a Lagrangian plane or a 2-dimensional Whitney sphere.

Remark 1.1 Though it was assumed properness in the above theorem, we see from the

proof in [32] that we only need assume that Σ is complete.

Theorem 1.2 (cf. [21]) Assume that Σ →֒ C2 is a Lagrangian sphere satisfying ∇∗∇∗T =

0. Then there exists a constant ε0 > 0 such that if
∫

Σ

|h̃|2dµ ≤ ε0,

then Σ is a 2-dimensional Whitney sphere.
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The aim of this paper is to extend the above results to higher dimensional Lagrangian

submanifolds in Cn and to Lagrangian submanifolds in CP
n. In fact we have the following

theorem.

Theorem 1.3 Assume that Mn →֒ Cn(n ≥ 3) is a complete Lagrangian submanifold. We

have

(i) if Mn satisfies ∇∗T = 0, then there exists a constant ε0 > 0 such that if

∫

M

|h̃|ndµ ≤ ε0 and lim
R→+∞

1

R2

∫

MR

|h|2dµ = 0,

where MR denotes the geodesic ball in Mn with radius R, then Mn is either a Lagrangian

subspace or a Whitney sphere ;

(ii) if Mn is a Lagrangian sphere satisfying ∇∗∇∗T = 0, then there exists a constant ε0 > 0

such that if ∫

M

|h̃|ndµ ≤ ε0,

then Mn is a Whitney sphere.

We would like to point out that compared with the 2-dimensional case, the proof of Theorem

1.3 is much more complicated. Firstly, in the 2-dimensional case we just need to test over a

simple Simons’ type identity, but in the case of dimension n ≥ 3 we need to estimate the

nonlinear terms in a much more complicated Simons’ type equality to get a Simons’ type

inequality (cf. (3.17)) and then test over it. Secondly, in the higher dimensional case we need

to adapt the original Michael-Simon inequality to get (4.4) and use it to absorb the “bad term”

at the right hand of (3.17).

Similarly, for Lagrangian submanfiods in CP
n, we have the following theorem.

Theorem 1.4 Assume that Mn →֒ CP
n(n ≥ 2) is a complete Lagrangian submanifold. We

have

(i) if Mn satisfies ∇∗T = 0, then there exists a constant ε0 > 0 such that if

∫

M

|h̃|ndµ ≤ ε0 and lim
R→+∞

1

R2

∫

MR

|h|2dµ = 0,

where MR denotes the geodesic ball in Mn with radius R, then Mn is the real projective space

RP
n or a Whitney sphere ;

(ii) if Mn is a Lagrangian sphere satisfying ∇∗∇∗T = 0, then there exists a constant ε0 > 0

such that if ∫

M

|h̃|ndµ ≤ ε0,

then Mn is the real projective space RP
n or a Whitney sphere.

Note that similar L
n

2 pinching theorems for minimal submanifolds in a unit sphere were

initiated by Shen [26], and later investigated by Wang [27], Lin and Xia [19]. L
n

2 pinching

theorems for minimal submanifolds in a Euclidean space was investigated by Ni [23] and Yun

[31]. Generalizations of L
n

2 pinching theorems to submanifolds with parallel mean curvature

vector field in a sphere or in a Euclidean space were obtained by Xu [29] and Xu and Gu [30].
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Our results could be seen as extensions of their results to more general submanifolds in the

Lagrangian setting.

The rest of this paper is organized as follows. In Section 2 we give some preliminaries

on Lagrangian submanifolds in Nn(4c). In Section 3 we prove a Simons’ type inequality for

Lagrangian submanifolds in Nn(4c), which plays a crucial role in the proof of Theorems 1.3–1.4.

Theorem 1.3 is proved in Section 4 and Theorem 1.4 is proved in Section 5.

2 Preliminaries

In this section we collect some basic formulas and results of the Lagrangian submanifolds

in a complex space form (cf. [1, 3]).

Let Nn(4c) be a complete, simply connected, n-dimensional Kähler manifold with constant

holomorphic sectional curvature 4c. Let Mn be an n-dimensional Lagrangian submanifolds in

Nn(4c). We denote also by g the metric on Mn. Let ∇ (resp. ∇) be the Levi-Civita connection

of Mn (resp. Nn(4c)). The Gauss and Weingarten formulas of Mn →֒ Nn(4c) are given,

respectively, by

∇XY = ∇XY + h(X,Y ) and ∇XV = −AV X +∇⊥
XV, (2.1)

where X,Y ∈ TMn are tangent vector fields, V ∈ T⊥Mn is a normal vector field; ∇⊥ is the

normal connection in the normal bundle T⊥Mn; h is the second fundamental form and AV is

the shape operator with respect to V . From (2.1), we easily get

〈h(X,Y ), V 〉 = 〈AV X,Y )〉. (2.2)

The mean curvature vector H of Mn is defined by H = 1

n
traceh.

