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Abstract From the mesoscopic point of view, a definition of soft point is introduced
by considering the attributes of geometric profile and mass distribution. After that, this
concept is used to develop the soft matching technique to simulate the chaotic behaviors of
the equations. Especially, a tennis model with deformation factor a(t) is proposed to derive
a generalized Newton-Stokes equation v

′(t) = λ(vT − a(t)v(t)). Furthermore, a concept of
duality of deformation factor a(t) and velocity v(t) with respect to the generalized Newton-
Stokes equation is established. To solve this equation, two data-driven models of a(t) are
provided, one is based on the concept of soft matching, while the other is by using the
amplitude modulation. Finally, the related iterative algorithm is developed to simulate the
motion of the falling body via the duality of a(t) and v(t). Numerical examples successfully
demonstrate the phenomenon of chaos, which consists of the continual random oscillations
and sudden accelerations. Moreover, the algorithm is tested by using larger coefficients
corresponding to the terminal velocity and shows more satisfactory results. It may enable
us to characterize the total energy of the dynamical system more accurately.
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1 Introduction

On the occasion of the 20th anniversary of the establishment of the ICIAM Su Buchin Prize,

we would like to discuss a very elementary concept in geometry, namely, the definition of the

point. Another motivation comes from the study of the falling body, especially, a ball is falling

in the non-Newtonian fluid. The result of this paper may be generalized to discuss the motion

of the high-speed aerocraft.

The establishment of coordinates is a revolutionary milestone to describe a point mathe-

matically (e.g. Euclidean space R2). This has opened the new epoch to study the mechanical

problems rationally and quantitatively. However, any point is actually a mass distribution. We

take the point as the mass distribution of a random variable ξ, and propose the concept of soft

point.

Based on the definition of soft point, the K-order equivalence is introduced : ξ ≃K η if

Eξk = Eηk hold for all k ≤ K at some mesoscopic level. Then a concept of the soft matching
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ξ@η is proposed, more precisely, we can construct ξ to simulate η based on some important

features of η, which could be observed and estimated previously.

Furthermore, the concept of soft matching for the difference equation (uj+1 − uj) = F (uj)

will turn to be (uj+1 − uj)@F (uj). That is, the soft points {(uj+1 − uj)} will satisfy the

distribution coincident with the important features of soft points {F (uj)}. This technique

could also be generalized to the dynamical system.

In this paper, the concept of soft point will be introduced more in details, and the idea of the

soft matching will be used to describe the motion pattern of a ball falling in the non-Newtonian

fluid.

Let us start at the very beginning, the free body falling by Galileo, that is, “the distance is

proportional to the square of time”. This helps Newton to establish the second mechanical law

of f = mv′: The force f acting on the object is equal to its mass m multiplying its acceleration

v′. Here Newton has taken the object as a mass-point abstractly, that is the point endowed

with the attribute of the mass.

These open the new epoch to study physics with mathematics, since the coordinates are the

bridge connecting physical locations and mathematical points.

In 1851, Stokes took the drag force as Fd = 6πµrv, which is proportional to the velocity of

the ball (see [1]). Here µ is the viscosity of the fluid, r and v are the radius and velocity of the

ball, respectively. This derived the Newton-Stokes equation

4π

3
r3ρbv

′(t) =
4π

3
r3g(ρb − ρf )− 6πµrv(t), (1.1)

where ρb and ρf are the densities of the ball and the fluid, respectively, and g is the gravitational

acceleration.

Furthermore, (1.1) can be simplified as

v′(t) = λ(vT − v(t)), (1.2)

where λ = 9µ
2r2ρb

and the terminal (final) velocity vT =
2(ρb−ρf )r

2g

9µ . The solution of (1.2) can

be written as v(t) = vT − (vT − v0)e
−λ(t−t0). When the resultant force or the acceleration v′(t)

tends to zero, v(t) will tend to vT , which is called the equilibrium state macroscopically.

However, in applications, it has been observed that the falling body behaves with random

oscillations when it’s speed approaches to the terminal velocity (see [2–6]). Such phenomena

will happen in physics, economics, biology and many other fields, such as the perturbation of

earth orbit, the falling ball in shampoo and the fluctuation of stocks index, etc. The random

phenomenon of a falling ball through a non-Newtonian fluid can be observed more clearly as

shown in Figure 1 (e.g. [7]).

