
Chin. Ann. Math. Ser. B

44(4), 2023, 615–640
DOI: 10.1007/s11401-023-0035-8

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2023

Discrete Differential Calculus on Simplicial Complexes

and Constrained Homology∗

Shiquan REN1

Abstract Let V be a finite set. Let K be a simplicial complex with its vertices in V .

In this paper, the author discusses some differential calculus on V . He constructs some

constrained homology groups of K by using the differential calculus on V . Moreover, he

defines an independence hypergraph to be the complement of a simplicial complex in the

complete hypergraph on V . Let L be an independence hypergraph with its vertices in V .

He constructs some constrained cohomology groups of L by using the differential calculus

on V .
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1 Introduction

Simplicial complexes play an important and fundamental role in algebraic topology. So far,

topologists have developed the homology and cohomology theory for simplicial complexes. We

refer to [24, Chapter 1] and [20, Section 2.1] for a systematic introduction to the simplicial

homology theory. We also refer to [24, Section 42, Chapter 5] and [20, Sections 3.1–3.2] for an

introduction to the simplicial cohomology theory. On the other hand, since 1950’s, topologists

have developed the simplicial homotopy theory (for example, we may refer to [10–12, 23, 31]),

which has been found to have significant applications in various topics in algebraic and geometric

topology (for example, we refer to [5, 21, 26] for some of such applications). In simplicial

homotopy theory, simplicial complexes are the fundamental models for simplicial sets.

The notion of hypergraphs is a higher dimensional generalization of the notion of graphs

(see [1, 25]). In a graph, an edge consists of two vertices while in an oriented hypergraph, a

oriented hyperedge is allowed to be consisted of n-vertices for any n ≥ 1. From a topological

point of view, an oriented hypergraph can be obtained by deleting some non-maximal faces in an

oriented simplicial complex (see [3, 25]) while an oriented simplicial complex is a special oriented

hypergraph with no non-maximal faces missing. The embedded homology of hypergraphs was

introduced by Bressan, Li, Ren and Wu [3]. The embedded homology of oriented hypergraphs

was proved to be independence on the choice of orientations by Grbić, Wu, Xia and Wei [13,

Theorem 2.7].

The complete hypergraph ∆[V ] on a finite set V has its set of hyperedges as all the non-

empty subsets of V (see Definition 2.6). A simplicial complex with all of its vertices in V has
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its set of simplices as a subset of ∆[V ]. We call the complement of the set of the simplices in

∆[V ] an independence hypergraph (see Definition 2.9 and Proposition 2.1).

Differential calculus is an important tool in (co)homology theory. In some textbooks in

algebraic topology (for example, [2, 22]), the methods of differential calculus have been applied

to the (co)homology theory of differentiable manifolds and fibre bundles. During the 1990s,

Dimakis and Müller-Hoissen [7–9] initiated the study of discrete differential calculus on discrete

sets with a motivation from theoretical physics. During the 2010s, based on the study of [7–

9], Grigor’yan, Lin and Yau [14], Grigor’yan, Lin, Muranov and Yau [15–18] and Grigor’yan,

Muranov and Yau [19] developed the discrete differential calculus methods on discrete sets and

applied the methods to the study of digraphs.

In this paper, we apply the method of the (discrete) differential calculus and give some

constrained homology for simplicial complexes as well as constrained cohomology for indepen-

dence hypergraphs. The constrained cohomology of independence hypergraphs that will be

introduced in this paper is in general different from the embedded homology of hypergraphs in

[3] and the embedded cohomology of hypergraphs in [13].

Let V be a finite set. Let K be a simplicial complex whose set of vertices is a subset of V .

Let n ≥ 0. Let v0v1 · · · vn be an n-simplex of K. The usual boundary operator (see [20, p. 105],

[24, p. 28]) is given by

∂n(v0v1 · · · vn) =
n∑

i=0

(−1)iv0 · · · v̂i · · · vn. (1.1)

We generalize the usual boundary operator and define a weighted boundary operator

∂

∂v
(v0v1 · · · vn) =

n∑

i=0

(−1)iδ(v, vi)v0 · · · v̂i · · · vn

with respect to any fixed vertex v ∈ V . Note that

∂n =
∑

v∈V

∂

∂v
.

We take the exterior algebra Ext∗(V ) generated by the ∂
∂v

’s for all v ∈ V . We prove in

Subsection 4.2 that for any t ≥ 0 and any α ∈ Ext2t+1(V ), there is a constrained homology

group of K with respect to α. Moreover, we prove in Theorem 4.2 that for any s ≥ 0 and any

β ∈ Ext2s(V ), the element β induces a homomorphism between the corresponding constrained

homology groups.

We point out that the constrained homology groups which will be investigated in Subsection

4.2 are generalizations of the weighted homology groups investigated by Dawson [6] and Wu,

C. Y., Ren, Wu, and Xia [28–30] for weighted simplicial complexes. Let f be a real function on

V . We take t = 1 and

α =
∑

v∈V

f(v)
∂

∂v

in Definition 4.3, Subsection 4.2. Then the constrained homology groups of the simplicial

complex K with respect to α, which will be investigated in Subsection 4.2, give the weighted

homology groups of the weighted simplicial complex (K, f) which have been investigated in

[28–30].
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On the other hand, let L be an independence hypergraph whose set of vertices is a subset

of V . For any v ∈ V , we consider the adjoint linear map dv of the element ∂
∂v

in Ext∗(V ).

We define Ext∗(V ) as the exterior algebra generated by the dv’s for all v ∈ V . We prove in

Subsection 4.3 that for any t ≥ 0 and any ω ∈ Ext2t+1(V ), there is a constrained cohomology

group of L with respect to ω. Moreover, we prove in Theorem 4.4 that for any s ≥ 0 and any

µ ∈ Ext2s(V ), the element µ induces a homomorphism between the constrained cohomology

groups.

The remaining part of this paper is organized as follows. In Section 2, we introduce the

definitions of hypergraphs, simplicial complexes and independence hypergraphs. In Section 3,

as a preparation for Section 4, we discuss some differential calculus for paths on discrete sets.

In Section 4, we define the constrained homology groups for simplicial complexes in Definition

4.3 and define the constrained cohomology groups for independence hypergraphs in Definition

4.4. We prove Theorems 4.2 and 4.4. Finally, in Section 5, we give some examples for Section

4.

2 Hypergraphs, Simplicial Complexes and Independence Hypergraphs

Let V be a discrete set whose elements are called vertices. Let n ≥ 0 be a non-negative

integer. Let Sn+1 be the symmetric group on n-letters. Then Sn+1 acts on the set of all the

sequences v0v1 · · · vn, where v0, v1, · · · , vn ∈ V , by permuting the orders of the vertices.

Definition 2.1 An oriented n-hyperedge is an equivalent class [v0, v1, · · · , vn] where the

equivalence relation ∼ on the set {v0v1 · · · vn | v0, v1, · · · , vn ∈ V } of the sequences is given by

σ(v0v1 · · · vn) ∼ v0v1 · · · vn if and only if σ ∈ Sn+1 is an even permutation.

In the remaining part of this paper, suppose V has a total order ≺.

Definition 2.2 An n-hyperedge on V is a sequence

σ(n) = v0v1 · · · vn, (2.1)

where v0 ≺ v1 ≺ · · · ≺ vn are vertices in V . For simplicity, an n-hyperedge is also called a

hyperedge and σ(n) in (2.1) is also denoted as σ.

Remark 2.1 By Definition 2.2, a 0-hyperedge on V is just a single vertex v0 in V and a

1-hyperedge on V is just an edge v0v1 in the complete graph on V .

Definition 2.3 The complete n-uniform hypergraph ∆n(V ) on V is the collection of all

the possible n-hyperedges on V . In other words, ∆n[V ] consists of all the subsets of V with

(n+ 1)-vertices:

∆n(V ) = {v0v1 · · · vn | v0, v1, · · · , vn ∈ V and v0 ≺ v1 ≺ · · · ≺ vn}.

Remark 2.2 In particular, let n = 1 in Definition 2.3. Then the complete 1-uniform

hypergraph ∆1(V ) is just the complete graph on V .

