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Abstract The authors prove error estimates for the semi-implicit numerical scheme of
sphere-constrained high-index saddle dynamics, which serves as a powerful instrument in
finding saddle points and constructing the solution landscapes of constrained systems on
the high-dimensional sphere. Due to the semi-implicit treatment and the novel computa-
tional procedure, the orthonormality of numerical solutions at each time step could not
be fully employed to simplify the derivations, and the computations of the state variable
and directional vectors are coupled with the retraction, the vector transport and the or-
thonormalization procedure, which significantly complicates the analysis. They address
these issues to prove error estimates for the proposed semi-implicit scheme and then carry
out numerical experiments to substantiate the theoretical findings.
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1 Introduction

High-index saddle dynamics (see [25]) attracts increasing attentions in the last few years

due to its capability of effectively finding multiple high-index saddle points of complex systems

(see [5, 29–30]). Here the index of saddle point refers to the Morse index characterized by the

maximal dimension of a subspace on which its Hessian operator is negative definite (see [17]). In

particular, the high-index saddle dynamics could be further combined with the downward and

upward algorithms (see [24]) to construct the solution landscape, the pathway map consisting of

all stationary points and their connections (see [19]), that arises several successful applications

(see [10–11, 22–23, 26–28]). In practical problems such as the Thomson problem (see [18]) and

the Bose-Einstein Condensation (see [2]), the state variable is constrained on a high-dimensional

sphere, which leads to the more complicated sphere-constrained high-index saddle dynamics for

treating the sphere-constrained problems.
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There exist extensive works about numerical analysis to algorithms of finding index-1 sad-

dle points (see [1, 3–4, 6–9, 13–14, 16, 20]), while the corresponding analysis for high-index

saddle point searchers is rare. In [31], an explicit scheme for the unconstrained high-index

saddle dynamics was rigorously analyzed by overcoming the difficulties caused by the coupling

of solutions and the (nonlinear) orthonormal procedure of directional vectors in the numerical

scheme. The developed method was then extended to prove error estimates for the explicit

scheme of the sphere-constrained high-index saddle dynamics by accounting for the more com-

plex dynamical form and additional operations in the numerical scheme such as the retraction

and vector transport in order to maintain the manifold constraint (see [21]). To improve the

numerical stability, a semi-implicit numerical scheme for the unconstrained high-index saddle

dynamics was recently analyzed in [15], and various numerical experiments demonstrated that

comparing with the explicit scheme, the semi-implicit method could improve the convergence

behavior, admit much larger step size and reduce the number of queries for the model.

The current work is a continuation of the aforementioned sequence of investigations for nu-

merical analysis of high-index saddle dynamics, which will develop and analyze the semi-implicit

numerical method for the sphere-constrained high-index saddle dynamics. To achieve this goal,

not only do we need to accommodate the complicated nonlinear forms of this dynamical system,

the retraction of the state variable, the vector transport and orthonormalization of the direc-

tional vectors due to the manifold constraint, but novel techniques are required to overcome

the difficulties caused by the semi-implicit treatment. The derived results provide theoretical

supports for the numerical accuracy of discretization of sphere-constrained high-index saddle

dynamics and construction of solution landscapes for complex systems.

The rest of the paper is organized as follows: In Section 2 we present formulations of

the sphere-constrained high-index saddle dynamics and its semi-implicit numerical scheme. In

Section 3 we prove several auxiliary estimates, based on which we derive error estimates for the

semi-implicit scheme of sphere-constrained high-index saddle dynamics in Section 4. Numerical

experiments are performed in Section 5 to substantiate the theoretical findings, and we address

concluding remarks in the last section.

2 Problem Formulation and Semi-Implicit Scheme

In this section we propose the semi-implicit numerical scheme of the sphere-constrained

high-index saddle dynamics. Let E(x) be the energy function with x ∈ R
d, and define F (x) =

−∇E(x) and J(x) = −∇2E(x) with J(x) = J(x)T. The high-index saddle dynamics for an

index-k saddle point of E(x) constrained on the unit sphere Sd−1 was developed in [21]:





dx

dt
=

(
I − xxT − 2

k∑

j=1

vjv
T
j

)
F (x);

dvi
dt

=
(
I − xxT − viv

T
i − 2

i−1∑

j=1

vjv
T
j

)
J(x)vi + xvTi F (x)

(2.1)

for 1 ≤ i ≤ k, equipped with the initial conditions

x(0) = x0 ∈ Sd−1, vi(0) = vi,0

such that vTi,0vj,0 = δij and xT
0 vi,0 = 0 for 1 ≤ i, j ≤ k.
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Here x represents a position variable and {vi}ki=1 are k directional variables. It was proved in

[21] that a linearly stable steady state of (2.1) is an index-k saddle point, and the solutions x

and {vi}ki=1 to the dynamics (2.1) satisfy for t > 0,

x(t) ∈ Sd−1, vi(t)
Tx(t) = 0, vi(t)

Tvj(t) = δij , 1 ≤ i, j ≤ k. (2.2)

Throughout the paper we apply the following assumptions.