Lee [8] takes the fluid as spider nets layer by layer, and adds a periodic force caused by the

action of the ball which first pushes the spider nets together and breaks through them after.

When the ball enters the equilibrium state, the motion pattern is approximatively a harmonic

oscillation coupled with the terminal velocity.
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Figure 1 Oscillations of a solid ball falling through a wormlike micellar fluid.

The models above are all under the framework of Newtonian mechanics and can be described

by some second order ODEs (ordinary differential equations). Discretize these ODEs, the related

iterative algorithms can be obtained to simulate the motion of the falling ball in the category

of Newton.

However, people have already observed a lot of non-Newtonian fluids such as shampoo,

toothpaste, cream, slurry and so on. In fact, all fluids will exhibit it’s non-Newtonian properties,

if the falling ball approaches to the terminal velocity and is deformed easily, and the fluid

possesses a strong viscosity.

The researches of [9–10] developed a data-driven model of the falling ball by using the LASSO

(Least Absolute Shrinkage and Selection Operator) approach. Moreover, we can develop the

soft LASSO approach based on the concept of soft matching of soft points.

This paper generalizes the concept of soft point by considering not only the geometric profile

but also the mass distribution and consists of four sections. In Section 2, a generalized concept

of soft point of order (N+M) is introduced. Based on this concept, the soft matching technique

is developed in order to simulate the chaotic behaviors of the equations and some simple cases

are discussed. In Section 3, taking the deformation of the ball into account, a tennis model is

proposed to derive a generalized Newton-Stokes equation to describe the motion of the falling

ball. Meanwhile, a dual concept of deformation factor a(t) and velocity v(t) with respect to the

generalized Newton-Stokes equation is suggested. Two data-driven models of a(t) are derived at

some mesoscopic level, one is based on the concept of soft matching, while the other is by using

the amplitude modulation. Furthermore, the related discrete iterative algorithm is developed

to simulate the trajectory of the velocity. The algorithm is tested by using different values of
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coefficient d corresponding to the terminal velocity vT . The results are more satisfactory when

we use dvT instead of vT in the algorithm with a lager d. It may enable us to characterize the

total energy of the dynamical system more accurately. Numerical examples are provided and

show the chaotic phenomena with the behavior of the continual random oscillations coupled

with sudden accelerations. Some conclusions are given in the last Section.

2 A New Concept: Soft Point

In this Section, we will generalize the concepts of point in mathematics and mass-point in

physics, which will be called “soft point” from a more mesoscopic perspective.

A point P in mathematics is abstractly represented only by using its position with some

coordinates, but having no size, no shape and no mass. A mass-point (P,m) in physics contains

not only the position in mathematics but also the mass. However, in the real world, a point

would coincide with two attributes, the geometric attribute (size and shape) and the physical

attribute (mass and its distribution). Roughly speaking, a point P is a distribution of mass

in a certain geometry. Therefore, there could be at least two kinds of way to observe a point

mesoscopically. The key feature of difference of the concepts in geometry and in physics is that,

the mathematician takes the uniform distribution χΩ(x) on some geometry region Ω, while the

physicist takes the mass distribution m(x) to describe the concept of the point.

The concept of the generating function is used to generalize the definition of the point

mesoscopically. We define the “soft point” of order (N +M), where N and M are the orders

of the generating function with respect to geometry and physics, respectively.

Definition 2.1 Assume that a point whose mass distribution is m(x) defined on some region

Ω ∈ Rd and u(x) = χΩ(x) is the uniform distribution on Ω. We define

Nj :=

∫

Ω

xju(x)dx and Mk :=

∫

Ω

xkm(x)dx, (2.1)

where xj = xj1
1 · · ·xjd

d is the notation of multiple variable, with x = (x1, · · · , xd) ∈ Rd and

j = (j1, · · · , jd), k = (k1, · · · , kd) ∈ Zd. Furthermore, the values of {Nj,Mk} characterize

a soft point in a mesoscopic level of order (N + M), where |j| := j1 + · · · + jd ≤ N and

|k| := k1 + · · ·+ kd ≤ M.

For example, when d = 1, N = 1 and M = 1, N0 is the area of the region Ω, M0 is the

total amount of mass, N1/N0 is the geometric center Pg, and M1/M0 is the mass barycentre

Pm, respectively. Pg and Pm are most used in the application of mathematics and physics to

define the position of a point.

