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1 Introduction

Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ. We consider the following

coupled system of wave equations for the variable U = (u(1), · · · , u(N))
T
:

{
U ′′ −∆U +AU = DχωH in(0,+∞)× Ω,

U = 0 on(0,+∞)× Γ
(1.1)

with the initial condition

t = 0 : U = Û0, U ′ = Û1 inΩ, (1.2)

where “ ′ ” stands for the time derivative; ∆ =
n∑

k=1

∂2

∂x2
k

is the Laplacian operator; the coupling

matrix A = (aij) is of order N and the internal control matrix D = (dij) is a full column-rank

matrix of order N ×M(M ≤ N), both with constant elements; H = (h(1), · · · , h(M))T denotes

the internal control; and χω is the characteristic function of the open set ω ⊂ Ω.

The exact internal controllability of a single wave equation has been extensively studied.

Russell and Lagnese have considered a single 1-d wave equation with locally distributed control

in any fixed nonempty subinterval of a bounded interval (see [10, 17]). The exact internal
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controllability for a 1-d semilinear wave equation, under some growth constraints on the non-

linearity, was proved by Zuazua using the Hilbert uniqueness method (HUM for short) and the

fixed-point method in [21], and some improved results can be found in [3–4]. Under certain

special but reasonable hypotheses, the exact controllability for the 1-d first order quasilinear

hyperbolic system can be realized only by internal controls, and the control time can be ar-

bitrarily small (see [20]). Zhuang similarly considered this problem for 1-d quasilinear wave

equations (see [19]).

Ammar Khodja and Bader studied the stabilizability of a coupled system of two 1-d wave

equations by only one internal control force and gave necessary and sufficient conditions for

the exponential stability (see [1]). For a system of two coupled 1-d wave equations with one

control, Zhang proved the controllability under certain conditions on the coupling (see [18]).

In higher dimensional case, we consider the following system
{
y′′ −∆y = h in (0, T )× Ω,

y = 0 on (0, T )× Γ.
(1.3)

Let Ω ⊂ R
2 be a rectangle. Haraux established the exact controllability of system (1.3) by

means of a generalized control h(t, x) localized on (0, T )× ω, where ω is an open subset of Ω

(see [8]). Let Ω ⊂ Rn be a bounded domain with C2 boundary Γ. The exact controllability

of system (1.3) was established by the HUM method in [13] with control distributed in an ε-

neighbourhood ω of the boundary satisfying the usual geometrical control condition. Moreover,

for a semilinear wave equation, the internal controllability was obtained by Carleman estimates

with control supported in a neighbourhood of a portion of the boundary (see [7]).

In this paper, we will consider the exact internal controllability and exact internal syn-

chronization of the coupled system (1.1). We point out that in order to further study the

synchronization, the coupling matrix A should be an arbitrarily given matrix.

Let Φ be the solution to the adjoint system
{
Φ′′ −∆Φ+ATΦ = 0 in (0,+∞)× Ω,

Φ = 0 on (0,+∞)× Γ
(1.4)

with the initial data

t = 0 : Φ = Φ̂0, Φ′ = Φ̂1 in Ω. (1.5)

Using the HUM method, to obtain the exact internal controllability of system (1.1) at the time

T > 0, it is sufficient to prove that

‖(Φ̂0, Φ̂1)‖2(L2(Ω))N×(H−1(Ω))N ∼
∫ T

0

∫

ω

|Φ|2dxdt (1.6)

for any given coupling matrix A, where “ ∼ ” means there exist positive constants C and C′,

such that

C

∫ T

0

∫

ω

|Φ|2dxdt ≤ ‖(Φ̂0, Φ̂1)‖2(L2(Ω))N×(H−1(Ω))N ≤ C′

∫ T

0

∫

ω

|Φ|2dxdt.
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For any given x0 ∈ R
n, we define

T (x0) = 2max
x∈Ω

|x− x0| and Γ(x0) = {x ∈ Γ | (x− x0) · ν(x) > 0}, (1.7)

where ν(x) is the unit outer normal vector on Γ (see [13, p.271]).

Before proving (1.6), we recall that for the decoupled system
{
Φ̃′′ −∆Φ̃ = 0 in (0,+∞)× Ω,

Φ̃ = 0 on (0,+∞)× Γ
(1.8)

with the initial data

t = 0 : Φ̃ = Φ̃0, Φ̃′ = Φ̃1, (1.9)

we have the following proposition.

Proposition 1.1 (see [13]) Let Ω ⊂ Rn be a bounded domain with C2 boundary Γ. For

any given x0 ∈ Rn, assume that ω is a neighbourhood of Γ(x0) in Ω and T > T (x0). Then for

any given initial data (Φ̃0, Φ̃1) ∈ (H1
0 (Ω))

N × (L2(Ω))N , the solution Φ̃ to problem (1.8)–(1.9)

satisfies

‖Φ̃0‖
2

(H1
0
(Ω))N + ‖Φ̃1‖

2

(L2(Ω))N ∼
∫ T

0

∫

ω

(|Φ̃|2 + |Φ̃′|2)dxdt. (1.10)

In order to get (1.6) for any given coupling matrix A from Proposition 1.1, we have to

overcome a series of difficulties (see Section 2 below), hence the exact internal controllability of

the coupled system (1.1) is in fact a delicate problem to be solved.

In Section 2, we will show that rank(D) = N is necessary and sufficient for the exact internal

controllability of the coupled system (1.1) composed of N wave equations. The exact internal

synchronization and the exact internal synchronization by p-groups for system (1.1) will be

established in Section 3.

2 Exact Internal Controllability and Non-Exact Internal

Controllability

2.1 Exact internal controllability

Let us first recall the following standard well-posedness result (see [2, 5, 16]).

