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Abstract A geometric intrinsic pre-processing algorithm(GPA for short) for solving large-
scale discrete mathematical-physical PDE in 2-D and 3-D case has been presented by
Sun (in 2022–2023). Different from traditional preconditioning, the authors apply the
intrinsic geometric invariance, the Grid matrix G and the discrete PDE mass matrix B,
stiff matrix A satisfies commutative operator BG = GB and AG = GA, where G satisfies
Gm = I,m << dim(G). A large scale system solvers can be replaced to a more smaller
block-solver as a pretreatment in real or complex domain.

In this paper, the authors expand their research to 2-D and 3-D mathematical physical
equations over more wide polyhedron grids such as triangle, square, tetrahedron, cube, and
so on. They give the general form of pre-processing matrix, theory and numerical test of
GPA. The conclusion that “the parallelism of geometric mesh pre-transformation is mainly
proportional to the number of faces of polyhedron” is obtained through research, and it
is further found that “commutative of grid mesh matrix and mass matrix is an important
basis for the feasibility and reliability of GPA algorithm”.

Keywords Mathematical-physical discrete eigenvalue problems, Commutative op-
erator, Geometric pre-processing algorithm, Eigen-polynomial factoriza-
tion
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1 Introduction

Many discrete models on PDE solver are based on applying variable separation approach
and variational principle, such as for solving PDE with initial-boundary value problem in three
dimension.

By means of FEM discretization, we usually get three types of matrix representation, stiff
matrix A , mass matrix B and basis matrix G endowed with supplemental structures. The basis
matrix G usually originates from the so-called polar decomposition of mass matrix B = GR,
which represents the process of an object’s affine transformation such as rotation and reflection
etc. According to bounded operators on Hilbert space, the polar decomposition of a square
matrix B = GR always exists (see [14]).

In linear algebra and functional analysis, the basis matrix G can be given theoretically by
intrinsic spectral-factorization over PDE’s geometric domain such as grids, meshes or graphs.
Suppose B is a compact self-adjoint operator on a (real or complex) Hilbert space H. Then
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there is an orthonormal basis of H consisting of eigenvectors of B. Each eigenvalue is real. The
orthonormal basis of H gives the basis matrix G .

In mathematics, the so-called commutator gives an indication of the extent to which a
certain binary operation [B,G] fails to be commutative, i.e. the metric of [B,G] is not zero.
The commutator of two elements B and G of a ring is defined by [B,G] = BG−GB. It is zero
if and only if B and G commute (see [10]).

In quantum mechanics, the commutation relation [A,G] and [B,G] acting on a Hilbert space
H is a central concept, which is fundamental between the two conjugate quantities A and B (i.e.,
momentum and position, respectively), which are pairs of variables mathematically defined in
such a way that they become Fourier transform duals. The duality relations lead naturally to
an uncertainty relation between them. The uncertainty principle is ultimately a theorem about
the commutator [A,B], by virtue of the Robertson-Schrodinger relation, it quantifies how well
the two observables described by these operators can be measured simultaneously (see [12]).
The conjugate variables A,B are related by Noether’s theorem, which states that if the laws of
physics are invariant with respect to a change in one of the conjugate variables, then the other
conjugate variable will not change with time (see [29]).

In noncommutative geometry and related branches of mathematical physics, a spectral triple
(A,H,G) is a set of data which encodes a geometric phenomenon in an analytic way (see
[11]). The definition typically involves a Hilbert space H , an algebra of operators A on the
Hilbert space and an unbounded self-adjoint operator G which is endowed with supplemental
structures. We have two spectral triple (A,H,G) and (B,H,G), the former is used to depict the
commutation relation [A,G], and the latter is used to depict the commutation relation [B,G]
(see [8]).

In continuum mechanics, a change in the configuration of a continuum body results in
a displacement which has two components: rigid-body displacement and deformation. The
former consists of simultaneous translations and rotations without changing its shape or size,
the latter implies the change in shape or size from undeformed configuration κ0(B) to deformed
configuration κt(B). The evolution of configurations throughout time can be depicted by means
of a specific commutator [A,G], where A represents the physical and kinematic properties of
a continuum, and G represents the motion of a continuum body (see [17]). Here, we can use
commutation relation [B,G] = 0 to depict rigid-body displacement, and use noncommutation
relation [B,G] 6= 0 to depict the deformation or distortion characteristic phenomenon.

In Geometric Deep Learning (GDL for short), an invariant is an object property that does
not change as a result of some transformation, while an equivariant is a property or relationship
that changes predictably under transformation. As a fundamental principles underlying Deep
Learning architectures, a symmetry is depicted by means of geometry invariance and equiv-
ariance, which corresponds to a specific conservation law. The motivation behind GDL is to
address some of the shortcomings of Convolutional Neural Networks (CNN for short). Tradi-
tional CNN fails to depicts effectively the symmetry of the practical physics problem. We need
inject further assumptions about the geometry of through inductive biases, by means of re-
stricting the functions or mappings in our hypothesis spaces to the destined Hilbert spaces that
respect the geometry. By using of the commutator [B,G], we can get the geometry invariance
and geometry equivariance affine transformation such as

geometry− invariance : f(GX,GBGT ) = f(X,B),

geometry− equivariance : f(GX,GBGT ) = Gf(X,B).