Remark 2.1 The concept of soft point can be generalized to equations (e.g. algebraic e-

quation, differential equation, difference equation and so on), if both sides of the equation are

regarded as points in the Hilbert space. In this way, we can derive an algorithm to characterize

the left-hand side by using some important features of the right-hand side. For example, for
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the difference equation (uj+1−uj) = F (uj), based on Definition 2.1, we will solve this equation

by collecting and using the key features of F (uj) such as a soft point of order (N + M) and

setting them in the iteration. This means that (uj+1 − uj) satisfies the distribution coinci-

dent with some key features (information about generating function) of the soft point F (uj)

for any j. We call this technique as ‘the soft matching of the equation’, which is denoted as

(uj+1 − uj)@F (uj).

We will give some simple cases about the soft point as follows. The mathematical point is

in fact a soft point of order (1 + 0), where its position is defined to be the geometric center

Pg = (Nj/N0), |j| ≤ 1. The physical point is in fact a soft point of order (0 + 1), where its

position is defined to be the mass barycenter Pm = (Mj/M0), |j| ≤ 1.

To represent the mass-point located at the position P with the mass m, we would like to

introduce the Grassmann coordinate
(
mP
m

)
(see [11–13]). Then the superposition of mass-points

is
∑

j

(
mjPj

mj

)
=

(∑
j

mjPj

∑
j

mj

)
=

(
mPm

m

)
,

where m =
∑
j

mj is the total amount of the masses and

Pm =

∑
j

mjPj

∑
j

mj

is exactly the position of the barycentre. The physical meaning of the superposition is that all

the mass-points
(
mjPj

mj

)
accumulate on the mass barycentre Pm. Therefore, Definition 2.1 of

the soft point is a generalization of Grassmann mass-point
(
mPm

m

)
.

Now there are two concepts of position of a point: The geometric center Pg and the mass

barycentre Pm. A serious problem is raised, which position should be taken? Nevertheless,

these two positions are usually not the same.

If we have decided to use Pg or Pm, based on the second mechanical law, the motion equation

should be v′(t) = g for the free falling body. The solution can be written as v(t) = v(0) + gt

and P (t) = P (0) + v(0)t + 1
2gt

2. Since the body is not in vacuum, Stokes takes the resistance

into account which is proportional to the velocity of the falling body. Then an ODE can be

gotten in the form of v′(t) = λ(vT − v(t)). The velocity will tend to a constant vT which is

called the terminal velocity. Figure 2 shows the motion pattern of the body in the framework

of soft point of order (0 + 1) or (1 + 0).

The trajectories of Pg(t) and Pm(t) are usually different, however, vg(t) ≡ vm(t) and Pg(t)−

Pm(t) ≡ Pg(0)− Pm(0) always hold.

As just mentioned, mathematicians ignore the mass and take it to be uniformly distributed,

while physicists focus on the mass barycenter and usually ignore the geometry. It would be

better to combine two concepts of mass and geometry. From a mesoscopic point of view, it
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requires to consider at least two essential factors: The geometric center and the mass barycentre

(Pg, Pm), which is involved in the concept of soft point of order (1 + 1).

If the mass distribution of a point P is m(x) on a geometric region Ω and u(x) is the

characteristic function χΩ(x) of the region Ω, then the Grassmann coordinate of soft point of

order (1 + 1) could be represented as
(
M1

M0

)
=

(
mPm

m

)
=

(∫
Ω xm(x)dx∫
Ω
m(x)dx

)
,

(
N1

N0

)
=

(
|Ω|Pg

|Ω|

)
=

(∫
Ω xu(x)dx∫
Ω
u(x)dx

)
.

An example of soft point of order (1+1) is the egg model, whose geometry profile is difficult

to be deformed, however, the mass barycenter Pm = M1/M0 satisfies the dynamical equation

such as the Newton-Stokes equation. What we have observed is the position Pg = N1/N0.

The relation of two concepts Pg and Pm of the point can be described as pulling a jelly with

non-Newtonian characters: Pm will take the regression to Pg because of the material memory.

Then an oscillation will happen. |Pm − Pg| ≤ 1, if the radius r is normalized to be 1, since the

egg yolk oscillates only in the egg.