Definition 2.4 An n-uniform hypergraph H(n) on V is a collection of some of the n-

hyperedges on V . In other words, H(n) consists of some of the subsets of V with (n+1)-vertices:

H(n) ⊆ {v0v1 · · · vn | v0, v1, · · · , vn ∈ V and v0 ≺ v1 ≺ · · · ≺ vn}.
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Definition 2.5 A hypergraph on V is a disjoint union

H =
⋃

n≥0

H(n), (2.2)

where H(n) is an n-uniform hypergraph on V for each n ≥ 0.

Definition 2.6 The complete hypergraph ∆[V ] on V is the collection of all the possible

hyperedges on V . In other words, ∆[V ] consists of all the non-empty finite subsets of V .

Remark 2.3 It is direct that we have a disjoint union

∆[V ] =
⋃

n≥0

∆n(V ).

Definition 2.7 Let H1 and H2 be two hypergraphs on V . The complement of H1 in H2 is

defined to be a hypergraph H2 \ H1 on V given by

H2 \ H1 = {σ is a hyperedge on V | σ ∈ H2 and σ /∈ H1}.

Definition 2.8 A simplicial complex (pl. simplicial complexes) K on V is a hypergraph on

V such that for any hyperedge σ ∈ K and any non-empty subset τ ⊆ σ, we always have τ ∈ K.

An n-hyperedge in a simplicial complex is also called an n-simplex (pl. n-simplices) or simply

a simplex (pl. simplices).

Definition 2.9 An independence hypergraph L on V is a hypergraph on V such that for

any hyperedge σ ∈ L and any hyperedge τ on V satisfying σ ⊆ τ , we always have τ ∈ L. 1

Remark 2.4 From Definitions 2.4 and 2.8–2.9, it is direct that

• for any n ≥ 1, an n-uniform hypergraph is not a simplicial complex;

• for any n ≤ #V − 1 where #V is the cardinality of V (here #V can be either finite or

infinite), an n-uniform hypergraph is not an independence hypergraph.

Remark 2.5 From Definitions 2.6 and 2.8–2.9, it is direct that the complete hypergraph

∆[V ] is a simplicial complex on V and also an independence hypergraph on V .

Proposition 2.1 Let ∆[V ] be the complete hypergraph on V . Let K be a simplicial complex

on V . Let L be an independence hypergraph on V . Then both the followings are satisfied :

(i) ∆[V ] \ K is an independence hypergraph on V ;

(ii) ∆[V ] \ L is a simplicial complex on V .

Proof (i) Let σ ∈ ∆[V ] \K. Let τ be a hyperedge on V such that σ ⊆ τ . In order to prove

that ∆[V ] \ K is an independence hypergraph, it suffices to prove τ ∈ ∆[V ] \ K. Suppose to

the contrary, τ /∈ ∆[V ] \ K. Then τ ∈ K. Since K is a simplicial complex and σ ⊆ τ , we have

σ ∈ K. This contradicts σ ∈ ∆[V ] \ K. Therefore, τ ∈ ∆[V ] \ K, which implies that ∆[V ] \ K

is an independence hypergraph.

1The reason that we use the term “independence hypergraph” is as follows. By Proposition 2.1, the set
of hyperedges of an independence hypergraph L on V is the complement of the set of simplices of a simplicial
complex K on V in the set of hyperedges of the complete hypergraph ∆[V ]. That is, K = ∆[V ]\L, or equivalently,
L = ∆[V ] \ K. If we regard each simplex σ ∈ K as a relation on V , then the vertices of each hyperedge σ ∈ L
are independent from the relations in K. Since L consists of all the hyperedges σ ∈ ∆[V ] such that the vertices
of each hyperedge are independent from the relations in K, we call L an independence hypergraph.
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(ii) Let σ ∈ ∆[V ] \ L. Let τ be a hyperedge on V such that τ ⊆ σ. In order to prove that

∆[V ] \ L is a simplicial complex, it suffices to prove τ ∈ ∆[V ] \ L. Suppose to the contrary,

τ /∈ ∆[V ] \ L. Then τ ∈ L. Since L is an independence hypergraph and τ ⊆ σ, we have σ ∈ L.

This contradicts σ ∈ ∆[V ] \ L. Therefore, τ ∈ ∆[V ] \ L, which implies that ∆[V ] \ L is a

simplicial complex.

Example 2.1 Consider the set V = {v0, v1, v2, v3, v4, v5}. Then

(i) σ(3) = v0v2v4v5 is 3-hyperedge on V ;

(ii) H(2) = {v0v2v3, v1v2v3, v1v3v5, v2v4v5} is a 2-uniform hypergraph on V ;

(iii) H = {v0, v0v1, v4v5, v0v1v2, v2v3v4v5} is a hypergraph on V ;

(iv) ∆[V ] = {vi | 0 ≤ i ≤ 5} ∪ {vivj | 0 ≤ i < j ≤ 5} ∪ {vivjvk | 0 ≤ i < j < k ≤ 5} ∪

{vivjvkvl | 0 ≤ i < j < k < l ≤ 5} ∪ {vivjvkvlvs | 0 ≤ i < j < k < l < s ≤ 5} ∪ {v0v1v2v3v4v5};

(v) K = {v0, v0v1, v0v2, v1v2, v0v1v2} is a simplicial complex on V ;

(vi) L = {v0v1v2v4, v0v1v2v3v5, v0v1v2v3v4, v0v1v2v4v5, v0v1v2v3v4v5} is an independence

hypergraph on V.

Example 2.2 Consider the set V = Z of all the integers. Then

(i) for any p ∈ Z and any q ≥ 0, the sequence p(p+ 1) · · · (p+ q) of subsequent integers is a

q-hyperedge on V ;

(ii) for any q ≥ 0, the collection H(q) = {p(p+ 1) · · · (p + q) | p ≡ 1 (mod 3)} of sequences

of subsequent integers is a q-uniform hypergraph on V ;

(iii) the collection H = {p(p+ 1) · · · (p+ q) | p ≡ 1 (mod 3) and 2 ≤ q ≤ 5} of sequences of

subsequent integers is a hypergraph on V ;

(iv) ∆[V ] = {i0 ∈ Z} ∪ {i0i1 ∈ Z× Z | i0 < i1} ∪ {i0i1i2 ∈ Z× Z× Z | i0 < i1 < i2} ∪ · · · ;

(v) the collection K = {p(p+1) · · · (p+q) | p ∈ Z and 0 ≤ q ≤ 5} of sequences of subsequent

integers is a simplicial complex on V ;

(vi) the collection L = {p(p+1) · · · (p+q) | p ∈ Z and q > 5} of sequences is an independence

hypergraph on V.

3 Differential Calculus for Paths on Discrete Sets

In this section, we review the definitions of paths and elementary paths on a discrete set

(see [15]). By applying some discrete differential calculus, we construct certain chain complexes

and co-chain complexes for the space of paths on a discrete set.

3.1 Paths on discrete sets

Throughout this section, we let V be a discrete set. Let n be a non-negative integer.

Definition 3.1 (see [15, Definition 2.1]) An elementary n-path on V is an ordered sequence

v0v1 · · · vn of n+1 vertices in V . Here for any integers 0 ≤ i < j ≤ n, we do not require vi ≺ vj,

vj ≺ vi or vi 6= vj.

Definition 3.2 (see [15, Definition 2.2]) A formal linear combination of elementary n-paths

on V with coefficients in the real numbers R is called an n-path on V .

Notation 3.1 (see [15, Subsection 2.1]) Denote by Λn(V ) the vector space of all n-paths
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on V . Then any element in Λn(V ) is of the form
∑

v0,v1,··· ,vn∈V

rv0v1···vnv0v1 · · · vn, rv0v1···vn ∈ R.

Notation 3.2 Letting n run over all non-negative integers, we have a graded vector space

Λ∗(V ) =
∞⊕

n=0

Λn(V ).

Notation 3.3 For each n ≥ 0, we have a canonical inner product

〈 , 〉 : Λn(V )× Λn(V ) → R

on Λn(V ) given by

〈u0u1 · · ·un, v0v1 · · · vn〉 =
n∏

i=0

δ(ui, vi). (3.1)

Remark 3.1 It follows from (3.1) that

• if u0u1 · · ·un and v0v1 · · · vn are identically the same elementary n-path, then

〈u0u1 · · ·un, v0v1 · · · vn〉 = 1;

• if u0u1 · · ·un and v0v1 · · · vn are not the same elementary n-path, then

〈u0u1 · · ·un, v0v1 · · · vn〉 = 0.