For Lagrangian submanifolds in Nn(4c), we have

∇⊥
XJY = J∇XY, (2.3)

AJXY = −Jh(X,Y ) = AJY X. (2.4)

The above formulas immediately imply that g(h(X,Y ), JZ) is totally symmetric.

To utilize the moving frame method, we will use the following range convention of indices:

i, j, k, l,m, p, s = 1, · · · , n; i∗ = i+ n etc..

Now, we choose a local adapted Lagrangian frame {e1, · · · , en, e1∗ , · · · , en∗} in Nn(4c) in

such a way that, restricted to Mn, {e1, · · · , en} is an orthonormal frame of Mn, and {e1∗ =

Je1, · · · , en∗ = Jen} is a orthonormal frame of Mn →֒ Nn(4c). Let {θ1, · · · , θn} be the dual

frame of {e1, · · · , en}. Let θij and θi∗j∗ denote the connection 1-forms of TMn and T⊥Mn,

respectively.

Put hk∗

ij = g(h(ei, ej), Jek). It is easily seen that

hk∗

ij = h
j∗

ik = hi∗

jk, ∀ i, j, k. (2.5)
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Denote by Rijkl := g(R(ei, ej)el, ek) and Rijk∗ l∗ := g(R(ei, ej)el∗ , ek∗) the components of

the curvature tensors of ∇ and ∇⊥ with respect to the adapted Lagrangian frame, respectively.

Then, we get the Gauss, Ricci and Codazzi equations, respectively,

Rijkl = c(δikδjl − δilδjk) +
∑

m

(hm∗

ik hm∗

jl − hm∗

il hm∗

jk ), (2.6)

Rijk∗ l∗ = c(δikδjl − δilδjk) +
∑

m

(hm∗

ik hm∗

jl − hm∗

il hm∗

jk ), (2.7)

hm∗

ij,k = hm∗

ik,j , (2.8)

where hm∗

ij,k is the components of the covariant differentiation of h, defined by

n∑

l=1

hm∗

ij,lθl := dhm∗

ij +

n∑

l=1

hm∗

il θlj +

n∑

l=1

hm∗

jl θli +

n∑

l=1

hl∗

ijθl∗m∗ . (2.9)

Then from (2.5) and (2.8), we have

hm∗

ij,k = hi∗

jk,m = h
j∗

km,i = hk∗

mi,j . (2.10)

We also have Ricci identity

hm∗

ij,lp − hm∗

ij,pl =
n∑

k=1

hm∗

kj Rkilp +
n∑

k=1

hm∗

ik Rkjlp +
n∑

k=1

hk∗

ij Rk∗m∗lp, (2.11)

where hm∗

ij,lp is defined by

∑

p

hm∗

ij,lpθp = dhm∗

ij,l +
∑

p

hm∗

pj,lθpi +
∑

p

hm∗

ip,lθpj +
∑

p

hm∗

ij,pθpl +
∑

p

h
p∗

ij,lθp∗m∗ .

The mean curvature vector H of Mn →֒ Nn(4c) is

H =
1

n

n∑

i=1

h(ei, ei) =
n∑

k=1

Hk∗

ek∗ , Hk∗

=
1

n

∑

i

hk∗

ii .

Letting i = j in (2.9) and carrying out summation over i, we have

Hk∗

,l θl = dHk∗

+
∑

l

H l∗θl∗k∗ ,

and we further have

Hk∗

,i = Hi∗

,k (2.12)

for any i, k.

3 A Simons’ Type Inequality

In this section, inspired by Chao and Dong [10], we will derive a new Simons’ type inequality

for Lagrangian submanifolds in Nn(4c).
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We assume that Mn →֒ Nn(4c) is a Lagrangian submanifold and n ≥ 2, where Nn(4c) is the

the standard complex space form of constant holomorphic sectional curvature 4c with standard

complex structure J , Kähler form ω and metric 〈, 〉.

Firstly, we define a trace-free tensor h̃(X,Y ) defined by

h̃(X,Y ) = h(X,Y )−
n

n+ 2
{〈X,Y 〉H + 〈JX,H〉JY + 〈JY,H〉JX} (3.1)

for any tangent vector fields X,Y on Mn.

With respect to Lagrangian frame {e1, · · · , en, e1∗ , · · · , en∗} in Nn(4c), we have

h̃m∗

ij = hm∗

ij −
n

n+ 2

(
Hm∗

δij +Hi∗δjm +Hj∗δim
)

= hm∗

ij − cm
∗

ij , (3.2)

where cm
∗

ij = n
n+2

{Hm∗

δij +Hi∗δjm +Hj∗δim}.