Additionally, groups are the central object in the mathematical study of symmetry, it is natural
to consider replacing convolution by group convolution in CNNs (see [3–4]). Consequently, in
the process of developing generalized methods, many state-of-art algorithms occurs, such as
Group-CNN, transformers, GNNS and Intrinsic CNNs etc..

In the early 1980s, the numerical analysis team in the Computer Science Department of
Yale University proposed a preconditioned sub method for understanding linear equations (see
[7, 9]). With the development of high-performance computing systems, the research on high-
performance PDE eigenvalue algorithms is relatively slow and far from meeting the needs of
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E-level high-performance computing applications(see [1, 5–6, 13]). Relying solely on existing
linear algebra software to efficiently solve large-scale PDE eigenvalue problems has emerged as
a bottleneck(see [15–16, 18, 30]).

How to find the ”approximate inverse” of the estimation matrix for PDE discrete eigenvalue
problems physically reflects spectral distribution (see [20]). In classical computational mathe-
matics, how to accurately estimate the multiplicity and separation of higher-order eigenvalues
has always been an essential difficulty in computational mathematics (see [19]). However, based
on the mathematical principles of elliptic partial differential equation eigenvalue problems (see
[2]), it is possible to construct efficient parallel algorithms with distinctive characteristics to
meet the needs of high-performance computing applications

Based on our research experience in efficient solvers such as preconditioners and domain
decomposition (see [21–24]), we analyze the coupling relationship between the subspaces rep-
resented by block matrices, decouple the eigenvalue problems between large matrices into a
group of lower order matrix eigenvalue problems through factorization, and then solve them
asynchronously in parallel to achieve efficient parallel computing as a whole. Based on the
study of geometric invariance of planar polygon meshes (triangles, quadrangles, hexagons, and
general m-regular polygons), we proposed asynchronous parallel algorithms with corresponding
nature (see [25–28]).

In Section 2, we introduce some lemmas on commutative among Grid matrix G, mass matrix
B and stiff matrix A over various partitions, such as triangle, square in 2-D and tetrahedron,
cube in 3-D .

Geometric Preprocessing Algorithm on discrete PDE Eigen-problems is studied on Section
3, such as discrete 2-D Laplace equation over polygon partition. In Section 4 and in Section 5,
we investigate the GPA on 2-D hexagon and 3-D hexahedron partitions in detail. And numerical
tests are listed to show the efficiency, for example, Table 1 shows the sequence speedup around
5 when dim(m) = 1 + 3m(m+ 1), 50 < m < 100 for hexagon partition, and Table 2 shows the
sequence speedup around 4 for dim(n) = n3 = 8000 for unit cube partition. The experiments
have been done with MATLAB on Desktop recently and can be optimized further. Moreover,
parallel speedup will be approximate, even exceed its theoretical value 6 in near future on
parallel machines.

2 Basic Lemmas on Commutative Operator

A′, A∗, AH denote the transpose, conjugate and transpose conjugate of matrix A, respec-
tively.

2.1 Definition

Definition 2.1 Two complex matrices A and G are called to be commutative if AG = GA.

Lemma 2.1 Assume A and G are commutative and there are two different eigenvalues λ1

and λ2 such that

Gu1 = λ1u1, Gu2 = λ2u2, λ1 6= λ2, (2.1)

then u1 and u2 are orthogonal in the following triple sense

(u1, u2) = 0, (u1, Gu2) = 0, (u1, Au2) = 0. (2.2)

Proof There is trivial for the first argument of (2.2). By using AG = GA, we have

λ2 (u1, A
∗u2) = (u1, A

∗λ2u2) = (u1, A
∗G∗u2) = (u1, G

∗A∗u2)

= (Gu1, A
∗u2) = λ1 (u1, A

∗u2). (2.3)

Thus,

(λ2 − λ1)(u1, Au2) = 0. (2.4)

Similarly, (λ2 − λ1)(u1, Gu2) = 0, the basic lemma has been proved.



738 J. C. Sun, J. W. Cao, Y. Zhang and H. T. Zhao

Corollary 2.1 If A and G are commutative, then their eigen-decomposition block shape are
the same.

Corollary 2.2 If AG = GA and the computational complexity for G is much less than A,
then one may derive the eigen-decomposition block of A by using the block of G.

2.2 Commutativity between mass matrix and stiff matrix

As an example, suppose Ah is a stiff matrix based on an approximation (such as Finite
Element and so on) around a geometric grid Gh (such as polygon in 2-D and polyhedron in 3-D
and so on) and Bh is the corresponding mass matrix. If there we may find some relationship
between Ah, Bh and Gh, it would be potential to reduce the cost to deal with Ah and Bh,
because it would be more cheaper to deal with the geometry grid Gh.

