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Abstract The authors are concerned with the sharp interface limit for an incompress-
ible Navier-Stokes and Allen-Cahn coupled system in this paper. When the thickness of
the diffuse interfacial zone, which is parameterized by ε, goes to zero, they prove that a
solution of the incompressible Navier-Stokes and Allen-Cahn coupled system converges to
a solution of a sharp interface model in the L

∞(L2) ∩ L
2(H1) sense on a uniform time

interval independent of the small parameter ε. The proof consists of two parts: One is the
construction of a suitable approximate solution and another is the estimate of the error
functions in Sobolev spaces. Besides the careful energy estimates, a spectral estimate of the
linearized operator for the incompressible Navier-Stokes and Allen-Cahn coupled system
around the approximate solution is essentially used to derive the uniform estimates of the
error functions. The convergence of the velocity is well expected due to the fact that the
layer of the velocity across the diffuse interfacial zone is relatively weak.

Keywords Sharp interface limit, Incompressible Navier-Stokes equations, Allen-
Cahn equation, Spectral estimate, Energy estimates
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1 Introduction and Main Results

The two-phase flow finds many applications in chemistry and engineering sciences. It al-

so produces many interesting but challenging mathematical problems from both analysis and

numerical simulation points of view. Basically, there are two widely used models: The sharp

interface model and the diffuse interface model respectively. The sharp interface model is re-

lated to a free boundary value problem. That is, the two fluids are separated by an interface

Γ, where the interface Γ is a lower dimensional surface, which will be determined together with

the motion of two fluids. In general, such a sharp interface model is hard to be handled in the

numerical simulation. Thus, the so-called diffuse interface model (also known as the phase field
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model) is introduced accordingly, where the sharp interface is replaced by an interfacial region,

which takes into account that the two fluids have been mixing to a certain extent in the inter-

facial region. Here the width of diffuse interfacial zone is parameterized by a small parameter

ε. And an order parameter, which will be represented by cε, is also introduced. It takes two

different values (for example, +1 and -1) in each phase, and changes smoothly between the two

values in the diffuse interfacial zone. The basic diffuse interface model of a two-phase flow for

two macroscopically immiscible viscous Newtonian fluids with the same density can be traced

back to Hohenberg and Halperin [20], which is named as “Model H”. Such a model is described

by the incompressible Navier-Stokes/Cahn-Hilliard coupled system in [19].

Under suitable initial and boundary conditions, this diffuse interface model for two-phase

flows of incompressible fluids was shown to admit both weak and strong solutions in 2D and

3D bounded domains in [1–2, 17–18]. And the asymptotic stability of solutions to the diffuse

interface model was given in [9]. We also refer to [17], where the authors established the

existence of the exponential attractor, and obtained at the same time the estimates of the

convergence rate in the phase-space metric.

The corresponding sharp interface model has also been extensively studied. The local in

time existence of strong solutions was established in [7], and the long time existence of weak

solutions was shown in [6]. One can refer to [21, 26–27] and the references cited therein for the

related results in this field.

There are many extensively studies about the Cahn-Hilliard equation and the Allen-Cahn

equation respectively. For the fourth-order model, the global existence and the time decay

estimates of smooth solutions in the Lp sense to the Cauchy problem were established in [23].

The sharp interface limit for the Cahn-Hilliard equation was considered in [8] by the method of

matched asymptotical expansions, while the Navier-Stokes/Cahn-Hilliard coupled system was

analyzed through the Fourier-spectral method for the numerical approximation in [22].

From the work [14], we see that it is naturally related to the Allen-Cahn equation when

some complex geometric problems are considered (“motion by mean curvature”). There have

been a lot of references on this second-order equation in both one- and multi-dimensional cases,

see [10, 13, 15–16] for example. Also, the axisymmetric solutions of the Navier-Stokes/Allen-

Cahn system in R
3 was investigated in [28], where the authors proved the global regularity of

solutions for both large viscosity and small initial data cases.

The vanishing viscosity limit of the Navier-Stokes/Allen-Cahn system was studied in [29],

where the authors proved that a global weak solution of the Navier-Stokes/Allen-Cahn system

converges in the L2 sense to the locally smooth solution of the Euler/Allen-Cahn system on a

small time interval.

Besides the aforementioned results on sharp and diffuse interface models of two-phase flows,

it is interesting from both mathematical and application points of view to study the sharp

interface limit from a diffuse interface model to a sharp interface one. Recently, Abels and
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Liu [4] proved that a weak solution of the Stokes/Allen-Cahn system converges to the solution

of a sharp interface model over a small time interval, also see [24]. The sharp interface limit

for the Navier-Stokes/Allen-Cahn system was studied more recently by Abels and Fei in [3],

while the sharp interface limit for the Stokes/Cahn-Hilliard coupled system was dealt with in

[5]. We point out that this paper is concerned with the same sharp interface limit problem for

the Navier-Stokes/Allen-Cahn system as studied in [3]. However, the approaches used to derive

the estimates of the error functions between this paper and [3] are different. In particular, it

is diverse in estimating the derivatives of the error functions, which will be discussed in details

later.

Precisely, we are concerned with the sharp interface limit of solution to an incompressible

Navier-Stokes/Allen-Cahn coupled system in a bounded domain Ω ⊂ R
2:

∂tvε + vε∇vε −∆vε +∇pε = −ε div(∇cε ⊗∇cε) in Ω× (0, T1), (1.1)

div vε = 0 in Ω× (0, T1), (1.2)

∂tcε + vε · ∇cε = ∆cε −
1

ε2
f ′(cε) in Ω× (0, T1), (1.3)

vε|∂Ω = 0, cε|∂Ω = −1 on ∂Ω× (0, T1), (1.4)

vε|t=0 = v0,ε, cε|t=0 = c0,ε in Ω, (1.5)

where vε stands for the velocity vector, pε denotes the pressure, cε is the order parameter related

to the fluid concentration (for example, the concentration difference or the concentration of one

component), and ε is a small positive parameter which describes the “thickness” of the diffuse

interfacial region. As in [11–12], the potential function f satisfies

f ∈ C∞(R), f ′(±1) = 0, f ′′(±1) > 0, f(c) = f(−c) > 0, ∀c ∈ (−1, 1). (1.6)

A typical example is f(c) = 1
8 (1 − c2)2, which is also the potential function considered in this

paper. We believe that the main results in this paper can be extended to the general potential

function case (1.6) without any essential difficulties.

Multiplying (1.3) by ε2∆cε − f ′(cε) and integrating by parts, one obtains
∫

Ω

(
ε∆cε −

1

ε
f ′(cε)

)2

dx =

∫

Ω

(
ε∆cε −

1

ε
f ′(cε)

)
(ε∂tcε + εvε · ∇cε) dx

=

∫

Ω

−∂t

[ε2
2
|∇cε|

2 + f(cε)
]
−
ε2

2
∇vε∇cε ⊗∇cε dx,

where the divergence-free condition of vε is used in the last equality. Moreover, it follows from

(1.1) that
∫

Ω

ε∇vε∇cε ⊗∇cε dx =

∫

Ω

(1
2
∂t(vε)

2 + (∇vε)
2
)
dx.

Thus, putting the above two equalities together and integrating the resulting equality with

respect to t, we arrive at the basic energy equality for solutions to (1.1)–(1.5):

Etot
ε (cε(t)) +

∫ t

0

∫

Ω

(1
2
|∇vε|

2 +
1

ε
|µε|

2
)
dxdς = Etot

ε (c0,ε) for all t ∈ (0, T1), (1.7)
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where

µε = −ε∆cε +
1

ε
f ′(cε) (1.8)

and

Eε(cε(t)) =

∫

Ω

ε
|∇cε(x, t)|

2

2
+
f(cε(x, t))

ε
dx, Etot

ε (cε(t)) =

∫

Ω

|vε(x, t)|
2

4
dx+ Eε(cε(t)).

From the energy equality (1.7), we find that vε has no strong layer across the diffuse inter-

facial zone as ε goes to zero. This fact will be used in the construction of approximate solution

of vε. One can refer to Section 3 for the details.

When the thickness parameter ε in (1.1)–(1.5) goes to zero, the diffuse interfacial zone

will shrink into a lower dimensional surface Γt ⊆ Ω (which excludes contact angle problems),

which is a free boundary. And then Ω is separated into two smooth domains Ω±(t) by the sharp

interface Γt for each t ∈ [0, T0], where Ω
+ is the internal domain and Ω− is the external domain.

And the order parameter takes values of −1 in Ω− and 1 in Ω+ respectively in the limit case.