Assumption A The F (x) could be represented as a sum of the linear part Lx and the

nonlinear part N (x), that is, F (x) = Lx +N (x), and there exists a constant L > 0 such that

the following linearly growth and Lipschitz conditions hold under the standard l2 norm ‖ · ‖ of

a vector or a matrix

max{‖J(x2)− J(x1)‖, ‖Lx2 − Lx1‖, ‖N (x2)−N (x1)‖} ≤ L‖x2 − x1‖,

max{‖Lx‖, ‖N (x)‖} ≤ L(1 + ‖x‖), x, x1, x2 ∈ R
d.

To derive the semi-implicit discretization, let 0 = t0 < t1 < · · · < tN = T be the uniform

partition of [0, T ] with the step size τ = T/N , and let {xn, vi,n}Nn=0 be the numerical solution of

(2.1). Then we discretize the first-order derivative by the Euler scheme and treat the linear and

nonlinear parts on the right-hand side of (2.1) via the implicit and explicit manner, respectively,

to obtain the semi-implicit scheme of (2.1) for 1 ≤ n ≤ N as follows:





x̃n = xn−1 + τ
(
I − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
(Lx̃n +N (xn−1))

−τxn−1x
T
n−1(Lxn−1 +N (xn−1)),

xn =
x̃n

‖x̃n‖
;

ṽi,n = vi,n−1 + τ
(
I − xnx

T
n − 2

i−1∑

j=1

vj,nv
T
j,n

)
J(xn)ṽi,n

−τvi,n−1v
T
i,n−1J(xn)vi,n−1 + τxnṽ

T
i,nF (xn),

v̂i,n = ṽi,n − ṽTi,nxnxn,

vi,n = GS(v̂i,n, {vj,n}i−1

j=1),





1 ≤ i ≤ k.

(2.3)

Here the Gram-Schmidt orthonormalization function GS(v̂i,n, {vj,n}i−1

j=1) generates the normal-

ized vector vi,n from v̂i,n that is orthogonal with {vj,n}i−1

j=1
, that is,

vi,n = N
(
v̂i,n −

i−1∑

j=1

(v̂Ti,nvj,n)vj,n

)
:=

1

Yi,n

(
v̂i,n −

i−1∑

j=1

(v̂Ti,nvj,n)vj,n

)
,

where N is the normalized operator and the normalized factor Yi,n is thus defined as

Yi,n :=
∥∥∥v̂i,n −

i−1∑

j=1

(v̂Ti,nvj,n)vj,n

∥∥∥ =
(
‖v̂i,n‖2 −

i−1∑

j=1

(v̂Ti,nvj,n)
2

) 1

2

.

The first and the third schemes in (2.3) are semi-implicit discretizations of the equations of x

and vi in (2.1), respectively. The second equation of (2.3) represents the retraction in order to
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ensure that xn ∈ Sd−1. The last two schemes, which stand for the vector transport and the

Gram-Schmidt orthonormalization procedure, respectively, aim to ensure the rest properties of

(2.2), that is,

vTi,nxn = 0, vTi,nvj,n = δij , 1 ≤ i, j ≤ k, 0 ≤ n ≤ N. (2.4)

Different from the explicit scheme presented in [33], where all variables on the right-hand

side of (2.3) take their values at the previous time step tn−1, the orthonormal property of

the vectors {vi,n−1}ki=1 at the time step tn−1 could no longer be fully employed in (2.3) to

facilitate the numerical analysis as performed in [33] due to the semi-implicit treatment, which

complicates the error estimate. On the other hand, in the explicit scheme the vectors {ṽi,n}ki=1

are firstly solved, and then their orthonormalization are independently performed. In the

semi-implicit scheme (2.3), the computational strategy is quite different in that the last three

schemes of directional vectors in (2.3) are sequentially solved for 1 ≤ i ≤ k. In this way, the

newly computed orthonormalized vectors {vj,n}i−1

j=1 at the current time step tn are involved in

the scheme of ṽi,n, which could be more appropriate than invoking the vectors at the previous

time step in the explicit scheme. However, this computational strategy leads to the coupling of

the schemes of directional vectors, the vector transport and the orthonormalization procedure,

which makes the numerical analysis more challenging.

Concerning these difficulties, we derive novel analysis methods to carry out error estimates

in subsequent sections. Throughout the paper we use Q to denote a generic positive constant

that may assume different values at different occurrences.

3 Auxiliary Estimates

We prove several properties of the numerical solutions to support the error estimates. By

‖xn‖ = ‖vi,n‖ = 1 for 1 ≤ i ≤ k and 1 ≤ n ≤ N , we could apply the Assumption A to derive

from the first and the third equations of the scheme (2.3) that

max{‖x̃n‖, ‖ṽ1,n‖, · · · , ‖ṽk,n‖} ≤ Q (3.1)

for 1 ≤ n ≤ N for τ small enough, which will be frequently used in the analysis.