The difference Pm − Pg can be regarded as the deformation of the mass, which will cause a

reacting force and can be written in the following equation about the internal force fi:

fi
m

= P ′′
g − P ′′

m = −ω2(Pg − Pm). (2.2)

Figure 2 The Newton-Stokes trajectory of the velocity.

Then its solutions will be vg(t) = vm(t) + Aω sinωt + Bω cosωt and Pg(t) = Pm(t) −

A cosωt+B sinωt (A2 +B2 ≤ 1), where A = Pm(0)− Pg(0) and Bω = P ′
g(0)− P ′

m(0) depend

on the initial relative position and velocity, respectively. From another side, Pm(t) satisfies the

Newton-Stokes equation with respect to the external force fe:

fe
m

= v′m(t) = λ(vT − vm(t)), (2.3)

where fe is composed of the gravity and the resistance. By solving the coupled equations (2.2)–

(2.3), we obtain that vg(t) = vT − (vT − v0)e
−λt + Aω sinωt + Bω cosωt. Figure 3 shows the
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pattern of vg(t) with the green curve by the egg model and the pattern of vm(t) with the red

curve. vm(t) is just the solution of Newton-Stokes equation which is shown in Figure 2. That

means, vg(t) is a more mesoscopic description compared with vm(t).

Figure 3 A special example of egg model.

Another example of soft point of order (1 + 1) is the tennis model, whose geometry profile

will be deformed to spheroid, while the mass keeps uniformly distributed m(x) = u(x). This

will be discussed more in details in the next section.

3 Tennis Model–A Further Discussion

The equilibrium state is an important concept in the study of mechanical systems, as it

represents a relative stable situation of a moving body. The dynamical equilibrium state is

the common state in many fields, such as chemistry, physics, economics and physiology. Chaos

phenomenon is ubiquitous in dynamical equilibrium. The ball falling in the non-Newtonian

fluid in equilibrium state shows chaotic behavior without exception, that is, the motion of the

ball behaves randomly but satisfies some physical laws. An example of chaos is the logistic

equation xt+1 = kxt(1− xt).

During the falling, the motion patten of the ball in equilibrium state demonstrates the am-

plitude modulated oscillations, sometimes with sudden accelerations (e.g. Figure 1). These

sudden accelerations indicate sudden decreases of the resistance. The research in [7] has pro-

posed that the non-transient oscillation is caused by the flow-induced structure (FIS for short)

formed in the area around the ball, and the sudden acceleration of the ball is due to the rupture

of the FIS. Similar oscillation phenomenon (see [14]) has occurred with a bubble rising in the

fluid, that is, its velocity also oscillates non-transiently. This oscillation phenomenon may be

due to the deformation of the bubble to form the cusps as it rises through the fluid (see [15]).

At the moment the cusp forms, the bubble suddenly “jumps” to release the cusp, which then

creates a strong negative wake behind the bubble.

Now we use the data sampled from the experiment in [7] as the entry point to study the ball

falling in non-Newtonian fluid. For these data, we take t > tequilibrium as the equilibrium state
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of the motion and the sudden accelerations occur in the time interval [tsudden−, tsudden+]. The

velocity of the sudden acceleration in [tsudden−, tsudden+] is distributed in [vmin, vmax], otherwise,

is distributed in the interval of [vmin, vmid], and vmin < vmid < vmax. People often use statistics

such as the mean value, the median value, the variance and so on to describe the statistical

characters of physical properties or to find new physical relations and equations.

The purpose of this section is to establish a mathematical model based on the Newton-Stokes

equation, discuss the physical relation of the ball falling in a non-Newtonian fluid in details, and

construct proper iterative algorithm to simulate the mechanical behavior of the velocity. We

hope that the simulated velocity trajectory can exhibit chaotic phenomena including continuous

random oscillations and sudden accelerations, and reproduce some of the statistical characters

of the experimental data.

The most researchers considered FIS model (e.g. [7]), that is, the non-uniformity of the fluid

in the area around the ball. From another perspective, we take the fluid as a reference object

and relatively regard the variation of the fluid around the ball as the deformation of the ball

itself. That is, we take the falling ball as a tennis of soft point of order (1 + 1) mesoscopically.

The Tennis Model: The geometric profile will be deformed easily when a tennis with radius

r after a huge hit, then it will change into a spheroid with equatorial radius requat(t) and polar

radius rpolar(t). However, the mass will always keep uniformly distributed in the geometry of

the spheroid. Therefore, Pg = Pm and vg = vm, which is a special case of soft point of order

(1 + 1). The conservation of the volume of the spheroid keeps

r2equat(t)rpolar(t) ≡ r3.