Proposition 2.1 Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ. For any given

initial data (Û0, Û1) ∈ (H1
0 (Ω))

N × (L2(Ω))N and any given H ∈ (L2
loc(R

+;L2(ω)))M , system

(1.1) admits a unique weak solution U = U(t, x) in the space

(C0
loc(R

+;H1
0 (Ω)))

N ∩ (C1
loc(R

+;L2(Ω)))N . (2.1)

Moreover, the mapping

(Û0, Û1, H) → (U,U ′) (2.2)

is linear and continuous for the corresponding topologies.
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Definition 2.1 System (1.1) is exactly null controllable at the time T > 0 in the space

(H1
0 (Ω))

N × (L2(Ω))N if for any given initial data (Û0, Û1) ∈ (H1
0 (Ω))

N × (L2(Ω))N , there

exists an internal control H ∈ (L2(0,+∞;L2(ω)))M with compact support in [0, T ], such that

the solution U = U(t, x) to problem (1.1)–(1.2) satisfies the following condition :

t ≥ T : U ≡ 0 in Ω. (2.3)

Remark 2.1 In general, for a linear time-inversible system, the exact internal null control-

lability is equivalent to the exact internal controllability (see [12–13]).

Theorem 2.1 Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ. For any given

x0 ∈ Rn, assume that ω is a neighbourhood of Γ(x0) in Ω and T > T (x0), then there exist posi-

tive constants C and C′ such that for any given initial data (Φ̂0, Φ̂1) ∈ (L2(Ω))N × (H−1(Ω))N ,

the solution Φ to problem (1.4)–(1.5) satisfies the following direct and inverse inequalities :

C

∫ T

0

∫

ω

|Φ|2dxdt ≤ ‖Φ̂0‖
2

(L2(Ω))N + ‖Φ̂1‖
2

(H−1(Ω))N ≤ C′

∫ T

0

∫

ω

|Φ|2dxdt. (2.4)

In order to prove Theorem 2.1, we first consider the special case A = 0. Then the proof of

the following theorem will be shown in Section 2.2.

Theorem 2.2 Under the assumptions of Theorem 2.1, there exist positive constants C and

C′ such that for any given initial data (Φ̃0, Φ̃1) ∈ (H1
0 (Ω))

N × (L2(Ω))N , the solution Φ̃ to

problem (1.8)–(1.9) satisfies the following direct and inverse inequalities :

C

∫ T

0

∫

ω

|Φ̃′|2dxdt ≤ ‖Φ̃0‖
2

(H1
0
(Ω))N + ‖Φ̃1‖

2

(L2(Ω))N ≤ C′

∫ T

0

∫

ω

|Φ̃′|2dxdt. (2.5)

Corollary 2.1 Under the assumptions of Theorem 2.1, there exist positive constants C and

C′ such that for any given initial data (Φ̃0, Φ̃1) ∈ (L2(Ω))N × (H−1(Ω))N , the solution Φ̃ to

problem (1.8)–(1.9) satisfies the following direct and inverse inequalities :

C

∫ T

0

∫

ω

|Φ̃|2dxdt ≤ ‖Φ̃0‖
2

(L2(Ω))N + ‖Φ̃1‖
2

(H−1(Ω))N ≤ C′

∫ T

0

∫

ω

|Φ̃|2dxdt. (2.6)

Proof For any given (Φ̃0, Φ̃1) ∈ (L2(Ω))N × (H−1(Ω))N , let

Ψ̂0 = (∆)−1Φ̃1, Ψ̂1 = Φ̃0. (2.7)

Since ∆ is a continuous isomorphism from H1
0 (Ω) to H−1(Ω), we have

‖Ψ̂0‖
2

(H1
0
(Ω))N + ‖Ψ̂1‖

2

(L2(Ω))N ∼ ‖Φ̃0‖
2

(L2(Ω))N + ‖Φ̃1‖
2

(H−1(Ω))N . (2.8)

Let Ψ be the solution to system (1.8) with the initial data (Ψ̂0, Ψ̂1) given by (2.7). We have

t = 0 : Ψ′ = Φ̃0, Ψ′′ = ∆Ψ̂0 = Φ̃1.

By well-posedness, we get

Ψ′ = Φ̃. (2.9)
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Applying Theorem 2.2 to Ψ and noting (2.9), we have (2.6). The proof is then completed.

Finally, using the compact perturbation as in [15], we will give the proof of Theorem 2.1 as

follows.

We rewrite system (1.4) as

(
Φ
Φ′

)′

= A
(

Φ
Φ′

)
+ B

(
Φ
Φ′

)
,

where

A =

(
0 IN
∆ 0

)
, B =

(
0 0

−AT 0

)
,

∆ : H1
0 (Ω)∩H2(Ω) → L2(Ω) and IN is the unit matrix of order N . It is easy to see that A is a

skew-adjoint operator with compact resolvent in (L2(Ω))N × (H−1(Ω))N , and B is a compact

operator in (L2(Ω))N×(H−1(Ω))N . Therefore, operatorsA and A+B can respectively generate

C0 groups SA(t) and SA+B(t) in space (L2(Ω))N × (H−1(Ω))N .

Following a perturbation result in [12, 15], in order to prove the observability inequalities

(2.4) for a system of this kind, it is sufficient to check the following assertions:

(i) The direct and inverse inequalities

C

∫ T

0

∫

ω

|Φ̃|2dxdt ≤ ‖Φ̃0‖
2

(L2(Ω))N + ‖Φ̃1‖
2

(H−1(Ω))N ≤ C′

∫ T

0

∫

ω

|Φ̃|2dxdt

hold for the solution Φ̃ = SA(t)(Φ̃0, Φ̃1) to the decoupled problem (1.8)–(1.9).

(ii) The system of root vectors of A + B forms a Riesz basis of subspaces in (L2(Ω))N ×
(H−1(Ω))N , i.e., there exists a family of subspaces Vm ×Hm(m ≥ 1) composed of root vectors

of A+ B, such that for any given x ∈ (L2(Ω))N × (H−1(Ω))N , there exists a unique sequence

xm ∈ Vm ×Hm for each m ≥ 1, such that

x =

+∞∑

m=1

xm, C‖x‖2 ≤
+∞∑

m=1

‖xm‖2 ≤ C′‖x‖2,

where C,C′ are positive constants.

(iii) If (Φ,Ψ) ∈ (L2(Ω))N × (H−1(Ω))N and λ ∈ C such that

(A+ B)(Φ,Ψ) = λ(Φ,Ψ) and Φ = 0 on ω, (2.10)

then (Φ,Ψ) ≡ 0.

Since the assertion (i) was proved in Corollary 2.1, we only have to prove (ii) and (iii).

Proof of (ii). Let em be a unit eigenfunction of −∆ with homogeneous Dirichlet boundary

condition:
{
−∆em = λ2

mem in Ω,

em = 0 on Γ,
(2.11)
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where the sequence {λm}m≥1 of positive terms is increasing so that λm → +∞ as m → +∞.