Proposition 2.1 For 1-D two-point boundary problem

−u′′ = f, u(0) = u(1) = 0 (2.5)

over a partition :

∆ : 0 = x0 < x1 < · · · < xn = 1. (2.6)

Based on linear element, the mass matrix B(∆) and the stiff matrix A(∆) are called to be
commutative if the partition ∆ is symmetry along the center 1

2
of the interval :

xj + xn−j = 1, j = 1, · · · ,
[n+ 1

2

]

. (2.7)

Proof By using linear elements over the partition (2.7), the mass quadratic functional can
be written as

LB2 =

n−1
∑

j=0

(Lfj+1,j(x))
2dx =

1

3

n−1
∑

j=1

(f2
j xj+1 + fjfj+1(xj+1 − xj)) (2.8)

and the corresponding mass matrix B(∆) becomes

BL2(∆) =













2x2 x2 − x1 0 · · · 0 0 0
x2 − x1 2(x3 − x1) x3 − x2 · · · 0 0 0

· · · · · · · · · · · · · · · 0 0
· · · · · · · · · · · · · · · 2(xn−2 − xn−3) xn−1 − xn−2

0 · · · 0 · · · 0 xn−1 − xn−2 2(1− xn−2)













. (2.9)

The expression of stiff matrix is little bit complicated. Without loss generality, we only list
AL2 for n = 4 below

AL2(∆) =





x2(x3 − x2)(1 − x3) x1(x2 − x3)(1− x3) 0
x1(x2 − x3)(1 − x3) x1(x3 − x1)(1− x3) x1(x1 − x2)(1− x3)

0 x1(x1 − x2)(1− x3) x1(x2 − x1)(1− x2)



 , (2.10)

{(x3 − 1)(x3
1 + x2

1(x2 − 3x3) + x1(x
2
2 − 2x2x3 + 2x2

3) + x2
2(x2 − x3)),

− x1(x3 − 1)(x1 − x3)(x1 − 2x2 + x3),

x1(2x
2
1(1− x3) + x1(x

2
2 + 2x2(x3 − 2) + 3x2

3 − 4x3 + 2)− x3
2 − x2

2(x3 − 3)

− x2(x
2
3 − 2x3 + 2)− (x3 − 1)x2

3) = 0,

0 < x1 < x2 < x3 < 1}. (2.11)
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Proposition 2.2 For n = 4, the commutative matrix equation

AL2(∆)BL2(∆) = BL2(∆)AL2(∆) (2.12)

has the following four solutions

{x1, x2, x3} =
{{1

7
,
3

7
,
5

7

}

,
{1

6
,
1

2
,
5

6

}

,
{1

4
,
1

2
,
3

4

}

,
{2

7
,
4

7
,
6

7

}}

. (2.13)

Remark 2.1 Note that in geometry all four solutions in (2.12) are symmetry with respect
to the mid point x = 1

2
.

In other words, we have proved the following proposition.

Proposition 2.3 For a given 1-D partition ∆h the sufficient and necessary condition for
(2.13) is the partition to be symmetry with the interval (0, 1).

2.3 2-D BG = GB over a square

The Grid and the new Grid after rotation 90o on the square are shown in the following two
frames,

G40 =

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

, G41 :=

41 31 21 11
42 32 22 12
43 33 23 13
44 34 24 14

, (2.14)

there is a mapping from Grid G40 to Grid G41,

G16 =

























































0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

























































. (2.15)

Lemma 2.2

B16G16 = G16B16, (2.16)
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where

B16 =











































bdd bd9 bd5 bd1 bde bda bd6 bd2 bdf bdb bd7 bd3 bdg bdc bd8 bd4
bfg bff bfe bfd bfc bfb bfa bf9 bf8 bf7 bf6 bf5 bf4 bf3 bf2 bf1
bc4 bc8 bcc bcg bc3 bc7 bcb bcf bc2 bc6 bca bce bc1 bc5 bc9 bcd

bdg bdf bde bdd bdc bdb bda bd9 bd8 bd7 bd6 bd5 bd4 bd3 bd2 bd1
bcg bcf bce bcd bcc bcb bca bc9 bc8 bc7 bc6 bc5 bc4 bc3 bc2 bc1
bbg bbf bbe bbd bbc bbb bba bb9 bb8 bb7 bb6 bb5 bb4 bb3 bb2 bb1
bb4 bb8 bbc bbg bb3 bb7 bbb bbf bb2 bb6 bba bbe bb1 bb5 bb9 bbd

bf4 bf8 bfc bfg bf3 bf7 bfb bff bf2 bf6 bfa bfe bf1 bf5 bf9 bfd

bfd bf9 bf5 bf1 bfe bfa bf6 bf2 bff bfb bf7 bf3 bfg bfc bf8 bf4
bbd bb9 bb5 bb1 bbe bba bb6 bb2 bbf bbb bb7 bb3 bbg bbc bb8 bb4
bb1 bb2 bb3 bb4 bb5 bb6 bb7 bb8 bb9 bba bbb bbc bbd bbe bbf bbg

