
Chin. Ann. Math. Ser. B

44(5), 2023, 753–764
DOI: 10.1007/s11401-023-0042-9

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2023

On Geometric Realization of the General

Manakov System∗

Qing DING1 Shiping ZHONG2

Abstract It is well-known that the general Manakov system is a 2-components nonlinear
Schrödinger equation with 4 nonzero real parameters. The analytic property of the general
Manakov system has been well-understood though it looks complicated. This paper devotes
to exploring geometric properties of this system via the prescribed curvature representation
in the category of Yang-Mills’ theory. Three models of moving curves evolving in the
symmetric Lie algebras u(2, 1) = kα ⊕ mα (α = 1, 2) and u(3) = k3 ⊕ m3 are shown to
be simultaneously the geometric realization of the general Manakov system. This reflects
a new phenomenon in geometric realization of a partial differential equation/system.
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1 Introduction

The general Manakov system reads (see [13])

{
iϕ1t + ϕ1xx + (b1|ϕ1|

2 + b2|ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx + (c1|ϕ1|
2 + c2|ϕ2|

2)ϕ2 = 0,
(1.1)

where ϕ1 = ϕ1(x, t), ϕ2 = ϕ2(x, t) are two unknown complex functions, the subscript with

respect to the variable t or x stands for the derivative indicated and b1, b2, c1, c2 are nonzero real

parameters. The system (1.1) is also called a 2-components nonlinear Schrödinger equation in

literature and has important applications in nonlinear optics, superfluid, plasma, Bose-Einstein

condensed matter physics etc (refer to [1–4, 11, 15, 17, 21–22]). Although it involves 4 free

real parameters and looks complicated, the analytic properties of the system (1.1) have been

explored deeply and be summarized in [10]. For example, if ϕ is a solution to the nonlinear

Schrödinger equation: iϕt + ϕxx + a2|ϕ|
2ϕ = 0, where a2 is a real parameter, then (ϕ1, ϕ2) =
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(ϕ, σϕ) with σ being a complex number are solutions to the system (1.1), where a2 = c1 +

c2|σ|
2, b1 = c1 + (c2 − b2)|σ|

2. The system (1.1) has explicit t- and x-dependent “travelling”

solutions: ϕ1 = A0e
i[A1(t−t0)+A2(x−x0)+φ1], ϕ2 = B0e

i[B1(t−t0)+B2(x−x0)+φ2], where A1 = −A2
2+

A2
0b1 + B2

0b2, B1 = −B2
2 + A2

0c1 + B2
0c2, A0, B0, A2, B2, t0, x0, φ1 and φ2 are arbitrarily real

parameters. There are tanh-sech dark-bright soliton solutions and algebraic geometry solutions

expressed in Weierstrass elliptic functions to the system (1.1) (refer to [10, Chapter 7] for

details). However, contrast to its analytic properties, the geometric aspect of the system (1.1)

has not been well investigated. One notes that, with parameters being suitably chosen, the

system (1.1) contains three integrable equations:

{
iϕ1t + ϕ1xx + 2(|ϕ1|

2 + |ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx + 2(|ϕ1|
2 + |ϕ2|

2)ϕ2 = 0,
{
iϕ1t + ϕ1xx − 2(|ϕ1|

2 + |ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx − 2(|ϕ1|
2 + |ϕ2|

2)ϕ2 = 0
{
iϕ1t + ϕ1xx ± 2(|ϕ1|

2 − |ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx ± 2(|ϕ1|
2 − |ϕ2|

2)ϕ2 = 0,

in which the two systems in the third one are actually equivalent to each other by ϕ1 → ϕ2 and

ϕ2 → ϕ1. By using the geometric concept of Schrödinger flows, the authors in [8] proved that

the three integrable systems are respectively gauge equivalent to the equation γ̃t = −[γ̃, γ̃xx]

of Schrödinger flows from R1 to the projective spaces U(3)/U(2)× U(1), U(2, 1)/U(2)× U(1)

and U(2, 1)/U(1, 1)×U(1). We would point out that U(2, 1)/U(1, 1)×U(1) is a pseudo-Kähler

manifold. This gives a unified geometric interpretations for these three integrable systems. The

result for U(3)/U(2)× U(1) was obtained by Terng and Uhlenback in [20] as a special case.