The first covariant derivatives of h̃m∗

ij are defined by

n∑

l=1

h̃m∗

ij,lθl := dh̃m∗

ij +

n∑

l=1

h̃m∗

il θlj +

n∑

l=1

h̃m∗

jl θli +

n∑

l=1

h̃l∗

ijθl∗m∗ . (3.3)

The second covariant derivatives of h̃m
ij are defined by

n∑

l=1

h̃m∗

ij,klθl := dh̃m∗

ij,k +

n∑

l=1

h̃m∗

lj,kθli +

n∑

l=1

h̃m∗

il,kθlj +

n∑

l=1

h̃m∗

ij,lθlk +

n∑

l=1

h̃l∗

ij,kθl∗m∗ . (3.4)

On the other hand, we have the following Ricci identities

h̃m∗

ij,kp − h̃m∗

ij,pk =
∑

l

h̃m∗

lj Rlikp +
∑

l

h̃m∗

il Rljkp +
∑

l

h̃l∗

ijRl∗m∗kp. (3.5)

The following proposition links those geometric quantities together.

Lemma 3.1 Let Mn →֒ Nn(4c) be a Lagrangian submanifold. Then the Lagrangian trace-

free second fundamental form h̃ satisfies

|h̃|2 = |h|2 −
3n2

n+ 2
|H |2, (3.6)

∑

m

h̃m∗

ij,m =
n

n+ 2
(nHi∗

,j − divJH gij). (3.7)

Proof (3.6) and (3.7) can be immediately obtained from (3.2).

Definition 3.1 (cf. [6–7, 24]) We define a (0, 2)-tensor T in local orthonormal basis as

follows :

Tij =
1

n

∑

m

h̃m∗

ij,m =
1

n+ 2

(
nHi∗

,j −
∑

m

Hm∗

,m gij

)
. (3.8)

Remark 3.1 T is a trace-free tensor and symmetric. T = 0 if and only if JH is a conformal

vector field.
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In the following we will derive a Simons’ type identity for ∆|h̃|2. First we have the following

lemma.

Lemma 3.2 Let Mn →֒ Nn(4c) be a Lagrangian immersion. Then

∑

ijmk

h̃m∗

ij h̃m∗

ij,kk = (n+ 2)〈h̃,∇T 〉+
∑

i,j,m,k,l

h̃m∗

ij (h̃m∗

lk Rlijk + h̃m∗

il Rlkjk + h̃l∗

ikRl∗m∗jk). (3.9)

Proof By using the Codazzi equation (2.8) and (3.2), the definition of h̃ under local

coordinates is just

h̃m∗

ij,k = h̃m∗

ik,j +
n

n+ 2
(δikH

m∗

,j + δkmHi∗

,j − δijH
m∗

,k − δjmHi∗

,k ). (3.10)

With the help of Ricci identity (3.5), (3.8) and (3.10), we have

∑

k

h̃m∗

ij,kk =
∑

k

h̃m∗

ik,jk +
∑

k

n

n+ 2
(δikH

m∗

,jk + δkmHi
,jk − δijH

m∗

,kk − δjmHi∗

,kk)

=
∑

k

h̃m∗

ik,kj +
∑

k,l

h̃m∗

lk Rlijk +
∑

k,l

h̃m∗

il Rlkjk +
∑

k,l

h̃l∗

ikRl∗m∗jk

+
∑

k

n

n+ 2
(δikH

m∗

,jk + δkmHi
,jk − δijH

m∗

,kk − δjmHi∗

,kk)

=
∑

k

h̃m∗

kk,ij +
∑

k,l

h̃m∗

lk Rlijk +
∑

k,l

h̃m∗

il Rlkjk +
∑

k,l

h̃l∗

ikRl∗m∗jk

+
∑

k

n

n+ 2
(δikH

m∗

,jk + δkmHi∗

,jk − δijH
m∗

,kk − δjmHi∗

,kk) + nTim,j . (3.11)

Then, by using (3.8) and the fact that h̃ is trace free and tri-symmetric, we have

∑

i,j,m,k

h̃m∗

ij h̃m∗

ij,kk =
∑

i,j,m,k

h̃m∗

ij [h̃m∗

lk Rlijk + h̃m∗

il Rlkjk + h̃l∗

ikRl∗m∗jk]

+
∑

m,i,j

h̃m∗

ij [Tmj,i + Tij,m] + n
∑

m,i,j

h̃m∗

ij Tim,j

=
∑

i,j,m,k

h̃m∗

ij [h̃m∗

lk Rlijk + h̃m∗

il Rlkjk + h̃l∗

ikRl∗m∗jk]

+ (n+ 2)
∑

m,i,j

h̃m∗

ij Tij,m.

