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Homogenization with the Quasistatic Tresca Friction Law:
Qualitative and Quantitative Results*

Changqing YE! Eric T. CHUNG! Jun- zhi CUI?

Abstract Modeling of frictional contacts is crucial for investigating mechanical perfor-
mances of composite materials under varying service environments. The paper considers a
linear elasticity system with strongly heterogeneous coefficients and quasistatic Tresca fric-
tion law, and studies the homogenization theories under the frameworks of H-convergence
and small e-periodicity. The qualitative result is based on H-convergence, which shows
the original oscillating solutions will converge weakly to the homogenized solution, while
the author’s quantitative result provides an estimate of asymptotic errors in H'-norm for
the periodic homogenization. This paper also designs several numerical experiments to
validate the convergence rates in the quantitative analysis.

Keywords Homogenization, Frictional contact mechanics, Quasistatic Tresca fric-
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1 Introduction

Modeling physical or engineering problems with Partial Differential Equations (PDE for
short) usually contains three key components: Fundamental physical principles, constitutive
laws and Boundary Conditions (BC for short). The fundamental physical principles are well-
established in most scenarios; the relations of different physical quantities are described by
the constitutive laws, which appear as coefficients of linear PDEs; constructing appropriate
BCs is certainly an application-driven topic, while simplified BCs are commonly adopted to
focus on the study of differential operators. This paper concerns a linear elasticity system
with strongly heterogeneous coefficients—the constitutive law from composite materials and
quasistatic Tresca friction law—a contact BC.

Composite materials are ubiquitous nowadays, and mathematical treatments for those give
birth to homogenization theories (see [41, 53]). For those composite materials that manifest a

significant periodic pattern, periodic homogenization may serve as a proper mathematical tool
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(see [9, 17, 32, 44]). There are several developments that generalize periodic homogenization—
H-convergence (see 51), G-convergence (see [12, 45]), two-scale convergence (see [1, 37]), T-
convergence (see [10, 21]), Mosco-convergence (see [42]), Bloch wave spectral analysis (see
[2, 18]), and the periodic unfolding method (see [15-16]), to name a few, and we adopt the
framework of H-convergence in our qualitative analysis. A powerful technique in the periodic
homogenization is taking formal asymptotic expansions (see [9, 24]), and estimates of those
asymptotic errors are termed as quantitative homogenization theories in the literature (see [4—
5, 28]). A celebrated advancement is the optimal convergence rate estimates in LP- or H'-norm
for Dirichlet and Neumann boundary value problems (see [33, 47-48]), and some analytical tech-
niques are also applicable in our quantitative analysis. For random composite materials, the
stochastic homogenization theory can provide a mathematical explanation to average physical
properties (see [53]). Recently, Yang and Guan [55-56] proposed a new stochastic homogeniza-
tion method and related error analysis for the PDEs with random fast oscillation coefficients,
which effectively improves the stochastic homogenization theory.

It should be addressed that only obtaining marcoscale or homogenized information is inad-
equate in some simulations, and we are hence required to dig finescale information “cheaply”.
In the homogenization of small periodicity, we can utilize asymptotic expansions which can be
constructed from the homogenized solution and correctors (see [9]) to approximate the original
multiscale solution (see [52, 54]). Beyond periodic homogenization, there are some modern
multiscale computational methods, such as generalized multiscale finite element methods (see
[13-14, 23]), localized orthogonal decomposition (see [3, 39-40]) and generalized finite element
methods (see [6-7, 38]), which are able to resolve the finescale information on a coarse mesh.
Nevertheless, most of those multiscale computational methods highlight on the heterogeneity
in PDE’s coefficients, and the numerical error theories of those methods are based on Dirichlet
or Neumann boundary value problems, which raises the necessity of challenging these methods
via the nonlinearity and nonsmooth from sophisticate BCs.