The velocity v is expected to be continuous across the sharp interface Γt due to the diffusion

effect of the velocity. Moreover, it also satisfies a surface tensor constrain. Consequently, the

sharp interface limit problem for (1.1)–(1.5), we shall prove, is the following free boundary value

problem:

∂tv + v∇v −∆v +∇p = 0 in Ω±(t), t ∈ [0, T0], (1.9)

div v = 0 in Ω±(t), t ∈ [0, T0], (1.10)

[2Dv − pI]nΓt
= −σHΓt

nΓt
on Γt, t ∈ [0, T0], (1.11)

[v] = 0 on Γt, t ∈ [0, T0], (1.12)

v|∂Ω = 0 on ∂Ω× [0, T0], (1.13)

VΓt
− nΓt

· v|Γt
= HΓt

on Γt, t ∈ [0, T0], (1.14)

where Dv = 1
2 (∇v + (∇v)T) is the symmetric part of the velocity gradient tensor. nΓt

is the

unit interior normal of Γt with respect to Ω+(t), and

[h](p, t) = lim
d→0+

[h(p+ nΓt
(p)d) − h(p− nΓt

(p)d)].

And HΓt
and VΓt

are the curvature and the normal velocity of the interface Γt, respectively. σ

is the coefficient of surface tension.

To determine σ, it is necessary to introduce the following profile θ0, which is the unique

increasing solution of

−θ′′0 (ρ) + f ′(θ0(ρ)) = 0,

together with θ0(0) = 0 and θ0(ρ) → ±1 as ρ→ ±∞.
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According to the properties on the above second order ordinary differential equation, we

know that θ0 also satisfies

|∂mρ (θ0(ρ)∓ 1)| = O(e−α|ρ|) for all ρ ∈ R, (1.15)

where α = min(
√
f ′′(−1),

√
f ′′(1)). Then, the coefficient σ is given by σ =

∫
R
θ′0(ρ)

2dρ.

To state the main theorem, it is helpful to introduce the approximate solution constructed in

this paper roughly here, which will be constructed by using the two-scale matched asymptotical

expansion method in Subsection 3.1. The approximate solution, denoted by (ṽA, cA), will act

as a bridge between the solutions to (1.1)–(1.5) and the solutions to (1.9)–(1.14). To this

end, we introduce the following notations. For δ > 0, and t ∈ [0, T0], we define the tubular

neighborhoods of Γt,

Γt(δ) , {y ∈ Ω : dist(y,Γt) < δ}, Γ(δ) =
⋃

t∈[0,T0]

Γt(δ)× {t},

and the signed distance function

dΓ(x, t) , sdist(Γt, x) =

{
dist(Ω−(t), x), if x /∈ Ω−(t),

− dist(Ω+(t), x), if x ∈ Ω−(t).

Let ζ(s) ∈ C∞(R) be a cut-off function, which is defined as follows:

ζ(s) = 1 for |s| ≤ δ; ζ(s) = 0 for |s| > 2δ; 0 ≤ −sζ′(s) ≤ 4 for δ ≤ |s| ≤ 2δ.

Then the approximate solution (ṽA, cA) constructed in this paper takes the following form, also

refer to [4].

vin
A (ρ, x, t) = v0(ρ, x, t) + εv1(ρ, x, t) + ε2v2(ρ, x, t),

v±
A(x, t) = v±

0 (x, t) + εv±
1 (x, t) + ε2v±

2 (x, t),

vA(x, t) = ζ ◦ dΓv
in
A (ρ, x, t) + (1 − ζ ◦ dΓ)(v

+
A(x, t)χ+ + v−

A(x, t)χ−),

ṽA = vA + ε2 f ,

cin(x, t) = cin0 (x, t) + ε2cin2 (x, t) + ε3cin3 (x, t),

cA(x, t) = ζ ◦ dΓc
in(x, t) + (1− ζ ◦ dΓ)(χ+ − χ−)

(1.16)

with the stretched variable

ρ =
dΓ(x,t)

ε
− h1(S(x, t), t)− εh2,ε(S(x, t), t),

where h1(S(x, t), t) and h2,ε(S(x, t), t) are two functions to be determined later.

Now, we state the main theorem in this paper.

Theorem 1.1 Let (vε, cε) be a smooth solution to (1.1)–(1.5) for some T0 > 0. For a fixed

constant ε0 ∈ (0, 1] and each ε ∈ (0, ε0], there exists a smooth pair (ṽA, cA) : Ω× Ω → R
2 × R
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which is an approximate solution defined in (1.16) and will be specified in Section 3. Moreover,

the initial data satisfy

‖v0,ε − ṽA(0)‖
2
L2(Ω) +

1

ε
‖c0,ε − cA(0)‖

2
L2(Ω) + ‖c0,ε − cA(0)‖

4
L4(Ω)

+ ε2‖∇(c0,ε − cA(0))‖
2
L2(Ω) + ‖{cA(0)(c0,ε − cA(0))}‖

2
L2(Ω)

+ ‖{cA(0)(c0,ε − cA(0))
3}‖L1(Ω) ≤ Cε4 for all ε ∈ (0, 1]. (1.17)

Then, there are constants R > 0 and T ∈ (0, T0], such that

‖vε − ṽA‖L∞(0,T ;L2(Ω)) + ‖vε − ṽA‖L2(0,T ;H1(Ω)) ≤ Rε2 (1.18)

and

sup
0≤t≤T

‖cε(t)− cA(t)‖L2(Ω) + ‖∇τ (cε − cA)‖L2(Ω×(0,T )) + ε‖∇(cε − cA)‖L2(Ω×(0,T ))

≤ Rε
5

2 , (1.19)

sup
0≤t≤T

‖∇(cε(t)− cA(t))‖L2(Ω) + ε
1

2 ‖∇2(cε − cA)‖L2(Ω×(0,T )) ≤ Rε. (1.20)

Moreover,

sup
0≤t≤T

‖cε(t)− cA(t)‖
2
L4(Ω) + sup

0≤t≤T

‖cA(t)(cε − cA)(t)‖L2(Ω) + ‖µε − µA‖L2(Ω×(0,t))

+ ε−
1

2 ‖f ′(cε)− f ′(cA)‖L2(Ω×(0,t)) ≤ Rε2 for all ε ∈ (0, ε0], (1.21)

where µε is defined in (1.8) and µA = −ε∆cA + 1
ε
f ′(cA).

Furthermore,

lim
ε→0

cA = ±1 uniformly on compact subsets of Ω±,

and

ṽA = v + O(ε) in L∞(Ω× (0, T )) as ε→ 0.

In particular, the above results imply that

cε → ±1 in L2
loc(Ω

±).

Before proceeding, let us explain the main proof ideas in this paper. First, the construction of

the approximate solutions ṽA and cA ensures that ṽA and cA converge to v and ±1 respectively,

as ε tends to 0. Then, it suffices to prove (1.18)–(1.21). We should point out here that Abels

and Liu recently studied the sharp interface limit for a Stokes/Allen-Cahn coupled system in [4],

where they established the convergence of cε in the L∞(0, T0;L
2(Ω)) sense and the convergence

of vε in the L2(0, T0;L
q(Ω)) (q ∈ [1, 2)) sense with well-prepared initial data. Here for the

Navier-Stokes/Allen-Cahn coupled system, we obtain the L∞(0, T0;H
1(Ω)) ∩ L2(0, T0;H

2(Ω))

convergence for cε and the L∞(0, T0;L
2(Ω)) ∩ L2(0, T0;H

1(Ω)) convergence for vε.

As mentioned above, this paper contains two main parts: In the first part, we construct the

high-order approximate solution (ṽA, cA), which solves the original problem (1.1)–(1.5) with
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the high order error terms with respect to ε. Following the arguments in [4], the approximate

solution in this paper can be constructed similarly. Here we require that the approximate solu-

tion ṽA satisfies the divergence-free condition, which implies the error function of the velocity

also satisfies the same divergence-free condition. In the second part, the error terms between

the exact solution and approximate solution are estimated. It should be remarked that the most

arguments in deriving the L2 estimates of the error functions are similar to those in [4] in some

sense. However, to control ‖∇u‖2L2(Ω×(0,t)), we shall employ a (slightly) different argument by

noticing |∇u|2 + 1
ε2
f ′′(cA)u

2 = (1 − ε2)(|∇u|2 + 1
ε2
f ′′(cA)u

2) + ε2(|∇u|2 + 1
ε2
f ′′(cA)u

2) with

u = cε − cA.

In order to derive the estimates of the error functions, the spectrum estimate of the linearized

Allen-Cahn operator Lε = −∆ + ε−2f ′′(cA) is essentially used. It is emphasized that this

method was originally used to study the Allen-Cahn equation in [12], and also used to the Cahn-

Hilliard equation in [7]. To overcome the difficulty caused by the capillary term div(∇cε⊗∇cε),

it is necessary to derive the estimates of the derivatives. However, noticing that there are no

corresponding spectral estimates for the second derivatives, we have to handle the singular term
1
ε2
[f ′(cε)− f ′(cA)]. To this end, Abels and Fei multiplied the equation of the error function for

u by ∆u, and then close the estimates by Hölder’s inequality in a very recent work in [3], which

will produce a singular factor of ε−2 in estimating this term. However, we come up with a new

multiplier of µε−µA = −ε∆cε+
1
ε
f ′(cε)+ ε∆cA− 1

ε
f ′(cA) for the error estimate of derivatives.