Clearly, {em}m≥1 is a Hilbert basis in L2(Ω).

Let

Vm ×Hm = {(αem, βem) : α, β ∈ C
N}. (2.12)

Obviously, the subspaces Vm ×Hm(m = 1, 2, · · · ) are mutually orthogonal and

(L2(Ω))N × (H−1(Ω))N =
⊕

m≥1

Vm ×Hm, (2.13)

where
⊕

stands for the direct sum of subspaces. In particular, for any given x ∈ (L2(Ω))N ×
(H−1(Ω))N , there exists a sequence xm ∈ Vm ×Hm, such that

x =

+∞∑

m=1

xm, ‖x‖2 =

+∞∑

m=1

‖xm‖2. (2.14)

On the other hand, since Vm×Hm is an invariant subspace of A+B and with finite dimension,

the restriction of A+ B in the subspace Vm ×Hm is a linear bounded operator, hence its root

vectors constitute a basis in the finite dimensional complex space Vm×Hm. This together with

(2.13)–(2.14) implies that the system of root vectors of A+ B forms a Riesz basis of subspaces

in (L2(Ω))N × (H−1(Ω))N .

Proof of (iii). Let (Φ,Ψ) ∈ (L2(Ω))N × (H−1(Ω))N and λ ∈ C satisfy (2.10). We have

Ψ = λΦ, ∆Φ−ATΦ = λΨ,

namely,

{
∆Φ = (λ2I +AT)Φ in Ω,

Φ = 0 on Γ.

It follows from the classic elliptic theory that Φ ∈ H2(Ω). Moreover, noting that Φ satisfies

Φ = 0 on ω,

by [12, Proposition 3.4], we get Φ ≡ 0, then Ψ ≡ 0. The proof is complete.

We now show that system (1.1) is exactly controllable under N internal controls by a

standard application of the HUM method of J.-L. Lions (see [13]).

Theorem 2.3 Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ. Assume that ω

is a neighbourhood of Γ(x0) in Ω. Assume furthermore that D is invertible. Then system (1.1)

is exactly controllable at the time T > T (x0) in the space (H1
0 (Ω))

N × (L2(Ω))N .

Proof Let Φ be the solution to the adjoint problem (1.4)–(1.5) with (Φ̂0, Φ̂1) ∈ (L2(Ω))N ×
(H−1(Ω))N . Let

H = χωD
−1Φ. (2.15)
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By direct inequality in (2.4), H ∈ L2(0, T ;L2(ω))N . By Proposition 2.1, the corresponding

backward problem




V ′′ −∆V +AV = χωΦ in (0, T )× Ω,

V = 0 on(0, T )× Γ,

V (T ) = V ′(T ) = 0 in Ω

(2.16)

admits a unique weak solution V ∈ (C0([0, T ];H1
0 (Ω)))

N∩(C1([0, T ];L2(Ω)))N . Then the linear

map

Λ(Φ̂0, Φ̂1) = (−V ′(0), V (0)) (2.17)

is well defined and continuous from (L2(Ω))N × (H−1(Ω))N into (L2(Ω))N × (H1
0 (Ω))

N . We

define the Hilbert norm

‖(Φ̂0, Φ̂1)‖F =
(∫ T

0

∫

ω

|Φ|2dxdt
) 1

2

. (2.18)

Denote by F the completion of D(Ω)×D(Ω) with respect to the ‖ · ‖F norm. By Theorem 2.1,

we have F = (L2(Ω))N × (H−1(Ω))N .

Let Ψ be the solution to system (1.4) with

t = 0 : Ψ = Ψ̂0, Ψ′ = Ψ̂1.

Multiplying the backward problem (2.16) by Ψ and intergrating by parts, we have

−
∫

Ω

(V ′(0), Ψ̂0)dx+

∫

Ω

(V (0), Ψ̂1)dx =

∫ T

0

∫

ω

(Φ(t),Ψ(t))dxdt,

namely,

〈Λ(Φ̂0, Φ̂1), (Ψ̂0, Ψ̂1)〉F ′×F =

∫ T

0

∫

ω

(Φ(t),Ψ(t))dxdt.

Then

|〈Λ(Φ̂0, Φ̂1), (Ψ̂0, Ψ̂1)〉F ′×F | ≤ ‖(Φ̂0, Φ̂1)‖F ‖(Ψ̂0, Ψ̂1)‖F

and

〈Λ(Φ̂0, Φ̂1), (Φ̂0, Φ̂1)〉F ′×F = ‖(Φ̂0, Φ̂1)‖2F .

Therefore, 〈Λ(Φ̂0, Φ̂1), (Φ̂0, Φ̂1)〉F ′×F is a bilinear, symmetric, continuous and coercive form on

F × F . By Lax and Milgram’s lemma, Λ is an isomorphism from (L2(Ω))N × (H−1(Ω))N onto

(L2(Ω))N × (H1
0 (Ω))

N . Then for any given (Û0, Û1) ∈ (H1
0 (Ω))

N × (L2(Ω))N , there exists a

unique (Φ̂0, Φ̂1) ∈ (L2(Ω))N × (H−1(Ω))N , such that

Λ(Φ̂0, Φ̂1) = (−Û1, Û0) = (−V ′(0), V (0)).

By well-posedness, the solution U to problem (1.1)–(1.2) with the control given by (2.15) satisfies

the final condition (2.3). The proof is completed.
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2.2 The proof of Theorem 2.2

Now, we pass to the proof of Theorem 2.2. By Proposition 1.1, we try to get rid of the lower

term
∫ T

0

∫
ω
|Φ̃|2dxdt in (1.10). By (1.10), there exists a positive constant C′ such that

‖Φ̃0‖
2

(H1
0
(Ω))N + ‖Φ̃1‖

2

(L2(Ω))N ≤ C′

∫ T

0

∫

ω

(|Φ̃|2 + |Φ̃′|2)dxdt,

where C′ depends on the size of ω. However, since C′ could be very large like 1
ε3
, where ε is

the thickness of ω
(
i.e., ε = min

x∈Γ(x0)
d(x, ωc), where ωc denotes the complementary set of ω

)
, we

can not absorb it directly from the left-hand side.