Before presenting the quasistatic Tresca law, we need to introduce some notations first. Let
Q c R be a bounded domain with a Lipschitz boundary I, where d = 2 or 3. The boundary I'
is priorly divided into three mutually disjoint open parts I'p, I'y and I'c as I' = Tp UTy UT'¢ to
impose different BCs. A contact problem with the quasistatic Tresca friction law (see [31, 50])

reads as
—dive = f, in Q (the balance equation),
o=A:¢e(u), in  (the linear elasticity constitutive law),
u=0, on I'p  (the homogeneous Dirichlet BC),
ov =t, onI'y (the inhomogeneous Neumann BC),  (1.1)
u, =0, |o;| < Hp
lor| < Hr = 4, =0, on I'c  (the quasistatic friction law),

lor| = Hr = 3\ > 0 s.t. 07 = =My,

Vu+(Vu)T
2

u, u, and u, are defined by the normal-tangential decomposition v = u, + u, on I'c, 0, and

where o is the stress, A is the fourth-order elasticity tensor, ¢(u) := is the strain of
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o, are defined by ov = 0, + o, similarly, and Hr is called the Tresca friction bound (see [50]).
The strong form (1.1) is equivalent to a variational inequality form (see [34]):

/Qs(v —u(t)): A:e(u)dr + Hry(Jvr| — |ur(t)])da

> /Qf (v —a(t))dz + /FN t(v—a(t))da (1.2)

for all v € V, where V is the properly defined test function space. The mathematical analysis
including solvability and regularity of Tresca friction contact problems has been prepared in
the monograph [31].

In the Tresca friction model, the bound H~ is independent of ¢, the normal traction on
the contact face and the validity of this assumption has been carefully discussed in [50]. In
general, the value of Hr is a rough estimate and could be obtained by physical experiments.
Another widely accepted model—Coulomb’s law of friction—takes ¢, into account and reads
as Hr = pg|o, |, which means Tresca’s law is a simplified one. Although Coulomb’s formulation
is physically intuitive, it brings a huge challenge to mathematical analysis. One reason is that
the bound pg|o, | needs the trace of o, which is ill-defined unless o possesses a better regularity
than L?. Major breakthroughs for the existence of solutions to Coulomb friction problems have
been established in [22]. Due to the heterogeneity of coefficients, the regularity of solutions to
our problems will be much worse, which implies that currently the Tresca friction model is the
more attainable one in discussing quantitative homogenization.

There are some studies on the homogenization of nonlinear boundary conditions (see [36,
57-60]). To the best of our knowledge, few of them consider quasistatic friction contacts, and
the quantitative result of asymptotic errors in this paper seems to be novel.

This paper is organized as follows. The general notations and settings will be introduced in
Section 2, which also contains the definition of H-convergence of linear elasticity systems and
basic concepts in the periodic homogenization. In Section 3, beyond the periodic homogeniza-
tion, we apply H-convergence to show that original oscillating solutions will converge weakly
the homogenized solution. Section 4 aims to quantify asymptotic errors, and we derive an
estimate in H'-norm. We design several numerical experiments in Section 5 for validating our

theoretical results. Some conclusion remarks and further discussions are included in Section 6.

2 Preliminaries

Throughout the article, we denote by X a general real Hilbert space, X™* the dual space of X,
(-, -)x the duality brackets. If x,, converges weakly to z in a certain Banach space, we will write
it as x, — =z as in [11]. For a time interval I = (0,T"), vector-valued p-integrable and Sobolev
spaces such as LP(I; X) and WP (I; X) are defined as usual (see [25]), where 1 < p < co. For
brevity, we identify any v € W1P(I; X) as an absolutely continuous vector-valued function (see
[25]). The summation convention over repeated indices are summed will be adopted. We first

introduce the following problem.
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Problem 2.1 (general problem) Find a solution u : I — X, such that for a.e. t € I,
a(u(t),v —u(t)) +j(v) —j@t) = (f(t),v —a(t)x, YoeX
and
w(0) = uy.