Thus, we obtain the assertion.

Next, by using Lemma 3.2,

1

2
∆|h̃|2 = |∇h̃|2 +

∑

ijmk

h̃m∗

ij h̃m∗

ij,kk

= |∇h̃|2 + (n+ 2)〈h̃,∇T 〉

+
∑

i,j,k,m,l

h̃m∗

ij h̃m∗

lk Rlijk

︸ ︷︷ ︸
I

+
∑

i,j,k,m,l

h̃m∗

ij h̃m∗

il Rlkjk

︸ ︷︷ ︸
II

+
∑

i,j,k,m,l

h̃m∗

ij h̃l∗

ikRlmjk

︸ ︷︷ ︸
III

. (3.12)
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Note that by the symmetry of h̃k∗

ij , I = III. Hence we only need to compute I and II. Direct

computations show that

I = c
∑

i,j,k,m,l

h̃m∗

ij h̃m∗

kl (δljδik − δlkδij) +
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl (h̃t∗

lj h̃
t∗

ik − h̃t∗

lkh̃
t∗

ij )

+
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl (h̃t∗

lj c
t∗

ik + ct
∗

lj h̃
t∗

ik − h̃t∗

lkc
t∗

ij − ct
∗

lk h̃
t∗

ij + ct
∗

lj c
t∗

ik − ct
∗

lkc
t∗

ij )

= c|h̃|2 +
n2

(n+ 2)2
|h̃|2|H |2 +

2n

n+ 2

∑

j,k,l,m,t

h̃m∗

jk h̃m∗

kl h̃t∗

ljH
t∗

+
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl (h̃t∗

lj h̃
t∗

ik − h̃t∗

lkh̃
t∗

ij ) +
2n2

(n+ 2)2

∑

i,j,k,m

h̃m∗

ij h̃m∗

jk Hi∗Hk∗

, (3.13)

where in the second equality we used the following identities derived by direct computations

∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl h̃t∗

lj c
t∗

ik =
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl ct
∗

lj h̃
t∗

ik =
3n

n+ 2

∑

j,k,l,m,t

h̃m∗

jk h̃m∗

kl h̃t∗

ljH
t∗ ,

∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl h̃t∗

lkc
t∗

ij =
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl ct
∗

lk h̃
t∗

ij =
2n

n+ 2

∑

j,k,l,m,t

h̃m∗

jk h̃m∗

kl h̃t∗

ljH
t∗ ,

and since

∑

t

ct
∗

lj c
t∗

ik =
n2

(n+ 2)2

∑

t

((St,l,jH
t∗δlj)(St,i,kH

t∗δik))

=
n2

(n+ 2)2
(Si,j,k,lH

l∗Hi∗δjk + 2H l∗Hj∗δik

+ 2Hi∗Hk∗

δjl + |H |2δikδjl),

where S stands for the cyclic sum, thus

∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl ct
∗

lj c
t∗

ik =
n2

(n+ 2)2
|h̃|2|H |2 +

6n2

(n+ 2)2

∑

i,j,k,m

h̃m∗

ij h̃m∗

jk Hi∗Hk∗

,

∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl ct
∗

lkc
t∗

ij =
4n2

(n+ 2)2

∑

i,j,k,m

h̃m∗

ij h̃m∗

jk Hi∗Hk∗

.

Similarly we have

II =
∑

i,j,k,m,l

h̃m∗

ij h̃m∗

il

[
c(δljδkk − δlkδjk) +

∑

t

(ht∗

lj h
t∗

kk − ht∗

lkh
t∗

kj)
]

= (n− 1)c|h̃|2 +
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

li (nh̃t∗

ljH
t∗ + nct

∗

ljH
t∗

− h̃t∗

lk h̃
t∗

kj − h̃t∗

lkc
t∗

kj − ct
∗

lk h̃
t∗

kj − ct
∗

lkc
t∗

kj)

= (n− 1)c|h̃|2 +
n3

(n+ 2)2
|h̃|2|H |2 +

n2 − 2n

n+ 2

∑

ijlmt

h̃m∗

ij h̃m∗

li h̃t∗

ljH
t∗

+
n2(n− 2)