3.2 Partial derivatives on path spaces

Definition 3.3 For any v ∈ V , we define the partial derivative of Λ∗(V ) with respect to v

to be a sequence of linear maps

∂

∂v
: Λn(V ) → Λn−1(V ), n ≥ 0

by letting

∂

∂v
(v0v1 · · · vn) =

n∑

i=0

(−1)iδ(v, vi)v0 · · · v̂i · · · vn. (3.2)

Here in (3.2), for any vertices u, v ∈ V , we use the notation δ(u, v) = 1 if u = v and δ(u, v) = 0

if u 6= v. We extend (3.2) linearly over R.

Remark 3.2 By Definition 3.3, for any distinct vertices v0, v1, · · · , vn in V we have the

followings:

• If vi = v for some 0 ≤ i ≤ n, then

∂

∂v
(v0v1 · · · vn) = (−1)iv0 · · · v̂i · · · vn;

• if vi 6= v for any 0 ≤ i ≤ n, then

∂

∂v
(v0v1 · · · vn) = 0.
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Lemma 3.1 (see [27, Lemma 2.7]) For any u, v ∈ V , we have

∂

∂u
◦

∂

∂v
= −

∂

∂v
◦

∂

∂u
. (3.3)

Proof Since both ∂
∂u

and ∂
∂v

are linear, it follows that both ∂
∂u

◦ ∂
∂v

and ∂
∂v

◦ ∂
∂u

are linear

as well. Hence in order to prove the identity (3.3) as linear maps from Λn(V ;R) to Λn−1(V ;R),

we only need to verify the identity (3.3) on an elementary n-path v0v1 · · · vn. By the definition

(3.2), we have

∂

∂u
◦

∂

∂v
(v0v1 · · · vn) =

∂

∂u

( n∑

j=0

(−1)jδ(v, vj)v0 · · · v̂j · · · vn

)

=
n∑

j=0

(−1)jδ(v, vj)
∂

∂u
(v0 · · · v̂j · · · vn)

=

n∑

j=0

(−1)jδ(v, vj)

j−1∑

i=0

(−1)iδ(u, vi)(v0 · · · v̂i · · · v̂j · · · vn)

+
n∑

j=0

(−1)jδ(v, vj)
n∑

i=j+1

(−1)i−1δ(u, vi)(v0 · · · v̂i · · · v̂j · · · vn)

=
∑

0≤i<j≤n

(−1)i+jδ(u, vi)δ(v, vj)(v0 · · · v̂i · · · v̂j · · · vn)

+
∑

0≤j<i≤n

(−1)i+j−1δ(u, vi)δ(v, vj)(v0 · · · v̂j · · · v̂i · · · vn).

Similarly,

∂

∂v
◦

∂

∂u
(v0v1 · · · vn) =

∑

0≤j<i≤n

(−1)i+jδ(u, vi)δ(v, vj)(v0 · · · v̂i · · · v̂j · · · vn)

+
∑

0≤i<j≤n

(−1)i+j−1δ(u, vi)δ(v, vj)(v0 · · · v̂j · · · v̂i · · · vn).

Therefore, for any elementary n-path v0v1 · · · vn on V , we have

∂

∂u
◦

∂

∂v
(v0v1 · · · vn) +

∂

∂v
◦

∂

∂u
(v0v1 · · · vn) = 0.

Consequently, by the linear property of ∂
∂u

◦ ∂
∂v

and ∂
∂v

◦ ∂
∂u

, we obtain (3.3).

Notation 3.4 We denote ∂
∂v

◦ ∂
∂u

as ∂
∂v

∧ ∂
∂u

for any u, v ∈ V .

Definition 3.4 We consider the exterior algebra

Ext∗(V ) =
∧( ∂

∂v

∣∣∣v ∈ V
)

and call it the differential algebra on V .

We have the following observations:

• The differential algebra Ext∗(V ) is a direct sum

Ext∗(V ) =

∞⊕

k=0

Extk(V );



622 S. Q. Ren

• Ext0(V ) = R while for each k ≥ 1, the space Extk(V ) is the vector space spanned by all

the following elements

∂

∂v1
∧

∂

∂v2
∧ · · · ∧

∂

∂vk
, v1, v2, · · · , vk ∈ V

modulo the relation

∂

∂v1
∧ · · · ∧

∂

∂vi
∧

∂

∂vi+1
∧ · · · ∧

∂

∂vk
= −

∂

∂v1
∧ · · · ∧

∂

∂vi+1
∧

∂

∂vi
∧ · · · ∧

∂

∂vk

for any 1 ≤ i ≤ k − 1;

• the exterior product

∧ : Extk(V )× Extl(V ) → Extk+l(V ), k, l ≥ 1

is the composition of linear maps. It is given by

( ∂

∂v1
∧ · · · ∧

∂

∂vk

)
∧
( ∂

∂u1
∧ · · · ∧

∂

∂ul

)
=

∂

∂v1
∧ · · · ∧

∂

∂vk
∧

∂

∂u1
∧ · · · ∧

∂

∂ul

which extends bilinearly over R.

• For any k ≥ 1 and any α ∈ Extk(V ), we have that α gives a sequence of linear maps

αn : Λn(V ) → Λn−k(V ), n ≥ 0. (3.4)

Here we adopt the notation that Λ−n(V ) = 0 for any n ≥ 0. Precisely, if we write

α =
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vk
∂

∂v1
∧

∂

∂v2
∧ · · · ∧

∂

∂vk
, rv1,v2,··· ,vk ∈ R,

then for any elementary n-path u0u1 · · ·un on V with n ≥ k, we have 2

α(u0u1 · · ·un) =
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vk
∂

∂v1
∧

∂

∂v2
∧ · · · ∧

∂

∂vk
(u0u1 · · ·un)

=
∑

0≤i1<i2<···<ik≤n

∑

σ∈Sk

rui
σ(1)

,ui
σ(2)

,··· ,ui
σ(k)

sgn(σ)

(−1)i1+i2+···+iku0 · · · ûi1 · · · ûi2 · · · ûik · · ·un.

Here Sk is the permutation group on k-letters and for any permutation σ ∈ Sk, we use sgn(σ)

to denote the signature of σ.

2The expression of α(u0u1 · · · un) follows from the following two observations:
(i) For any 0 ≤ i1 < i2 < · · · < ik ≤ n, by applying (3.2) for k-times, we have

∂

∂ui1

∧
∂

∂ui2

∧ · · · ∧
∂

∂uik

(u0u1 · · · un) = (−1)i1+i2+···+iku0 · · · ûi1 · · · ûi2 · · · ûik
· · ·un;

(ii) for any σ ∈ Sk, by applying (3.3) iteratively, we have

∂

∂uiσ(1)

∧
∂

∂uiσ(2)

∧ · · · ∧
∂

∂uiσ(k)

= sgn(σ)
∂

∂ui1

∧
∂

∂ui2

∧ · · · ∧
∂

∂uik

.
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3.3 Partial differentiations on path spaces

Definition 3.5 For any v ∈ V , we define the partial differentiation dv with respect to v to

be a sequence of linear maps

dv : Λn(V ) → Λn+1(V ), n ≥ 0,

such that dv is the adjoint linear map of ∂
∂v

for each n ≥ 0. Precisely, for any n ≥ 0, any

ξ ∈ Λn(V ), and any η ∈ Λn+1(V ), we have

〈 ∂

∂v
(η), ξ

〉
= 〈η, dv(ξ)〉. (3.5)

The next lemma gives an explicit formula for dv.

Lemma 3.2 (see [27, Lemma 2.10]) For any n ≥ 1, any v ∈ V , and any elementary

(n− 1)-path u0u1 · · ·un−1 on V , we have

dv(u0u1 · · ·un−1) =

n∑

i=0

(−1)iu0u1 · · ·ui−1vuiui+1 · · ·un−1. (3.6)

Proof In (3.5), we take η to be an elementary n-path v0v1 · · · vn ∈ Λn(V ) and take ξ to be

an elementary (n− 1)-path u0u1 · · ·un−1 ∈ Λn−1(V ). Then

〈v0v1 · · · vn, dv(u0u1 · · ·un−1)〉 =
〈 ∂

∂v
(v0v1 · · · vn), u0u1 · · ·un−1

〉

=
〈 n∑

i=0

(−1)iδ(v, vi)v0 · · · v̂i · · · vn, u0u1 · · ·un−1

〉

=
n∑

i=0

(−1)iδ(v, vi)
i−1∏

j=0

δ(vj , uj)
n−1∏

j=i

δ(vj+1, uj).