In this way, we do not need to control the term 1
ε2
[f ′(cε) − f ′(cA)]∆u as in [3]. It converts to

estimating the term 1
ε2
[f ′(cε) − f ′(cA)]∂tu. Intuitively, ∆u leads to a singular factor of ε−2,

while ∂tu only produces ε−1. This will improve the estimate of the error function ∇(cε−cA) by

ε
1

2 . That is, ‖∇(cε(t)− cA(t))‖L∞(0,T ;L2(Ω)) is of order O(ε) stated in (1.20). This is one of the

key observations in this paper. Moreover, by using this multiplier, some by-products can also

be obtained in this paper, which are listed in the main theorem. We believe that the optimal

convergence rate should be O(ε
3

2 ). However, we do not know how to achieve this optimal rate

at this moment, which is left for the future study.

This paper is organized as follows: In Section 2, we give some symbols and elemetary lemmas

to be used later. Section 3 is devoted to the construction of the approximate solution which

contains the inner and outer expansions, and to the derivation of the corresponding estimates

for the error functions. Finally, in Section 4 we establish some a priori estimates to complete

the proof of the main theorem.

2 Preliminaries

For every point x ∈ Γt (t ∈ [0, T0]), there is a local diffeomorphisms X0 : T1 × [0, T0] → Ω,

such that the normalized tangential vector on Γt at X0(s, t) is described by

τ(s, t) =
∂sX0(s, t)

|∂sX0(s, t)|
.
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Moreover, the outer unit normal vector of interior boundary for Ω−(t) is denoted as

n(s, t) =

(
0 −1
1 0

)
τ(s, t) for all (s, t) ∈ T

1 × [0, T0].

For convenience, we set

nΓt
(x) , n(s, t) for all x = X0(s, t) ∈ Γt.

Let VΓt
and HΓt

be the normal velocity and the (mean) curvature of Γt (with respect to n).

By virtue of the definition,

VΓt
(X0(s, t)) = V (s, t) = ∂tX0(s, t) · n(s, t) for all (s, t) ∈ T

1 × [0, T0].

We choose δ so small that dist(∂Ω,Γt) > 3δ. Then, every

x ∈ Γt(3δ) = {x ∈ Ω : dist(x,Γt) < 3δ}

can be uniquely represented by

x = PΓt
(x) + rnΓt

(PΓt
(x)), where r = sdist(Γt, x).

Consider the mapping

X : (−3δ, 3δ)× T
1 × [0, T0] 7→ Γ(3δ) by X(r, s, t) , X0(s, t) + rn(s, t),

so that (r, s, t) are coordinates in Γ(3δ), and let

r = sdist(Γt, x), s = X−1
0 (PΓt

(x), t) , S(x, t) (2.1)

be its inverse.

Such coordinates are more convenient for the calculations that follow. For instance, noting

that dΓ(X0(s, t) + rn(s, t), t) = r, we see that its derivative along r leads to

∇dΓ(X0(s, t) + rn(s, t), t) · n = 1,

which implies that

∇dΓ(x, t) = nΓt
(PΓt

(x)), ∂tdΓ(x, t) = −VΓt
(PΓt

(x)), ∆dΓ(p, t) = −HΓt
(p) (2.2)

for all (x, t) ∈ Γ(3δ) and (p, t) ∈ Γ (see [12, Section 4.1]).

Denoting

∂τu(x, t) , τ(S(x, t), t)∇u(x, t), ∇τu(x, t) , ∂τu(x, t)τ(S(x, t), t), (x, t) ∈ Γ(3δ),

we have

∇τ = (I − n(S(·), ·) ⊗ n(S(·), ·))∇. (2.3)
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Since ∂n(I − n⊗ n) = 0, we find that

[∂n,∇τ ]g , ∂n((I − n⊗ n)∇g)− (I − n⊗ n)∇(∂ng)

= (I − n⊗ n)∂n∇g − (I − n⊗ n)∇(n · ∇g)

= −

2∑

j=1

((I − n⊗ n)∇nj)∂xj
g = −τ(∂τn · ∇g),

which shows that the commutator [∂n,∇τ ] is in fact a tangential differential operator (see [4,

Section 2.2]).

In this paper, we shall identify a function ω(x, t) with ω̃(r, s, t), such that

ω(x, t) = ω̃(dΓ(x, t), S(x, t), t), namely ω(X0(s, t) + rn(s, t), t) = ω̃(r, s, t).

By using the chain rule together with (2.2), we have the following formula:

∂tω(x, t) = −VΓt
(PΓt

(x))∂r ω̃(r, s, t) + ∂Γt ω̃(r, s, t),

∇ω(x, t) = nΓt
(PΓt

(x))∂rω̃(r, s, t) +∇Γω̃(r, s, t),

∆ω(x, t) = ∂2r ω̃(r, s, t) + ∆dΓt
(x)∂rω̃(r, s, t) + ∆Γω̃(r, s, t),

(2.4)

where r, s are defined by (2.1), and

∂Γt ω̃(r, s, t) = ∂tω̃(r, s, t) + ∂tS(x, t)∂sω̃(r, s, t),

∇Γω̃(r, s, t) = (∇S)(x, t)∂sω̃(r, s, t),

∆Γω̃(r, s, t) = |(∇S)(x, t)|2∂2s ω̃(r, s, t) + (∆S)(x, t)∂sω̃(r, s, t).

(2.5)

When Γ is smooth enough, then |∇S| ≤ C, see [12, Section 4.1].

As in the previous construction, the leading term cin0 (x, t) , θ0(ρ) of cA is a function of the

stretched variable ρ, which is defined as follows:

ρ(x, t) ,
dΓ(x, t)

ε
− hε(S(x, t), t), hε(s, t) , h1(s, t) + εh2(s, t). (2.6)

The reason why the factor hε is introduced in the definition is to circumvent the obstacles and

difficulties caused by the error of cε, which will be discussed later.

Set

‖ψ‖Lp,∞(Γt(2δ)) ,
(∫

T1

ess sup
|r|≤2δ

|ψ(X0(s, t) + rn(s, t))|p ds
) 1

p

.

Denote the function space

XT , L2(0, T ;H
5

2 (T1)) ∩H1(0, T ;H
1

2 (T1)) (2.7)

equipped with the following norm:

‖u‖XT
= ‖u‖

L2(0,T ;H
5

2 (T1))
+ ‖u‖

H1(0,T ;H
1

2 (T1))
+ ‖u|t=0‖

H
3

2 (T1)
.
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Recalling

XT →֒ BUC([0, T ];H
3

2 (T1)) ∩ L4(0, T ;H2(T1)), (2.8)

one sees that the operator norm of the embedding is uniformly bounded in T .

Let XT be the function space defined in (2.7). For h1, h2 = h2,ε presented above, we require

the following a priori assumptions:

h1 ∈ C∞(T1 × [0, T0]), sup
0<ε≤ε0

‖h2,ε‖XT
≤M

for some ε0 ∈ (0, 1), M ≥ 1, T ∈ (0, T0],
(2.9)

where we keep in mind that only h2 = h2,ε depends on ε. The a priori assumptions in (2.9)

will be verified later.

To describe the properties of the leading term θ0 of cA, which depends on the stretch variable

ρ, it is convenient to introduce the following function spaces.

Definition 2.1 For any k ∈ R and α > 0, Rk,α is the space of functions r̂ε : R×Γ(2δ) → R,

ε ∈ (0, 1), such that

|∂j
nΓt

r̂ε(ρ, x, t)| ≤ Ce−α|ρ|εk for all ρ ∈ R, (x, t) ∈ Γ(2δ), j = 0, 1, ε ∈ (0, 1),

where C > 0 is a constant independent of (ρ, x, t) and ε, and the equipped norm ‖ · ‖Rk,α
can

be defined as

‖(r̂ε)ε∈(0,1)‖Rk,α
= sup

ε∈(0,1),(x,t)∈Γ(2δ),ρ∈R,j=0,1

|∂jnΓt
r̂ε(ρ, x, t)|e

α|ρ|ε−k.

Besides, we regard rε(x, t) as r̂ε
(
dΓ(x,t)

ε
− hε(S(x, t), t), x, t

)
for all (x, t) ∈ Γ(2δ). Finally,

(r̂ε)ε∈(0,1) ∈ R0
k,α means that r̂ε have value-zero on x ∈ Γt in the usual sense.

Based on the above definition, we have the following.

Lemma 2.1 Under the a priori assumptions (2.9), set

M , sup
0<ε≤ε0,(s,t)∈T1×[0,T ]

|hε(s, t)| <∞.

Let (r̂ε)ε∈(0,1) ∈ Rk,α. Then,

∥∥∥ sup
(x,t)∈Γ(2δ)

|r̂ε

( .
ε
, x, t

)
|
∥∥∥
L2(R)

≤ Cεk+
1

2 , (2.10)

where the positive constant C is independent of M , T and ε.