Inspired by [9, 11], we can first show the observability inequality (2.5) for the initial data

with higher frequencies, and then extend it to the whole space (H1
0 (Ω))

N × (L2(Ω))N based on

the following lemma.

Lemma 2.1 (see [11]) Let F be a Hilbert space endowed with the p-norm ‖ · ‖p. Assume

that

F = N ⊕L, (2.19)

where
⊕

denotes the direct sum and L is a finite co-dimensional closed subspace in F . Assume

that q is another norm in F , such that the projection from F into N is continuous with respect

to the q-norm ‖ · ‖q. Assume furthermore that

q(y) ≤ p(y), ∀y ∈ L. (2.20)

Then there exists a positive constant C such that

q(z) ≤ Cp(z), ∀z ∈ F . (2.21)

In order to extend (2.20) to the whole space F (i.e., (H1
0 (Ω))

N × (L2(Ω))N ), it is sufficient

to verify the continuity of the projection from F into N for the q-norm. In many situations, it

often occurs that the subspaces N and L are mutually orthogonal with respect to the q-inner

product.

We now give the proof of Theorem 2.2.

Step 1. We define the linear unbounded operator −∆ in (L2(Ω))N by

D(−∆) = {Φ ∈ (H2(Ω))N : Φ|Γ = 0}.

Clearly, −∆ is a densely defined self-adjoint and coercive operator with a compact resolvent

in (L2(Ω))N . Then we can define the power operator (−∆)
s
2 for any given s ∈ R. Moreover,

the domain Hs = D((−∆)
s
2 ) endowed with the norm ‖Φ‖Hs

= ‖(−∆)
s
2Φ‖(L2(Ω))N is a Hilbert

space, and its dual space with respect to the pivot space (L2(Ω))N is H′
s = H−s. In particular,

we have

H1 = D(
√
−∆) = (H1

0 (Ω))
N .
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Then we formulate (1.8)–(1.9) into an abstract evolution problem:

{
Φ̃′′ −∆Φ̃ = 0

t = 0 : Φ̃ = Φ̃0, Φ̃′ = Φ̃1.
(2.22)

Clearly, problem (2.22) generates a C0-semigroup in the space Hs ×Hs−1.

For each m ≥ 1, we define the subspace Zm by

Zm = {αem : α ∈ R
N}. (2.23)

For any given integers m 6= n and any given vectors α, β ∈ RN , we have

(αem, βen)Hs
= (α, β)((−∆)

s
2 em, (−∆)

s
2 en)L2(Ω)

= (α, β)λs
mλs

n(em, en)L2(Ω)

= (α, β)λs
mλs

nδmn. (2.24)

Then the subspaces Zm(m ≥ 1) are mutually orthogonal in the Hilbert space Hs for any given

s ∈ R and in particular, we have

‖Φ̃‖Hs
=

1

λm

‖Φ̃‖Hs+1
, ∀Φ̃ ∈ Zm. (2.25)

Noting that Zm is invariant for −∆, the solution Φ̃ to problem (2.22) with (Φ̃0, Φ̃1) ∈
Zm × Zm is in the space Zm.

Let m0 ≥ 1 be an integer. We denote by
⊕

m≥m0

(Zm × Zm) the linear hull of the subspaces

(Zm × Zm) for m ≥ m0. In other words,
⊕

m≥m0

(Zm × Zm) is composed of all finite linear

combinations of elements of (Zm × Zm) for m ≥ m0.

In particular, by (2.25), we have

‖Φ̃0‖
2

(L2(Ω))N + ‖Φ̃1‖
2

(H−1(Ω))N ≤ 1

λ2
m0

(‖Φ̃0‖
2

(H1
0
(Ω))N + ‖Φ̃1‖

2

(L2(Ω))N ) (2.26)

for any given (Φ̃0, Φ̃1) ∈
⊕

m≥m0

(Zm × Zm).

Step 2. Recalling (1.10), by well-posedness of problem (2.22) in (L2(Ω))N × (H−1(Ω))N and

(2.26), there exists a positive constant C such that

∫ T

0

∫

ω

|Φ̃|2dxdt ≤ C(‖Φ̃0‖2(L2(Ω))N + ‖Φ̃1‖2(H−1(Ω))N )

≤ C

λ2
m0

(‖Φ̃0‖2(H1
0
(Ω))N + ‖Φ̃1‖2(L2(Ω))N ).

Taking m0 ≥ 1 so large that C
λ2
m0

< 1, the lower term
∫ T

0

∫
ω
|Φ̃|2dxdt in (1.10) can be absorbed

by the left-hand side, namely, there exists a positive constant C′ such that

‖Φ̃0‖2(H1
0
(Ω))N + ‖Φ̃1‖2(L2(Ω))N ≤ C′

∫ T

0

∫

ω

|Φ̃′|2dxdt (2.27)
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for any given (Φ̃0, Φ̃1) ∈
⊕

m≥m0

(Zm × Zm).

Step 3. For any given (Φ̃0, Φ̃1) ∈
⊕
m≥1

(Zm × Zm), define

p(Φ̃0, Φ̃1) =
(∫ T

0

∫

ω

|Φ̃′|2dxdt
) 1

2

, (2.28)

where Φ̃ is the solution to the corresponding adjoint problem (2.22). By Holmgren’s uniqueness

Theorem (see [13, Theorem 8.1]), for T > 0 large enough, p(·) defines well a Hilbert norm in
⊕
m≥1

(Zm × Zm). Then, we denote by F the completion of
⊕
m≥1

(Zm × Zm) with respect to the

p-norm. Clearly, F is a Hilbert space.

We next take

N =
⊕

1≤m<m0

(Zm × Zm), L = {
⊕

m≥m0

(Zm × Zm)}
p

(2.29)

in (2.19).