The regularity of Problem 2.1 has been studied in [30-31], which can be summarized into

the following theorem.

Theorem 2.1 Assume that

e a(-,-) is a symmetric bilinear form on X with
mlvllkx < a(v,v), la(w,v)] < Mllwllx|lv]x, Yv,we X;

e j(-) is a nonnegative, convez, positively homogeneous' and Lipschitz continuous functional
on X;
o feWLP(I; X*), where 1 < p < oo;
e u, € X and
alus,v) +jv) > (f(0),v)x, VveX.

Then there exists a unique solution u € WYP(I; X) of Problem 2.1 with estimates

il o rix) < Call fllocrixe),

[ulloe 1) < Callluellx + 1F 21 zix+)),
where Cy and Cs are positive constants depending on m and M .

We assume the elasticity tensor A belongs to the following classes.

Definition 2.1 (M(m, M;0O) and M?*(m,M;O)) For given 0 < m < M < oo and an
open set O C R4, M(m, M;O) denotes the set of rank-4-tensor-valued functions with A €
M(m, M;O) satisfying a.e. z € O,

af _ poB _ APo ;o .
Aij (z) = Aji (z) = Aij (z), Vi, j,a,B€{l, - ,d};
E:A(x) € >ml¢f, VEesT
AN (@) 6> MY, vEes?
where A= (z) is the inverse of A(x). Moreover, the function class M®(m, M;O) denotes for the
subset of M(m, M;QO) with A € M>(m, M;O) satisfying an additional symmetric property—

a.e. v €O,
AZIB(I) = Agﬁ(x)7 Vi,j,a,ﬂ € {13 e 7d}

We adopt the algebraic definition of H-convergence from [29].

lie., j(av) = |alj(v) for alla € R and v € X.
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Definition 2.2 (H-convergence) Let {AF'} € M(m, M;Q) and A € M(m/, M';Q). Then
AF H-converges to A if the following holds true:

Whenever D¥', D>, E¥ and E> € L?(Q; R49) satisfy

o DK = AK . EF

o D¥ —~ D> gnd E¥ — E> in L2(Q; RI*4),

o {divD¥} is relatively compact in H=(; RY),

o {curlEX'} is relatively compact in H~'(€; RExdxd)
then

i

D% = A : E*~.

Note that we put “” over the index k here to distinguish it with spatial indices (e.g.
i,j,a, 3) which are always chosen from 1 to d. An immediate result shows that M®(m, M; Q)
is sequentially closed w.r.t. H-convergence.

Proposition 2.1 (see [29]) If {A¥'} C M3(m, M;Q), A € M(m',M";Q) and A¥ H-
converges to A>. Then A € M3(m, M;Q).

Definition 2.3 (1-periodicity) A scalar/vector/tensor-valued function f is called 1-periodic
if for all z € 72,

flz+2)=f(z) ae xR

For smooth 1-periodic functions, the complements w.r.t. different Sobolev norms are marked
with the subscript “#”, e.g. Hy(Y, R%), where Y is always the unit cube (- 3, %)d (see [17]).

An essential crux of the periodic homogenization is correctors, which provide an explicit

expression of effective coefficient.

Definition 2.4 (correctors and effective coefficients from [47]) Let A be 1-periodic and
belong to M*(m, M;R?). The set of correctors of A satisfies {x]}1<ky<a C HL(Y;R?), where

Xy, is the unique solution of the following variational problem:
X =D Xl € Hy(Y;RY) with / Xi(y)dy =0
Y
and Vv = [vt,--- vl € H;E(Y;Rd),

/ AT ()0 0" dy = */ Ay (y)0ivdy.
Y %

The effective coefficient tensor of A is denoted by ;&, and the component AZO‘,: Of/A\ 1s defined by
AT = AL (y) + AN 9, () Hy.
ik v ik \Y i iXe \Y Yy

H-convergence stems from the periodic homogenization by the following proposition.