Proof In view of the exponential decay properties of r̂ε, we have

∥∥∥ sup
(x,t)∈Γ(2δ)

|r̂ε(·, x, t)|
∥∥∥
2

L2(R)
≤ Cε2k

∫ ∞

−∞

e−
2α|r|

ε dr = Cε2k+1

∫ ∞

−∞

e−2α|z|dz = Cε2k+1.
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Remark 2.1 (1) The L2-norm in (2.10) can be replaced by Lp-norm for any p with 1 ≤

p ≤ ∞, and correspondingly, the right-hand side will become εk+
1

p .

(2) Moreover, if (r̂ε)ε∈(0,1) ∈ R0
k,α, then there is a constant C > 0, depending on M , such

that ∥∥∥ sup
(x,t)∈Γ(2δ)

∣∣∣r̂ε
( .
ε
, x, t

)∣∣∣
∥∥∥
Lp(R)

≤ C(M)εk+
1

p
+1.

Proposition 2.1 Suppose that r̂ε ∈ R0,α for some α > 0. Let j = 0 if r̂ε ∈ R0,α and j = 1

if r̂ε ∈ R0
0,α. Then, under the assumptions (2.9), there is a constant C = C(M) > 0, such that

‖a(PΓt
(·))rεϕ‖L1(Γt(2δ)) ≤ Cε1+j‖ϕ‖H1(Ω)‖a‖L2(Γt),

‖a(PΓt
(·))rε‖L2(Γt(2δ)) ≤ Cε

1

2
+j‖a‖L2(Γt)

uniformly for all ϕ ∈ H1(Ω) and a ∈ L2(Γt).

Proof By the coordinate transformation (x, t) 7→ (r, s, t), we obtain

‖a(PΓt
(·))rεϕ‖L1(Γt(2δ))

=

∫ 2δ

−2δ

∫

T1

|a(X0(s, t))|
∣∣∣r̂ε

(r
ε
− hε(s, t), X(r, s, t), t

)∣∣∣ |ϕ(X(r, s, t))|J(r, s)dsdr

≤ C‖a(X0(s, t))‖L2,∞(Γt(2δ))

∥∥∥ sup
(x,t)∈Γ(2δ)

∣∣∣r̂ε
( ·

ε
, x, t

)∣∣∣
∥∥∥
L1(R)

‖ϕ(X(r, s, t))‖L2,∞(Γt(2δ))

≤ Cε1+j‖ϕ‖H1(Ω)‖a‖L2(Γt)

for all a ∈ L2(Γt) and ϕ ∈ H1(Ω), which implies the first inequality.

Using a straightforward calculation, the second inequality can be gotten as follows:

‖a(PΓt
(·))rε‖L2(Γt(2δ)) =

(∫ 2δ

−2δ

∫

T 1

|a(X0(s, t))|
2|rε(X(r, s, t), t))|2J(r, s)dsdr

) 1

2

≤ C
(
‖a(X0(s, t))‖

2
L2,∞(Γt(2δ))

∥∥∥ sup
(x,t)∈Γ(2δ)

∣∣∣r̂ε
( ·

ε
, x, t

)∣∣∣
∥∥∥
2

L2(R)

) 1

2

≤ Cε
1

2
+j‖a‖L2(Γt)

for all a ∈ L2(Γt).

The following Gagliardo-Nirenberg inequality will be used frequently.

Lemma 2.2 (Gagliardo-Nirenberg inequality [25]) Let u be a suitable function defined in

R
n. For any 1 ≤ q, r ≤ ∞ and a natural number m, α and j satisfying

1

p
=
j

n
+
(1
r
−
m

n

)
α+

1− α

q
,

j

m
≤ α ≤ 1,

there are positive constants C1 and C2 depending only on m,n, j, q, r and α, such that

‖Dju‖Lp ≤ C1‖D
mu‖αLr‖u‖1−α

Lq + C2‖u‖Lq .

A special but important case of the above lemma reads as the following remark.
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Remark 2.2 ‖u‖L∞ ≤ C‖u‖
1

2

L2‖u‖
1

2

H1 follows from taking m = n = 1, j = 0, p = ∞ and

r = q = 2.

For any t ∈ [0, T ], any small ε > 0, and the approximate solution cA, the spectrum of the

self-adjoint operator Lε = −∆ + ε−2f ′′(cA) has a lower bound. More precisely, we have the

following estimate.

Proposition 2.2 Let cA be the approximate solution, and the a priori assumptions (2.9)

be satisfied for some M > 0. Then, there are constants C and ε0 > 0, independent of M and

cA, such that for every t ∈ [0, T0] and ε ∈ (0, ε0],

∫

Ω

(|∇ϕ(x)|2 + ε−2f ′′(cA(x, t))ϕ
2(x))dx ≥ −C

∫

Ω

ϕ2 dx+

∫

Ω

|∇τϕ|
2 dx, ∀ϕ ∈ H1(Ω).

Proof The proof can be found in [4, Theorem 2.13].

Finally, it is convenient to introduce the following property which follows directly from the

construction of the approximate solutions.

Lemma 2.3 Let the assumptions (2.9) be satisfied, and ĉ2 and ĉ3 be defined in (3.1). Then,

for any given θ ∈ (0, 1), we have

ε2‖(cin2 ,∇τ c
in
2 )‖L∞(0,T ;L2(Γt(2δ))) ≤ C(M)ε

5

2 , ε2‖∂nc
in
2 ‖L∞(0,T ;L2(Γt(2δ))) ≤ C(M)ε

3

2 ,

ε3‖∇cin3 ‖L∞(0,T ;L2(Γt(2δ))) ≤ C(M, θ)ε
5

2
−θ, ε3‖∇cin3 ‖L2(0,T ;L2(Γt(2δ))) ≤ C(M)ε

5

2 .

Proof We refer to [4, Lemma 4.3] for the proof of this lemma.

3 Estimates of Solutions to the Error Equations

In this section, based on the matched asymptotical expansion method, we first construct the

approximate solution used in this paper. Then, we derive the estimates of the error functions

by the a priori energy estimate method. For pA and cA, we shall adopt the construction in [4],

while we shall take a small adjustment for ṽA to make it satisfy the divergence-free condition.

3.1 Construction of the approximate solution

The approximate solution contains two main parts: The inner layer part and the outer part,

which are constructed by the matched asymptotic expansion method. First, we define the inner

approximate solution as follows:

vin
A (ρ, x, t) = v0(ρ, x, t) + εv1(ρ, x, t) + ε2v2(ρ, x, t),

pinA (ρ, x, t) = ε−1p−1(ρ, x, t) + p0(ρ, x, t) + εp1(ρ, x, t),

cin(x, t) = ĉin(ρ, s, t) = θ0(ρ) + ε2ĉ2(ρ, S(x, t), t) + ε3ĉ3(ρ, S(x, t), t)

, cin0 (x, t) + ε2cin2 (x, t) + ε3cin3 (x, t),

(3.1)
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where s = S(x, t), and

ρ =
dΓ(x, t)

ε
− h1(S(x, t), t) − εh2,ε(S(x, t), t).

To write the formula for vi and pi, we require η(ρ) , −1+ 2
σ

∫ ρ

−∞ θ′0(s)
2 ds for all ρ ∈ R, which

means

|η(ρ)∓ 1| = O(e−α|ρ|), when ρ ≷ 0

for some α > 0. Let vi and pj take the following form:

vi(ρ, x, t) = ṽi(ρ, x, t) + η(ρ)dΓ(x, t)v̂i(x, t), i = 0, 1, 2,

pj(ρ, x, t) = p̃j(ρ, x, t) + η(ρ)dΓ(x, t)p̂j(x, t), j = −1, 0, 1,

where ṽi, v̂i, p̃j and p̃j are defined as those in [4, Section 3.1].

To get the approximate solution, we require that the outer expansion satisfies

v±
A(x, t) = v±

0 (x, t) + εv±
1 (x, t) + ε2v±

2 (x, t), p±A(x, t) = p±0 (x, t) + εp±1 (x, t), cout± = ±1.

Here p±−1 ≡ 0, v±
0 and p±0 are defined by v±

0 , v|Ω±(t) and p±0 , p|Ω±(t) respectively, where

(v, p) is the smooth solution of (1.9)–(1.14). Moreover, v±
1 , v

±
2 and p±1 are defined in the same

way as in [4, Section 3.1]. In addition, we select a smooth cut-off function ζ satisfying

{
ζ(r) ≡ 1 if |r| ≤ δ, ζ(r) ≡ 0 if |r| ≥ 2δ,

0 ≤ −rζ′(r) ≤ 4 if δ ≤ |r| ≤ 2δ.

In summary, we “glue” the internal and external expansions together to construct the approx-

imate solution (vA, pA, cA) in Ω× [0, T0] as

vA(x, t) = ζ ◦ dΓv
in
A (ρ, x, t) + (1 − ζ ◦ dΓ)(v

+
A(x, t)χ+ + v−

A(x, t)χ−), (3.2)

pA(x, t) = ζ ◦ dΓp
in
A (ρ, x, t) + (1− ζ ◦ dΓ)(p

+
A(x, t)χ+ + p−A(x, t)χ−),

cA(x, t) = ζ ◦ dΓc
in(x, t) + (1− ζ ◦ dΓ)(c

out
+ χ+ + cout− χ−)

= cout+ χ+ + cout− χ− + (cin(x, t)− cout+ χ+ − cout− χ−)ζ ◦ dΓ, (3.3)

where χ± , χΩ±(t).