Lemma 3.1 Under Assumption A, the following estimate holds for τ small enough:

‖xn − x̃n‖ ≤ Qτ2, 1 ≤ n ≤ N ; (3.2)

‖v̂i,n − ṽi,n‖ = |ṽTi,nxn| ≤ Qτ2, 1 ≤ i ≤ k, 1 ≤ n ≤ N. (3.3)

Proof We employ the first equation of (2.3) to get

‖x̃n − xn−1‖ =
∥∥∥τ

(
I − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
(Lx̃n +N (xn−1))

− τxn−1x
T
n−1(Lxn−1 +N (xn−1))

∥∥∥ ≤ Qτ. (3.4)

We then apply this to rewrite the first equation of (2.3) as

x̃n = xn−1 + τ
(
I − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
(Lx̃n +N (xn−1))
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− τxn−1x
T
n−1(Lxn−1 +N (xn−1))

= xn−1 + τ
(
I − xn−1x

T
n−1 − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
(Lx̃n +N (xn−1))

+ τxn−1x
T
n−1L(x̃n − xn−1)

= xn−1 + τ
(
I − xn−1x

T
n−1 − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
(Lx̃n +N (xn−1)) +O(τ2). (3.5)

We multiply xT
n−1 on both sides of this equation and use (2.4) to obtain

xT
n−1x̃n = 1 +O(τ2).

We then multiply x̃T
n on both sides of (3.5) and use xT

n−1vj,n−1 = 0 for 1 ≤ j ≤ k and

xT
n−1x̃n = 1 +O(τ2) to obtain

‖x̃n‖2 = 1 + τ
(
x̃T
n − xT

n−1 − 2

k∑

j=1

x̃T
nvj,n−1v

T
j,n−1

)
(Lx̃n +N (xn−1)) +O(τ2)

= 1 + τ(x̃n − xn−1)
T

(
I − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
(Lx̃n +N (xn−1)) +O(τ2),

which, together with Assumption A and the norm-preserving property of the Householder

matrix in the above equation, yields

|‖x̃n‖2 − 1| ≤ τ‖x̃n − xn−1‖‖Lx̃n +N (xn−1)‖+O(τ2)

≤ Qτ‖x̃n − xn−1‖+O(τ2).

Combining this equation and (3.4) we obtain

|‖x̃n‖2 − 1| ≤ Qτ2,

which in turn leads to |‖x̃n‖ − 1| ≤ Qτ2. We apply this to reach (3.2):

‖xn − x̃n‖ =
∥∥∥ x̃n

‖x̃n‖
(1− ‖x̃n‖)

∥∥∥ = |1− ‖x̃n‖| ≤ Qτ2.

To derive (3.3), we combine (3.2) and (3.4) to obtain

‖xn − xn−1‖ ≤ ‖xn − x̃n‖+ ‖x̃n − xn−1‖ ≤ Qτ. (3.6)

From the forth equation of (2.3) we apply ‖xn‖ = 1 to obtain

‖v̂i,n − ṽi,n‖ = |ṽTi,nxn|. (3.7)

Furthermore, the relation |‖x̃n‖ − 1| ≤ Qτ2 leads to ‖x̃n‖ ≥ 1 −Qτ2 ≥ 1

2
for τ small enough.

Then we multiply the scheme of ṽi,n in (2.3) and the reformulated scheme of x̃n in (3.5) to get

xT
n ṽi,n =

1

‖x̃n‖
[
xn−1 + τ

(
I − xn−1x

T
n−1 − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
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· (Lx̃n +N (xn−1)) +O(τ2)
]T

[
vi,n−1 + τ

(
I − xnx

T
n − 2

i−1∑

j=1

vj,nv
T
j,n

)
J(xn)ṽi,n

− τvi,n−1v
T
i,n−1J(xn)vi,n−1 + τxnṽ

T
i,nF (xn)

]

=
τ

‖x̃n‖
[(

xT
n−1 − xT

n−1xnx
T
n − 2

i−1∑

j=1

xT
n−1vj,nv

T
j,n

)
J(xn)ṽi,n

+ xT
n−1xnṽ

T
i,nF (xn)− vTi,n−1(Lx̃n +N (xn−1))

]
+O(τ2), (3.8)

where we briefly write the second-order terms of τ as O(τ2). We apply the splittings

xT
n−1 − xT

n−1xnx
T
n = (xn−1 − xn)

T(I − xnx
T
n )

and

xT
n−1xnṽ

T
i,nF (xn)− vTi,n−1(Lx̃n +N (xn−1))

= xT
n−1xnṽ

T
i,nF (xn)− vTi,n−1F (xn−1) + vTi,n−1L(xn−1 − x̃n)

= (xn−1 − xn)
Txnṽ

T
i,nF (xn) + (ṽi,n − vi,n−1)

TF (xn)