bc1 bc2 bc3 bc4 bc5 bc6 bc7 bc8 bc9 bca bcb bcc bcd bce bcf bcg

bd1 bd2 bd3 bd4 bd5 bd6 bd7 bd8 bd9 bda bdb bdc bdd bde bdf bdg

bcd bc9 bc5 bc1 bce bca bc6 bc2 bcf bcb bc7 bc3 bcg bcc bc8 bc4
bf1 bf2 bf3 bf4 bf5 bf6 bf7 bf8 bf9 bfa bfb bfc bfd bfe bff bfg

bd4 bd8 bdc bdg bd3 bd7 bdb bdf bd2 bd6 bda bde bd1 bd5 bd9 bdd











































. (2.17)

2.4 General solution GB = BG over triangle domain partition

For h = 1

7
, we give two different ordering of the triangle partition with barycentric coordi-

nates

Told =

∗ ∗ ∗ ∗ 511 ∗ ∗ ∗ ∗
∗ ∗ ∗ 421 ∗ 412 ∗ ∗ ∗
∗ ∗ 331 ∗ 322 ∗ 313 ∗ ∗
∗ 241 ∗ 232 ∗ 223 ∗ 214 ∗

151 ∗ 142 ∗ 133 ∗ 124 ∗ 115

, (2.18)

Tnew =

∗ ∗ ∗ ∗ 151 ∗ ∗ ∗ ∗
∗ ∗ ∗ 142 ∗ 241 ∗ ∗ ∗
∗ ∗ 133 ∗ 232 ∗ 331 ∗ ∗
∗ 124 ∗ 223 ∗ 322 ∗ 421 ∗

115 ∗ 214 ∗ 313 ∗ 412 ∗ 511

, (2.19)

there is a mapping from Tnew to Told,

G15 =





















































0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0





















































. (2.20)

Lemma 2.3

B15G15 = G15B15, (2.21)
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where

B15 =





















































b11 b12 b13 b14 b15 b16 b17 b18 b19 b1a b1b b1c b1d b1e b1f
b21 b22 b23 b24 b25 b26 b27 b28 b29 b2a b2b b2c b2d b2e b2f
b31 b32 b33 b34 b35 b36 b37 b38 b39 b3a b3b b3c b3d b3e b3f
b41 b42 b43 b44 b45 b46 b47 b48 b49 b4a b4b b4c b4d b4e b4f
b51 b52 b53 b54 b55 b56 b57 b58 b59 b5a b5b b5c b5d b5e b5f
b4b b4c b47 b4d b48 b44 b4e b49 b45 b42 b4f b4a b46 b43 b41
b3f b3a b3e b36 b39 b3d b33 b35 b38 b3c b31 b32 b34 b37 b3b
b5f b5a b5e b56 b59 b5d b53 b55 b58 b5c b51 b52 b54 b57 b5b
b5b b5c b57 b5d b58 b54 b5e b59 b55 b52 b5f b5a b56 b53 b51
b2b b2c b27 b2d b28 b24 b2e b29 b25 b22 b2f b2a b26 b23 b21
b1f b1a b1e b16 b19 b1d b13 b15 b18 b1c b11 b12 b14 b17 b1b
b2f b2a b2e b26 b29 b2d b23 b25 b28 b2c b21 b22 b24 b27 b2b
b4f b4a b4e b46 b49 b4d b43 b45 b48 b4c b41 b42 b44 b47 b4b
b3b b3c b37 b3d b38 b34 b3e b39 b35 b32 b3f b3a b36 b33 b31
b1b b1c b17 b1d b18 b14 b1e b19 b15 b12 b1f b1a b16 b13 b11





















































. (2.22)

2.5 3-D BG = GB over a tetrahedron

For h = 1

6
, n = 10, we give two different ordering of the tetrahedron partition with homoge-

neous coordinates

Told =

∗ ∗ ∗ ∗ 3113 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 2211 ∗ ∗ ∗ ∗
∗ ∗ ∗ 2121 2112 ∗ ∗ ∗
∗ ∗ ∗ ∗ 1311 ∗ ∗ ∗ ∗
∗ ∗ ∗ 1221 ∗ 1212 ∗ ∗ ∗
∗ ∗ 1131 ∗ 1122 ∗ 1113 ∗ ∗

, (2.23)

Tnew =

∗ ∗ ∗ ∗ 1311 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1221 ∗ ∗ ∗ ∗
∗ ∗ ∗ 1212 2211 ∗ ∗ ∗
∗ ∗ ∗ ∗ 1131 ∗ ∗ ∗ ∗
∗ ∗ ∗ 1122 ∗ 2121 ∗ ∗ ∗
∗ ∗ 1113 ∗ 2112 ∗ 3111 ∗ ∗