Now we use the tennis model to analyse the falling ball. The deformation of the ball to the

spheroid is caused by the difference of the gravity and the resistance. An oscillation of geometry

will happen, that the spheroid would always intent to regress to the original ball due to the

material memory.

Recalling the Newton-Stokes equation, the force acting on the ball will be macroscopically

written into two terms. One is caused by the gravity which relates to the volume V of the ball,

while the other is caused by the resistance which relates to the radius r of the ball (see [1]).

More in details,

mv′(t) = (ρb − ρf )gV − 6πµrv(t). (3.1)

The deformation will lead to the oscillation of the equatorial radius requat(t) and the polar

radius rpolar(t). The oscillation of the velocity will respond to the oscillation of the geometric

shape of the ball. Because the volume V of the ball is conserved during the deformation, (3.1)

can be reformed as

mv′(t) = (ρb − ρf )gV − 6πµrequat(t)v(t). (3.2)

Denoting the ratio

a(t) =
requat(t)

r
,
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(3.2) can be simplified to

v′(t) = λ(vT − a(t)v(t)), (3.3)

where λ and vT are the same as in (1.2). The terminal velocity vT is a macroscopic description

of the ball in the equilibrium state. Based on Ergodic theory, vT could be taken as the mean

value (e.g. geometric mean, arithmetic mean, harmonic mean and so on). Pay attention to the

balance of the number of the data, we can also choose the median value as vT .

The ratio a(t) describes the deformation of the ball and is called the deformation factor.

From macroscopic point of view, Newton-Stokes equation (3.1) ignores the deformation of the

ball and always takes a(t) ≡ 1.

If we know a(t), then coupled with (3.3), we can simulate the falling motion by an implicit

form of discrete iterative algorithm

vn − vn−1 = λ(vT − anvn) (3.4)

and an explicit form of iterative algorithm

vn =
vn−1 + λvT
1 + λan

. (3.5)

The next step at n of velocity will be a convex combination of vn−1 and the terminal velocity

vT with the weight of 1 : λ when an ≡ 1 in Newton-Stokes equation, now it will be collaborated

with a deformation factor of an.

In the following, based on the idea of data-driven, we construct the model of a(t) by the

dual concept of v(t) with respect to the Newton-Stokes equation. More in details, two methods

are proposed, one is the soft matching model, while the other is by using the deterministic

frequency with the amplitude modulation.

Dual Relation Now we will discuss the relation of the velocity and the deformation factor

of the falling ball. Denoting

v̂(t) =
v(t)

vT
,

Newton-Stokes equation (3.3) can be reformed as

v̂′(t) = λ(1 − a(t)v̂(t)). (3.6)

When the ball enters the equilibrium state, that is, the resultant force acting on the ball is equal

to zero and the acceleration is zero macroscopically. This derives a macroscopic dual relation

of

a(t)v̂(t) = 1. (3.7)

Taking the logarithm on both sides of (3.7) gives the following equation

ln a(t) + ln v̂(t) = 0. (3.8)

It can be concluded that under the macroscopic framework of Newton-Stokes equation, when

the ball enters the equilibrium state, ln a(t) and ln v̂(t) will keep a mirrored relation.
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Definition 3.1 (Mirrored random variables) Two random variables ξ and η are called

mirrored with each other, if their density functions f(t) and g(t) satisfy

f(t) = g(−t).

Remark 3.1 If the density function f(t) of a random variable ξ is an even function, then

ξ is called self-mirrored. For example, the uniform distribution 1
2χ[−1,1](t) on [−1, 1] and the

Gaussian distribution 1√
2πσ

e−
t2

2σ2 are self-mirrored.

Corollary 3.1 If ξ and η are mirrored random variables, then their distribution functions

F (x) and G(x) satisfy

F (x) +G(−x) = 1. (3.9)

Proof

F (x) =

∫ x

−∞
f(t)dt =

∫ +∞

−x

f(−t)dt =

∫ +∞

−x

g(t)dt

= 1−

∫ −x

−∞
g(t)dt = 1−G(−x). (3.10)

Remark 3.2 If ξ and η are mirrored random variables, then E(ξ + η) = 0, in other words,

ξ + η is a soft point of zero macroscopically or ξ and η are a pair of symmetric points with

respect to zero mesoscopically.