(n+ 2)2

∑

ijml

h̃m∗

ij h̃m∗

li Hj∗H l∗ −
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

li h̃t∗

lk h̃
t∗

kj , (3.14)
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where in the third equality we used the following identities derived by direct computations

n
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

li ct
∗

ljH
t∗ =

n2

n+ 2
|h̃|2|H |2 +

2n2

n+ 2

∑

ijml

h̃m∗

ij h̃m∗

li Hj∗H l∗ ,

∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

li h̃t∗

lkc
t∗

kj =
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

li h̃t∗

kjc
t∗

lk =
2n

n+ 2

∑

ijlmt

h̃m∗

ij h̃m∗

li h̃t∗

ljH
t∗ ,

and since

∑

t

ct
∗

lkc
t∗

jk =
n2

(n+ 2)2

∑

t

((St,l,kH
t∗δlk)(St,j,kH

t∗δjk))

=
n2

(n+ 2)2
(Sj,k,k,lH

l∗Hj∗δkk + 2H l∗Hk∗

δjk

+ 2Hj∗Hk∗

δkl + |H |2δjkδkl),

thus

∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

li ct
∗

lkc
t∗

kj =
2n2

(n+ 2)2
|h̃|2|H |2 +

(n+ 6)n2

(n+ 2)2

∑

ijml

h̃m∗

ij h̃m∗

li Hj∗H l∗ .

III = I = c|h̃|2 +
n2

(n+ 2)2
|h̃|2|H |2 +

2n

n+ 2

∑

j,k,l,m,t

h̃m∗

jk h̃m∗

kl h̃t∗

ljH
t∗

+
∑

i,j,k,m,l,t

h̃m∗

ij h̃m∗

kl (h̃t∗

lj h̃
t∗

ik − h̃t∗

lk h̃
t∗

ij )

+
2n2

(n+ 2)2

∑

i,j,k,m

h̃m∗

ij h̃m∗

jk Hi∗Hk∗

. (3.15)

Set Ai∗ = (h̃i∗

jk). Then it follows from (3.9) and (3.12)–(3.15) that

1

2
∆|h̃|2 = (n+ 2)〈h̃,∇T 〉+ |∇h̃|2 + (n+ 1)c|h̃|2 +

n2

(n+ 2)
|h̃|2|H |2

+
∑

i,j

tr(Ai∗Aj∗ −Aj∗Ai∗)
2 −

∑

i,j

(trAi∗Aj∗)
2

+ n
∑

i,j,l,m,t

h̃m∗

ji h̃m∗

jt h̃l∗

tiH
l∗ +

n2

(n+ 2)

∑

i,j,k,m

h̃m∗

ij h̃m∗

jk Hi∗Hk∗

. (3.16)

Next we estimate terms on the right hand side of (3.16). We will need the following lemma.

Lemma 3.3 (cf. [17]) Let B1, · · · , Bm be symmetric (n × n)-matrices (m ≥ 2). Denote

Smk = trace(Bt
mBk), where Bt is the transposal matrix of B, N(Bm) := Sm := Smm, S =

m∑
i=1

Si. Then

∑

m,k

N(BmBk −BkBm) +
∑

m,k

S2
mk ≤

3

2
S2.

Now we are prepared to estimate the right hand side of (3.16), mainly the last two terms

on the last line of (3.16).
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We re-choose {ei}
n
i=1 such that

∑
l

h̃l∗

ijH
l∗ = λiδij , denote by

SH =
∑

j,i

(∑

l

h̃l∗

jiH
l∗
)2

=
∑

j

λ2
j , Si∗ =

∑

j,l

(h̃i∗

jl )
2,

then |h̃|2 =
∑
i

Si∗ . Using Lemma 3.3 and the above fact, we have the following estimates for

the right hand side of (3.16),

1

2
∆|h̃|2 ≥ (n+ 2)〈h̃,∇T 〉+ |∇h̃|2 + (n+ 1)c|h̃|2 +

n2

(n+ 2)
|h̃|2|H |2 −

3

2
|h̃|4

+ n
∑

i

λiSi∗ +
n2

n+ 2

∑

i

λ2
i

≥ (n+ 2)〈h̃,∇T 〉+ |∇h̃|2 + (n+ 1)c|h̃|2 +
n2

(n+ 2)
|h̃|2|H |2 −

3

2
|h̃|4

+
n

2

∑

i

(λi + Si∗)
2 −

n

2

∑

i

S2
i∗

≥ (n+ 2)〈h̃,∇T 〉+ |∇h̃|2 + (n+ 1)c|h̃|2 +
n2

(n+ 2)
|h̃|2|H |2 −

n+ 3

2
|h̃|4

+
n

2

∑

i

(|H |λi + Si∗)
2

≥ (n+ 2)〈h̃,∇T 〉+ |∇h̃|2 + (n+ 1)c|h̃|2 +
n2

(n+ 2)
|h̃|2|H |2 −

3

2
|h̃|4

+
n

2

∑

i

(λi + Si∗)
2 −

n

2

∑

i

S2
i∗

≥ (n+ 2)〈h̃,∇T 〉+ |∇h̃|2 + (n+ 1)c|h̃|2 +
n2

(n+ 2)
|h̃|2|H |2 −

n+ 3

2
|h̃|4, (3.17)

where in the last inequality we have used |h̃|4 =
(∑

i

Si∗
)2

≥
∑
i

S2
i∗ .