, (2.24)

there is a mapping from Tnew to Told,

G10 =

































0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0

































, (2.25)
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BT10 =

































b11 b12 b13 b14 b15 b16 b17 b18 b19 b1a
b21 b22 b23 b24 b25 b26 b27 b28 b29 b2a
b31 b32 b33 b34 b35 b36 b37 b38 b39 b3a
b41 b42 b43 b44 b45 b46 b47 b48 b49 b4a
b51 b52 b53 b54 b55 b56 b57 b58 b59 b5a
b5a b59 b58 b57 b56 b55 b54 b53 b52 b51
b4a b49 b48 b47 b46 b45 b44 b43 b42 b41
b3a b39 b38 b37 b36 b35 b34 b33 b32 b31
b2a b29 b28 b27 b26 b25 b24 b23 b22 b21
b1a b19 b18 b17 b16 b15 b14 b13 b12 b11

































, (2.26)

3 Geometric Preprocessing Algorithm on Discrete PDE Eigen-Problems

3.1 2-D Laplace equation over a polygon domain

Consider the Laplace eigen-problem with Dirichlet zero boundary over a polygon domain
Ω:

Lf(x, y) := −
( ∂2

∂x2
+

∂2

∂y2

)

f(x, y) = λ f(x, y), f(x, y)|∂Ω = 0. (3.1)

For a unit square Ω, with so-called separation variable approach, we know

φj,k[x, y] := sin jπx sin kπy := fj [x]fk[y] (3.2)

is a class of eigen-function with zero boundary condition and the corresponding eigenvalues
equal to

λj,k = (j2 + k2)π2. (3.3)

In general, one may define the corresponding eigen-functions family as

fjk(x, y) =
∑

j,k

αj,kfj[x]fk[y], (3.4)

and a general eigenfunctions can be written as

Lf(x, y) =
∑

j,k

(j2 + k2)π2αj,kfj [x]fk[y] =
∑

j,k

λj,kαj,kfj [x]fk[y]. (3.5)

Now we turn to deal with the discrete eigen-problem by traditional 5-point scheme or bi-
linear FEM. As an example, suppose the step size h = 1

6
.

The corresponding mass matrices in 1-D and 2-D become

B51 =













2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2













, B52 = kron(B51, I5) + kron(I5, B51), (3.6)

where notation kron denotes so-called Kronecker product.
Similarly we may write the stiff matrices A51 and A52.
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The Grid and the new Grid after rotation 90o are shown in the following two frames:

G50 =

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

, G51 :=

51 41 31 21 11
52 42 32 22 12
53 43 33 23 13
54 44 34 24 14
55 45 35 25 15

. (3.7)

It is clear, the Grid is just back to the original after four times rotations.
Moreover, there is a mapping from Grid G50 to Grid G51,

G25 =



















































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



















































































. (3.8)

Lemma 3.1 The Grid matrix G25 is periodic with four cycles G4
25 = I25. Moreover, matrix

G25, A25, B25 are commutative interchange each other

G25B52 = B52G25, G25A52 = A52G25, A25B52 = A52G25. (3.9)

Denote

P725 = NullSpace(I25 −G25), J625 = NullSpace(I25 +G25),

F I625 = NullSpace(i I25 −G25), F II625 = NullSpace(i I25 +G25).
(3.10)

The 25 entries can be divided into 6 subsets according to the symmetry, as an example

11 12 13 14 22 23
15 25 35 45 24 34
55 54 53 52 44 43
51 41 31 21 42 32

. (3.11)
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Thus, it is easy to find four unitary eigen-subspaces of G25 according to (3.11).

P725 =

















1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

















(3.12)

and

J625 =















1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1
0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 −1 0 −1 0 0 0 1 0 0 0 0 0 0 0















(3.13)

are real and other two subspaces are complex with conjugate each other:

FI625 =















−1 0 0 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −i 0 0 0 1
0 −1 0 0 0 0 0 0 0 i 0 0 0 0 0 −i 0 0 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 0 0 −i 0 0 0 i 0 0 0 0 0 0 0 1 0 0
0 0 0 −1 0 −i 0 0 0 0 0 0 0 0 0 0 0 0 0 i 0 1 0 0 0
0 0 0 0 0 0 −1 0 i 0 0 0 0 0 0 0 −i 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 −i 0 i 0 0 0 1 0 0 0 0 0 0 0















, (3.14)

FII625 = FI∗625.

Proposition 3.1

P7UABλ× J6UABλ× (FI6Aλ)2

det(A52 − λB52)
= 1, (3.15)

where

P7UABλ = det(P725A52P
′

725 − λP725B52P
′

725)

= −4(λ− 4)(λ− 1)(3λ− 4)(λ2 − 104λ

+ 4)(4λ2 − 44λ+ 13),

J6UABλ = det(J625A52J
′

625 − λJ625B52J
′

625)

= (λ− 6)(λ− 4)(3λ− 4)(9λ− 2)(4λ2

− 44λ+ 13),

F I6ABλ = det(FI625A52FIH625 − λFI625B52FIH625)

= 9(2λ− 5)(2λ− 1)(λ2 − 26λ+ 22)(3λ2

− 18λ+ 2).