Definition 3.2 (Duality of random variables) eξ and eη are called dual random variables

with each other, if ξ and η possess a mirrored relation. At this time, E ln(eξ · eη) = 0 from

mesoscopic point of view.

Soft matching model For the functions v(t) and a(t), mathematicians take them as the

points in Hilbert space. After discretization, (v0, · · · , vn) and (a0, · · · , an) are the points in

Rn+1. Then recall the concept of soft point in Definitions 2.1 and 3.1–3.2, the problem to solve

(3.5) will turn to be a soft matching problem (see Remark 2.1 in Section 2 of this paper). (3.7)

and (3.8) will turn to be

a(t)@
vT
v(t)

(3.11)

and

ln a@− ln v̂. (3.12)

Then from (3.11), we can construct a random number generator of an by using the empirical

distribution of the velocity. Setting the generated an into the iterative algorithm (3.5), we

get a simulated trajectory of the velocity of the falling ball. Figure 4(a) uses the empirical

distribution of velocity and the terminal velocity is learned by LASSO. In order to show the

sudden acceleration more clearly, a coefficient d with respect to vT is designed and dvT is used
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(a) vT ≈ 4.

(b) dvT ≈ 60, d = 15.

Figure 4 Trajectory of v by generating an from empirical distribution of velocity.

instead of vT in algorithm (3.5). We have chosen a lot of different d and found that when

d > 10, the simulated trajectory is more consistent with the experimental data as shown in

Figure 4(b).

Remark 3.3 The above example shows that if we choose a large value of d and use dvT

instead of vT in generalized Newton-Stokes equation (3.3), then the dual relation between the

deformation factor and the velocity should be

a(t)
v(t)

dvT
= 1.

In this example, most of vn are less than dvT , that is,

vn
dvT

< 1

and

an =
dvT
vn

> 1.

This means that the ball is mostly in a flattened state which is consistent with the reality.

This phenomenon shows that the resistance is mostly less than the gravity during the falling.

The resultant of gravity and resistance determines the falling of the ball, while the value of

resistance determines the flattening of the ball. The phenomenon that taking a larger d will

get a better trajectory also happens in the next model, and will be discussed in more details.

Amplitude-modulated model In logarithmic space, many physical processes will become

more stationary. Meanwhile, in mathematics the dual problem can be easily solved by taking the
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logarithm and transforming it into a mirror problem. So we study the characteristic properties of

ln v in logarithmic space. The trajectory of w = ln v which comes from the physical experiment

in [7] is shown in Figure 5.

Figure 5 Trajectory of w = ln v.

In Figure 5, the ball enters the equilibrium state when n > tequilibrium. The five horizontal

lines from bottom to top represent the lower bound wmin, the expectation value wa, the median

value wm, the middle bound wmid and the upper bound wmax of the velocity in logarithmic

space at the equilibrium state, respectively. It behaves as continuous random oscillators dis-

tributed in the interval [wmin, wmid], with occasional sudden accelerations up to wmax when

n ∈ [tsudden−, tsudden+].

Since the behavior of w(t) = ln v(t) has mainly shown as a harmonic oscillation in the

interval [wmin, wmid], we first use the model

w∗
1(t) = C +A sin(ω1t) (3.13)

to simulate it, where

C =
(wmin + wmid)

2
and

A =
(wmid − wmin)

2
are the median (mean) value and the amplitude of the oscillation, respectively. The frequency

ω1 can be estimated by many statistical methods, here we use ω1 learned by LASSO (e.g. [9]).

The model (3.13) maintains the lower bound wmin, the middle bound wmid and the median

value of the data of ln v. To improve the model to show the random behavior, a random factor

ε1 is added to serve as the amplitude modulation:

w∗
2(t) = C +Aε1 sin(ω1t), (3.14)

where the distribution of ε1 is supported on the interval [0, 1].