It is not a surprise that the system (1.1) becomes non-integrable for general real parameters

b1, b2, c1 and c2. However, one may still ask that, as mentioned in [8], does there exist an

analogous geometric interpretation for the general Manakov system (1.1)? This leads us to

fall back on the geometric realization of a (given) PDE introduced by Langer and Perline

in [12]. It is shown in [12] that the moving equation: γt = [γx, γxx] in the symmetric Lie

algebra u(n) (n ≥ 2) is a geometric realization of the matrix nonlinear Schrödinger equation,

while, the moving equation: γt = γxxx+
3
2 [γxx, [γx, γxx]] in the symmetric Lie algebra sl(2n,R)

(n ≥ 1) is a geometric realization of the matrix-KdV equation (see [5]). The result for the

KdV equation is referred to [6]. According to this terminology, [8] shows actually that the

(three) models: γt = −[γx, γxx] of moving curves in u(3) and u(2, 1) (which are respectively

equivalent to the equations of Schrödinger flows to U(3)/U(2)× U(1), U(2, 1)/U(2)× U(1) or

U(2, 1)/U(1, 1)× U(1) by taking γ =
∫ x

γ̃) are respectively the geometric realizations of the

three integrable Manakov systems indicated above. Here two direct sum decompositions of the

Lie algebra u(2, 1) (see below) are used.

The aim of this paper is to give a geometric realization of the general Manakov system (1.1)
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in the symmetric Lie algebras u(3) = k3 ⊕m3 and u(2, 1) = kα ⊕mα (α = 1, 2) that preserves

the integrability of (1.1) in three cases: 1) b1 = b2 = c1 = c2 = 2; 2) b1 = b2 = c1 = c2 = −2 and

3) b1 = c1 = 2, b2 = c2 = −2. The geometric interpretations of the three integrable Manakov

systems by Schrödinger flows mentioned above will play an important role in this process. The

main result is Theorem 3.1 below which indicates an interesting new phenomenon, says that

more Lie algebras have to be used simultaneously in geometric realization of a partial differential

equation/system.

The paper is organized as follows. Section 2 gives a brief preliminary discussion about the

general Manakov system (1.1) for different situations of the 4 real parameters. In Section 3,

we determine models of moving curves in three symmetric Lie algebras u(2, 1) = kα ⊕ mα

(α = 1, 2) and u(3) = k3 ⊕m3 that is a geometric realization of the general Manakov system

(1.1), according to the signs of its parameters. Some remarks are given.

2 Preliminaries

In order to characterize geometrically the general Manakov system (1.1), let’s do some

preliminary works. First of all, let U(2, 1) be the pseudo-unitary Lie group consisting of linear

transformations on C3 that preserve the pseudo-metric ds2 = −|dz1|
2 + |dz2|

2 + |dz3|
2 or

ds2 = |dz1|
2+ |dz2|

2−|dz3|
2 invariant and u(2, 1) be the corresponding Lie algebra. Obviously,

the above two Lie groups are actually isomorphism. Therefore, in the case of no confusion, the

same notation U(2, 1) or u(2, 1) is used in the paper. As usual, U(3) denotes the unitary Lie

group of degree 3 and u(3) its Lie algebra. We now set

σ3 =
i

2




1 0 0
0 −1 0
0 0 −1


 . (2.1)

One sees that the Lie algebra u(2, 1) has two direct sum decompositions as follows. One is that

u(2, 1) = k1 ⊕m1 with

k1 = Kernel(adσ3
) =

{(
ia 0
0 B

)
∈ u(2, 1)

∣∣∣ a ∈ R, B ∈ u(2)
}
∼= u(2)× u(1)

and

m1 =
{



0 ϕ1 ϕ2

ϕ1 0 0
ϕ2 0 0


 ∈ u(2, 1)

∣∣∣ ϕ1, ϕ2 ∈ C

}
.

Another is that u(2, 1) = k2 ⊕m2 with

k2 = Kernel(adσ3
) =

{(
ia 0
0 B

)
∈ u(2, 1)

∣∣∣ a ∈ R, B ∈ u(1, 1)
}
∼= u(1, 1)× u(1)

and

m2 =
{



0 ϕ1 ϕ2

−ϕ1 0 0
ϕ2 0 0


 ∈ u(2, 1)

∣∣∣ ϕ1, ϕ2 ∈ C

}
.
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Of course, the Lie algebra u(3) has the direct sum decomposition: u(3) = k3 ⊕m3 with

k3 = Kernel(adσ3
) =

{(
ia 0
0 B

)
∈ u(3)

∣∣∣ a ∈ R, B ∈ u(2)
}
∼= u(2)× u(1)

and

m3 =
{



0 ϕ1 ϕ2

−ϕ1 0 0
−ϕ2 0 0


 ∈ u(3)

∣∣∣ ϕ1, ϕ2 ∈ C

}
.