4 Proof of Theorem 1.3

In this section we will use C to denote constants depending only on n, which may vary line

by line. We have the following lemma.

Lemma 4.1 Assume that Mn is a complete Lagrangian submanifold in Cn, and let γ be a

cut-off function on Mn with ‖∇γ‖L∞
= Γ, then we have

∫

M

(|∇h̃|2 + |H |2|h̃|2)γ2dµ

≤ C

∫

M

〈∇∗T,Hyω〉γ2dµ+ C

∫

M

|h̃|4γ2dµ+ CΓ2

∫

{γ>0}

|h|2dµ. (4.1)

Proof Multiplying (3.17) by γ2 we get

1

2

∫

M

γ2∆|h̃|2dµ ≥ (n+ 2)

∫

M

〈h̃γ2,∇T 〉dµ
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+

∫

M

|∇h̃|2γ2dµ+
n2

(n+ 2)

∫

M

|h̃|2|H |2γ2dµ−
n+ 3

2

∫

M

|h̃|4γ2dµ. (4.2)

Note that

1

2

∫

M

γ2∆|h̃|2dµ = −

∫

M

〈∇h̃, γ∇γ ⊗ h̃〉dµ, (4.3)

and by the definition of T and integral by parts

∫

M

〈h̃γ2,∇T 〉dµ = −

∫

M

〈T, γ2∇∗h̃〉 − 2

∫

M

〈T ⊗∇γ, γh̃〉dµ

= −n

∫

M

〈T, T 〉γ2dµ− 2

∫

M

〈T ⊗∇γ, γh̃〉dµ

= −n

∫

M

〈
T,

1

n+ 2
(n∇Hyω − div JHg)γ2

〉
dµ− 2

∫

M

〈T ⊗∇γ, γh̃〉dµ

= −
n2

n+ 2

∫

M

〈T,∇Hyω〉γ2dµ− 2

∫

M

〈T ⊗∇γ, γh̃〉dµ

=
n2

n+ 2

∫

M

〈∇∗T,Hyω〉γ2dµ+
2n2

n+ 2

∫

M

〈T,Hyω ⊗∇γ〉γdµ

− 2

∫

M

〈T ⊗∇γ, γh̃〉dµ.

Therefore since |T | ≤ C|∇h̃|, |h̃| ≤ C|h| and |∇γ| ≤ Γ we have

∫

M

|∇h̃|2γ2 +
n2

(n+ 2)
|h̃|2|H |2γ2dµ

≤ −

∫

M

〈∇h̃, γ∇γ ⊗ h̃〉dµ− n2

∫

M

〈∇∗T,Hyω〉γ2dµ− 2n2

∫

M

〈T,Hyω ⊗∇γ〉γdµ

+ 2(n+ 2)

∫

M

〈T ⊗∇γ, γh̃〉dµ+
n+ 3

2

∫

M

|h̃|4γ2dµ

≤ −n2

∫

M

〈∇∗T,Hyω〉γ2dµ+
n+ 3

2

∫

M

|h̃|4γ2dµ+
1

2

∫

M

|∇h̃|2γ2dµ+ CΓ2

∫

{γ>0}

|h|2dµ.

We will need the following Michael-Simon inequality.

Theorem 4.1 (cf. [15, 22]) Assume that Mn is a compact submanifold of Rn+p with or

without boundary. Assume that v ∈ C1(Mn) is a nonnegative function such that v = 0 on

∂Mn, if ∂Mn is not an empty set. Then

( ∫

M

v
n

n−1dµ
)n−1

n

≤ C

∫

M

|∇v|+ v|H |dµ,

where H is the mean curvature vector field of Mn.

Now assume that n ≥ 3. In the above Michael-Simon inequality we let v = f
2(n−1)
n−2 , then by

Hölder inequality we easily get

(∫

M

f
2n

n−2dµ
)n−2

n

≤ C

∫

M

|∇f |2 + f2|H |2dµ. (4.4)
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Therefore by letting f = |h̃|γ in (4.4) we obtain

∫

M

|h̃|4γ2dµ ≤
(∫

M

|h̃|ndµ
) 2

n

( ∫

M

(|h̃|γ)
2n

n−2dµ
)n−2

n

≤ C
(∫

M

|h̃|ndµ
) 2

n

( ∫

M

|∇(|h̃|γ)|2 + |H |2|h̃|2γ2dµ
)