In general for n = 2m+ 1, the GPA algorithm on square partition can be listed below (see

[25]).
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For a given square, the only four non-zero entries in the following four sparse matrices

PMm(n, k, j), JMm(n, k, j), F IMm(n, k, j), F IIMm(n, k, j)

locate on the column as follows

PMm(n, k, j) = n(k − 1) + j, n(j − 1) + n+ 1− k, n(n− j) + k, n(n− k) + n+ 1− j,

JMm(n, k, j) = n(k − 1) + j, n(j − 1) + n+ 1− k, n(n− j) + k, n(n− k) + n+ 1− j,

F IMm(n, k, j) = −(n(k − 1) + j), i(n(j − 1) + n+ 1− k),−i(n(n− j) + k), (3.16)

n(n− k) + n+ 1− j,

F IIMm(n,k, j) = FIMm(n, k, j)∗.

Remark: Notation i is the unit of imaginary number, ∗ denotes complex conjugate.

4 The GPA on Regular Hexagon Grid

It is trivial that for a regular hexagon dim(S6
m) = 1 + 3m(m+ 1).

Denote ω = e
iπ

3 for m = 1, dim(S6
1) = 7, the preprocessing matrix is

PG7 =





















1 0 0 0 0 0 0
0 1 1 1 1 1 1
0 −1 1 −1 1 −1 1
0 −ω −ω−1 1 −ω −ω−1 1
0 −ω−1 −ω 1 −ω−1 −ω 1
0 ω −ω−1 −1 −ω ω−1 1
0 ω−1 −ω −1 −ω−1 ω 1





















(4.1)

and

PG7PG′

7 = Diag{1, 6, 6, 6, 6, 6, 6}. (4.2)

Define geometry preprocess matrix with 6k (k = 2, 3, · · · ) order as follows

PGk =
1√
6

















Jk Jk Jk Jk Jk Jk
−Jk Jk −Jk Jk −Jk Jk
−ωJk −ω−1Jk Jk −ωJk −ω−1Jk Jk

−ω−1Jk −ωJk Jk −ω−1Jk −ωJk Jk
ωJk −ω−1Jk −Jk −ωJk ω−1Jk Jk

ω−1Jk −ωJk −Jk −ω−1Jk ωJk Jk

















, (4.3)

where Jk is the unit sub-diagonal matrix

Jk =

















0 0 . . . 0 0 1
0 0 . . . 0 1 0
0 0 . . . 1 0 0
. . . . . . . . . . . . . . . . . . . .

0 1 . . . 0 0 0
1 0 . . . 0 0 0

















.

Lemma 4.1 PGk is unitary :

PGkPGH
k = PGH

k PGk = I6k. (4.4)
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dim(S6
m) = 1 + 3m(m + 1) = 1 +

∑m
k=1

6k, PG7 and PGk form the preprocessing matrix
for arbitrary partition m.

Proposition 4.1 For an arbitrary index m, the discrete Laplace eigen-problem can asyn-
chronously be solved by eigen-polynomial factorization into six eigen-subproblems.

We give the numerical results for the hexagon. DOF : Degree of freedom, ts: The computa-

tional time of the initial problem, tp: The computational time of the preprocessing problems,

SP : The speed up ratio which equals to ts
tp
.

Table 1 The GPA of hexagon

m DOF ts(s) tp(s) SP

40 4921 7.224 1.526 4.73
50 7651 29.611 5.66 5.23
60 10981 95.991 16.926 5.67
80 19441 547.144 99.158 5.52
90 24571 1114.36 212.24 5.25
100 30301 1997.51 400.01 4.99

5 The GPA on Regular Hexahedron Grid

5.1 Model problem: Mesh size h = 1

5

For h = 1

5
, the degree of freedom is 64. We can define two sorts of the hexahedron grid.

Sort I Sort II

61 62 63 64
57 58 59 60

53 54 55 56
49 50 51 52

45 46 47 48
41 42 43 44

37 38 39 40
33 34 35 36

29 30 31 32
25 26 27 28

21 22 23 24
17 18 19 20

13 14 15 16
9 10 11 12

5 6 7 8
1 2 3 4

,

64 48 32 16
63 47 31 15

62 46 30 14
61 45 29 13

60 44 28 12
59 43 27 11

58 42 26 10
57 41 25 9

56 40 24 8
55 39 23 7

54 38 22 6
53 37 21 5

52 36 20 4
51 35 19 3

50 34 18 2
49 33 17 1

(5.1)

Between the two sorts there is a permutation matrix G = {gij}, the sixty-four row indexes for

non-zero elements (both are 1) according to column 1–64 can be compressed expressed by (5.2),








4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61









, (5.2)
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we have g41 = 1, g82 = 1, g12,3 = 1, · · · , g57,63 = 1, g61,64 = 1.