Proposition 2.2 (see [29]) Let A belong to M*(m, M;R?) and also be 1-periodic. Then
As(z) = A(Z) € M*(m, M;Q), and A° H-converges to A as e tends to 0.
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In Sections 3—4, we will depart from concrete quasistatic Tresca friction contact problems

as introduced in Section 1 to a more general one. We denote by V' a Hilbert space, which is a

subspace of H'(;R?) and also satisfies the homogeneous Dirichlet BC and other constraints.

For example, V is

{fve HY(:;RY) |v=0ae onTp, v-v=1v, =0 a.e. on I'c}

for the problem in Section 1. The notation V; is equivalent to H}(€2;RY), and we assume that

Vo C V. .C HY(;RY).

Moreover, we assume the norm of V (also H'(£2;R9)) could be defined by the seminorm of

H'(Q;R%) and Korn’s inequality always holds (see [44]).

3 General Results Under H-Convergence
The model problems we consider in this section are stated as follows.
Problem 3.1 Find a solution u* : T — V', such that for a.e. t €1,
' (u (), v — M (1)) + T (v) = T@F (1)) > (L), v — ¥ ()y, WweV

and

where

a (w,v) = / e(v) : A¥ : g(w)da.
Q
Problem 3.2 Find a solution u™® : I — V, such that for a.e. t € I,
a®(u>(t),v —a™(t)) + J(v) = T(a>=(t)) = (L(t),v —a>(t)v, YveV
and
u™(0) = u.*,
where
a®(w,v) = / e(v) : A% : e(w)da.
Q
The following theorem is our main result in this section.

Theorem 3.1 Assume that
o {AF'} © M3(m, M;Q) and A¥ H-converges to A>;

(3.1)

(3.2)

e J(+) is a nonnegative, convez, positively homogeneous and Lipschitz continuous functional

on'V, and

Jw+w)=TJw), YveV andw € Vy;

(3.3)
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o L e WEP(I;V*), where 1 < p < oo;

° uf/, ul® € V and are respectively the solutions of

a¥ (¥ v) = (£(0),v)v, YweV, (3.4)
a®(ug,v) = (L£(0),v)y, Yvel. (3.5)

Then there exists a unique solution u* e WYP(I; V) of Problem 3.1 and a unique solution
u>® € WHP(I; V) of Problem 3.2, such that uF' converges weakly to u™ in WLe(I; V).

Remark 3.1 Comparing with Theorem 2.1, a notable difference is that we require (3.3),
which essentially says that J(v) is solely determined by the trace of v on I'. For the Tresca

friction problem stated in (1.2), we can verify that
J(v) = Hrlv,|da
T'c
satisfies all requirements for J(-) in Theorem 3.1.
To prove the main theorem of this section, we need several lemmas prepared. The next

lemma shows that the weak convergence on WP(I; V) will induce weak convergences on V at

any time point.
Lemma 3.1 If u, — us i WHP(I; X) for 1 < p < oco. Then u,(t) — us(t) in X for all
tel.

Proof We first prove u,(0) = ux(0). For any given v’ € X*, we identify it as a func-
tional on W1P(I; X) via v — (u/,v(0))x, which is a bounded linear map by the embedding
WLP(I; X) < C(I; X). Then we have uy,(0) — s (0).

For any given v/ € X* and t € I, the linear functional v — (u/, fot (s)ds) is bounded on
WhP(I; X) by

’<u/,/0ti)(s)ds>

Then, applying the fundamental theorem of calculus, we have

t
. —1 .
< HU’IIX*/ lo(s)llxds < ¢ [lu/[Lx- 19l Lo rix)-
0

W un () x = (', un (0)) + <u /Ot un(s)ds>x
— (U, u00(0)) + <u'7/0t uoo(s)ds>x = (v, uso(t)) x,

which finishes the proof.