+ vTi,n−1(F (xn)− F (xn−1)) + vTi,n−1L(xn−1 − x̃n),

to bound the right-hand side of (3.8) as

|xT
n ṽi,n| ≤

Qτ

‖x̃n‖
[
‖xn − xn−1‖+

i−1∑

j=1

|xT
n−1vj,n|

+ ‖ṽi,n − vi,n−1‖+ ‖F (xn)− F (xn−1)‖+ ‖xn−1 − x̃n||
]
+O(τ2). (3.9)

We then invoke the third scheme of (2.3),

‖ṽi,n − vi,n−1‖ =
∥∥∥τ

(
I − xnx

T
n − 2

i−1∑

j=1

vj,nv
T
j,n

)
J(xn)ṽi,n

− τvi,n−1v
T
i,n−1J(xn)vi,n−1 + τxnṽ

T
i,nF (xn)

∥∥∥ ≤ Qτ, (3.10)

as well as xT
n−1vj,n = (xn−1 − xn)

Tvj,n, ‖x̃n‖ ≥ 1

2
, (3.4), (3.6) and the Lipschitz condition of F

in (3.8) to obtain

|ṽTi,nxn| ≤ Qτ
[
‖xn − xn−1‖+

i−1∑

j=1

‖xn−1 − xn‖‖vj,n‖

+ ‖ṽi,n − vi,n−1‖+ ‖xn−1 − x̃n||
]
+O(τ2)

≤ Qτ(‖xn−1 − xn‖+ ‖ṽi,n − vi,n−1‖+ ‖xn−1 − x̃n‖) +O(τ2) ≤ Qτ2,

which completes the proof.
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Lemma 3.2 For 1 ≤ m < i ≤ k and 1 ≤ j ≤ k, the following estimates hold for τ small

enough:

‖ṽTi,nṽm,n‖ ≤ Qτ
m∑

l=1

‖v̂l,n − vl,n‖+Qτ2,

|‖ṽj,n‖2 − 1| ≤ Qτ

j−1∑

l=1

‖v̂l,n − vl,n‖+Qτ2.

Proof From the definitions of ṽi,n and ṽm,n we have

ṽTi,nṽm,n = τ
(
vTm,n−1J(xn)ṽi,n − xT

nvm,n−1ṽi,nJ(xn)
Txn

− 2

i−1∑

j=1

vTm,n−1vj,nv
T
j,nJ(xn)ṽi,n + xT

nvm,n−1ṽ
T
i,nF (xn)

+ ṽTm,nJ(xn)
Tvi,n−1 − xT

nvi,n−1x
T
nJ(xn)ṽm,n

− 2

m−1∑

j=1

vTj,nvi,n−1v
T
j,nJ(xn)ṽm,n + vTi,n−1xnṽ

T
m,nF (xn)

)
+O(τ2)

=:
8∑

l=1

Kl +O(τ2).

We apply xT
nvi,n = 0 for 1 ≤ i ≤ k and 1 ≤ n ≤ N and (3.6) to bound K2 +K4 +K6 +K8 as

‖K2 +K4 +K6 +K8‖
= τ‖ − xT

nvm,n−1ṽi,nJ(xn)
Txn + xT

nvm,n−1ṽ
T
i,nF (xn)

− xT
nvi,n−1x

T
nJ(xn)ṽm,n + vTi,n−1xnṽ

T
m,nF (xn)‖

= τ‖ − (xn − xn−1)
Tvm,n−1ṽi,nJ(xn)

Txn

+ (xn − xn−1)
Tvm,n−1ṽ

T
i,nF (xn)

− (xn − xn−1)
Tvi,n−1x

T
nJ(xn)ṽm,n

+ vTi,n−1(xn − xn−1)ṽ
T
m,nF (xn)‖ ≤ Qτ2.

We then introduce the following triple splitting:

vi,n−1 − vi,n = (vi,n−1 − ṽi,n) + (ṽi,n − v̂i,n) + (v̂i,n − vi,n).

The first right-hand side term is estimated by (3.10) and the second right-hand side term is

bounded by Lemma 3.1, which lead to

‖vi,n−1 − vi,n‖ ≤ Qτ + ‖v̂i,n − vi,n‖. (3.11)

We invoke this to bound K7 as

|K7| =
∣∣∣2τγ

m−1∑

j=1

vTj,nvi,n−1v
T
j,nJ(xn)ṽm,n

∣∣∣

=
∣∣∣2τγ

m−1∑

j=1

(vTj,n − vTj,n−1)vi,n−1v
T
j,nJ(xn)ṽm,n

∣∣∣
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≤ Qτ2 +Qτ

m−1∑

j=1

‖vj,n − v̂j,n‖.