The location where the sudden acceleration occurs may be indeterministic. In our example,

the sudden acceleration happens in [tsudden−, tsudden+], and we can construct many different

models to simulate this phenomenon. For example, we design the term

B(
b − sin(ω2t)

1 + b
)2k+1
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to cause an impulse to characterize the sudden acceleration. The values of frequency ω2, the

amplitude B and the parameters (b, k) characterize the position, the height and the width of

the impulse, respectively. To demonstrate random phenomenon, we use the same method of

the amplitude modulation, and the model

w∗
3(t) = C +Aε1 sin(ω1t) +Bε2

(b− sin(ω2t)

1 + b

)2k+1

(3.15)

is constructed to simulate the function w(t), and ew
∗

3
(t) to simulate the function v(t) in the

sense of the soft matching. The distribution of ε2 is supported on the interval [0, 1].

The sudden acceleration simulated by model (3.15) occurs periodically. However, to describe

the sudden acceleration in more details is a more interesting and difficult problem. More pre-

cisely, why, when, where and how often the sudden acceleration will happen has attracted a lot

of scientists. For example, if we take the sudden acceleration as a single extreme phenomenon,

the Gaussian model with appropriate parameters can be used.

Based on the dual relation

a(t) ·
ew(t)

vT
= 1, (3.16)

we have

a(t) = vT e
−w(t).

Recalling the concept of the soft matching in Remark 2.1, a generator of the deformation factor

is constructed as:

an@vT e
−w(n). (3.17)

Then set an obtained by (3.17) into the iterative algorithm (3.5) to simulate the trajectory of

the velocity of the falling ball. The result is shown in Figure 6(a) which exhibits the random

oscillations, but lacks the sudden acceleration. We design a coefficient d with respect of vT and

the iterative algorithm (3.5) is suggested as

vn =
vn−1 + λdvT

1 + λan
. (3.18)

We have tried many different value of d and found that the simulated trajectory matches the

data better when the larger d has been taken. The numerical experiments show satisfactory

results when d > 10. The algorithm (3.18) with the new coefficient d enriches the representing

ability of the algorithm (3.5), in particular, encouragingly consists of the sudden acceleration

phenomenon. Figure 6(b) shows the result of d = 15.

We would like to point out that this phenomenon has already happened in the soft matching

model of the paragraph above.

In fact, the total energy of the system consists of the energy of the inertial motion and

oscillations, which will be larger than the energy of inertial motion described by the classical
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(c) vT ≈ 4.

(d) dvT ≈ 60, d = 15.

Figure 6 The simulated trajectories of velocity.

Newton-Stokes equation. The reason for taking a larger d in (3.18) may be more in line with

the law of conservation of energy. The value of d had better to be chosen larger than 10, which

inspires us that the total energy 1
2md2v2T of the system of generalized Newton-Stokes equation

is larger than 1
2mv2T of the classical Newton-Stokes equation. This implies that the generalized

Newton-Stokes equation brings back the factors which may not have been observed, detected

and considered by classical Newton-Stokes equation. The violation of classical Newton-Stokes

equation may be compared with the discovery of the dark matter. d > 10 means that the

total energy should be 100 times greater than the energy of classical Newton-Stokes equation.

According to the Einstein’s mass-energy equivalence E = mc2, this implies that the mass of

dark matter accounts for at least 99% of the total mass of all matter in the universe.

4 Conclusion

From the mesoscopic point of view, the definition of soft point of order (N+M) is introduced

by considering the attributes of both geometric profile and mass distribution. Based on this

concept, the soft matching technique is developed to simulate the chaotic behaviors of the

equations. Especially, the tennis model of soft point of order (1 + 1) is proposed and the

generalized Newton-Stokes equation

v′(t) = λ(vT − a(t)v(t))
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with deformation factor a(t) is derived. More in details, a dual concept of deformation factor

a(t) and velocity v(t) with respect to the above equation is established. Two data-driven models

of the deformation factor are provided, one is based on the concept of soft matching, while the

other is by using amplitude modulation. Discrete iterative algorithm of coupled models of

an ·
vn
vT

= 1

and

vn =
vn−1 + λvT
1 + λan

under the concept of soft point is developed to simulate the trajectory of the velocity. The

algorithm is tested by using different values of coefficient d corresponding to the terminal

velocity vT . The results are more satisfactory when we use dvT instead of vT in the algorithm

with a lager d. It may enable us to characterize the total energy of the dynamical system more

accurately. Numerical examples show the behavior of chaos of the continual random oscillation

and sudden acceleration satisfactorily. The concept of soft point and soft matching as well

as the method developed in this paper are expected to be generalized into a wide range of

applications, such as the study of trajectory of the high-speed aerocraft, the stock index and

so on.
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