Note that (3.1) and (3.2) are stated for a.e. t € I, and it is sometimes convenient to consider
a “time-integral” form. We present the following lemma, which is a supplement of Theorem
2.1, and its proof could be found in [30-31].
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Lemma 3.2 Let the assumptions of Theorem 2.1 be fulfilled and u be the unique solution
of Problem 2.1. Then for all w € L*(I; X),

[ atuts) ) = itoas + [ itwas - [itaas = [ r).06) i) s

The famous div-curl lemma is required in the proof of Theorem 3.1. The original form of the
div-curl lemma is presented for vector fields, while we take some modifications for consistency

with our elasticity system setting.

Lemma 3.3 (see [32, 51]) If D¥', D>, E¥ and E* e L*(;S%) such that D¥ — D>
and E¥ — E> in L2(Q; R¥?). Assume that the components of div(D*) and curl(EX') are all
contained in a compact subset of H=Y(Q). Then for all ¢ € C§°(Q2), we have

/ DF' . Ek/gbdx — / D : E*¢dx,
Q k- Ja

i.e., D¥ . E¥ converges weakly to D*° : E*° as distributions.
Now we turn to prove Theorem 3.1.

Proof Because J is a nonnegative functional, the initial conditions uf/ and u$° satisfy the
requirements of Theorem 2.1. Therefore, the existence and uniqueness of solutions uF" and u™
follow from Theorem 2.1, noting here that the coercivity and symmetry of A can be shown

by Proposition 2.1. Moreover, we have a uniform bound for ut’ as

™ llwrn vy < CLE v + 1Ll oz }

< C{[1£(0)]

v+ ||£\|Lp(1;v*)} < 00.

Because 0 < p < 1 and V is a Hilbert space and W1P(I;V) is a reflexive space. Then it is
possible to extract a subsequence of {k’} such that u¥" — w® in WH?(I; V) (we still denote
the indices of the subsequence by £’.), and the proof will be completed by showing that u° is
exactly u°.

By Lemma 3.2, we have for all w € L*(I;V),

[ i) =i s+ [ Twias - [ T s

I

> [ (£, ~ i ()vds, (3.6)

I

Because u* has a regularity of W'? w.r.t. ¢ and the bilinear form ak/(~7 -) is symmetric also

irrelevant with the time variable (see [25]), we have

/ak/ (ukl (s), uk/(s))ds = %{ak/ (ukl (1), u¥
I

’

1 -
= S{e¥ (@ (1), u*
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We first analyze ¥ (u*' (T'), u¥ (T))). According to Lemma 3.1, we have u* (T') — u°(T) in
V. Let 0 < & < 1 and v € Vj, construct test functions @* () + Lir—sm(-)% € L*(I; V) and take
them into (3.6). Applying the assumption (3.3), we can get

T

a* (][TT5 u® (s)ds, v) = < . L(s)ds, U>v

Owing to the strong continuity of u* and £ wor.t. t and taking 6 — 0, we could recover

which is equivalent to
—div(A¥ : e(uF(T))) = L(T)

in the sense of H~'. Denoted by E¥ := e(u¥ (T)) and D¥ := A¥ . E¥ we can see that
EVM — E° = ¢(’(T)) in L2(R¥ ) due to u* (T) — w®(T) in V. Note that {D*} is
a bounded subset of L2(Q;R9*4), therefore we can remove a subsequence of {k’} such that
DF — Do, Applying Definition 2.2 for A* we deduce that D° = A>® : E°. Moreover, combining
Lemma 3.3, we can also see that D¥ . E¥ converges weakly to D° : E° as distributions.
Considering D¥ : E¥ = E¥ : A: E¥' is nonnegative a.e. in Q, arbitrarily choosing ¢ € C5°(2)
and 0 < ¢(z) <1 for all z € Q, we can show the following relation:

o (W (T), ¥ (T)) > / D" :E’“’¢>dx7 / D° : E°¢du,
Q Q

which gives that

’

linllglinf a¥ (uk/ (T),u" (T)) > a™(u’(T),u’(T))

up to a subsequence of {k'}.