By vTm,nvj,n = δm,j we rewrite K3 as

K3 = −2τ

i−1∑

j=1

vTm,n−1vj,nv
T
j,nJ(xn)ṽi,n

= −2τ

i−1∑

j=1

(vTm,n−1 − vTm,n)vj,nv
T
j,nJ(xn)ṽi,n − 2τvTm,nJ(xn)ṽi,n, (3.12)

which leads to

K1 +K3 +K5 = τ(vTm,n−1J(xn)ṽi,n − vTm,nJ(xn)ṽi,n)

+ τ(ṽTm,nJ(xn)
Tvi,n−1 − vTm,nJ(xn)ṽi,n)

− 2τ

i−1∑

j=1

(vTm,n−1 − vTm,n)vj,nv
T
j,nJ(xn)ṽi,n =: B1 +B2 +B3. (3.13)

We then use (3.11) to bound B1 as

|B1| = τ |(vTm,n−1 − vTm,n)J(xn)ṽi,n| ≤ Qτ2 +Qτ‖v̂m,n − vm,n‖.

B3 could be estimated similarly:

|B3| = 2τ
∣∣∣
i−1∑

j=1

(vTm,n−1 − vTm,n)vj,nv
T
j,nJ(xn)ṽi,n

∣∣∣ ≤ Qτ2 +Qτ‖v̂m,n − vm,n‖.

We then apply the symmetry of J(xn) and Lemma 3.1 and (3.10) to bound B2 as

|B2| = τ |(ṽTm,n − vTm,n)J(xn)vi,n−1 + vTm,nJ(xn)(vi,n−1 − ṽi,n)|
= τ |(ṽTm,n − v̂Tm,n + v̂Tm,n − vTm,n)J(xn)vi,n−1

+ vTm,nJ(xn)(vi,n−1 − ṽi,n)| ≤ Qτ2 +Qτ‖v̂m,n − vm,n‖.

We incorporate the preceding estimates to complete the proof of the first statement of this

lemma.

To derive the second statement, we apply the definition of ṽj,n in (2.3) to get

‖ṽj,n‖2 = 1 + 2τ
(
vTj,n−1 − vTj,n−1xnx

T
n − 2

j−1∑

l=1

vTj,n−1vl,nv
T
l,n

)
J(xn)ṽj,n

− 2τvTj,n−1J(xn)vj,n−1 + 2τvTj,n−1xnṽ
T
j,nF (xn) +O(τ2),

that is,

|‖ṽj,n‖2 − 1| =
∣∣∣2τvTj,n−1J(xn)(ṽj,n − vj,n−1)

− τ
(
vTj,n−1(xn − xn−1)x

T
n
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+ 2

j−1∑

l=1

vTj,n−1(vl,n − vl,n−1)v
T
l,n

)
J(xn)ṽj,n

+ 2τvTj,n−1(xn − xn−1)ṽ
T
j,nF (xn) +O(τ2)

∣∣∣.

Thus we incorporate (3.6) and (3.10)–(3.11) to get

|‖ṽj,n‖2 − 1| ≤ Qτ

j−1∑

l=1

‖v̂l,n − vl,n‖+Qτ2,

which completes the proof.

Lemma 3.3 For 1 ≤ m < i ≤ k and 1 ≤ j ≤ k, the following estimates hold for τ small

enough:

‖v̂Ti,nv̂m,n‖ ≤ Q0τ

m∑

l=1

‖v̂l,n − vl,n‖+Q1τ
2,

|‖v̂j,n‖2 − 1| ≤ Q2τ

j−1∑

l=1

‖v̂l,n − vl,n‖+Q3τ
2.

Proof For 1 ≤ m < i ≤ k we get

v̂Tm,nv̂i,n = ṽTm,nṽi,n − xT
n ṽi,nx

T
n ṽm,n,

which, together with Lemmas 3.1–3.2, leads to

|v̂Tm,nv̂i,n| ≤ Qτ

m∑

l=1

‖v̂l,n − vl,n‖+Qτ2 +Qτ4

≤ Qτ

m∑

l=1

‖v̂l,n − vl,n‖+Qτ2.

We then apply Lemmas 3.1–3.2 to the relation

‖v̂j,n‖2 − 1 = ‖ṽj,n‖2 − 2(xT
n ṽj,n)

2 + (xT
n ṽj,n)

2 − 1

= ‖ṽj,n‖2 − 1− (xT
n ṽj,n)

2

to find

|‖v̂j,n‖2 − 1| ≤ |‖ṽj,n‖2 − 1|+ |(xT
n ṽj,n)

2|

≤ Qτ

j−1∑

l=1

‖v̂l,n − vl,n‖+Qτ2 +Qτ4

≤ Qτ

j−1∑

l=1

‖v̂l,n − vl,n‖+Qτ2,

which completes the proof.

4 Numerical Analysis for Semi-Implicit Scheme

We prove error estimate for the semi-implicit scheme (2.3) by performing a multi-variable

circulating induction procedure to gradually decouple the quantities of interest.
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4.1 Quantification of ṽi,n − vi,n

For G > Q3Q4+kQ1 where Q1 and Q3 are introduced in Lemma 3.3 and Q4 > 1 represents

the bound of {ṽj,n}k,Nj=1,n=0 (see (3.1)), there exists an intermediate constant G > 0 such that

G > Q3Q4 + kG and G > Q1.