Consequently, we have

dv(u0u1 · · ·un−1) =
∑

v0,v1,··· ,vn∈V

〈v0v1 · · · vn, dv(u0u1 · · ·un−1)〉v0v1 · · · vn

=
∑

v0,v1,··· ,vn∈V

( n∑

i=0

(−1)iδ(v, vi)

i−1∏

j=0

δ(vj , uj)

n−1∏

j=i

δ(vj+1, uj)
)
v0v1 · · · vn

=
n∑

i=0

(−1)i
( ∑

v0,v1,··· ,vn∈V

δ(v, vi)
i−1∏

j=0

δ(vj , uj)
n−1∏

j=i

δ(vj+1, uj)
)
v0v1 · · · vn

=

n∑

i=0

(−1)iu0u1 · · ·ui−1vuiui+1 · · ·un−1. (3.7)

We obtain (3.6).

The next corollary gives the case n = 1 in Lemma 3.2.

Corollary 3.1 For any u, v ∈ V , we have dv(u) = vu− uv.

Similarly to the proof of Lemma 3.1, it is direct to verify the next lemma.
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Lemma 3.3 (see [27, Lemma 2.7]) For any u, v ∈ V , we have

du ◦ dv = −dv ◦ du. (3.8)

Proof 3 For any n ≥ 0 and any elementary n-path v0v1 · · · vn ∈ Λn(V ), by (3.6), we have

du ◦ dv(v0v1 · · · vn) = du
( n+1∑

i=0

(−1)iv0 · · · vi−1vvi · · · vn

)

=

n+1∑

i=0

(−1)idu(v0 · · · vi−1vvi · · · vn)

=

n+1∑

i=0

(−1)i
( i−1∑

j=0

(−1)jv0 · · · vj−1uvj · · · vi−1vvi · · · vn

+ (−1)iv0 · · · vi−1uvvi · · · vn + (−1)i+1v0 · · · vi−1vuvi · · · vn

+
n+1∑

j=i+1

(−1)j+1v0 · · · vi−1vvi · · · vj−1uvj · · · vn

)

while

dv ◦ du(v0v1 · · · vn) =
n+1∑

i=0

(−1)i
( i−1∑

j=0

(−1)jv0 · · · vj−1vvj · · · vi−1uvi · · · vn

+ (−1)iv0 · · · vi−1vuvi · · · vn + (−1)i+1v0 · · · vi−1uvvi · · · vn

+

n+1∑

j=i+1

(−1)j+1v0 · · · vi−1uvi · · · vj−1vvj · · · vn

)
.

Thus

du ◦ dv(v0v1 · · · vn) = −dv ◦ du(v0v1 · · · vn)

for any n ≥ 0 and any elementary n-path v0v1 · · · vn ∈ Λn(V ). Consequently, sine both du ◦ dv

and dv ◦ du are linear, we obtain (3.8).

Notation 3.5 We denote du ◦ dv as du ∧ dv for any u, v ∈ V .

Definition 3.6 We consider the exterior algebra

Ext∗(V ) = ∧(dv | v ∈ V )

and call it the co-differential algebra on V .

3An alternative proof for Lemma 3.3 follows from Lemma 3.1 directly: Let u, v ∈ V . For any n ≥ 0, any
ξ ∈ Λn(V ) and any η ∈ Λn+2(V ), we have

〈η, du ∧ dv(ξ)〉 =
〈 ∂

∂u
(η), dv(ξ)

〉
=

〈 ∂

∂v
∧

∂

∂u
(η), ξ

〉

= −
〈 ∂

∂u
∧

∂

∂v
(η), ξ

〉
= −

〈 ∂

∂v
(η), du(ξ)

〉
= −〈η, dv ∧ du(ξ)〉.

This implies (3.8). Nevertheless, the proof for Lemma 3.3 in the main-body consolidates (3.6) in Lemma 3.2.
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We have the following observations:

• Ext∗(V ) is a direct sum

Ext∗(V ) =

∞⊕

k=0

Extk(V ).

• Ext0(V ) = R while for each k ≥ 1, the space Extk(V ) is spanned by

dv1 ∧ dv2 ∧ · · · ∧ dvk, v1, v2, · · · , vk ∈ V

modulo the relation

dv1 ∧ · · · ∧ dvi ∧ dvi+1 ∧ · · · ∧ dvk = −dv1 ∧ · · · ∧ dvi+1 ∧ dvi ∧ · · · ∧ dvk

for any 1 ≤ i ≤ k − 1.

• For any k ≥ 1 and any ω ∈ Extk(V ), we have that ω gives a sequence of linear maps

ωn : Λn(V ) → Λn+k(V ), n ≥ 0. (3.9)

Definition 3.7 Let k ≥ 1, α ∈ Extk(V ) and ω ∈ Extk(V ). We say that α and ω are

adjoint to each other if for any n ≥ 0, any ξ ∈ Λn(V ) and any η ∈ Λn+k(V ), the identity

〈α(η), ξ〉 = 〈η, ω(ξ)〉

is satisfied.

Proposition 3.1 Let k ≥ 1 be any positive integer. Let α ∈ Extk(V ) be given by

α =
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vk
∂

∂v1
∧

∂

∂v2
∧ · · · ∧

∂

∂vk
, rv1,v2,··· ,vk ∈ R.

Suppose ω ∈ Extk(V ) is adjoint to α. Then ω is given by

ω = sgn(k)
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vkdv1 ∧ dv2 ∧ · · · ∧ dvk, rv1,v2,··· ,vk ∈ R, (3.10)

where sgn(k) = 1 if k ≡ 0, 1 (mod 4) and sgn(k) = −1 if k ≡ 2, 3 (mod 4).

Proof Let n ≥ 0, ξ ∈ Λn(V ) and η ∈ Λn+k(V ). Then we have

〈α(η), ξ〉 =
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vk

〈 ∂

∂v1
∧

∂

∂v2
∧ · · · ∧

∂

∂vk
(η), ξ

〉

=
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vk

〈 ∂

∂v2
∧ · · · ∧

∂

∂vk
(η), dv1(ξ)

〉

=
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vk

〈 ∂

∂v3
∧ · · · ∧

∂

∂vk
(η), dv2 ∧ dv1(ξ)

〉

= · · ·
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=
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vk〈η, dvk ∧ dvk−1 ∧ · · · ∧ dv1(ξ)〉

=
∑

v1,v2,··· ,vk∈V

rv1,v2,··· ,vksgn(k)〈η, dv1 ∧ dv2 ∧ · · · ∧ dvk(ξ)〉.

The last equality follows from the fact that the permutation (k, k−1, · · · , 1) of (1, 2, · · · , k) has

the signature

sgn

(
1, 2, · · · , k

k, k − 1, · · · , 1

)
= (−1)(k−1)+(k−2)+···+1 = (−1)

k(k−1)
2

for any k ≥ 2 and the permutation (k, k−1, · · · , 1) of (1, 2, · · · , k) has the signature 1 for k = 1.

In other words, the permutation (k, k− 1, · · · , 1) of (1, 2, · · · , k) has the signature 1 for k ≡ 0, 1

(mod 4) and has the signature −1 for k ≡ 2, 3 (mod 4). Therefore, we have that ω given by

(3.10) is adjoint to α. The proposition follows.

3.4 Some chain complexes and co-chain complexes on path spaces

Proposition 3.2 Let t be a non-negative integer. Let α ∈ Ext2t+1(V ) and ω ∈ Ext2t+1(V ).