We then handle ¥ (u*",u*"). Similarly, we have u* (0) = ¥ — 4°(0) in V by Lemma 3.1.
Utilizing the definition of H-convergence again, we can obtain that A¥ : e(uf") — A : £(u°(0))
in L2(Q; R¥?) from the variational form (3.4). Take the LHS limit of (3.4), and it shows that
forallv eV,

which implies u°(0) = u$° since u® satisfies the same variational form (3.5). Moreover, replacing
v with «*" in (3.4) and taking a limit, we arrive at

¥ (') = (£(0), ) — (£(0),05%) = 0% (U, u®) = a (u”(0), w0(0)).

Through a similar procedure for s = T, we can show that for all s € I, A¥ : e(uF' (s)) —
A= : g(u(s)) in L?(Q; R¥*4). Then combining the embedding relation WP (I; V) < L>(I; V)
and the uniform coercivity of A¥ (positive constants m and M of Definition 2.1), we conclude
that

[ a0 s weas [ @ (o) wts)as

K’ I
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by the dominance convergence theorem.
By the assumption for 7, it is clear to see that u — [; 7 (i(s))ds is a nonnegative, convex,

positively homogeneous and Lipschitz continuous functional on W?(I; V). We hence have

linlldinf/Ij(iLk (s))ds > /Ij(ao(s))ds.

Note that

/1 (L(s), 7" (s))vds — [ (L(s),14°(s))vds

ko
follows from the weak convergence of u* in W1P(I; V).
Finally, taking the limit superior of the LHS and the limit of the RHS in (3.6), up to a

subsequence of {k’}, we can show that

%{a‘”(uo(o)?uo(o)) *a‘”(uo(T),uo(T))}+/a°°(uo(8)7w(5))ds

:
+ [ Ftwis)as - /1 T(0°(s))ds

= [t — i @)as+ [ T [ T

> [ (et 00) i (s)vds, Ywe LY.

We can also rewrite this “time-integral” variational inequality into an “a.e. ¢” form (see [31])

and recall that ©°(0) = u®(0) = u3°, which exactly says that u° is again a solution of Problem

3.2, then we prove u® = u™>.

4 Estimates for the Homogenization of Small Periodicity

For brevity, we will abbreviate H'(Q; R?) as H' and H?(2;R?) as H? in this section. The

model problems of this section are as follows.

Problem 4.1 Find a solution u. : I — V, such that for a.e. t € I,
ae(ue(t),v —0:(t)) + T (v) — T (e (t)) > (L(),v —a:(t))y, YveV (4.1)

and
u5(0> = Ug %,

)

where

as(w,v) = /Qa(v) : A(E) e(w)da.

g

Problem 4.2 Find a solution ug : I — V, such that for a.e. t € I,
a(ugp(t),v —ao(t)) + T(v) = T (to(t)) > (L(t),v —ao(t))y, YveV (4.2)

and

UO(O) = UO,*7
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where
a(w,v) = / e(v) : A e(w)da.
Q
The next theorem is the main result of this section.

Theorem 4.1 Assume that

o A e M*(m,M;Q) and is 1-periodic, the correctors of A are {x}}, and the effective coeffi-
cient tensor of A is 3\;

e J(-) is a nonnegative, conver, positively homogeneous and Lipschitz continuous functional

on'V, and
Jw+w)=Jw), YveV andw € Vp; (4.3)

o L HY(I;V*);

® U.,,up» €V and are respectively the solutions of

e (Ue x5 v) = (L£(0),v)v, Yv€EV, (4.4)
o, v) = (L(0),0)y, VoeV. (4.5)

Let ue. be the unique solution of Problem 4.1, ug be the unique solution of Problem 4.2,
denote the residual by

rd =ud — ug —5Xaﬁ(x)5ju€, re = [1"1 rd}, (4.6)

e i \g =) »Te
provided that there ere the regqularities ug € H*(I; H*) and {x]} C W;OO(Y; R%), then
1
max |[re ()| mr < Ce2||uollm(1:12),
tel
where the positive constant C only depends on m, M, T, Q and max \|XZHW#&(Y;W).