Clearly, N is a finite-dimensional subspace and L is a closed subspace in F . In particular,

(2.27) can be extended by continuity to all initial data (Φ̃0, Φ̃1) in the whole subspace L.
We introduce the second norm

q(Φ̃0, Φ̃1) = ‖(Φ̃0, Φ̃1)‖(H1
0
(Ω))N×(L2(Ω))N , ∀(Φ̃0, Φ̃1) ∈ F . (2.30)

Since

(Φ̃0, Φ̃1) = (Φ̃
(N )
0 , Φ̃

(N )
1 ) + (Φ̃

(L)
0 , Φ̃

(L)
1 ),

where

(Φ̃
(N )
0 , Φ̃

(N )
1 ) ∈ N , (Φ̃

(L)
0 , Φ̃

(L)
1 ) ∈ L

by (2.27), for all (Φ̃0, Φ̃1) ∈ F , we have

‖(Φ̃0, Φ̃1)‖(H1
0
(Ω))N×(L2(Ω))N = ‖(Φ̃(N )

0 , Φ̃
(N )
1 )‖(H1

0
(Ω))N×(L2(Ω))N

+ ‖(Φ̃(L)
0 , Φ̃

(L)
1 )‖(H1

0
(Ω))N×(L2(Ω))N

≤ ‖(Φ̃(N )
0 , Φ̃

(N )
1 )‖(H1

0
(Ω))N×(L2(Ω))N + C′

(∫ T

0

∫

ω

|Φ̃′|2dxdt
) 1

2

< +∞.

Moreover, (2.27) means that

q(Φ̃0, Φ̃1) ≤ C′p(Φ̃0, Φ̃1), ∀(Φ̃0, Φ̃1) ∈ L. (2.31)

Since N is an orthogonal complement of L for the q-inner product, the projection from F into

L is continuous for the q-norm. By Lemma 2.1, we can extend (2.27) to the whole space F :

Cp(Φ̃0, Φ̃1) ≤ q(Φ̃0, Φ̃1) ≤ C′p(Φ̃0, Φ̃1), ∀(Φ̃0, Φ̃1) ∈ F ,



Exact Internal Controllability and Synchronization 651

which implies

F = (H1
0 (Ω))

N × (L2(Ω))N .

The proof is then completed.

Remark 2.2 In the special case that ω = Ω, (2.6) holds for any given T > 0 (see [13,

Chapter 7]). Then, system (1.1) is exactly controllable at any given time T > 0 under N

internal controls.

2.3 Non-exact internal controllability

For any given initial data (Û0, Û1) ∈ (H1
0 (Ω))

N × (L2(Ω))N , let Uad(Û0, Û1) denote the set

of all the controls H which realize the exact internal controllability for system (1.1) at the time

T.

Similarly to [12, Theorem 3.8], we have the following theorem.

Theorem 2.4 Assume that system (1.1) is exactly controllable in the space (H1
0 (Ω))

N ×
(L2(Ω))N . Then for ε > 0 small enough, the values of H ∈ Uad(Û0, Û1) on (T − ε, T )× ω can

be arbitrarily chosen.

It is easy to see that Uad is a convex, closed and non-empty set. By Hilbert projection

theorem, there exists a unique control H0 ∈ Uad(Û0, Û1), such that

‖H0‖(L2(0,T ;L2(ω)))M = inf
H∈Uad

‖H‖(L2(0,T ;L2(ω)))M . (2.32)

Proposition 2.2 Assume that system (1.1) is exactly controllable at the time T in (H1
0 (Ω))

N

×(L2(Ω))N .There exists a positive constant C > 0, such that for any given initial data (Û0, Û1) ∈
(H1

0 (Ω))
N × (L2(Ω))N , the optimal internal control H0 given by (2.32) satisfies the following

estimate :

‖H0‖(L2(0,T ;L2(ω)))M ≤ C‖(Û0, Û1)‖(H1
0
(Ω))N×(L2(Ω))N . (2.33)

Proof For any given H ∈ (L2(0, T ;L2(ω)))M , we solve the following backward problem :





V ′′ −∆V +AV = DχωH in (0, T )× Ω,

V = 0 on (0, T )× Γ,

t = T : V = V ′ = 0 in Ω.

(2.34)

By Proposition 2.1, the map

T : H → (V (0), V ′(0))

is linear and continuous from (L2(0, T ;L2(ω)))M into (H1
0 (Ω))

N × (L2(Ω))N .

LetN denote the kernel of T , which is a closed subspace in (L2(0, T ;L2(ω)))M . The quotient

space (L2(0, T ;L2(ω)))M/N is a Hilbert space and T is still continuous from (L2(0, T ;L2(ω)))M/

N into (H1
0 (Ω))

N × (L2(Ω))N .
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By definition, T is injective. On the other hand, the exact internal controllability of system

(1.1) implies that T is surjective, therefore, it is a bijection from (L2(0, T ;L2(ω)))M/N into

(H1
0 (Ω))

N × (L2(Ω))N . By Banach-Schauder’s open mapping theorem, T −1 is bounded from

(H1
0 (Ω))

N × (L2(Ω))N into (L2(0, T ;L2(ω)))M/N . Then there exists a constant C > 0, such

that

inf
H∈Uad

‖H‖(L2(0,T ;L2(ω)))M = ‖Ḣ‖(L2(0,T ;L2(ω)))M ≤ C‖(Û0, Û1)‖(H1
0
(Ω))N×(L2(Ω))N ,

where Ḣ belongs to the equivalence class H +N of H . Then, noting (2.32), we get (2.33).

In the case of fewer internal controls, we have the following negative result.

Theorem 2.5 Assume that rank(D) < N . Then, no matter how large the time T > 0 is,

system (1.1) is not exactly controllable in the space (H1
0 (Ω))

N × (L2(Ω))N .

Proof Let E ∈ RN be a unit vector such that DTE = 0. For any given θ ∈ D(Ω), we

choose the special initial data as

t = 0 : U = 0, U ′ = θE. (2.35)

If system (1.1) is exactly controllable, by Proposition 2.2, there exists a positive constant C

such that the optimal control H0 satisfies the following estimate:

‖H0‖(L2(0,T ;L2(ω)))M ≤ C‖θ‖L2(Ω).

By Proposition 2.1, the corresponding solution U possesses the regularity

U ∈ (C0(0, T ;H1
0(Ω)))

N (2.36)

with the continuous dependence

‖U‖(C0(0,T ;H1
0
(Ω)))N ≤ C′‖θ‖L2(Ω), (2.37)

where C′ is a positive constant independent of θ, and then the mapping θ → U is compact.

Now, applying E to (1.1) and noting w = (E,U), we get the following backward problem:




w′′ −∆w = −(E,AU) in (0, T )× Ω,

w = 0 on(0, T )× Γ,

t = T : w = w′ = 0 in Ω.