Define ω = e
2iπ

3 , ω = e−
2iπ

3 , I64 is the 64 × 64 identity matrix. It is easy to verify that

I64 −G6 = 0, we have the following factorization in real field and complex field.

Lemma 5.1

I64 −G6 = (I64 −G)(I64 +G)(I64 +G+G2)(I64 −G+G2), (5.3)

I64 −G6 = (I64 −G)(I64 +G)(I64 − ωG)(I64 + ωG)(I64 − ωG)(I64 + ωG), (5.4)

the factorization is the basis of the GPA.

The null space P = {pij} of I64 − G is a sparse 12 × 64 matrix, the column indexes for

non-zero elements (both are 1) of every row can be expressed by the following matrix:









































1 4 16 49 61 64
2 8 32 33 57 63
3 12 17 48 53 62
5 15 20 45 50 60
6 24 31 34 41 59
7 18 28 37 47 58
9 14 29 36 51 56
10 25 30 35 40 55
11 15 20 45 50 60
13 ∗ ∗ ∗ ∗ 52
22 23 27 38 42 43
26 ∗ ∗ ∗ ∗ 29









































, (5.5)

we have p11 = 1, p14 = 1, p1,16 = 1, p1,49 = 1, p1,61 = 1, p1,64 = 1, · · ·, p12,26 = 1, p12,29 = 1.

The null space J of I64 +G is a sparse 12× 64 matrix too, the column indexes for non-zero

elements are the same with P . The non-zero elements of J are 1 and -1. The null spaces F1 of

I64 − ωG, F2 of I64 + ωG, F3 of I64 − ωG, F4 of I64 + ωG are both sparse 10 × 64 matrices,

and the column indexes for non-zero elements are the same, the column indexes for non-zero

elements of every row can be expressed by the following matrix:
































1 4 16 49 61 64
2 8 32 33 57 63
3 12 17 48 53 62
5 15 20 45 50 60
6 24 31 34 41 59
7 18 28 37 47 58
9 14 29 36 51 56
10 25 30 35 40 55
11 15 20 45 50 60
22 23 27 38 42 43

































. (5.6)

And F3 = F ∗

1 , F4 = F ∗

2 , the non-zero elements are some of 1,−1, ω,−ω, ω,−ω. The different

column indexes between P, J and F1, F2, F3, F4 are P, J have two additional rows with

two non-zero elements. P, J, F1, F2, F3, F4 form the preprocessing matrix. They have the

following proposition.
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Proposition 5.1 They are orthogonal to each other in the L2 norm, that is

PJ ′ = 012,12, (5.7)

PFH
i = 012,10 for i = 1, 2, 3, 4, (5.8)

JFH
i = 012,10 for i = 1, 2, 3, 4. (5.9)

For tri-linear element we have the stiff matrix A and mass matrix B , and they satisfy

commutative operator AG = GA, BG = GB.

Proposition 5.2 The different preprocessing matrices are orthogonal to the stiff matrix A,

mass matrix B in the L2 norm, that is

PAJ ′ = 012,12, PBJ ′ = 012,12, (5.10)

PAFH
i = 012,10, PBFH

i = 012,10 for i = 1, 2, 3, 4, (5.11)

JAFH
i = 012,10, JBFH

i = 012,10 for i = 1, 2, 3, 4. (5.12)

So the initial eigenvalue problem Au = λBu can be divided into six sub-problems.

First we compute the sub-matrix by using the preprocessing matrix P ,

PA = PAP ′ =









































6 −1 −1 −1 0 0 0 0 0 0 0 0
−1 6 −1 0 −1 −1 0 0 0 0 0 0
−1 −1 6 0 0 −1 0 0 −1 0 0 0
−1 0 0 6 −1 0 −1 0 −1 0 0 0
0 −1 0 −1 6 −1 0 −1 0 0 −1 0
0 −1 −1 0 −1 6 0 0 −1 0 −1 0
0 0 0 −1 0 0 6 −2 0 −1 0 0
0 0 0 0 −1 0 −2 6 −1 0 0 −1
0 0 −1 −1 0 −1 0 −1 6 0 −1 0
0 0 0 0 0 0 −1 0 0 2 0 0
0 0 0 0 −1 −1 0 0 −1 0 4 −1
0 0 0 0 0 0 0 −1 0 0 −1 2









































,

PB = PBP ′ =









































6 1 1 1 0 0 0 0 0 0 0 0
1 6 1 0 1 1 0 0 0 0 0 0
1 1 6 0 0 1 0 0 1 0 0 0
1 0 0 6 1 0 1 0 1 0 0 0
0 1 0 1 6 1 0 1 0 0 1 0
0 1 1 0 1 6 0 0 1 0 1 0
0 0 0 1 0 0 6 2 0 1 0 0
0 0 0 0 1 0 2 6 1 0 0 1
0 0 1 1 0 1 0 1 6 0 1 0
0 0 0 0 0 0 1 0 0 2 0 0
0 0 0 0 1 1 0 0 1 0 8 1
0 0 0 0 0 0 0 1 0 0 1 2









































,

similarly we get

JA = JAJ ′, JB = JBJ ′,
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F1A = F1AF
H
1 , F1B = F1BFH

1 ,

F2A = F2AF
H
2 , F2B = F2BFH

2 ,

F3A = F3AF
H
3 , F3B = F3BFH

3 ,

F4A = F4AF
H
4 , F4B = F4BFH

4 .