All the above decompositions satisfy the symmetric conditions:

[kα,kα] ⊂ kα, [kα,mα] ⊂ mα, [mα,mα] ⊂ kα,

where α ∈ {1, 2, 3}.

Let G be one of the Lie groups U(2, 1) and U(3) and g its Lie algebra. We set the following

orbit space

M = {E−1σ3E ∈ g | ∀E ∈ G}, (2.2)

and define the action of G on M by

Φ : G×M → M, (X, γ) 7→ Φ(X, γ) = X ◦ γ = XγX−1, X ∈ G, γ ∈ M.

Obviously, we have

I3×3 ◦ γ = γ, ∀γ ∈ M, (I3×3 is the 3-unit matrix, i.e., unit element in G),

(XY ) ◦ γ = (XY )γ(XY )−1 = X ◦ (Y ◦ γ), ∀X,Y ∈ G

and the action is transitive, i.e., ∀γ1 = E−1
1 σ3E1, γ2 = E−1

2 σ3E2 ∈ M, there exists X =

E−1
2 E1 ∈ G such that X ◦ γ1 = γ2. Furthermore, according to the direct sum decompositions

mentioned above, when G = U(2, 1) and its Lie algebra g = u(2, 1) = k1 ⊕ m1, one obtains

that the isotropic subgroup at σ3 ∈ M is

Gσ3
= {X ∈ U(2, 1) | X ◦ σ3 = σ3} = {X ∈ U(2, 1) | Xσ3 = σ3X} = U(2)× U(1).

Hence the orbit space M in this case is symmetric space M = U(2, 1)/U(2)× U(1). Similarly,

in the case of g = u(2, 1) = k2 ⊕m2, the orbit space is M = U(2, 1)/U(1, 1)× U(1) which is

a pseudo-Kähler manifold mentioned previously. And in the case of g = u(3) = k3 ⊕m3, the

orbit space is M = U(3)/U(2)×U(1). We point out that the three symmetric spaces obtained

above are actually the projective spaces, but we need not to use this character in this paper.

For any U ∈ mα, one sees that mα = mα1 ⊕mα2 with

mα1 =








0 ϕ 0
εα1ϕ 0 0
0 0 0




∣∣∣ ϕ ∈ C



 ,
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mα2 =








0 0 ϕ
0 0 0

εα2ϕ 0 0




∣∣∣ϕ ∈ C



 ,

where ε11 = ε12 = 1; ε21 = −1, ε22 = 1; ε31 = ε32 = −1. For the action Φ(X,U) = X ◦ U ,

where X ∈ G and U ∈ mα, we need the following definition.

Definition 2.1 For X ∈ G,U ∈ mα, we define

Prj(X ◦ U) = X ◦ U (mαj), (2.3)

where U (mαj) = U |mαj
, j = 1, 2, and Prj(X ◦ U) is called the projection of X ◦ U on mαj.

Obviously, X ◦ U = Pr1(X ◦ U) + Pr2(X ◦ U) and, meanwhile, the projections Prj(X ◦ U)

(j = 1, 2) depend only on X ◦ U .

Next, let us return to the general Manakov system (1.1). Since b1 and c2 are nonzero, it is

easy to verify that, up to a suitable re-scaling: ϕ1 → aϕ1 and ϕ2 → bϕ2 for some real numbers

a, b, the system (1.1) becomes

{
iϕ1t + ϕ1xx + (2εb1 |ϕ1|

2 + b̃2|ϕ2|
2)ϕ1 = 0,

iϕ2t + ϕ2xx + (c̃1|ϕ1|
2 + 2εc2|ϕ2|

2)ϕ2 = 0,
(2.4)

where b̃2 and c̃1 are the corresponding numbers after the re-scaling which will still be respectively

written as b2 and c1 in the sequel, εb1 = 1 when b1 > 0 and εb1 = −1 when b1 < 0, and so is