≤ C
(∫

M

|h̃|ndµ
) 2

n

( ∫

M

|∇h̃|2γ2dµ+ Γ2

∫

{γ>0}

|h̃|2dµ+

∫

M

|H |2|h̃|2γ2dµ
)

≤ C
(∫

M

|h̃|ndµ
) 2

n

(|∇h̃|2γ2 + |H |2|h̃|2γ2dµ)

+ CΓ2
(∫

M

|h̃|ndµ
) 2

n

∫

{γ>0}

|h|2dµ. (4.5)

From (3.17) and (4.5) we have
∫

M

(|∇h̃|2 + |H |2|h̃|2)γ2dµ

≤ C

∫

M

〈∇∗T,Hyω〉γ2dµ+ C
( ∫

M

|h̃|ndµ
) 2

n

(|∇h̃|2γ2 + |H |2|h̃|2γ2dµ) + CΓ2

∫

{γ>0}

|h|2dµ,

which implies that if there exists ε0 sufficiently small such that
∫

M

|h̃|ndµ ≤ ε0,

we have
∫

M

(|∇h̃|2 + |H |2|h̃|2)γ2dµ ≤ C

∫

M

〈∇∗T,Hyω〉γ2dµ+ CΓ2

∫

{γ>0}

|h|2dµ. (4.6)

Case 1 If ∇∗T = 0, note that for any R > 0 we can choose γ ∈ C1
c (MR(p0)) such that

γ = 1 on MR

2
(p0) where Mr(p0) denotes geodesic ball of radius r with center p0 ∈ Mn, and

Γ ≤ C
R
, therefore by letting R → +∞ we get

∫

M

|∇h̃|2 + |H |2|h̃|2dµ = 0,

which implies that h̃ = 0 and Mn is either a Lagrangian subspace or a Whitney sphere by

[7, 24] or H = 0,∇h = 0 and Mn is a Lagrangian subspace by [16].

Case 2 If ∇∗∇∗T = 0 and Mn is a Lagrangian sphere, then by Dazord [14], there exists a

smooth function f on Mn such that Hyω = df , and let γ ≡ 1 on Mn, then we have
∫

M

|∇h̃|2 + |H |2|h̃|2dµ ≤ C

∫

M

〈∇∗T, df〉dµ

= −C

∫

M

f∇∗∇∗Tdµ

= 0,

which implies that h̃ = 0 and Mn is either a Lagrangian subspace or a Whitney sphere by

[7, 24] or H = 0,∇h = 0 and Mn is a Lagrangian subspace by [16].

This completes the proof of Theorem 1.3.
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5 Proof of Theorem 1.4

The proof of Theorem 1.4 is quite similar with the proofs of Theorem 1.2 in [32], Theorem

1.5 in [21] and Theorem 1.3 in the present paper. Therefore we will only give a outline of the

proof and omit some details. In this section we will use C to denote constants depending only

on n which may vary line by line.

Letting c = 1 in (3.17), we have

1

2
∆|h̃|2 ≥ (n+ 2)〈h̃,∇T 〉+ |∇h̃|2 + (n+ 1)|h̃|2 +

n2

(n+ 2)
|h̃|2|H |2 −

n+ 3

2
|h̃|4. (5.1)

Then similarly with Lemma 4.1 we can obtain the following lemma.

Lemma 5.1 Assume that Mn is a complete Lagrangian submanifold in CP
n and γ is a cut

off function on Mn with ‖∇γ‖L∞
= Γ, then we have

∫

M

(|∇h̃|2 + |h̃|2|H |2 + |h̃|2)γ2dµ

≤ C

∫

M

〈∇∗T,Hyω〉γ2dµ+ C

∫

M

|h̃|4γ2dµ+ CΓ2

∫

{γ>0}

|h|2dµ. (5.2)

The same as the previous section, to absorb the “bad term”
∫
M

|h̃|4γ2dµ on the right

hand side of (5.2), we will use the Michael-Simom inequality. In order to do this, we need

isometrically immersed CP
n into some Euclidean space R

n+p, which is possible by Nash’s

celebrated embedding theorem. Assume that CPn has mean curvature H0 as a submanifold in

Rn+p, and Mn has mean curvature H as a submanifold in Rn+p. Then it is easy to see that

|H|2 ≤ |H0|
2 + |H |2.