It is easy to verify F1A = F ∗

3A, F1B = F ∗

3B , F2A = F ∗

4A, F2B = F ∗

4B . Six sub-eigenvalue problems

can be reduced to four sub-eigenvalue problems as follows

Pλ = det(PA − λPB),

Jλ = det(JA − λJB),

F1λ = det(F1A − λF1B),

F2λ = det(F2A − λF2B).

We have the following proposition.

Proposition 5.3

det(A− λB)

Pλ · Jλ · (F1λ · F2λ)2
= Constant, (5.13)

that means the eigen-computation of initial (A,B) can be gotten by the small eigen-problems, if

we normalize the preprocessing matrix P, J, F1, F2, F3, F4, the constant equals to 1.

5.2 Arbitrary mesh size h

Define N = 1

h
, n = N − 1, the degree of freedom DOF = n3, we can get the preprocessing

matrices P, J, F1, F2, F3, F4 directly, they are only relevant to the geometry symmetry of

the hexahedron. The number of columns for P, J, F1, F2, F3, F4 equal to DOF , the number

of rows for F1, F2, F3, F4 are the same, the number of rows for P, J, F1 are NP , NJ , NF

which can be obtained by the following Algorithm 1:

Algorithm 1 The dimensions of P, J, F1

thp

if mod(n, 2) == 1 then

d = fix
(

n
2

)

NP = DOF−1−2∗d
6

+ d+ 1

NJ = DOF−1−2∗d
6

+ d

NF = DOF−1−2∗d
6

else

d = fix
(

n
2

)

NP = DOF−2∗d
6

+ d

NJ = DOF−2∗d
6

+ d

NF = DOF−2∗d
6

end if

Matrices Fi, i = 1, 2, 3, 4 have six non-zero elements every row, and P, J have extra d rows

with two non-zero elements, P has one row with one non-zero element if mod(n, 2) = 1. If we
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get the column indexes for non-zero elements, then we obtain the preprocessing matrices. The

indexes are relevant to the mesh of the hexahedron, we have Algorithm 2.

Algorithm 2 The indexes of P, J, F1

thp

set d = fix
(

n
2

)

, L = 0
for k = 1 : d do

for i = 1 : n− (2 ∗ k − 1) do
for j = 1 : n− (2 ∗ k − 1) do
L = L+ 1;
id(L, 1) = (i− 1) ∗ n+ j + (n2 + n+ 1) ∗ (k − 1)
id(L, 2) = (i− 1) ∗ n2 + j ∗ n+ (n2 + n− 1) ∗ (k − 1)
id(L, 3) = j ∗ n2 − (i− 1) + (n2 − n− 1) ∗ (k − 1)
id(L, 4) = DOF + 1− id(L, 1)
id(L, 5) = DOF + 1− id(L, 2)
id(L, 6) = DOF + 1− id(L, 3)
P (L, id(L, 1)) = 1
P (L, id(L, 2)) = 1
P (L, id(L, 3)) = 1
P (L, id(L, 4)) = 1
P (L, id(L, 5)) = 1
P (L, id(L, 6)) = 1
...
...

end for

end for

end for

for i = 1 : d do

L = L+ 1;
id(L, 1) = (n2 − n+ 1) ∗ i
id(L, 2) = n3 − n2 + n− (n2 − n+ 1) ∗ (i − 1)
P (L, id(L, 1)) = 1
P (L, id(L, 2)) = 1
J(L, id(L, 1)) = −1
J(L, id(L, 2)) = 1

end for

if mod(n, 2) == 1 then

P
(

NP ,
DOF+1

2

)

= 1
end if

Following the step of Subsection 5.1 we divide the initial large eigenvalues problem into four

sub eigenvalues problems which can be computed parallel.

5.3 Numerical results

The computational domain is a unit cube. N : The number of grid for x-direction, DOF :

Degree of freedom, ts: The computational time of the initial problem, tp: The computational

time of the preprocessing problems, SP : The speed up ratio which equals to ts
tp
, err: The error

of the eigenvalues of two methods.
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Table 2 The GPA of unit cube

N DOF ts(s) tp(s) SP err

17 4096 4.876 0.896 5.44 1.17e− 13
19 5832 13.025 3.058 4.26 1.88e− 13
21 8000 33.587 8.231 4.08 2.88e− 13
25 13824 172.693 49.106 3.52 5.25e− 13
31 27000 1234.166 385.711 3.19 1.29e− 12
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