(2.38)

Noting (2.36), the right-hand side in (2.38) belongs to C0(0, T ;H1
0(Ω)). By Proposition 2.1 and

the compactness of the mapping θ → U , the mapping

T : θ → w

L2(Ω) → C1(0, T ;H1
0 (Ω))

is also compact, which contradicts the fact that

‖θ‖H1
0
(Ω) = ‖w′(0)‖H1

0
(Ω) ≤ ‖w‖C1(0,T ;H1

0
(Ω)). (2.39)
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The proof is complete.

Combining Theorems 2.3 and 2.5, we have the following theorem.

Theorem 2.6 Let Ω ⊂ R
n be a bounded domain with smooth boundary Γ. Assume that ω

is a neighbourhood of Γ(x0) in Ω. Then the coupled system (1.1) composed of N wave equations

is exactly controllable at the time T > T (x0) in the space (H1
0 (Ω))

N × (L2(Ω))N if and only if

the internal control matrix D has the rank N.

3 Exact Internal Synchronization by p-Groups

According to Theorem 2.6, system (1.1) is exactly controllable if and only if rank(D) = N ,

namely, M = N and the internal control matrix D is invertible. When the number of internal

controls M = rank(D) < N , the exact internal controllability fails. In order to consider the

situation that the number of internal controls is reduced, we will investigate the exact internal

synchronization by groups for system (1.1).

Since the consideration on the exact internal synchronization by p-groups is quite similar

to that on the exact boundary synchronization by p-groups (see [12]), in what follows we only

give the main results and some brief explanations.

3.1 Exact internal synchronization by p-groups

Let p ≥ 1 be an integer and

0 = n0 < n1 < n2 < · · · < np = N

with nr − nr−1 ≥ 2 for all 1 ≤ r ≤ p. We re-arrange the components of the state variable U

into p groups

(u(1), · · · , u(n1)), (u(n1+1), · · · , u(n2)), · · · , (u(np−1+1), · · · , u(N)).

Definition 3.1 System (1.1) is exactly synchronizable by p-groups at the time T > 0 if

for any given initial data (Û0, Û1) ∈ (H1
0 (Ω))

N × (L2(Ω))N , there exists an internal control

H ∈ (L2(0,+∞;L2(ω)))N−p with compact support in [0, T ], such that the corresponding solution

U = U(t, x) to problem (1.1)–(1.2) satisfies

t ≥ T :





u(1) ≡ · · · ≡ u(n1) := u1,

u(n1+1) ≡ · · · ≡ u(n2) := u2,

· · ·
u(np−1+1) ≡ · · · ≡ u(N) := up,

(3.1)

where u = (u1, · · · , up)
T is called the exactly synchronizable state by p-groups, which is a priori

unknown.

In the special case p = 1, the exact internal synchronization by p-groups becomes the exact

internal synchronization, and the exactly synchronizable state by p-groups u = (u1, · · · , up)
T

becomes the exactly synchronizable state u.
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Let Sr be the matrix of order (nr − nr−1 − 1)× (nr − nr−1), defined by

Sr =




1 −1
1 −1

. . .
. . .

1 −1


 , 1 ≤ r ≤ p.

Define the (N − p)×N matrix Cp of synchronization by p-groups as

Cp =




S1

S2

. . .

Sp


 .

Defining the orthogonal vectors by

(er)j =

{
1, nr−1 + 1 ≤ j ≤ nr,

0, otherwise,
(3.2)

where 1 ≤ r ≤ p, we have

Ker(Cp) = Span{e1, · · · , ep}. (3.3)

It is easy to see that the exact internal synchronization by p-groups (3.1) can be written as

t ≥ T : CpU ≡ 0, (3.4)

or, equivalently,

t ≥ T : U =

p∑

r=1

urer. (3.5)

Definition 3.2 The matrix A satisfies the condition of Cp-compatibility if there exists a

matrix Ap of order (N − p), such that

CpA = ApCp, (3.6)

where the matrix Ap is called the reduced matrix of A by Cp.

Lemma 3.1 (see [12]) The matrix A satisfies the condition of Cp-compatibility (3.6) if and

only if the kernel of Cp is an invariant subspace of A :

AKer(Cp) ⊆ Ker(Cp). (3.7)

Moreover, the reduced matrix Ap is given by

Ap = CpAC
+
p ,

where

C+
p = CT

p (CpC
T
p )

−1 (3.8)

is the Moore-Penrose inverse of Cp.
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Remark 3.1 When p = 1, condition (3.7) is equivalent to the following row-sum condition:

N∑

l=1

akl = a, k = 1, · · · , N, (3.9)

where a is a constant independent of k = 1, · · · , N .

By (3.6), applying Cp to problem (1.1)–(1.2) and setting Wp = CpU , we get the following

reduced system:

{
W ′′

p −∆Wp +ApWp = CpDχωH in (0,+∞)× Ω,

Wp = 0 on (0,+∞)× Γ
(3.10)

with the initial condition

t = 0 : Wp = CpÛ0, W ′
p = CpÛ1 inΩ. (3.11)

Under the condition of Cp-compatibility (3.6), the exact internal synchronization by p-

groups of the original system (1.1) is equivalent to the exact internal null controllability of the

reduced system (3.10). Moreover, by Theorem 2.6, we immediately get the following theorem.

Theorem 3.1 Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ. Assume that ω

is a neighbourhood of Γ(x0) in Ω. Under the condition of Cp-compatibility (3.6), system (1.1)

is exactly synchronizable by p-groups in the space (H1
0 (Ω))

N × (L2(Ω))N if and only if

rank(CpD) = N − p. (3.12)

We next give the necessary condition for the exact internal synchronization by p-groups of

system (1.1).

Theorem 3.2 Assume that system (1.1) is exactly synchronizable by p-groups. Then we

necessarily have

rank(CpD) = N − p. (3.13)

Moreover, if

rank(D) = N − p, (3.14)

then, we necessarily have the condition of Cp-compatibility (3.6).