Then for any 0 ≤ q ≤ 2t, we have a chain complex

· · ·
α

// Λn(2t+1)+q(V )
α

// Λ(n−1)(2t+1)+q(V )
α

//

· · ·
α

// Λ(2t+1)+q(V )
α

// Λq(V )
α

// 0

and a co-chain complex

· · · Λn(2t+1)+q(V )
ω

oo Λ(n−1)(2t+1)+q(V )
ω

oo
ω

oo

· · · Λ(2t+1)+q(V )
ω

oo Λq(V )
ω

oo 0.
ω

oo

Proof Let t ≥ 0. Let α ∈ Ext2t+1(V ) and ω ∈ Ext2t+1(V ). Let 0 ≤ q ≤ 2t. Note that for

each n ≥ 0, the maps

α : Λn(2t+1)+q(V ) → Λ(n−1)(2t+1)+q(V )

and

ω : Λn(2t+1)+q(V ) → Λ(n+1)(2t+1)+q(V )

are well-defined. By the anti-symmetric property of exterior algebras,

α ∧ α = (−1)(2t+1)2α ∧ α, ω ∧ ω = (−1)(2t+1)2ω ∧ ω.

Since (2t+ 1)2 is odd,

α ◦ α = α ∧ α = 0, ω ◦ ω = ω ∧ ω = 0.
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Thus for any 0 ≤ q ≤ 2t, we have the chain complex as well as the co-chain complex given in

the proposition.

Notation 3.6 Let 0 ≤ q ≤ 2t. Let α ∈ Ext2t+1(V ) and ω ∈ Ext2t+1(V ). We adopt the

following notations:

(i) Denote the chain complex in Proposition 3.2 as

Λ∗(V, α, q) = {Λn(2t+1)+q(V ), α}n≥0;

(ii) denote the co-chain complex in Proposition 3.2 as

Λ∗(V, ω, q) = {Λn(2t+1)+q(V ), ω}n≥0.

Notation 3.7 For any integer m, there is a unique integer λ (not necessarily non-negative)

and a unique integer 0 ≤ q ≤ 2t such that m = λ(2t+1)+ q. We adopt the following notations:

(i) Denote the chain complex

· · ·
α

// Λ(n+λ)(2t+1)+q(V )
α

// Λ(n−1+λ)(2t+1)+q(V )
α

//

· · ·
α

// Λ(1+λ)(2t+1)+q(V )
α

// Λλ(2t+1)+q(V )
α

// 0

as

Λ∗(V, α,m) = {Λ(n+λ)(2t+1)+q(V ), α}n≥0;

(ii) denote the co-chain complex

· · · Λ(n+λ)(2t+1)+q(V )
ω

oo Λ(n−1+λ)(2t+1)+q(V )
ω

oo
ω

oo

· · · Λ(1+λ)(2t+1)+q(V )
ω

oo Λλ(2t+1)+q(V )
ω

oo 0
ω

oo

as

Λ∗(V, ω,m) = {Λ(n+λ)(2t+1)+q(V ), ω}n≥0.

Here in both (i) and (ii), we use the notation Λk(V ) = 0 for k < 0.

Proposition 3.3 Let t, s be non-negative integers. Let m ∈ Z. Let α ∈ Ext2t+1(V ) and

ω ∈ Ext2t+1(V ). Let β ∈ Ext2s(V ) and µ ∈ Ext2s(V ). Then β gives a chain map

β : Λ∗(V, α,m) → Λ∗(V, α,m− 2s)

and µ gives a co-chain map

µ : Λ∗(V, ω,m) → Λ∗(V, ω,m+ 2s).

Proof Note that as linear maps,

β : Λ(n+λ)(2t+1)+q(V ) → Λ(n+λ)(2t+1)+q−2s(V )
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and

µ : Λ(n+λ)(2t+1)+q(V ) → Λ(n+λ)(2t+1)+q+2s(V )

are well-defined. By the anti-symmetric property of exterior algebras, we have (see [4, p, 53,

Anticommutative Law])

α ∧ β = (−1)2s(2t+1)β ∧ α = β ∧ α.

That is,

α ◦ β = β ◦ α.

Thus β is a chain map from Λ∗(V, α,m) to Λ∗(V, α,m− 2s). Moreover, we also have (see [4, p,

53, Anticommutative Law])

ω ∧ µ = (−1)2s(2t+1)µ ∧ ω = µ ∧ ω.

That is,

ω ◦ µ = µ ◦ ω.

Thus µ is a co-chain map from Λ∗(V, ω,m) to Λ∗(V, ω,m+ 2s). The proposition follows.

4 Constrained Homology for Simplicial Complexes and Constrained

Cohomology for Independence Hypergraphs

In this section, we define the constrained homology groups for simplicial complexes and

the constrained cohomology groups for independence hypergraphs. We prove that any element

β ∈ Ext2s(V ), where s ≥ 0, induces homomorphisms between the constrained homology groups

for the simplicial complexes on V . We also prove that any element µ ∈ Ext2s(V ), where s ≥ 0,

induces homomorphisms between the constrained cohomology groups for the independence

hypergraphs on V .

4.1 Some auxiliaries

Throughout this section, we let V be a finite set. Let ∆[V ] be the complete hypergraph on

V . For each integer n ≥ 0, let

Cn(∆[V ];R) = Span
R
{σ(n) ∈ ∆[V ]}

be the vector space consisting of all the linear combinations of the n-hyperedges on V . Consider

the direct sum

C∗(∆[V ];R) =
⊕

n≥0

Cn(∆[V ];R). (4.1)

Note that since V is assumed to be a finite set, the direct sum in the right-hand side of (4.1) is

a finite sum.
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Lemma 4.1 Let t be a non-negative integer. Let m ∈ Z. Suppose m = λ(2t+ 1) + q where

λ ∈ Z and the integer 0 ≤ q ≤ 2t. Then for any α ∈ Ext2t+1(V ), the graded vector space

C(n+λ)(2t+1)+q(∆[V ];R), n ≥ 0 (4.2)

equipped with the boundary map α gives a sub-chain complex of Λ∗(V, α,m), which will be

denoted as C∗(∆[V ], α,m).

Proof For each n ≥ 0, the vector space C(n+λ)(2t+1)+q(∆[V ];R) is a subspace of the vector

space Λ(n+λ)(2t+1)+q(V ). Hence in order to prove that (4.2) equipped with α is a sub-chain

complex of Λ∗(V, α,m), it suffices to prove that the map

α : C(n+λ)(2t+1)+q(∆[V ];R) → C(n−1+λ)(2t+1)+q(∆[V ];R) (4.3)

is well-defined for each n ≥ 0. This follows from the observation that for any [(n+λ)(2t+1)+q]-

simplex

v0v1 · · · v(n+λ)(2t+1)+q ∈ C(n+λ)(2t+1)+q(∆[V ];R)

and any

α =
∂

∂u1
∧

∂

∂u2
∧ · · · ∧

∂

∂u2t+1

where u1, u2, · · · , u2t+1 ∈ V and u1 ≺ u2 ≺ · · · ≺ u2t+1, we have

α(v0v1 · · · v(n+λ)(2t+1)+q) ∈ C(n−1+λ)(2t+1)+q(∆[V ];R).

By a calculation of linear combinations, it follows that the map (4.3) is well-defined. Therefore,

the graded vector space (4.2) equipped with α is a sub-chain complex of Λ∗(V, α,m).

Definition 4.1 For any n ≥ 1 and any elementary n-path v0v1 · · · vn on V , we cal-

l v0v1 · · · vn a non-simplicial elementary n-path if there exist integers 0 ≤ i < j ≤ n such

that either vj ≺ vi or vj = vi.

Definition 4.2 Let On(V ) be the vector space spanned by all the non-simplicial elemen-

tary n-paths on V . Then On(V ) consists of all the linear combinations of the non-simplicial

elementary n-paths on V . We call an element in On(V ) a non-simplicial n-path on V .

Lemma 4.2 Let t ≥ 0 be an integer. Let m ∈ Z. Suppose m = λ(2t + 1) + q where λ ∈ Z

and the integer 0 ≤ q ≤ 2t. Then for any ω ∈ Ext2t+1(V ), the graded vector space

O(n+λ)(2t+1)+q(V ), n ≥ 0 (4.4)

equipped with the co-boundary map ω gives a sub-co-chain complex of Λ∗(V, ω,m), which will

be denoted as O∗(V, ω,m).