If n = 2, from the original Michael-Simon inequality we see that if M →֒ Rn+p is compact

with or without boundary then

∫

M

f2dµ ≤ C
( ∫

M

|∇f |dµ+

∫

M

f |H |dµ
)2

(5.3)

for any nonnegative function f ∈ C1(M) with f |∂M = 0. Let f = |h̃|2γ in the above inequality,

we obtain
∫

M

|h̃|4γ2dµ ≤ C
(∫

M

|h̃||∇h̃|γ + |∇γ||h̃|2dµ+

∫

M

|h̃|2|H |γdµ
)2

≤ C

∫

M

|h̃|2dµ
(∫

M

|∇h̃|2γ2dµ+

∫

M

|h̃|2|H|2γ2dµ
)
+ CΓ2

( ∫

{γ>0}

|h̃|2dµ
)2

≤ C

∫

M

|h̃|2dµ
(∫

M

|∇h̃|2γ2dµ+

∫

M

|h̃|2|H |2γ2dµ
)

+ Cmax
CPn

|H0|
2
(∫

M

|h̃|2γ2dµ
)2

+ CΓ2
(∫

{γ>0}

|h̃|2dµ
)2

= C

∫

M

|h̃|2dµ
(∫

M

|∇h̃|2γ2dµ+

∫

M

|h̃|2|H |2γ2dµ
)

+ C
( ∫

M

|h̃|2γ2dµ
)2

+ CΓ2
(∫

{γ>0}

|h̃|2dµ
)2

. (5.4)
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From (5.2) and (5.4) we see that

∫

M

(|∇h̃|2 + |h̃|2|H |2 + |h̃|2)γ2dµ

≤ C

∫

M

〈∇∗T,Hyω〉γ2dµ+ C

∫

M

|h̃|2dµ
( ∫

M

|∇h̃|2γ2dµ+

∫

M

|h̃|2|H |2γ2dµ
)

+ C
( ∫

M

|h̃|2γ2dµ
)2

+ CΓ2
(∫

{γ>0}

|h̃|2dµ
)2

+ CΓ2

∫

{γ>0}

|h|2dµ.

Therefore ifMn satisfies assumptions of Theorem 1.4, we can similarly with the previous section

obtain that h̃ = 0 and hence Mn is the real projective space RPn or a Whitney sphere, by [11].

If n ≥ 3, similarly with the proof of Theorem 1.3, we can obtain from the Michael-Simon

inequality that

(∫

M

f
2n

n−2dµ
)n−2

n

≤ C
( ∫

M

|∇f |2dµ+

∫

M

f2|H |2dµ
)

(5.5)

for any nonnegative function f ∈ C1(Mn) with f |∂M = 0. Therefore by letting f = |h̃|γ in the

above inequality we obtain

∫

M

|h̃|4γ2dµ ≤
( ∫

M

|h̃|ndµ
) 2

n

(∫

M

(|h̃|γ)
2n

n−2dµ
)n−2

n

≤ C
( ∫

M

|h̃|ndµ
) 2

n

(∫

M

|∇(|h̃|γ)|2 + |H |2|h̃|2γ2dµ
)

≤ C
( ∫

M

|h̃|ndµ
) 2

n

(∫

M

|∇h̃|2γ2dµ+ Γ2

∫

{γ>0}

|h̃|2dµ+

∫

M

|H |2|h̃|2γ2dµ
)

≤ C
( ∫

M

|h̃|ndµ
) 2

n

(∫

M

|∇h̃|2γ2 + |H |2|h̃|2γ2dµ
)

+ Cmax
CPn

|H0|
2
(∫

M

|h̃|ndµ
) 2

n

∫

M

|h̃|2γ2dµ+ CΓ2
( ∫

M

|h̃|ndµ
) 2

n

∫

{γ>0}

|h̃|2dµ

= C
( ∫

M

|h̃|ndµ
) 2

n

(∫

M

|∇h̃|2γ2 + |H |2|h̃|2γ2dµ
)
+ C

( ∫

M

|h̃|ndµ
) 2

n

∫

M

|h̃|2γ2dµ

+ CΓ2
( ∫

M

|h̃|ndµ
) 2

n

∫

{γ>0}

|h̃|2dµ. (5.6)

From (5.2) and (5.6) we obtain

∫

M

(|∇h̃|2 + |h̃|2|H |2 + |h̃|2)γ2dµ

≤ C

∫

M

〈∇∗T,Hyω〉γ2dµ+ C
( ∫

M

|h̃|ndµ
) 2

n

∫

M

(|∇h̃|2 + |h̃|2|H |2)γ2dµ

+ C
( ∫

M

|h̃|ndµ
) 2

n

∫

M

|h̃|2γ2dµ+ CΓ2
(∫

M

|h̃|ndµ
) 2

n

∫

{γ>0}

|h|2dµ+ CΓ2

∫

{γ>0}

|h|2dµ.

Therefore ifMn satisfies assumptions of Theorem 1.4, we can similarly with the previous section

obtain that h̃ = 0 and hence Mn is the real projective space RPn or a Whitney sphere, by [11].

This completes the proof of Theorem 1.4.
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