Lastly, let us assume that ṽA takes the form of ṽA = vA + ε f̂ . As in (3.2), we have

div vA = div(ζ ◦ dΓ)(v
in
A − v+

Aχ+ − v−
Aχ−) + (ζ ◦ dΓ) div vin

A

+ (1− ζ ◦ dΓ)(div v+
Aχ+ + div v−

Aχ−) , I1 + I2 + I3.

For I1, one sees div(ζ ◦ dΓ) = 0 within Γ(δ); while outside Γ(δ), vin
A − v+

Aχ+ − v−
Aχ− decays

exponentially with respect to the stretched variable ρ. Accordingly, vin
A −v+

Aχ+−v−
Aχ− ∼ O(ε2).

Thus, we infer from the matched asymptotic expansion of divergence equation that

div vin
A = ε(−(ρ+ h1)η

′(ρ)∇Γh1 · v̂0,τ + h2η
′(ρ)v̂0,n + (ρ+ h1)η

′(ρ)v̂1,n
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− dΓη
′(ρ)∇Γh1 · v̂1,τ − dΓη

′(ρ)∇Γh2 · v̂0,τ )

+ ε2
(
(ρ+ h1)h2η

′(ρ)
v̂0,n

dΓ
− h2η

′(ρ)∇Γh1 · v̂0,τ

+ h2η
′(ρ)v̂1,n − dΓη

′(ρ)∇Γh2 · v̂1,τ

−∇Γhε · ∂ρṽ2,τ + (ρ+ hε)η
′(ρ)v̂2,n(x, t) − dΓη

′(ρ)∇Γhε · v̂2,τ (x, t)

+ div(ṽ2(ρ, x, t) + v̂2(x, t)dΓη(ρ))
)
, (3.4)

where the detailed calculations are omitted for the sake of simplicity, and can be found in [4,

Appendix].

Since (3.4) vanishes on Γ and dΓ = ε(ρ+hε), we replace dΓ by ε(ρ+hε) in (3.4). Moreover,

by virtue of η′(ρ), I2 can be viewed as power of ε2. To proceed further, we obtain I3 =

ε2(1− ζ ◦ dΓ) div v±
2 χ±. Hence, an appropriate f can be selected, such that

ṽA = vA + ε2 f , (3.5)

where ṽA is required to satisfy the divergence free condition, which is useful in computing the

error function of the pressure p.

3.2 Estimates of the error equation for the velocity

In this subsection, we consider the estimates of the error function of the velocity. Let (vε, pε)

be a solution to the equation

∂tvε + vε∇vε −∆vε +∇pε + ε div(∇cε ⊗∇cε) = 0. (3.6)

Based on the construction in the previous subsection, we can carry out calculations similar to

those in the proof of [4, Theorem 3.5] to find that the approximate solution (ṽA, pA) satisfies

∂tṽA + ṽA∇ṽA −∆ṽA +∇pA + ε div(∇cA ⊗∇cA)

= (ζ ◦ dΓ)Θ1 + ε3 div[(ζ ◦ dΓ)Θ2] + Θ3 + ε divΘ4, (3.7)

where the lower-order term Θ1 decays exponentially with respect to the stretched variable, Θ3

and Θ4 are the higher-order error terms. Moreover,

Θ2 = ∇cin0 ⊗∇g +∇g ⊗∇cin0 and ‖(Θ3,Θ4)‖L∞(0,T ;L2(Ω)) ≤ Cε2 (3.8)

with g = cin2 + εcin3 . From Lemma 2.3 it follows that

‖∂i
n
g‖L∞(0,T ;L2(Ω)) ≤ Cε

1

2
−i, ‖∇τg‖L∞(0,T ;L2(Ω)) ≤ Cε

1

2 . (3.9)

Assume (vin
A , p

in
A , c

in) takes the form in (3.1). Then, inserting (vin
A , p

in
A , c

in) into the equation

of (1.1), we find that there is no essential difference in the expansions between the Stokes

equations considered in [4] and the Navier-Stokes equations here, at least for the expansions up
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to the order of ε1. So, we are able to follow a process similar to that used in [4, Appendix] and

utilize [4, Lemma 3.4] to deduce that

Θ1 , ∂tv
in
A + vin

A · ∇vin
A −∆vin

A +∇pinA + ε div(∇cin0 ⊗∇cin0 )

= rε

(dΓ
ε

− hε, x, t
)
+ ε r̃ε

(dΓ
ε

− hε, x, t
)
+

∑

i≤2;0≤i′,j,j′≤1

ε2Riji′j′

ε (x, t)(∂ish2)
i′ (∂jsh2)

j′

+
∑

0≤i,j,k,i′,j′,k′≤1

ε2R̃ijki′j′k′

ε (x, t)(∂ish2)
i′(∂jsh2)

j′ (∂ks h2)
k′

in Γt(3δ), (3.10)

where hε is defined by (2.9) and the other functions satisfy the following properties:

(rε)0<ε<1 ∈ R0
0,α, (r̃ε)0<ε<1 ∈ R0,α and ‖(Riji′j′

ε , R̃ijki′j′k′

ε )‖L∞((0,T )×Γ(3δ)) ≤ C (3.11)

for some α and C > 0.

To get the estimate stated in (1.18), we shall proceed through this subsection to derive a

bound for the term sup ‖w‖2
L2(Ω). Set

w = vε − ṽA, u = cε − cA. (3.12)

Proposition 3.1 Let (w, u) be defined by (3.12), and the assumptions (2.9) be satisfied.

Then, there is a constant C(M) > 0 and a suitably small constant η > 0, such that for any

given t ∈ (0, T ), the following inequality holds:

1

2
‖w(t)‖2L2(Ω) +

3

4

∫ t

0

‖∇w‖2L2(Ω)dς

≤
1

2
‖w(0)‖2L2(Ω) + C‖w‖2L2(Ω×(0,t)) + ηε‖∇u‖2L2(Ω×(0,t))

+ η
‖∇τu‖

2
L2(Ω×(0,t))

ε
+ Cε‖∇u‖4L∞(0,t;L2(Ω)) + Cε3‖∆u‖4L2(Ω×(0,t)) + Cε4. (3.13)

Proof Recalling that

∇cA = (ζ ◦ dΓ)∇c
in
0 +R = (ζ ◦ dΓ)θ

′
0(ρ)

(n
ε
−∇Γhε(r, s, t)

)
+R. (3.14)

We utilize Lemma 2.3 to obtain that R = ∇(ζ ◦ dΓ)(c
in−χ++χ−)+ (ζ ◦ dΓ)(ε

2∇cin2 + ε3∇cin3 )

and

‖R‖L∞(0,T ;L2(Ω)) ≤ Cε
3

2 and ‖R‖L∞(Ω×(0,T )) ≤ Cε. (3.15)

It follows from (3.6)–(3.8) and (3.14) that

∂tw +w∇ṽA + vε∇w −∆w +∇(pε − pA)

= −(ζ ◦ dΓ)Θ1 − ε div(∇u⊗∇u)− ε(ζ ◦ dΓ) div(∇c
in
0 ⊗∇u+∇u⊗∇cin0 )

− ε∇(ζ ◦ dΓ)(∇c
in
0 ⊗∇u+∇u⊗∇cin0 )− [ε div(R ⊗∇u+∇u⊗R+Θ4) + Θ3]

− ε3 div[(ζ ◦ dΓ)(∇c
in
0 ⊗∇g +∇g ⊗∇cin0 )]. (3.16)
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The Gagliardo-Nirenberg inequality in Lemma 2.2 implies that

‖∇u‖L4(Ω×(0,t)) ≤ C(‖∇u‖
1

2

L∞(0,t;L2(Ω))‖∆u‖
1

2

L2(Ω×(0,t)) + T
1

4

0 ‖∇u‖L∞(0,t;L2(Ω))), (3.17)

‖∇u‖L2(0,t;L4(Γt(2δ)) ≤ C‖∇u‖
1

2

L2(Ω×(0,t))‖∆u‖
1

2

L2(Ω×(0,t)) + C‖∇u‖L2(Ω×(0,t))

for any given t ∈ (0, T0].

Thus, we can apply the energy method to (3.16), namely, we first multiply (3.16) by w and

integrate the resulting equality over Ω × (0, t); and then we have to estimate term by term.

Notice that the capillary term (∇u⊗∇u)∇w can be bounded by employing a similar argument

to that in the proof of [3, Theorem 4.1], while the remaining terms can be handled in a similar

way to that used in the proof of [4, Theorem 3.5 and Proposition 3.6]. Based on the facts that

∇u = ∇τu + n∂nu and n ⊗ n : ∇w = ∂nwn = − divτ w, we arrive at (3.13) by combining

Proposition 2.1 with (2.9), (3.8)–(3.11) and (3.15). The details will be omitted for simplicity

of presentation.