Proof It suffices to verify that the map

ω : O(n+λ)(2t+1)+q(V ) → O(n+1+λ)(2t+1)+q(V ) (4.5)

is well-defined for each n ≥ 0. This follows from the observation that after adding some vertices

to any non-simplicial elementary path, we still get a non-simplicial elementary path. Hence for

any non-simplicial elementary [(n+ λ)(2t+ 1) + q]-path

v0v1 · · · v(n+λ)(2t+1)+q ∈ O(n+λ)(2t+1)+q(V )
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and any

ω = du1 ∧ du2 ∧ · · · ∧ du2t+1

where u1, u2, · · · , u2t+1 ∈ V and u1 ≺ u2 ≺ · · · ≺ u2t+1, we have

ω(v0v1 · · · v(n+λ)(2t+1)+q) ∈ O(n+1+λ)(2t+1)+q(V ).

By a calculation of linear combinations, it follows that the map (4.5) is well-defined. Therefore,

the graded vector space (4.4) equipped with ω is a sub-co-chain complex of Λ∗(V, ω,m).

Lemma 4.3 Let t ≥ 0 be an integer. Let m ∈ Z. Suppose m = λ(2t + 1) + q where λ ∈ Z

and the integer 0 ≤ q ≤ 2t. Then for any ω ∈ Ext2t+1(V ), the graded vector space

C(n+λ)(2t+1)+q(∆[V ];R), n ≥ 0 (4.6)

equipped with the co-boundary map ω gives a quotient co-chain complex

Λ∗(V, ω,m)/O∗(V, ω,m),

which will be denoted as C∗(∆[V ], ω,m).

Proof Note that the canonical inclusion of the sub-co-chain complex O∗(V, ω,m) into the

co-chain complex Λ∗(V, ω,m) gives a quotient co-chain complex Λ∗(V, ω,m)/O∗(V, ω,m). On

the other hand, for each n ≥ 0, the quotient vector space

Λ(n+λ)(2t+1)+q(V )/O(n+λ)(2t+1)+q(V )

is canonically isomorphic to the vector space C(n+λ)(2t+1)+q(∆[V ];R). Therefore, the quotient

co-chain complex Λ∗(V, ω,m)/O∗(V, ω,m) is given by the graded vector space (4.6) equipped

with the co-boundary map ω. The lemma follows.

With the help of Proposition 3.3, the next proposition follows.

Proposition 4.1 Let t, s be non-negative integers. Let m ∈ Z. Let α ∈ Ext2t+1(V ) and

ω ∈ Ext2t+1(V ). Let β ∈ Ext2s(V ) and µ ∈ Ext2s(V ). Then β is a chain map

β : C∗(∆[V ], α,m) → C∗(∆[V ], α,m− 2s) (4.7)

and µ is a co-chain map

µ : C∗(∆[V ], ω,m) → C∗(∆[V ], ω,m+ 2s). (4.8)

Proof By a similar argument in the proof of Lemma 4.1, it can be verified that as a linear

map, β in (4.7) is well-defined. Thus by Proposition 3.3 and Lemma 4.1, it follows that β in

(4.7) is a chain map. On the other hand, by a similar argument in the proof of Lemma 4.3, it

can be verified that as a linear map, µ in (4.8) is well-defined. Thus by Proposition 3.3 and

Lemma 4.3, it follows that ω in (4.8) is a co-chain map.

4.2 Constrained homology for simplicial complexes

Let K be a simplicial complex with its vertices in V .

Notation 4.1 For each non-negative integer n, let Cn(K;R) be the (real) vector space

consisting of all the linear combinations of the n-simplices in K.
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Theorem 4.1 Let t, s be non-negative integers. Let m ∈ Z. Suppose m = λ(2t + 1) + q

where λ ∈ Z and 0 ≤ q ≤ 2t. Then

(i) for any α ∈ Ext2t+1(V ), the graded vector space

C(n+λ)(2t+1)+q(K;R), n ≥ 0 (4.9)

equipped with the chain map α gives a sub-chain complex of C∗(∆[V ], α,m), which will be

denoted as C∗(K, α,m);

(ii) for any β ∈ Ext2s(V ), there is an induced chain map

β : C∗(K, α,m) → C∗(K, α,m− 2s). (4.10)

Proof We prove (i) and (ii) subsequently.

(i) For each n ≥ 0, the vector space C(n+λ)(2t+1)+q(K;R) is a subspace of the vector space

C(n+λ)(2t+1)+q(∆[V ];R). Hence in order to prove that the graded vector space (4.9) equipped

with the chain map α is a sub-chain complex of C∗(∆[V ], α,m), it suffices to prove that the

map

α : C(n+λ)(2t+1)+q(K;R) → C(n−1+λ)(2t+1)+q(K;R) (4.11)

is well-defined for each n ≥ 0. This follows from the observation that for any [(n+λ)(2t+1)+q]-

simplex

v0v1 · · · v(n+λ)(2t+1)+q ∈ C(n+λ)(2t+1)+q(K;R)

and any

α =
∂

∂u1
∧

∂

∂u2
∧ · · · ∧

∂

∂u2t+1
,

where u1, u2, · · · , u2t+1 ∈ V and u1 ≺ u2 ≺ · · · ≺ u2t+1, we have

α(v0v1 · · · v(n+λ)(2t+1)+q) ∈ C(n−1+λ)(2t+1)+q(K;R).

By a calculation of linear combinations, it follows that the map (4.11) is well-defined. There-

fore, the graded vector space (4.9) equipped with the chain map α is a sub-chain complex of

C∗(∆[V ], α,m).

(ii) Similar with the verification that the map α in (4.11) is well-defined for each n ≥ 0, we

can prove that the map

β : C(n+λ)(2t+1)+q(K;R) → C(n+λ)(2t+1)+q−2s(K;R)

is well-defined for each n ≥ 0. Therefore, with the help of (4.7) in Proposition 4.1, we have

that β gives a chain map in (4.10).

Definition 4.3 Let t be a non-negative integer. Let α ∈ Ext2t+1(V ). Let m ∈ Z. Suppose

m = λ(2t+ 1) + q where λ ∈ Z and 0 ≤ q ≤ 2t. Let K be a simplicial complex with its vertices

in V . For each n ≥ 0, we define the n-th constrained homology group Hn(K, α,m) of K with

respect to α and m to be the n-th homology group

Hn(K, α,m) := Hn(C∗(K, α,m))

=
Ker(α : C(n+λ)(2t+1)+q(K;R) → C(n−1+λ)(2t+1)+q(K;R))

Im(α : C(n+1+λ)(2t+1)+q(K;R) → C(n+λ)(2t+1)+q(K;R))

of the chain complex C∗(K, α,m).
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The next theorem follows from Theorem 4.1 and Definition 4.3 immediately.

Theorem 4.2 (Main Result I) Let t, s be non-negative integers. Let m ∈ Z. Suppose

m = λ(2t+1)+q where λ ∈ Z and 0 ≤ q ≤ 2t. Then for any α ∈ Ext2t+1(V ) and β ∈ Ext2s(V ),

there is an induced homomorphism

β∗ : Hn(K, α,m) → Hn(K, α,m− 2s), n ≥ 0 (4.12)

of the constrained homology groups.

Proof Apply the homology functor to the chain complex in Theorem 4.1(i) and the chain

map in Theorem 4.1(ii). We obtain the homomorphism β∗ of the constrained homology groups

in (4.12).

4.3 Constrained cohomology for independence hypergraphs

Let L be an independence hypergraph with its vertices in V .

Notation 4.2 For each non-negative integer n, let Cn(L;R) be the (real) vector space

consisting of all the linear combinations of the n-hyperedges in L.

Theorem 4.3 Let t, s be non-negative integers. Let m ∈ Z. Suppose m = λ(2t + 1) + q

where λ ∈ Z and 0 ≤ q ≤ 2t. Then

(i) for any ω ∈ Ext2t+1(V ), the graded vector space

C(n+λ)(2t+1)+q(L;R), n ≥ 0 (4.13)

equipped with the co-boundary map ω gives a sub-co-chain complex of C∗(∆[V ], ω,m), which

will be denoted as C∗(L, ω,m);

(ii) for any µ ∈ Ext2s(V ), there is an induced co-chain map

µ : C∗(L, ω,m) → C∗(L, ω,m+ 2s). (4.14)

Proof We prove (i) and (ii) subsequently.