In particular, as Q4 > 1, we have G > Q3. Then for τ small enough the following inequalities

hold:

Q0τkG +Q1 + kG2τ2

(1−Q2τ3kG−Q3τ2 − kG2τ4)
1

2

≤ G,
Q4(Q2τkG +Q3 + kG2τ2) + kG

(1 −Q2τ3kG−Q3τ2 − kG2τ4)
1

2

≤ G. (4.1)

In subsequent proofs, we always choose sufficiently small step size τ such that the condition

(4.1) is satisfied.

Theorem 4.1 Under the condition (4.1), the following estimate holds for 1 ≤ n ≤ N :

‖vi,n − v̂i,n‖ ≤ Gτ2, 1 ≤ i ≤ k.

Remark 4.1 The ṽi,n on the left-hand side of the third equation of (2.3) could be split as

ṽi,n = vi,n − (vi,n − v̂i,n)− (v̂i,n − ṽi,n),

where the last two right-hand side terms are O(τ2) terms according to Lemma 3.1 and this

theorem. Thus we reach the following relation that plays a key role in error estimates:

ṽi,n = vi,n +O(τ2). (4.2)

Proof We prove this theorem by induction for the following two relations:

(A) : max
m<i≤k

‖v̂Ti,nvm,n‖ ≤ Gτ2 for some 1 ≤ m ≤ k − 1;

(B) : ‖vj,n − v̂j,n‖ ≤ Gτ2 for some 1 ≤ j ≤ k.

We first declare that if

(A) holds for 1 ≤ m ≤ m∗ − 1 and (B) holds for 1 ≤ j ≤ m∗ (4.3)

for some 1 ≤ m∗ < k − 1, then

(A) holds for m = m∗ and (B) holds for j = m∗ + 1. (4.4)

To show this, we apply Lemma 3.3 and the induction hypotheses (4.3) to bound Ym∗,n by

Ym∗,n =
(
‖v̂m∗,n‖2 −

m∗−1∑

j=1

(v̂Tm∗,nvj,n)
2

) 1

2

∈
[
1±

(
Q2τ

m∗−1∑

l=1

‖v̂l,n − vl,n‖+Q3τ
2 + (m∗ − 1)G2τ4

)] 1

2

∈ [1± (Q2(m
∗ − 1)Gτ3 +Q3τ

2 + (m∗ − 1)G2τ4)]
1

2 . (4.5)
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We then invoke the induction hypotheses (4.3), (4.5), the condition (4.1) and Lemma 3.3 into

the expression of v̂Ti,nvm∗,n to obtain for m∗ < i ≤ k,

|v̂Ti,nvm∗,n| =
1

Ym∗,n

∣∣∣v̂Ti,nv̂m∗,n −
m∗−1∑

j=1

(v̂Tm∗,nvj,n)(v̂
T
i,nvj,n)

∣∣∣

≤ 1

Ym∗,n

(
Q0τ

m∗∑

l=1

‖v̂l,n − vl,n‖+Q1τ
2 + (m∗ − 1)G2τ4

)

≤ Q0τm
∗G+Q1 + (m∗ − 1)G2τ2

(1−Q2τ3(m∗ − 1)G−Q3τ2 − (m∗ − 1)G2τ4)
1

2

τ2 ≤ Gτ2,

which implies that (A) holds for m = m∗. We then use Lemma 3.3 and (A) with 1 ≤ m ≤ m∗

to bound Ym∗+1,n in an analogous manner as (4.5):

Ym∗+1,n ∈ [1± (Q2m
∗Gτ3 +Q3τ

2 +m∗G2τ4)]
1

2 , (4.6)

which implies

|1− Ym∗+1,n| ≤ |1− Y 2
m∗+1,n| ≤ Q2m

∗Gτ3 +Q3τ
2 +m∗G2τ4.

We invoke this and (A) with 1 ≤ m ≤ m∗ in vm∗+1,n − v̂m∗+1,n to get

‖vm∗+1,n − v̂m∗+1,n‖

=
1

Ym∗+1,n

∥∥∥(1− Ym∗+1,n)v̂m∗+1,n −
m∗∑

j=1

(v̂Tm∗+1,nvj,n)vj,n

∥∥∥

≤ Q4(Q2τm
∗G+Q3 +m∗G2τ2) +m∗G

(1−Q2τ3m∗G−Q3τ2 −m∗G2τ4)
1

2

τ2 ≤ Gτ2, (4.7)

which implies that (B) holds for j = m∗ + 1. Therefore, the declaration (4.3)–(4.4) is correct

and we remain to show that (A) holds for m = 1 and (B) holds for 1 ≤ j ≤ 2 in order to start

the mathematical induction. We apply Lemma 3.3 to obtain

‖v̂1,n − v1,n‖ =
∥∥∥ v̂1,n
‖v̂1,n‖

(‖v̂1,n‖ − 1)
∥∥∥ ≤ |‖v̂1,n‖2 − 1| ≤ Q3τ

2 ≤ Gτ2,

which is the relation (B) with j = 1. Based on this, (A) with m = 1 and (B) with j = 2 can be

proved following exactly the same procedure as (4.5)–(4.7), which completes the proof.