3.3 Estimates of the error equation of the order parameter cε

Let ṽA be defined by (3.5) and the assumptions (2.9) be satisfied. Based on Theorem 4.5

and the proof of [4, Theorem 1.3], we are able to obtain

∂t cA + ṽA · ∇cA −∆cA +
1

ε2
f ′(cA) +w|Γ ∇cA,0 = C +w|Γ Q, (3.18)

where cA,0 = ζ ◦ dΓc
in
0 (x, t) + (1 − ζ ◦ dΓ)(c

out
+ χ+ + cout− χ−). Moreover, the following desired

estimates hold:

‖C‖L2(Γt(2δ)×(0,T )) ≤ Cε
5

2 and ‖Q‖L∞(0,T ;L2(Γt(2δ))) ≤ Cε
5

2 , (3.19)

where C is a positive constant depending only on M .

Next, we come to estimate the error function of the order parameter cε. From (1.3) and

(3.18) we get

∂tu+w∇cA −w|Γ ∇cA,0 + vε∇u−∆u +
1

ε2
[f ′(cε)− f ′(cA)] = −C −w|Γ Q. (3.20)

In this subsection, the main task is to prove the following proposition.

Proposition 3.2 Under the a priori assumptions (2.9), there exists a generic constant

C(M), such that for any given t ∈ (0, T ), the solution to (3.20) satisfies the following estimate:

1

2ε
‖u(t)‖2L2(Ω) +

3

4ε
‖∇τu‖

2
L2(Ω×(0,t)) +

3

4
ε‖∇u‖2L2(Ω×(0,t))

≤
1

2ε
‖u(0)‖2L2(Ω) + C‖w‖2L2(Ω×(0,t)) + η‖∇w‖2L2(Ω×(0,t)) + C

‖u‖2
L2(Ω×(0,t))

ε

+ C T
1

2

‖u‖4
L∞(0,t;L2(Ω))

ε6
+ Cε4 (3.21)

for a suitably small constant η.
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Proof To prove this proposition, it is convenient to rewrite (3.20) to the following form:

∂tu+ vε∇u−∆u+
1

ε2
f ′′(cA)u

= −
1

ε2
[f ′(cε)− f ′(cA)− f ′′(cA)u]− C − [w∇cA −w|Γ ∇cA,0]−w|Γ Q. (3.22)

Now, we multiply (3.22) by u
ε
in L2 and integrate by parts to get

1

2ε
‖u(t)‖2L2(Ω) −

1

2ε
‖u(0)‖2L2(Ω) +

∫ t

0

∫

Ω

vε∇
( 1

2ε
u2

)
dxdς

+
1

ε

∫ t

0

∫

Ω

|∇u|2 +
1

ε2
f ′′(cA)u

2 dxdς

=

∫ t

0

∫

Ω

{
−

1

ε2
[f ′(cε)− f ′(cA)− f ′′(cA)u]− C − [w∇cA −w|Γ ∇cA,0]−w|Γ Q

}

×
u

ε
dxdς.

By the following decomposition:

1

ε

∫ t

0

∫

Ω

|∇u|2 +
1

ε2
f ′′(cA)u

2 dxdς

=
1− ε2

ε

∫ t

0

∫

Ω

|∇u|2 +
1

ε2
f ′′(cA)u

2 dxdς + ε

∫ t

0

∫

Ω

|∇u|2 +
1

ε2
f ′′(cA)u

2 dxdς,

where the second term on the right-hand side will be used to cancel the term of ηε‖∇u‖2
L2(Ω×(0,t))

in (3.13).

Recalling (3.7) and the definition of cA,0, to control ∇cA,0, it suffices to estimate ∇cA,0 for

the case |d| < 2δ. For |d| < 2δ, we have

∇cA = ∇cA,0 +∇[(ζ ◦ dΓ)(ε
2cin2 + ε3cin3 )] , ∇cA,0 + Q̃,

∇cA,0 , (ζ ◦ dΓ)∇c
in
0 +Q = (ζ ◦ dΓ)θ

′
0(ρ)

(n
ε
−∇Γhε(r, s, t)

)
+Q, (3.23)

where Q and Q̃ satisfy

‖(Q, εQ̃)‖L∞(0,T ;L2(Γt(2δ))) ≤ Cε
5

2 and ‖(Q, εQ̃)‖L∞(Γt(2δ)×(0,T )) ≤ Cε2 (3.24)

due to Lemma 2.3. By [6, Lemma 3.9], we obtain

‖u‖3L3(Γt(2δ))
≤ C‖(∇τu, u)‖

1

2

L2(Γt(2δ))
‖(∂nu, u)‖

1

2

L2(Γt(2δ))
‖u‖2L2(Γt(2δ))

.

Furthermore, according to the divergence-free condition, we have ∂nwn + divτ w = divw = 0.

Keeping in mind that div vε = 0, and employing the trace theorem, Proposition 2.2, (3.19)

and (3.22)–(3.24), we can adopt calculations similar to those used in the proof of [4, Lemmas

5.1 and 5.3] to deduce (3.21). This completes the proof.
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3.4 Estimate of derivatives of solutions to the error equations

As aforementioned, to handle the capillary term div(∇cε ⊗ ∇cε), it suffices to derive the

estimates of the derivatives. However, there is no desired spectral estimate as in Proposition 2.2

for the estimates of the derivatives, we have to deal with the singular term of 1
ε2
[f ′(cε)−f

′(cA)]

directly. To this end, Abels and Fei multiplied the equation of the error function for u by ∆u

in [3]. Instead, in this paper we come up with the new multiplier µε−µA = −ε∆cε+
1
ε
f ′(cε)+

ε∆cA − 1
ε
f ′(cA) for estimating the error of the derivatives. This leads to estimating the term

1
ε2
[f ′(cε)−f

′(cA)]∂tu. Intuitively, the second order derivative of ∆u leads to a singular factor of

ε−2, while the first order derivative of ∂tu only produces ε−1, which will improve the estimate

of the error function ∇(cε − cA) by ε
1

2 . This is one of the key observations in this paper.

For this purpose, the error equation (3.20) is rewritten as

∂tu+ (vε∇cε − ṽA∇cA) +
µε − µA

ε
= w|Γ ∇cA,0 −w|Γ Q− C. (3.25)

It suffices to prove the following.

Proposition 3.3 Let (w, u) be defined by (3.12) and the a priori assumptions (2.9) be

satisfied. Then there is a generic constant C(M) > 0 independent of ε, such that for any given

t ∈ (0, T ), the following estimate holds:

ε2

2
‖∇u(t)‖2L2(Ω) +

3

4
‖µε − µA‖

2
L2(Ω×(0,t)) +

3

4
ε3‖∆u‖2L2(Ω×(0,t))

+
1

8
‖u(t)‖4L4(Ω) −

1

4
‖u(t)‖2L2(Ω) +

3

4
‖(cAu)(t)‖

2
L2(Ω) +

1

ε
‖f ′(cε)− f ′(cA)‖

2
L2(Ω×(0,t))

≤
ε2

2
‖∇u(0)‖2L2(Ω) +

1

8
‖u(0)‖4L4(Ω) −

1

4
‖u(0)‖2L2(Ω) +

3

4
‖(cAu)(0)‖

2
L2(Ω) +

1

2
‖(cAu

3)(0)‖L1(Ω)

+ C‖w‖2L2(Ω×(0,t)) + η‖∇w‖2L2(Ω×(0,t))

+ C(ε4‖∇u‖2L∞(0,t;L2(Ω))‖∆u‖
2
L2(Ω×(0,t)) + T0ε

4‖∇u‖4L∞(0,t;L2(Ω))

+ ε2‖∇u‖L∞(0,t;L2(Ω))‖∆u‖L2(Ω×(0,t)) + T0ε
2‖∇u‖2L∞(0,t;L2(Ω)))‖w‖2L∞(0,t;L2(Ω))

+ Cε(‖u‖L∞(0,t;L2(Ω)) + ‖∇u‖L∞(0,t;L2(Ω)))
‖u‖2L∞(0,t;L2(Ω))

ε

+ C
(
1 + ‖u‖L∞(0,t;L2(Ω)) +

‖u‖2
L∞(0,t;L2(Ω))

ε2

)‖u‖2
L2(Ω×(0,t))

ε
+ ηε‖∇u‖2L2(Ω×(0,t)) + Cε7 (3.26)

for a suitably small η > 0.