(i) For each n ≥ 0, the vector space C(n+λ)(2t+1)+q(L;R) is a subspace of the vector space

C(n+λ)(2t+1)+q(∆[V ];R). Hence in order to prove that the graded vector space (4.13) equipped

with the co-boundary map ω is a sub-co-chain complex of C∗(∆[V ], ω,m), it suffices to prove

that the map

ω : C(n+λ)(2t+1)+q(L;R) → C(n+1+λ)(2t+1)+q(L;R) (4.15)

is well-defined for each n ≥ 0. This follows from the observation that for any [(n+λ)(2t+1)+q]-

hyperedge

v0v1 · · · v(n+λ)(2t+1)+q ∈ C(n+λ)(2t+1)+q(L;R)

and any

ω = du1 ∧ du2 ∧ · · · ∧ du2t+1

where u1, u2, · · · , u2t+1 ∈ V and u1 ≺ u2 ≺ · · · ≺ u2t+1, we have

ω(v0v1 · · · v(n+λ)(2t+1)+q) ∈ C(n+1+λ)(2t+1)+q(L;R).
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By a calculation of linear combinations, it follows that the map (4.15) is well-defined. Therefore,

the graded vector space (4.13) equipped with the co-boundary map ω is a sub-co-chain complex

of C∗(∆[V ], ω,m).

(ii) Similar with the verification that the map ω in (4.15) is well-defined for each n ≥ 0, we

can prove that the map

µ : C(n+λ)(2t+1)+q(L;R) → C(n+λ)(2t+1)+q+2s(L;R)

is well-defined for each n ≥ 0. Therefore, with the help of (4.8) in Proposition 4.1, we have

that µ gives a co-chain map in (4.14).

Definition 4.4 Let t be a non-negative integer. Let ω ∈ Ext2t+1(V ). Let m ∈ Z. Suppose

m = λ(2t + 1) + q where λ ∈ Z and 0 ≤ q ≤ 2t. Let L be an independence hypergraph with its

vertices in V . For each n ≥ 0, we define the n-th constrained cohomology group Hn(L, ω,m)

of L with respect to ω and m to be the cohomology group

Hn(L, ω,m) := Hn(C∗(L, ω,m))

=
Ker(ω : C(n+λ)(2t+1)+q(L;R) → C(n+1+λ)(2t+1)+q(L;R))

Im(ω : C(n−1+λ)(2t+1)+q(L;R) → C(n+λ)(2t+1)+q(L;R))

of the co-chain complex C∗(L, ω,m).

The next theorem follows from Theorem 4.3 and Definition 4.4 immediately.

Theorem 4.4 (Main Result II) Let t, s be non-negative integers. Let m ∈ Z. Suppose

m = λ(2t+1)+q where λ ∈ Z and 0 ≤ q ≤ 2t. Then for any ω ∈ Ext2t+1(V ) and µ ∈ Ext2s(V ),

there is an induced homomorphism

µ∗ : Hn(L, ω,m) → Hn(L, ω,m+ 2s), n ≥ 0 (4.16)

of the constrained cohomology groups.

Proof Apply the cohomology functor to the co-chain complex in Theorem 4.3(i) and the co-

chain map in Theorem 4.3(ii). We obtain the homomorphism µ∗ of the constrained cohomology

groups in (4.16).

5 Examples

We give some examples for Theorems 4.1–4.4.

Example 5.1 Let V be any finite set. Then we have the followings.

(i) Any element α ∈ Ext1(V ) can be expressed as

α =
∑

v∈V

f(v)
∂

∂v
(5.1)

for some function f : V → R. Let K be a simplicial complex with its vertices in V . Then for

any n ≥ 0 and any n-simplex v0v1 · · · vn in K, we have

α(v0v1 · · · vn) =
∑

v∈V

f(v)
∂

∂v
(v0v1 · · · vn)



634 S. Q. Ren

=
∑

v∈V

f(v)

n∑

i=0

(−1)iδ(v, vi)v0 · · · v̂i · · · vn

=

n∑

i=0

(−1)i
(∑

v∈V

δ(v, vi)f(v)
)
v0 · · · v̂i · · · vn

=

n∑

i=0

(−1)if(vi)v0 · · · v̂i · · · vn.

In [28–30], α given in (5.1) is called the f -weighted boundary operator on K and the (α, 0)-

homology of K is denoted as the weighted homologyH∗(K, f) of the weighted simplicial complex

(K, f). Particularly, if f takes the constant value 1 for all v ∈ V , then α is the usual boundary

operator ∂∗ given in (1.1) and H∗(K, f) is the usual homology H∗(K) (see [24, Chapter 1] and

[20, Section 2.1]) of K.

(ii) Any element ω ∈ Ext1(V ) can be expressed as

ω =
∑

v∈V

f(v)dv (5.2)

for some function f : V → R. Let L be an independence hypergraph with its vertices in V .

Then for any n ≥ 0 and any n-hyperedge v0v1 · · · vn in L, we have

ω(v0v1 · · · vn) =
∑

v∈V

f(v)dv(v0v1 · · · vn)

=
∑

v∈V

f(v)

n+1∑

i=0

(−1)iv0v1 · · · vi−1vvivi+1 · · · vn

=

n+1∑

i=0

(−1)i
(∑

v∈V

f(v)v0 · · · · · · vi−1vvi · · · vn

)
.

Similar with (i), we call ω given in (5.2) the f -weighted co-boundary operator on L and denote

the (ω, 0)-cohomology of L as H∗(L, f). Particularly, if f takes the constant value 1 for all

v ∈ V , then we denote the ω as d∗ denote the H∗(L, f) as H∗(L).

Example 5.2 Let V = {v0, v1, v2}. Let f : V → R be a function on V .

(i) Let

K = {v0, v1, v2, v0v1, v0v2, v1v2}

be a simplicial complex with its vertices in V . Then we have

C0(K;R) = Span
R
{v0, v1, v2},

C1(K;R) = Span
R
{v0v1, v0v2, v1v2},

Cn(K;R) = 0 for all n ≥ 2.

• Let t = 1. Let

α = f(v0)
∂

∂v0
+ f(v1)

∂

∂v1
+ f(v2)

∂

∂v2
.

With the help of Example 5.1(i), we have

α(v0) = α(v1) = α(v2) = 0,
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α(v0v1) = f(v0)v1 − f(v1)v0,

α(v0v2) = f(v0)v2 − f(v2)v0,

α(v1v2) = f(v1)v2 − f(v2)v1,

α(v0v1v2) = f(v0)v1v2 − f(v1)v0v2 + f(v2)v0v1.

Note that

dimKer(α : C0(K;R) → 0) = 3

and

dim Im(α : C1(K;R) → C0(K;R)) =

{
2, if f(vi) 6= 0 for some i = 0, 1, 2;
0, if f(v0) = f(v1) = f(v2) = 0.

Thus

H0(K, f) = H0(K, α, 0) =

{
R, if f(vi) 6= 0 for some i = 0, 1, 2;
R

3, if f(v0) = f(v1) = f(v2) = 0.

Note that

dimKer(α : C1(K;R) → C0(K;R)) =

{
1, if f(vi) 6= 0 for some i = 0, 1, 2;
3, if f(v0) = f(v1) = f(v2) = 0

and

dim Im(α : C2(K;R) → C1(K;R)) = 0.

Thus

H1(K, f) = H1(K, α, 0) =

{
R, if f(vi) 6= 0 for some i = 0, 1, 2;
R

3, if f(v0) = f(v1) = f(v2) = 0.

• Let s = 1. Let

β = b01
∂

∂v0
∧

∂

∂v1
+ b02

∂

∂v0
∧

∂

∂v2
+ b12

∂

∂v1
∧

∂

∂v2
.

Then

β(vi) = 0 for 0 ≤ i ≤ 2

and

β(vivj) = 0 for 0 ≤ i < j ≤ 2.

Thus the induced homomorphism β∗ between the homology groups is identically zero.

(ii) Let

L = {v0v1, v0v2, v0v1v2}

be an independence hypergraph with its vertices in V . Then we have

C0(L;R) = 0,
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C1(L;R) = Span
R
{v0v1, v0v2},

C2(L;R) = Span
R
{v0v1v2},

Cn(L;R) = 0 for all n ≥ 3.

• Let t = 1. Let

ω = f(v0)dv0 + f(v1)dv1 + f(v2)dv2 + f(v3)dv3.