εc2 . According to the signs of εb1 and εc2 , one sees that system (2.4), and hence system (1.1),

is divided into

• 1. U(2, 1)/U(2)× U(1)-type (when εb1 = εc2 = −1),

{
iϕ1t + ϕ1xx − 2(|ϕ1|

2 + |ϕ2|
2)ϕ1 = −(b2 + 2)|ϕ2|

2ϕ1,
iϕ2t + ϕ2xx − 2(|ϕ1|

2 + |ϕ2|
2)ϕ2 = −(c1 + 2)|ϕ1|

2ϕ2;
(2.5)

• 2. U(2, 1)/U(1, 1)× U(1)-type (when εb1 = 1 and εc2 = −1),

{
iϕ1t + ϕ1xx + 2(|ϕ1|

2 − |ϕ2|
2)ϕ1 = −(2 + b2)|ϕ2|

2ϕ1,
iϕ2t + ϕ2xx + 2(|ϕ1|

2 − |ϕ2|
2)ϕ2 = (2 − c1)|ϕ1|

2ϕ2;
(2.6)

• 3. U(2, 1)/U(1, 1)× U(1)-type (when εb1 = −1 and εc2 = 1),

{
iϕ1t + ϕ1xx − 2(|ϕ1|

2 − |ϕ2|
2)ϕ1 = (2− b2)|ϕ2|

2ϕ1,
iϕ2t + ϕ2xx − 2(|ϕ1|

2 − |ϕ2|
2)ϕ2 = −(2 + c1)|ϕ1|

2ϕ2;
(2.7)

• 4. U(3)/U(2)× U(1)-type (when εb1 = εc2 = 1),

{
iϕ1t + ϕ1xx + 2(|ϕ1|

2 + |ϕ2|
2)ϕ1 = (2− b2)|ϕ2|

2ϕ1,
iϕ2t + ϕ2xx + 2(|ϕ1|

2 + |ϕ2|
2)ϕ2 = (2− c1)|ϕ1|

2ϕ2,
(2.8)

in which, (2.6) and (2.7) are actually equivalent to each other by (ϕ1, ϕ2) → (ϕ2, ϕ1). Thus

the general Manakov system (1.1) locates in one of the three types systems (2.5), (2.6) and
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(2.8). One notes that system (2.5) is integrable when b2 = c1 = −2, so are system (2.6) when

b2 = −2, c1 = 2 and system (2.8) when b2 = c1 = 2. This shows, as mentioned in Introduction,

the importance of the three integrable Manakov systems in the geometric study of the general

Manakov system (1.1).

3 Geometric Realizations of the Manakov Systems

In this section, we come to find models of moving curves in u(2, 1) = kα ⊕mα (α = 1, 2)

and u(3) = k3 ⊕ m3 that are equivalent to systems (2.5)–(2.6) and (2.8), respectively. From

which we then obtain a geometric realization of the general Manakov system (1.1).

In order to do this, we have to apply the idea of PDEs with prescribed representation

introduced in [9] in the category of Yang-Mills’ theory (see [7] also). This is somewhat a power

tool in transforming a non-integrable PDE into its equivalent form. Now we first come to

treat the U(2, 1)/U(1, 1)× U(1)-type system (2.6), as the manifold U(2, 1)/U(1, 1)× U(1) is a

pseudo-Kähler manifold.

Proposition 3.1 For the Lie group U(2, 1) corresponding to the Lie algebra u(2, 1) =

k2 ⊕m2, the following equation of a map γ : R1 × R1 → U(2, 1)/U(1, 1)× U(1) :

γt = −[γ, γxx] +
[
γ,

∫ x

0

γ̂x̃dx̃
]
, (3.1)

is gauge equivalent to the U(2, 1)/U(1, 1) × U(1)-type system (2.6), where γ is presented by

γ = γ(x, t) = E−1σ3E with E = E(x, t) ∈ U(2, 1) and Ex = UE, U ∈ m2, and γ̂x =

− 2+b2
2 tr[Pr2(γx)]

2Pr1(γx)−
2−c1
2 tr[Pr1(γx)]

2Pr2(γx) depending only on γx and hence on γ.