Proof It is easy to check that
∫

Ω

(µε − µA)
2 dx = (1− ε)

∫

Ω

(µε − µA)
2 dx+ ε

∫

Ω

(µε − µA)
2 dx

= (1− ε)‖µε − µA‖
2
L2(Ω) + ε3‖∆u‖2L2(Ω)

+
1

ε
‖f ′(cε)− f ′(cA)‖

2
L2(Ω) − 2ε

∫

Ω

[f ′(cε)− f ′(cA)]∆u dx.
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Then, we multiply (3.25) by ε(µε − µA) in L
2 and integrate by parts to infer that

ε

∫

Ω

∂tu(µε − µA) dx + (1− ε)‖µε − µA‖
2
L2(Ω) + ε3‖∆u‖2L2(Ω) +

1

ε
‖f ′(cε)− f ′(cA)‖

2
L2(Ω)

= 2ε

∫

Ω

[f ′(cε)− f ′(cA)]∆u dx− ε

∫

Ω

(vε∇cε − ṽA∇cA)(µε − µA) dx

+ ε

∫

Ω

[w|Γ∇cA,0 −w|Γ Q] (µε − µA) dx− ε

∫

Ω

C(µε − µA) dx. (3.27)

Since µε − µA = −ε∆u+ 1
ε
[f ′(cε)− f ′(cA)] and f

′(s) = s3−s
2 , it follows that

ε

∫ t

0

∫

Ω

∂tu(µε − µA) dxdς

=
ε2

2
‖∇u(t)‖2L2(Ω) −

ε2

2
‖∇u(0)‖2L2(Ω) +

∫ t

0

∫

Ω

∂tu
[1
2
(u3 − u) +

3

2
(c2Au+ cAu

2)
]
dxdς

=
ε2

2
‖∇u(t)‖2L2(Ω) +

1

8
‖u(t)‖4L4(Ω) −

1

4
‖u(t)‖2L2(Ω) −

ε2

2
‖∇u(0)‖2L2(Ω) −

1

8
‖u(0)‖4L4(Ω)

+
1

4
‖u(0)‖2L2(Ω) +

∫ t

0

∫

Ω

3

2
∂tu(c

2
Au+ cAu

2) dxdς.

To deal with
∫ t

0

∫
Ω

3
2∂tu(c

2
Au+ cAu

2) dxdς , we integrate by parts to find that

∫ t

0

∫

Ω

3

2
∂tu(c

2
Au+ cAu

2) dxdς

=
3

2

∫ t

0

∫

Ω

1

2
∂t(c

2
Au

2) +
1

3
∂t(cAu

3)− ∂tcA

(
cAu

2 +
1

3
u3

)
dxdς

=
3

4

∫

Ω

c2Au
2 dx−

3

4

∫

Ω

cA(0)
2u(0)2 dx+

3

2

∫ t

0

∫

Ω

1

3
∂t(cAu

3)− ∂tcA

(
cAu

2 +
1

3
u3

)
dxdς.

Consequently, integrating (3.27) over [0, t], we arrive at

ε2

2
‖∇u(t)‖2L2(Ω) + (1 − ε)‖µε − µA‖

2
L2(Ω×(0,t)) + ε3‖∆u‖2L2(Ω×(0,t))

+
1

8
‖u(t)‖4L4(Ω) −

1

4
‖u(t)‖2L2(Ω) +

3

4
‖(cAu)(t)‖

2
L2(Ω) +

1

ε
‖f ′(cε)− f ′(cA)‖

2
L2(Ω×(0,t))

=
ε2

2
‖∇u(0)‖2L2(Ω) +

1

8
‖u(0)‖4L4(Ω) −

1

4
‖u(0)‖2L2(Ω) +

3

4
‖(cAu)(0)‖

2
L2(Ω)

−
3

2

∫ t

0

∫

Ω

1

3
∂t(cAu

3)− ∂tcA

(
cAu

2 +
1

3
u3

)
dxdς + 2ε

∫ t

0

∫

Ω

[f ′(cε)− f ′(cA)]∆u dxdς

− ε

∫ t

0

∫

Ω

(vε∇cε − ṽA∇cA)(µε − µA) dxdς + ε

∫ t

0

∫

Ω

[w|Γ∇cA,0 −w|Γ Q] (µε − µA) dxdς

− ε

∫ t

0

∫

Ω

C(µε − µA) dxdς

,
ε2

2
‖∇u(0)‖2L2(Ω) +

1

8
‖u(0)‖4L4(Ω) −

1

4
‖u(0)‖2L2(Ω) +

3

4
‖(cAu)(0)‖

2
L2(Ω) +

5∑

k=1

Jk.

Here the terms Jk (k = 1, · · · , 5) will be bounded below.
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• For J2 and J5, we use Hölder’s inequality and (3.19) to have

|J2| =
∣∣∣2ε

∫ t

0

∫

Ω

[f ′(cε)− f ′(cA)]∆u dxdς
∣∣∣

≤ Cε‖f ′′(cθ)‖L∞(Ω×(0,t))‖u‖L2(Ω×(0,t))‖∆u‖L2(Ω×(0,t))

≤ C
‖u‖2

L2(Ω×(0,t))

ε
+ η ε3‖∆u‖2L2(Ω×(0,t)) (3.28)

and

|J5| =
∣∣∣− ε

∫ t

0

∫

Ω

C(µε − µA) dxdς
∣∣∣ ≤ Cε

7

2 ‖(µε − µA)‖L2(Ω×(0,t))

≤ Cε7 + η‖(µε − µA)‖
2
L2(Ω×(0,t)). (3.29)

• To control J1, we take into account that

∂tcA = ∂t(ζ ◦ dΓ)(c
in − χ+ + χ−) + (ζ ◦ dΓ)θ

′
0(ρ)

(
−
V

ε
− ∂Γt hε

)
+ (ζ ◦ dΓ)(ε

2∂tc
in
2 + ε3∂tc

in
3 )

to conclude ‖∂tcA‖L∞(Ω×(0,t)) ≤ Cε−1. Consequently,

|J1| =
∣∣∣− 3

2

∫ t

0

∫

Ω

1

3
∂t(cAu

3)− ∂tcA

(
cAu

2 +
1

3
u3

)
dxdς

∣∣∣

≤
1

2

∫

Ω

cA(0)u(0)
3 dx+ C‖u‖L∞(0,t;L2(Ω))‖u‖

2
L∞(0,t;L4(Ω))

+ Cε−1(‖u‖2L2(Ω×(0,t)) + ‖u‖L∞(0,t;L2(Ω))‖u‖
2
L2(0,t;L4(Ω))).

Noticing that ‖u‖L4(Ω) ≤ C‖u‖
1

2

L2(Ω)‖∇u‖
1

2

L2(Ω) + C‖u‖L2(Ω), we obtain

|J1| ≤
1

2

∫

Ω

cA(0)u(0)
3 dx+ C(‖∇u‖L∞(0,t;L2(Ω))‖u‖

2
L∞(0,t;L2(Ω)) + ‖u‖3L∞(0,t;L2(Ω)))

+ Cε−1(‖u‖2L2(Ω×(0,t)) + ‖u‖L∞(0,t;L2(Ω))‖u‖L2(Ω×(0,t))‖∇u‖L2(Ω×(0,t)))

+ Cε−1(‖u‖L∞(0,t;L2(Ω))‖u‖
2
L2(Ω×(0,t)))

≤
1

2

∫

Ω

cA(0)u(0)
3 dx+ C(‖u‖L∞(0,t;L2(Ω)) + ‖∇u‖L∞(0,t;L2(Ω)))‖u‖

2
L∞(0,t;L2(Ω))

+ C
(
1 + ‖u‖L∞(0,t;L2(Ω)) +

‖u‖2L∞(0,t;L2(Ω))

ε2

)‖u‖2L2(Ω×(0,t))

ε
+ ηε‖∇u‖2L2(Ω×(0,t)). (3.30)

• The term J3 can be bounded as follows:

|J3| =
∣∣∣− ε

∫ t

0

∫

Ω

(ṽA∇u+w∇cA +w∇u)(µε − µA) dxdς
∣∣∣

≤ Cε(‖ṽA‖L∞(Ω×(0,t))‖∇u‖L2(Ω×(0,t)) + ‖w‖L2(Ω×(0,t))‖∇cA‖L∞(Ω×(0,t))

+ ‖w‖L4(Ω×(0,t))‖∇u‖L4(Ω×(0,t)))‖µε − µA‖L2(Ω×(0,t))

≤ Cε(‖∇u‖L2(Ω×(0,t)) + ε−1‖w‖L2(Ω×(0,t))

+ ‖∇u‖L4(Ω×(0,t))‖w‖
1

2

L∞(0,t;L2(Ω))‖∇w‖
1

2

L2(Ω×(0,t))
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+ ‖∇u‖L4(Ω×(0,t))T
1

4

0 ‖w‖L∞(0,t;L2(Ω)))‖µε − µA‖L2(Ω×(0,t)),

where in the last equality, the following estimate is used:

‖w‖L4(Ω×(0,t)) ≤ C(‖w‖
1

2

L∞(0,t;L2(Ω))‖∇w‖
1

2

L2(Ω×(0,t)) + T
1

4

0 ‖w‖L∞(0,t;L2(Ω))), ∀ t ∈ (0, T0].