4.2 Error estimate

We prove error estimates for the semi-implicit scheme (2.3) of sphere-constrained high-index

saddle dynamics (2.1) by analyzing the following errors:

exn := x(tn)− xn, evin := vi(tn)− vi,n, 1 ≤ n ≤ N, 1 ≤ i ≤ k.

Theorem 4.2 Under Assumption A, the following estimate holds for the semi-implicit

scheme (2.3) for τ sufficiently small:

max
1≤n≤N

{‖exn‖, ‖ev1n ‖, · · · , ‖evkn ‖} ≤ Qτ, 1 ≤ n ≤ N.

Here Q is independent from τ , n and N .
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Proof To bound exn, we derive the reference equation from the first equation of (2.1) via

the forward Euler discretization

x(tn) = x(tn−1) + τ
(
I − x(tn−1)x(tn−1)

T

− 2

k∑

j=1

vj(tn−1)vj(tn−1)
T

)
F (x(tn−1)) +O(τ2).

We then apply (3.2) and (3.4) to reformulate (3.5) as

xn = xn−1 + (xn − x̃n)

+ τ
(
I − xn−1x

T
n−1 − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
(Lx̃n +N (xn−1)) +O(τ2)

= xn−1 + (xn − x̃n)

+ τ
(
I − xn−1x

T
n−1 − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
F (xn−1)

+ τ
(
I − xn−1x

T
n−1 − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
L(x̃n − xn−1) +O(τ2)

= xn−1 + τ
(
I − xn−1x

T
n−1 − 2

k∑

j=1

vj,n−1v
T
j,n−1

)
F (xn−1) +O(τ2).

By this means, the original semi-implicit scheme of x in (2.3) is converted to the explicit scheme

to facilitate the analysis. Based on the above two equations, we follow the same derivations in

[33, Theorem 4.2] to obtain

‖exn‖ ≤ Qτ

n−1∑

m=1

k∑

j=1

‖evjm‖+Qτ, 1 ≤ n ≤ N. (4.8)

To estimate evin , we derive the reference equation from the third equation of (2.1) via the

backward Euler discretization for 1 ≤ i ≤ k:

vi(tn) = vi(tn−1) + τ
(
I − x(tn)x(tn)

T − vi(tn)vi(tn)
T

− 2

i−1∑

j=1

vj(tn)vj(tn)
T

)
J(x(tn))vi(tn) + τx(tn)vi(tn)

TF (x(tn)) +O(τ2)

= vi(tn−1) + τ
(
I − x(tn)x(tn)

T − 2

i−1∑

j=1

vj(tn)vj(tn)
T

)
J(x(tn))vi(tn)

− τvi(tn−1)vi(tn−1)
TJ(x(tn))vi(tn−1)

+ τx(tn)vi(tn)
TF (x(tn)) +O(τ2) +An,

where

An = τ(vi(tn)vi(tn)
TJ(x(tn))vi(tn)

− vi(tn−1)vi(tn−1)
TJ(x(tn))vi(tn−1)) = O(τ2).
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We then apply (4.2) to rewrite the third scheme of (2.3) as

vi,n = vi,n−1 + (vi,n − ṽi,n)

+ τ
(
I − xnx

T
n − 2

i−1∑

j=1

vj,nv
T
j,n

)
J(xn)(vi,n +O(τ2))

− τvi,n−1v
T
i,n−1J(xn)vi,n−1 + τxn(vi,n +O(τ2))TF (xn)

= vi,n−1 + τ
(
I − xnx

T
n − 2

i−1∑

j=1

vj,nv
T
j,n

)
J(xn)vi,n

− τvi,n−1v
T
i,n−1J(xn)vi,n−1 + τxnv

T
i,nF (xn) +O(τ2).

Based on the above two equations, we follow almost the same derivations as [33, Theorem 4.2]

to derive the estimate of evin as
k∑

i=1

‖evin ‖ ≤ Qτ,

and we invoke this in (4.8) to complete the proof.

5 Numerical Experiments

We carry out a simple numerical experiment to test the convergence rate (denoted by CR)

of the scheme (2.3). A detailed comparison between semi-implicit and explicit methods for

unconstrained high-index saddle dynamics could be found in [15], which has already indicated

the advantages of the semi-implicit method. We apply the Rosenbrock type function

E(x1, x2, x3) = a(
√
3x2 − 3x2

1)
2 + b(

√
3x1 − 1)2 + a(

√
3x3 − 3x2

2)
2 + b(

√
3x2 − 1)2.