Proof First of all, we show that the U(2, 1)/U(1, 1)×U(1)-type system (2.6) can be gauge

transformed to (3.1). In order to do this, we come to construct a connection 1-form Ã and

a curvature 2-form K̃ on the trivial bundle R2 × U(2, 1) such that the system (2.6) is of the

prescribed curvature representation

F
Ã
= dÃ+ Ã ∧ Ã = K̃. (3.2)

In fact, by noting that u(2, 1) = k2 ⊕m2, for a given solution (ϕ1, ϕ2) to the system (2.6) we

define

Ã = (λσ3 − U)dx+ (−λ2σ3 + λU − V )dt, (3.3)

where

U =




0 ϕ1 ϕ2

−ϕ1 0 0
ϕ2 0 0


 ∈ m2, V = −2σ3(Ux − U2).
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It is a direct calculation that

F
Ã
= dÃ+ Ã ∧ Ã = (Ut − Vx + [U, V ])dx ∧ dt. (3.4)

Thus, we choose a 2-form given by

K̃ = R̃dx ∧ dt, (3.5)

in which

R̃ =




0 R1 R2

−R1 0 0
R2 0 0




with R1 = i(2 + b2)|ϕ2|
2ϕ1, R2 = −i(2 − c1)|ϕ1|

2ϕ2. One verifies easily that system (2.6)

possesses the prescribed curvature representation (3.2) with Ã and K̃ being given by (3.3) and

(3.5), respectively.

For the above solution (ϕ1(x, t), ϕ2(x, t)) to system (2.6), we may take an E(x, t) ∈ U(2, 1)

by solving the differential equation: Ex(x, t) = U(x, t)E(x, t), where U = U(x, t) is the one

given in (3.3) and the dependance of E with respect to t will be determined later. Now we

make gauge transformation for the connection Ã given in (3.3) by

Ã 7−→ A = E−1dE + E−1ÃE. (3.6)

It is well-known from the theory of Yang-Mills that under the gauge transformation (3.6), the

curvature FA of A satisfies

FA = E−1F
Ã
E = E−1K̃E. (3.7)

By a direct calculation, we obtain from (3.6) that

A = E−1dE + E−1ÃE

= λγdx+ (E−1Et − λ2γ − λ[γ, γx]− E−1V E)dt, (3.8)

where γ = E−1σ3E and E−1Et independent of λ is to be determined later. Furthermore, by

using (3.8) and a direct computation shows that

FA = dA+A ∧ A

= {(E−1Et − λ2γ − λ[γ, γx]− E−1V E)x − λγt

+ [λγ,E−1Et − λ2γ − λ[γ, γx]− E−1V E]}dx ∧ dt

= {λ(−2(γγx)x − γt + [γ,E−1Et]− [γ,E−1V E])

+ (E−1Et)x − (E−1V E)x}dx ∧ dt. (3.9)
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Substituting (3.9) into (3.7) and identifying the coefficients of λ0 in both sides of (3.7), we

obtain that

E−1Et = E−1V E +

∫ x

0

E−1R̃Edx̃ = E−1V E +

∫ x

0

γ̂x̃dx̃, (3.10)

where

γ̂x = −
2 + b2

2
tr[Pr2(γx)]

2Pr1(γx)−
2− c1

2
tr[Pr1(γx)]

2Pr2(γx)

depending only on γx. Here we have used the following facts: γx = E−1[σ3, U ]E and

Pr1(γx) = E−1




0 iϕ1 0
iϕ1 0 0
0 0 0


E, Pr2(γx) = E−1




0 0 iϕ2

0 0 0
−iϕ2 0 0


E

in obtaining the second equality in (3.10). Meanwhile, the coefficient of λ1 in the left-hand-side

of (3.7) is zero implies that

−γt − 2(γγx)x + [γ,E−1Et]− [γ,E−1V E] = 0. (3.11)

Substituting (3.10) into (3.11) and by noting γxγx = − 1
2 (γxxγ + γγxx), we have

γt = −2(γγx)x +
[
γ,

∫ x

0

γ̂x̃dx̃
]
= −[γ, γxx] +

[
γ,

∫ x

0

γ̂x̃dx̃
]
,

which is exactly (3.1). This proves that system (2.6) is gauge transformed to (3.1). In addition,

(3.1) also possesses the prescribed curvature representation:

FA = dA+A ∧ A =
{
λ
(
− γt − [γ, γxx] +

[
γ,

∫ x

0

γ̂x̃dx̃
])

+ γ̂x

}
dx ∧ dt = K,

where the connection A and the curvature K are respectively given by

A = λγdx+
(
− λ2γ − λ[γ, γx] +

∫ x

0

γ̂x̃dx̃
)
dt, (3.12)

K = γ̂xdx ∧ dt. (3.13)

Next, conversely, we show that (3.1) can also be gauge transformed to system (2.6). For a

given solution γ = E−1σ3E to (3.1), where E = E(x, t) ∈ U(2, 1) which has the Lie algebra

u(2, 1) = k2 ⊕m2. Without loss of generality, E is assumed to satisfy Ex = UE for some

U =




0 ϕ1 ϕ2

−ϕ1 0 0
ϕ2 0 0


 ∈ m2.