Proof We define an (N − p̃)×N full row-rank matrix C̃p̃(0 ≤ p̃ ≤ p) by

Im(C̃T
p̃ ) = Span(CT

p , A
TCT

p , · · · , (AT)N−1CT
p ). (3.15)

By Cayley-Hamilton’s theorem, we have ATIm(C̃T
p̃ ) ⊆ Im(C̃T

p̃ ), namely,

AKer(C̃p̃) ⊆ Ker(C̃p̃). (3.16)
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By Lemma 3.1, there exists a matrix Ãp̃ of order (N − p̃), such that

C̃p̃A = Ãp̃C̃p̃. (3.17)

On the other hand, applying Cp to the equations in system (1.1), by (3.4) we can successively

get

t ≥ T : CpAU = 0, CpA
2U = 0, · · · ,

then, noting (3.15), we have

t ≥ T : C̃p̃U = 0. (3.18)

Noting (3.17) and setting W̃p̃ = C̃p̃U , it follows from (3.18) that the reduced system
{
W̃ ′′

p̃ −∆W̃p̃ + Ãp̃W̃p̃ = C̃p̃DχωH in(0,+∞)× Ω,

W̃p̃ = 0 on(0,+∞)× Γ
(3.19)

is exactly controllable in the space (H1
0 (Ω))

N−p̃ × (L2(Ω))N−p̃. By Theorem 2.6, we get

rank(C̃p̃D) = N − p̃. (3.20)

Noting that rank(C̃p̃) = N − p̃, by [11, Proposition 2.11], we have

Ker(DT) ∩ Im(C̃T
p̃ ) = {0}.

Since Im(CT
p ) ⊆ Im(C̃T

p̃ ), we have

Ker(DT) ∩ Im(CT
p ) = {0}.

Applying again by [12, Proposition 2.11], we have (3.13).

On the other hand, conditions (3.14) and (3.20) imply that p = p̃. It follows from the

definition (3.15) that ATIm(CT
p ) ⊆ Im(CT

p ), namely, the condition of Cp-compatibility (3.6)

holds true. The proof is completed.

Remark 3.2 The rank M of the internal control matrix D presents the number of internal

controls applied to the original system (1.1), while, the rank of the matrix CpD presents the

number of internal controls effectively applied to the reduced system (3.10). Let us write

D = D0 +D1 (3.21)

with D0 ∈ Ker(Cp) and D1 ∈ Im(CT
p ). The part D0 will disappear in the reduced system

(3.10), and is useless for the exact internal synchronization by p-groups of the original system

(1.1). So, in order to minimize the number of internal controls, we are interested in the control

matrix D such that

Im(D) ∩Ker(Cp) = {0} (3.22)

or, by [12, Proposition 2.11], such that

rank(CpD) = rank(D) = N − p. (3.23)
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3.2 Exact synchronizable states by p-groups

Under the condition of Cp-compatibility (3.6), it is easy to see that for t ≥ T , the exactly

synchronizable state by p-groups u = (u1, · · · , up)
T satisfies the following coupled system of

homogenous wave equations:
{
u′′ −∆u+ Ãu = 0 in (T,+∞)× Ω,

u = 0 on (T,+∞)× Γ,
(3.24)

where Ã = (αrs) is given by

αrs =

ns∑

j=ns−1+1

aij , nr−1 + 1 ≤ i ≤ nr, 1 ≤ r, s ≤ p. (3.25)

Hence, the evolution of the exactly synchronizable state by p-groups u = (u1, · · · , up)
T with

respect to t is completely determined by the values of (u, u′) at the time t = T as the initial

condition

t = T : u = û0, u′ = û1 inΩ, (3.26)

where û0 = (û
(1)
0 , · · · , û(p)

0 )T and û1 = (û
(1)
1 , · · · , û(p)

1 )T.

Theorem 3.3 Assume that the coupling matrix A satisfies the condition of Cp-compatibility

(3.6). Then the attainable set (see [6, 12, 14]) of the values (û0, û1) at the time t = T of

the exactly synchronizable state by p-groups u = (u1, · · · , up)
T is actually the whole space

(H1
0 (Ω))

p × (L2(Ω))p as the initial data (Û0, Û1) vary in the space (H1
0 (Ω))

N × (L2(Ω))N .

Proof Let

V =
{( p∑

r=1

û
(r)
0 er,

p∑

r=1

û
(r)
1 er

)∣∣∣(û(r)
0 , û

(r)
1 ) ∈ H1

0 (Ω)× L2(Ω), 1 ≤ r ≤ p
}
,

where er(1 ≤ r ≤ p) are given by (3.2). Since A satisfies the condition of Cp-compatibility

(3.6), V is invariant for
(

0 IN
∆−A 0

)
.

Then system (1.1) generates a C0 semi-group S(t) on V . By time invertibility, ImS(T ) fulfils

V , accordingly, the state (u(T ), u′(T )) fulfils (H1
0 (Ω))

p × (L2(Ω))p. The proof is complete.

Generally speaking, the exactly synchronizable state by p-groups u = (u1, · · · , up)
T depends

on applied internal control H . We next estimate the difference between the exactly synchroniz-

able state by p-groups u = (u1, · · · , up)
T and the solution to a problem which is independent

of H .

We first consider the special case that AT admits an invariant subspace Span{E1, · · · , Ep}
which is bi-orthonormal to Ker(Cp) = Span{e1, · · · , ep}, namely, we have

(ei, Ej) = δij , 1 ≤ i, j ≤ p, (3.27)
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where e1, · · · , ep are given by (3.2) and δij is the Kronecker symbol. Let

DN−p = {D ∈ M
N×(N−p) | rank(CpD) = rank(D) = N − p}. (3.28)

Similarly to [12, Theorems 7.1–7.2], the following results can be easily established.

Theorem 3.4 Assume that the matrix A satisfies the condition of Cp-compatibility (3.6).

Assume furthermore that AT admits an invariant subspace Span{E1, · · · , Ep} which is bi-

orthonormal to Ker(Cp) = Span{e1, · · · , ep}. Then there exists an internal control matrix

D ∈ DN−p, such that the exactly synchronizable state by p-groups u = (u1, · · · , up)
T is uniquely

determined by

t ≥ T : u = φ, (3.29)

where φ = (φ1, · · · , φp)
T is the solution to the following problem independent of applied internal

controls H : For s = 1, · · · , p,




φ′′
s −∆φs +

p∑
r=1

αsrφs = 0 in(0,+∞)× Ω,

φs = 0 on(0,+∞)× Γ,

t = 0 : φs = (Es, Û0), φ′
s = (Es, Û1) inΩ,

(3.30)

where αsr(s, r = 1, · · · , p) are given by (3.25).