For (a, b) = (−1, 5.5), the point

x∗ = N (1, 1, 1) =
1√
3
(1, 1, 1)

is an index-1 saddle point of the Rosenbrock type function, while for (a, b) = (−0.5, 1.5), x∗ is

an index-2 saddle point. We apply the semi-implicit scheme (2.3) to compute the saddle points

for these two cases under T = 10 and different initial conditions

(a) x0 = N (0.8, 1, 1), v1,0 = N (1,−0.4,−0.4);

(b) x0 = N (1, 1, 1.4), v1,0 = N (−1, 1, 0);

(c) x0 = N (0.8, 1, 1), v1,0 = N (1,−0.4,−0.4), v2,0 = N (0, 1,−1);

(d) x0 = N (1, 1, 1.4), v1,0 = N (−1, 1, 0), v2,0 = N (−0.7,−0.7, 1).

As the exact trajectory of the constrained high-index saddle dynamics (2.1) is in general not

available, we use the numerical solution computed under τ = 2−13 to serve as the reference

solution. Numerical results are presented in Tables 1–4, which indicates the first-order accuracy

of the semi-implicit scheme (2.3) as proved in Theorem 4.2.
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Table 1 CR of computing the index-1 saddle point under the initial condition (a).

τ max
n

‖exn‖ CR max
n

‖ev1n ‖ CR

2−6 1.65E-02 9.95E-02

2−7 8.29E-03 0.99 4.47E-02 1.16

2−8 4.09E-03 1.02 2.08E-02 1.10

2−9 1.98E-03 1.04 9.83E-03 1.08

Table 2 CR of computing the index-1 saddle point under the initial condition (b).

τ max
n

‖exn‖ CR max
n

‖ev1n ‖ CR

2−6 1.03E-02 2.02E-02

2−7 4.84E-03 1.09 9.53E-03 1.08

2−8 2.32E-03 1.06 4.59E-03 1.05

2−9 1.11E-03 1.06 2.20E-03 1.06

Table 3 CR of computing the index-2 saddle point under the initial condition (c).

τ max
n

‖exn‖ CR max
n

‖ev1n ‖ CR max
n

‖ev2n ‖ CR

2−6 1.67E-03 6.06E-02 6.06E-02

2−7 7.90E-04 1.08 2.87E-02 1.08 2.87E-02 1.08

2−8 3.80E-04 1.05 1.38E-02 1.06 1.38E-02 1.06

2−9 1.82E-04 1.06 6.60E-03 1.06 6.60E-03 1.06

Table 4 CR of computing the index-2 saddle point under the initial condition (d).

τ max
n

‖exn‖ CR max
n

‖ev1n ‖ CR max
n

‖ev2n ‖ CR

2−6 2.65E-03 3.53E-02 3.52E-02

2−7 1.28E-03 1.05 1.69E-02 1.06 1.69E-02 1.06

2−8 6.22E-04 1.04 8.21E-03 1.05 8.18E-03 1.05

2−9 2.99E-04 1.06 3.94E-03 1.06 3.93E-03 1.06

6 Concluding Remarks

In this paper we prove error estimates for the semi-implicit numerical scheme of sphere-

constrained high-index saddle dynamics, which ensures the accuracy of performing the saddle

dynamics in finding saddle points and constructing the solution landscape for constrained prob-

lems. The main difficulties we overcome lie in the semi-implicit treatment on the schemes and

the coupling among the dynamics, the retraction, the vector transport and the orthonormaliza-

tion procedure. Numerical experiments are performed to substantiate the theoretical findings.

There are potential extensions of the current work that deserve further exploration. For

instance, the dimer method (see [12]) could be used in (2.1) to approximate the product of

the Hessian matrix and the vector for efficient computation and storage, which leads to the

shrinking-dimer sphere-constrained high-index saddle dynamics as the unconstrained case (see
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[32]). Then the semi-implicit method could be applied to improve the numerical stability that

remains to be analyzed.

Furthermore, the ideas and techniques could be employed and improved to analyze the semi-

implicit numerical scheme for high-index saddle dynamics constrained by m equalities (see [21,

Equation 24]):





dx

dt
=

(
I − 2

k∑

j=1

vjv
T
j

)
F (x),

dvi
dt

=
(
I − viv

T
i − 2

i−1∑

j=1

vjv
T
j

)
H(x)[vi]

−A(x)(A(x)TA(x))−1

(
∇2c(x)

dx

dt

)T

vi, 1 ≤ i ≤ k.

(6.1)

Here c(x) = (c1(x), · · · , cm(x)) = 0 represents the m equality constraints and

A(x) = (∇c1(x), · · · ,∇cm(x)).

The sphere-constrained high-index saddle dynamics (2.1) is a special case of (6.1) with one

equality constraint

c1(x) = ‖x‖ − 1 = 0.

In the generalized constrained saddle dynamics (6.1), H(x) refers to the Riemannian Hessian

(see [21]), which is difficult to compute and approximate in practice that we will investigate in

the near future.
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