In fact, if Ex = PE holds for a general P ∈ u(2, 1) with P = P (k2) + P (m2), one may obtain a

A ∈ K2 by solving the differential equation: Ax = −AP (k2), where K2 is the Lie subgroup of

U(2, 1) corresponding to the Lie subalgebra k2. By taking the transform: E → Ẽ = AE, we

have that

Ẽx = AxE +AEx = AP (m2)A−1Ẽ
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with AP (m2)A−1 ∈ m2. Hence, denoting AP (m2)A−1 by Ũ and by using the fact that A ∈ K2

commute with σ3, we arrive at

γ = E−1σ3E = E−1A−1σ3AE = (AE)−1σ3(AE) = Ẽ−1σ3Ẽ,

and Ẽ fulfills the required condition: Ẽx = Ũ Ẽ with Ũ ∈ m2.

Since (3.1) possesses the prescribed curvature representation: FA = dA + A ∧ A = K,

where A and K are given by (3.12) and (3.13) respectively. We make the following gauge

transformation for the connection A via G = E−1:

A 7−→ Ã = G−1dG+G−1AG = −(dE)E−1 + EAE−1. (3.14)

By a direct calculation displayed previously, we have from (3.14) that

Ã = (λσ3 − U)dx+ (−λ2σ3 + λU − V )dt,

F
Ã
= (Ut − Vx + [U, V ])dx ∧ dt,

which are exactly the connection Ã and the curvature F
Ã
given in (3.3) and (3.4), respectively.

The details of calculation are omitted here. Hence the (ϕ1, ϕ2) obtained from γ = E−1σ3E is a

solution to system (2.6). This proves that (3.1) can also be gauge transformed to system (2.6).

The proof of Proposition 3.1 is completed.

In a similar way, we may also establish the following propositions.

Proposition 3.2 For the Lie group U(2, 1) corresponding to the Lie algebra u(2, 1) =

k1 ⊕m1, the following equation of a map γ : R1 × R1 → U(2, 1)/U(2)× U(1) :

γt = −[γ, γxx] +
[
γ,

∫ x

0

γ̂x̃dx̃
]
, (3.15)

is gauge equivalent to the U(2, 1)/U(2)× U(1)-type system (2.5), where

γ = γ(x, t) = E−1σ3E ∈ u(2, 1)

with

E = E(x, t) ∈ U(2, 1),

Ex = UE, U = U(x, t) ∈ m1,

and

γ̂x = −
b2 + 2

2
tr[Pr2(γx)]

2Pr1(γx)−
c1 + 2

2
tr[Pr1(γx)]

2Pr2(γx)

depending only on γx and hence on γ.



762 Q. Ding and S. P. Zhong

Proposition 3.3 For the Lie group U(3), the following equation of a map γ : R1 × R
1 →

U(3)/U(2)× U(1), the model of moving curves in u(3) which locates on U(3)/U(2)× U(1):

γt = −[γ, γxx] +
[
γ,

∫ x

0

γ̂x̃dx̃
]
, (3.16)

is gauge equivalent to the U(3)/U(2)× U(1)-type system (2.8), where

γ = γ(x, t) = E−1σ3E ∈ u(3)

with E = E(x, t) ∈ U(3) and Ex = UE, U = U(x, t) ∈ m3, and

γ̂x = −
2− b2

2
tr[Pr2(γx)]

2Pr1(γx)−
2− c1

2
tr[Pr1(γx)]

2Pr2(γx)

depending only on γx and hence on γ.