Theorem 3.5 Assume that the condition of Cp-compatibility (3.6) holds. Then for any

given control matrix D ∈ DN−p, there exists a positive constant cT independent of initial data,

but depending on T , such that each exactly synchronizable state by p-groups u = (u1, · · · , up)
T

satisfies the following estimate :

‖(u, u′)(T )− (φ, φ′)(T )‖2(H2(Ω))p×(H1(Ω))p ≤ cT ‖Cp(Û0, Û1)‖2(H1
0
(Ω))N−p×(L2(Ω))N−p , (3.31)

where φ = (φ1, · · · , φp)
T is the solution to problem (3.30) in which Span{E1, · · · , Ep} is bi-

orthonormal to Span{e1, · · · , ep}.

3.3 Exact internal synchronization

For the special case p = 1, we have some further results on the exact internal synchronization.

Let ε1, · · · , εq (resp. E1, · · · , Eq) be a Jordan chain of length q of A (resp. AT), such that





Aεl = aεl + εl+1, 1 ≤ l ≤ q,

ATEk = aEk + Ek−1, 1 ≤ k ≤ q,

(Ek, εl) = δkl, 1 ≤ k, l ≤ q,

(3.32)

where

εq = (1, · · · , 1)T, εq+1 = 0, E0 = 0. (3.33)

Clearly εq = e1 is an eigenvector of A, respectively, E1 = E1 is an eigenvector of AT associated

with the same eigenvalue a.
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Consider the projection P on the subspace Span{ε1, · · · , εq} as follows:

P =

q∑

k=1

εk ⊗ Ek, (3.34)

where ⊗ stands for the tensor product such that

(εk ⊗ Ek)U = (Ek, U)εk, ∀U ∈ R
N , 1 ≤ k ≤ q.

The projection P can be represented by a matrix of order N . We can then decompose

R
N = Im(P )⊕Ker(P ),

where ⊕ stands for the direct sum of subspaces. Moreover, we have

Im(P ) = Span{ε1, · · · , εq}, Ker(P ) = (Span{E1, · · · , Eq})⊥ (3.35)

and PA = AP .

Now let U = U(t, x) be the solution to problem (1.1)–(1.2). We define

{
Uc = (I − P )U,

Us = PU.
(3.36)

If system (1.1) is exactly synchronizable, we have

t ≥ T : U = uεq, (3.37)

where u = u(t, x) is the exactly synchronizable state. Then, noting (3.36)–(3.37), we have

t ≥ T :

{
Uc = u(I − P )εq = 0,

Us = uPεq = uεq.
(3.38)

Thus, Uc and Us can be called the controllable part and the synchronizable part of U , respec-

tively.

Recalling PA = AP and applying the projection P on problem (1.1)–(1.2), we immediately

get the following proposition.

Proposition 3.1 The controllable part Uc is the solution to the following problem :





U ′′
c −∆Uc +AUc = (I − P )DχωH in(0,+∞)× Ω,

Uc = 0 on(0,+∞)× Γ,

t = 0 : Uc = (I − P )Û0, U ′
c = (I − P )Û1 inΩ,

(3.39)

while, the synchronizable part Us is the solution to the following problem :





U ′′
s −∆Us +AUs = PDχωH in(0,+∞)× Ω,

Us = 0 on(0,+∞)× Γ,

t = 0 : Us = PÛ0, U ′
s = PÛ1 in Ω.

(3.40)
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Proposition 3.2 Let a matrix D of order N × (N − 1) be defined by

Im(D) = (Span{Eq})⊥. (3.41)

We have D ∈ DN−1.

Similarly to [12, Theorem 5.5], we have the following theorem.

Theorem 3.6 When q = 1, we can take an internal control matrix D ∈ DN−1, such that the

synchronizable part Us is independent of internal controls H. Inversely, if the synchronizable

part Us is independent of internal controls H, then we necessarily have q = 1.

We next discuss the general case q ≥ 1. Let us denote

φk = (Ek, U), 1 ≤ k ≤ q (3.42)

and write

Us =

q∑

k=1

(Ek, U)εk =

q∑

k=1

φkεk.

Then, (φ1, · · · , φq) are the coordinates of Us on the bi-orthonormal basis {ε1, · · · , εq} and

{E1, · · · , Eq}.
Noting (3.32), we easily get the following theorem.

Theorem 3.7 Let ε1, · · · , εq (resp. E1, · · · , Eq) be a Jordan chain of A (resp. AT) corre-

sponding to the eigenvalue a and εq = (1, · · · , 1)T. The synchronizable part Us = (φ1, · · · , φq)

is determined by the solution of the following problem : For 1 ≤ k ≤ q,





φ′′
k −∆φk + aφk + φk−1 = χωhk in(0,+∞)× Ω,

φk = 0 on(0,+∞)× Γ,

t = 0 : φk = (Ek, Û0), φ′
k = (Ek, Û1) inΩ,

(3.43)

where

φ0 = 0 and hk = (Ek, DH), 1 ≤ k ≤ q. (3.44)

Moreover, the exactly synchronizable state is given by u = φq for t ≥ T.

Noting (3.37) and (3.42), we have

t ≥ T : φk = (Ek, U) = (Ek, uεq) = uδkq, 1 ≤ k ≤ q. (3.45)

The relation (3.45) shows that only the last component φq is synchronized, while, the others

are steered to zero.

In the special case q = 1, by Theorems 3.6–3.7, we have the following corollary.

Corollary 3.1 When q = 1, we can take an internal control matrix D ∈ DN−1, such that

DTE1 = 0. Then the exactly synchronizable state u is determined by u = φ for t ≥ T , where φ
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is the solution to the following problem :





φ′′ −∆φ+ aφ = 0 in(0,+∞)× Ω,

φ = 0 on(0,+∞)× Γ,

t = 0 : φ = (E1, Û0), φ′ = (E1, Û1) inΩ.

(3.46)

Inversely, if the synchronizable part Us is independent of internal controls H, then we necessarily

have

q = 1 and DTE1 = 0.

Consequently, the exactly synchronizable state u is given by u = φ for t ≥ T , where φ is the

solution to problem (3.46). In particular, if

(E1, Û0) = (E1, Û1) = 0, (3.47)

then system (1.1) is exactly controllable for such initial data (Û0, Û1).
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