Moreover, thanks to (3.17), we have

|J3| ≤ C‖w‖2L2(Ω×(0,t)) + C(ε4‖∇u‖4L4(Ω×(0,t)) + T
1

2

0 ε
2‖∇u‖2L4(Ω×(0,t)))‖w‖2L∞(0,t;L2(Ω))

+ η‖∇w‖2L2(Ω×(0,t)) + Cε2‖∇u‖2L2(Ω×(0,t)) + η‖µε − µA‖
2
L2(Ω×(0,t))

≤ C‖w‖2L2(Ω×(0,t)) + η‖∇w‖2L2(Ω×(0,t)) + Cε2‖∇u‖2L2(Ω×(0,t)) + η‖µε − µA‖
2
L2(Ω×(0,t))

+ C(ε4‖∇u‖2L∞(0,t;L2(Ω))‖∆u‖
2
L2(Ω×(0,t)) + T0ε

4‖∇u‖4L∞(0,t;L2(Ω))

+ ε2‖∇u‖L∞(0,t;L2(Ω))‖∆u‖L2(Ω×(0,t))

+ T0ε
2‖∇u‖2L∞(0,t;L2(Ω)))‖w‖2L∞(0,t;L2(Ω)) (3.31)

for a suitably small η.

• We use (3.14) and (3.23) to write J4 as

J4 =

∫ t

0

∫

Γt(2δ)

(ζ ◦ dΓ)w|Γθ
′
0(ρ)(n− ε∇τhε)(µε − µA) dxdς , J41 + J42,

where the term J41 can be estimated as follows:

|J41| =
∣∣∣
∫ t

0

∫

Γt(2δ)

(ζ ◦ dΓ)w|Γθ
′
0(ρ)n(µε − µA) dxdς

∣∣∣

≤ Cε
1

4 ‖θ′0‖L∞(0,t;L4(R))‖n‖L∞(Γt(2δ)×(0,t))‖w|Γ‖L2(0,t;L2,4(Γt(2δ)))‖µε

− µA‖L2(Γt(2δ)×(0,t))

≤ Cε
1

4 ‖∇w‖L2(Ω×(0,t))‖µε − µA‖L2(Ω×(0,t))

≤ Cε
1

2 ‖∇w‖2L2(Ω×(0,t)) + η‖µε − µA‖
2
L2(Ω×(0,t)).

As for J42, noticing that hε = h1 + εh2, one finds that

|J42| =
∣∣∣−

∫ t

0

∫

Γt(2δ)

ε(ζ ◦ dΓ)w|Γθ
′
0(ρ)∇τhε(µε − µA) dxdς

∣∣∣

≤ Cε‖w|Γ‖L2(Γt(2δ)×(0,t))‖θ
′
0∇τh1‖L∞(Γt(2δ)×(0,t))‖µε − µA‖L2(Γt(2δ)×(0,t))

+ Cε2‖w|Γ‖L2(0,t;L4,2(Γt(2δ)))‖θ
′
0‖L∞(Γt(2δ)×(0,t))‖∇τh2‖L∞(0,t;L4(T1))‖µε

− µA‖L2(Γt(2δ)×(0,t))

≤ Cε2‖∇w‖2L2(Ω×(0,t)) + η‖µε − µA‖
2
L2(Ω×(0,t)).

Consequently, putting the above two estimates together, we conclude that

|J4| ≤ Cε
1

2 ‖∇w‖2L2(Ω×(0,t)) + η‖µε − µA‖
2
L2(Ω×(0,t)). (3.32)

From the estimates (3.28)–(3.29) and (3.30)–(3.32), we obtain Proposition 3.3.
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4 Proof of Theorem 1.1

Based on the prior estimates established in Section 3, we are ready to prove Theorem 1.1

by the a priori energy estimate method.

Proof Putting the estimates (3.13), (3.21) and (3.26) together, and choosing η > 0 suitably

small, we obtain

1

2
‖w(t)‖2L2(Ω) +

( 1

2ε
−

1

4

)
‖u(t)‖2L2(Ω) +

ε2

2
‖∇u(t)‖2L2(Ω)

+
1

2
‖∇w‖2L2(Ω×(0,t)) +

1

2ε
‖∇τu‖

2
L2(Ω×(0,t)) +

ε

2
‖∇u‖2L2(Ω×(0,t)) +

3

4
ε3‖∆u‖2L2(Ω×(0,t))

+
3

4
‖µε − µA‖

2
L2(Ω×(0,t)) +

1

8
‖u(t)‖4L4(Ω) +

3

4
‖(cAu)(t)‖

2
L2(Ω)

+
1

ε
‖f ′(cε)− f ′(cA)‖

2
L2(Ω×(0,t))

≤
1

2
‖w(0)‖2L2(Ω) +

( 1

2ε
−

1

4

)
‖u(0)‖2L2(Ω) +

ε2

2
‖∇u(0)‖2L2(Ω) +

1

8
‖u(0)‖4L4(Ω)

+
3

4
‖(cAu)(0)‖

2
L2(Ω)

+
1

2
‖(cAu

3)(0)‖L1(Ω) + C‖w‖2L2(Ω×(0,t)) + Cε‖∇u‖4L∞(0,t;L2(Ω)) + Cε3‖∆u‖4L2(Ω×(0,t))

+ C(ε4‖∇u‖2L∞(0,t;L2(Ω))‖∆u‖
2
L2(Ω×(0,t)) + T0ε

4‖∇u‖4L∞(0,t;L2(Ω))

+ ε2‖∇u‖L∞(0,t;L2(Ω))‖∆u‖L2(Ω×(0,t)) + T0ε
2‖∇u‖2L∞(0,t;L2(Ω)))‖w‖2L∞(0,t;L2(Ω))

+ Cε(‖u‖L∞(0,t;L2(Ω)) + ‖∇u‖L∞(0,t;L2(Ω)))
‖u‖2

L∞(0,t;L2(Ω))

ε

+ C
(
1 + ‖u‖L∞(0,t;L2(Ω))

+
‖u‖2

L∞(0,t;L2(Ω))

ε2

)‖u‖2
L2(Ω×(0,t))

ε
+ C1 T

1

2

‖u‖4
L∞(0,t;L2(Ω))

ε6
+ C2 ε

4.

In the calculations that follow, we further require the following a priori assumptions:

‖u‖L∞(0,t;L2(Ω)) ≤ Rε
5

2 , ‖∇u‖L∞(0,t;L2(Ω)) ≤ Rε
7

8 and ‖∆u‖L2(Ω×(0,t)) ≤ Rε
3

8 . (4.1)

Let C0 = max{C,C1, C2} ≤ R2

100 and the initial data satisfy

1

2
‖w(0)‖2L2(Ω) +

( 1

2ε
−

1

4

)
‖u(0)‖2L2(Ω) +

ε2

2
‖∇u(0)‖2L2(Ω)

+
1

8
‖u(0)‖4L4(Ω) +

3

4
‖(cAu)(0)‖

2
L2(Ω) +

1

2
‖(cAu

3)(0)‖L1(Ω) ≤ C0ε
4.

Then, we have

1

4
‖w(t)‖2L2(Ω) +

1

4ε
‖u(t)‖2L2(Ω) +

ε2

2
‖∇u(t)‖2L2(Ω)

+
1

2
‖∇w‖2L2(Ω×(0,t)) +

1

2ε
‖∇τu‖

2
L2(Ω×(0,t)) +

ε

2
‖∇u‖2L2(Ω×(0,t)) +

ε3

2
‖∆u‖2L2(Ω×(0,t))

+
1

2
‖µε − µA‖

2
L2(Ω×(0,t)) +

1

8
‖u(t)‖4L4(Ω) +

3

4
‖(cAu)(t)‖

2
L2(Ω)
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+
1

ε
‖f ′(cε)− f ′(cA)‖

2
L2(Ω×(0,t))

≤ C0‖w‖2L2(Ω×(0,t)) + C0

‖u‖2
L2(Ω×(0,t))

ε
+ C0(1 + T

1

2R4)ε4.

Consequently, an application of Gronwall’s inequality to the above inequality leads to

1

4
‖w(t)‖2L2(Ω) +

1

4ε
‖u(t)‖2L2(Ω) +

ε2

2
‖∇u(t)‖2L2(Ω)

+
1

2
‖∇w‖2L2(Ω×(0,t)) +

1

2ε
‖∇τu‖

2
L2(Ω×(0,t)) +

ε

2
‖∇u‖2L2(Ω×(0,t)) +

ε3

2
‖∆u‖2L2(Ω×(0,t))

+
1

2
‖µε − µA‖

2
L2(Ω×(0,t)) +

1

8
‖u(t)‖4L4(Ω) +

3

4
‖(cAu)(t)‖

2
L2(Ω)

+
1

ε
‖f ′(cε)− f ′(cA)‖

2
L2(Ω×(0,t))

≤ C0(1 + T
1

2R4)ε4(1 + C0te
C0t) ≤

R2ε4

16
for all t ∈ [0, T ],

provided that T is sufficiently small. Hence,

‖u‖L∞(0,t;L2(Ω)) ≤
1

2
Rε

5

2 , ‖∇u‖L∞(0,t;L2(Ω)) ≤ Rε, ‖∆u‖L2(Ω×(0,t)) ≤ Rε
1

2 .

Therefore, the a priori assumptions (4.1) are satisfied. Moreover, the a priori assumptions (2.9)

are also valid by virtue of [4, Lemma 4.2]. So, the proof of Theorem 1.1 is complete.
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