Remark 3.1 When the two parameters b2 and c1 are chosen such that the coefficients of

two terms in γ̂x are zero and hence γ̂x ≡ 0, (3.15), (3.1) and (3.16) return respectively to the

equation of Schödinger flows from R
1 to the manifold U(2, 1)/U(2)×U(1) or U(2, 1)/U(1, 1)×

U(1) or U(3)/U(2) × U(1), in other words, Proposition 3.1 returns to the result obtained in

[8]. One knows that, when the target manifold is Kähler, Schrödinger flow is actually the

Hamiltonian gradient flow of the energy functional. We believe that (3.15), (3.1) and (3.16) are

the Hamiltonian gradient flows of some functionals of maps from R1 to U(2, 1)/U(2)×U(1) or

U(2, 1)/U(1, 1)× U(1) or U(3)/U(2)× U(1), respectively.

Now we come to determine models of moving curves in three symmetric Lie algebras u(2, 1) =

kα ⊕ mα (α = 1, 2) and u(3) = k3 ⊕ m3 that are the geometric realizations of the general

Manakov system (1.1) according to the signs of the parameters. For the meaning of models of

moving curves in Lie algebras, we refer to [16, 19].

Theorem 3.1 The following models of moving curves γ̃ in the symmetric Lie algebras

g = u(2, 1) or u(3) with the direct sum g = kα ⊕mα, α = 1, 2, 3,

γ̃t = −[γ̃x, γ̃xx] +
[
γ̃,

∫ x

0

̂̂γdx̃
]
−

∫ x

0

[γ̃, ̂̂γ]dx̃ (3.17)

are respectively equivalent to (3.15), (3.1) and (3.16), where γ̃ ∈ g with γ̃x ∈ {E−1σ3E | E ∈

G, Ex = UE & U ∈ mα}, and ̂̂γ is given by

̂̂γ =





−
b2 + 2

2
tr[Pr2(γ̃xx)]

2Pr1(γ̃xx)−
c1 + 2

2
tr[Pr1(γ̃xx)]

2Pr2(γ̃xx), when εb1 = εc2 = −1,

−
2 + b2

2
tr[Pr2(γ̃xx)]

2Pr1(γ̃xx)−
2− c1

2
tr[Pr1(γ̃xx)]

2Pr2(γ̃xx), when εb1 = 1, εc2 = −1,

−
2− b2

2
tr[Pr2(γ̃xx)]

2Pr1(γ̃xx)−
2− c1

2
tr[Pr1(γ̃xx)]

2Pr2(γ̃xx), when εb1 = εc2 = 1.

In other words, (3.17) is a geometric realization of the general Manakov system (1.1).
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Proof From Propositions 3.1–3.3 and the correspondences of the signs of b1, c2 and the Lie

algebras g = kα ⊕mα (α = 1, 2, 3), it is direct to verify, by taking the derivative with respect

to x, that if γ̃ solves (3.17), then γ = γ̃x ∈ {E−1σ3E | E ∈ G, Ex = UE & U ∈ mα} satisfies

respectively the systems (3.15), (3.1) and (3.16) according the signs of b1, c2. Conversely, if

γ(x, t) = E−1(x, t)σ3E(x, t) satisfies respectively the systems (3.15), (3.1) and (3.16), then it is

easy to see that γ̃ =
∫ x

0
γ(s, t)ds solves (3.17) and fulfills

(γ̃)x = γ(x, t) ∈ {E−1σ3E | E ∈ G, Ex = UE&U ∈ mα}.

Theorem 3.1 also indicates that the geometric realization model (3.17) preserves the inte-

grability of (1.1) in the cases that b1 = b2 = c1 = c2 = −2 or b1 = c1 = 2 & b2 = c2 = −2

or b1 = b2 = c1 = c2 = 2. Three different symmetric Lie algebras are used simultaneously to

produce the model (3.17). This reflects a new phenomenon in geometric realization of a partial

differential equation/system.

Finally, we would point out that for the general k-components nonlinear Schrödinger equa-

tion (k ≥ 3) (see [14, 18])





iϕ1t + ϕ1xx + (a11|ϕ1|
2 + a12|ϕ2|

2 + · · ·+ a1k|ϕk|
2)ϕ1 = 0,

iϕ2t + ϕ2xx + (a21|ϕ1|
2 + a22|ϕ2|

2 + · · ·+ a2k|ϕk|
2)ϕ2 = 0,

· · ·
iϕkt + ϕkxx + (ak1|ϕ1|

2 + ak2|ϕ2|
2 + · · ·+ akk|ϕk|

2)ϕk = 0,

where aαβ (1 ≤ α, β ≤ k) are nonzero real parameters, its geometric properties can also be

similarly discussed and characterized.
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