With the help of Example 5.1(ii), we have

ω(v0v1) = f(v2)v0v1v2,

ω(v0v2) = −f(v1)v0v1v2,

ω(v0v1v2) = 0.

Note that

dimKer(ω : C1(L;R) → C2(L;R)) =

{
1, if f(vi) 6= 0 for some i = 1, 2;
2, if f(v1) = f(v2) = 0

or equivalently,

dim Im(ω : C1(L;R) → C2(L;R)) =

{
1, if f(vi) 6= 0 for some i = 1, 2;
0, if f(v1) = f(v2) = 0.

Thus

H1(L, f) = H1(L, ω, 0) =

{
R, if f(vi) 6= 0 for some i = 1, 2;
R

2, if f(v1) = f(v2) = 0

and

H2(L, f) = H2(L, ω, 0) =

{
0, if f(vi) 6= 0 for some i = 1, 2;
R, if f(v1) = f(v2) = 0.

Moreover,

Hn(L, f) = Hn(L, ω, 0) = 0

for any n 6= 1, 2.

• Let s = 1. Let

µ = u01dv0 ∧ dv1 + u02dv0 ∧ dv2 + u12dv1 ∧ dv2.

Then

µ(v0v1v2) = µ(v0v1) = µ(v0v2) = 0.

Thus the induced homomorphism µ∗ between the cohomology groups is identically zero.

Example 5.3 Let V = {v0, v1, v2, v3}. Let t = 1. Then any α ∈ Ext3(V ) can be expressed

as

α = f(v0, v1, v2)
∂

∂v0
∧

∂

∂v1
∧

∂

∂v2
+ f(v0, v1, v3)

∂

∂v0
∧

∂

∂v1
∧

∂

∂v3
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+ f(v0, v2, v3)
∂

∂v0
∧

∂

∂v2
∧

∂

∂v3
+ f(v1, v2, v3)

∂

∂v1
∧

∂

∂v2
∧

∂

∂v3
,

where

f : V × V × V → R

is a real function on the 3-fold Cartesian product of V . By Proposition 3.1, the adjoint ω ∈

Ext3(V ) of α is given by

ω = −f(v0, v1, v2)dv0 ∧ dv1 ∧ dv2 − f(v0, v1, v3)dv0 ∧ dv1 ∧ dv3

− f(v0, v2, v3)dv0 ∧ dv2 ∧ dv3 − f(v1, v2, v3)dv1 ∧ dv2 ∧ dv3.

Let s = 1. Then any β ∈ Ext2(V ) can be expressed as

β = g(v0, v1)
∂

∂v0
∧

∂

∂v1
+ g(v0, v2)

∂

∂v0
∧

∂

∂v2
+ g(v0, v3)

∂

∂v0
∧

∂

∂v3

+ g(v1, v2)
∂

∂v1
∧

∂

∂v2
+ g(v1, v3)

∂

∂v1
∧

∂

∂v3
+ g(v2, v3)

∂

∂v2
∧

∂

∂v3
,

where

g : V × V → R

is a real function on the 2-fold Cartesian product of V . By Proposition 3.1, the adjoint µ ∈

Ext2(V ) of β is given by

µ = −g(v0, v1)dv0 ∧ dv1 − g(v0, v2)dv0 ∧ dv2 − g(v0, v3)dv0 ∧ dv3

− g(v1, v2)dv1 ∧ dv2 − g(v1, v3)dv1 ∧ dv3 − g(v2, v3)dv2 ∧ dv3.

Consider the complete hypergraph

∆[V ] = {v0, v1, v2, v3, v0v1, v0v2, v0v3, v1v2, v1v3, v2v3,

v0v1v2, v0v1v3, v0v2v3, v1v2v3, v0v1v2v3}.

Then ∆[V ] is a simplicial complex and is also an independence hypergraph.

• By a direct calculation,

α(vi) = 0, i = 0, 1, 2, 3,

α(vivj) = 0, 0 ≤ i < j ≤ 3,

α(vivjvk) = 0, 0 ≤ i < j < k ≤ 3,

α(v0v1v2v3) = (−1)0+1+2f(v0, v1, v2)v3 + (−1)0+1+3f(v0, v1, v3)v2

+ (−1)0+2+3f(v0, v2, v3)v1 + (−1)1+2+3f(v1, v2, v3)v0

= −f(v0, v1, v2)v3 + f(v0, v1, v3)v2 − f(v0, v2, v3)v1

+ f(v1, v2, v3)v0.

It follows that

dim Im(α : C3(∆[V ];R) → C0(∆[V ];R))
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=

{
1, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
0, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3,

or equivalently,

dimKer(α : C3(∆[V ];R) → C0(∆[V ];R))

=

{
0, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
1, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3.

Consequently,

H0(∆[V ], α, 0) =

{
R

3, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
R

4, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3

and

H3(∆[V ], α, 0) =

{
0, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
R, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3.

By a similar calculation, we have

H1(∆[V ], α, 0) = R
6, H2(∆[V ], α, 0) = R

4.

Moreover,

Hn(∆[V ], α, 0) = 0

for any n 6= 0, 1, 2, 3.

• It is direct that β ◦ α(vi) = 0 for any 0 ≤ i ≤ 3, β ◦ α(vivj) = 0 for any 0 ≤ i < j ≤ 3,

β ◦ α(vivjvk) = 0 for any 0 ≤ i < j < k ≤ 3, and β ◦ α(v0v1v2v3) = 0. Therefore, the induced

homomorphism β∗ between the homology groups is the zero map.

• By a direct calculation,

ω(v0) = −f(v1, v2, v3)dv1 ∧ dv2 ∧ dv3(v0)

= f(v1, v2, v3)v0v1v2v3,

ω(v1) = −f(v0, v2, v3)dv0 ∧ dv2 ∧ dv3(v1)

= −f(v0, v2, v3)v0v1v2v3,

ω(v2) = −f(v0, v1, v3)dv0 ∧ dv1 ∧ dv3(v2)

= f(v0, v1, v3)v0v1v2v3,

ω(v3) = −f(v0, v1, v2)dv0 ∧ dv1 ∧ dv2(v3)

= −f(v0, v1, v2)v0v1v2v3,

ω(vivj) = 0, 0 ≤ i < j ≤ 3,

ω(vivjvk) = 0, 0 ≤ i < j < k ≤ 3,

ω(v0v1v2v3) = 0.

It follows that

dim Im(ω : C0(∆[V ];R) → C3(∆[V ];R))
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=

{
1, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
0, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3,

or equivalently,

dimKer(ω : C0(∆[V ];R) → C3(∆[V ];R))

=

{
3, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
4, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3.

Consequently,

H0(∆[V ], ω, 0) =

{
R

3, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
R

4, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3

and

H3(∆[V ], ω, 0) =

{
0, if f(vi, vj , vk), 0 ≤ i < j < k ≤ 3, are not all zero;
R, if f(vi, vj , vk) = 0 for any 0 ≤ i < j < k ≤ 3.

By a similar calculation, we have

H1(∆[V ], ω, 0) = R
6, H2(∆[V ], ω, 0) = R

4.

Moreover,

Hn(∆[V ], ω, 0) = 0

for any n 6= 0, 1, 2, 3.

• It is direct to see that the induced homomorphism µ∗ between the cohomology groups is

the zero map.
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Différentielle Catégoriques, 31(3), 1990, 229–243.

[7] Dimakis, A. and Müller-Hoissen, F., Differential calculus and gauge theory on finite sets, Journal of Physics
A: Mathematical and General, 27(9), 1994, 3159–3178.

[8] Dimakis, A. and Müller-Hoissen, F., Discrete differential calculus: Graphs, topologies, and gauge theory,
Journal of Mathematical Physics, 35(12), 1994, 6703–6735.

[9] Dimakis, A. and Müller-Hoissen, F., Discrete Riemannian geometry, Journal of Mathematical Physics,
40(3), 1999, 1518–1548.

[10] Curtis, E. B., Simplicial homotopy theory, Advance in mathematics, 6, 1971, 107–209.



640 S. Q. Ren

[11] Eilenberg, S. and Zilber, J. A., Semi-simplicial complexes and singular homology, Annals of Mathematics,
51, 1950, 499–513.

[12] Goerss, Paul G. and Jardine John, Simplicial Homotopy Theory, Birkhäuser, Basel, 1999.
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