Remark 4.1 The expression u§ + 5X;“ﬁ (f)ajug is usually called the first-order expansion
of u% in the literature, and certainly we could expand u. to higher orders (see [9]). However, the
mismatch on the boundary put a ceiling of convergence rates of asymptotic expansions w.r.t. e.
In our problem, low regularities from variational inequality (that is, the homogenized solution
up may not be smooth even providing sufficiently smooth data) limit the usage of higher order
expansions, which require taking high order derivatives of ug.

Note that there are no regularity assumptions for the homogenized solution ©*° in Theorem
3.1 and u>® € WHP(I; V) is a direct result of Theorem 2.1. Nevertheless, we require a regularity
of HY(I; H?) for ug to derive a convergence rate estimate, and we skip technical discussions
of what conditions that can induce ug € H'(I; H?). Referring to (1.2), we may see that Hr
could be a function of I'c, and therefore the smoothness of Hr could affect the regularity of
ug. We emphasize that studying the higher regularity than H' for the solution to a variational

inequality is complicated and beyond the scope of the article.
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The next lemma is the main tool in our analysis.

Lemma 4.1 Let . € HY(Q;RY) and o € H?(;R?), denote by

xr
w? = @? - <p8‘ _EX?/B(E)GESE(aj(pg)7 We = [wév 7wg]7

where 0c is a cut-off function and S. is the € smoothing operator (see [47]). Then for allv € H*,

we have

ae(We, v) = ae(pe,v) —a(po,v) + (Reo, v) m1 (4.7)

where Re : H?> — (HY)* is a linear map. Moreover, R. is bounded and satisfies

R
[Rellop i= sup sup W] < i,
peH? veH! el 222 |Vl 22
p#0  v#0

where the positive constant C' only depends on m, M and 2.

Comparing with the first-order expansion in Theorem 4.1, we introduce the cut-off function
0. and e-smoothing operator S; here. The reason is that if we assume only X;-XB € H;#(Y) and
ng € H?(Q), &:X;“ﬁ (£)9; ng generally does not have a regularity of H', while sx?‘ﬁ (£)6-82(9; ¢€)
will always even belong to H}. This property will be repeatedly utilized in the following proofs.

Proof of Lemma 4.1 Taking a direct calculation, we have
(63 (63 (o7 (63 €
Omw? = O p? = Ouniply = (™) (2 ) 0520160
« T « x
+ EXjﬁ<g)am9883(aj@g> —exi? (E)HESE(ajmtﬂg)

(a7 « « €
= Ol = 0:52(0m8) — (0mX;”) (2 )0-52(0160)
+ 98852 (am@8> - am(pg
ap (& 2 B8 ap (T 2 I
+EX; (E)ame&sa(aj@0>_5Xj (g)eess(ajrrﬁ%)
(03 €Z (6%
= Ol — 0-S2(0miet) — (Om§”) (2 ) 0=52(0160) + T
Then
X
e\We), = AST | = m & n 7d
as(we, v) /Q mn(g)a w0, vde
= / Af,gl(f)amcpganmdxf / AT Brp B0 da
Q € Q
+ / A% B, 0% Opv T da — / A% 0.8 (D) D da
Q Q
AB B a apy (L 2 <]
+ [ (R - 0 A0 (2) bt 0o o
Jr/ ALt 5 OpvTda
Q

= aE(QDE,’U) 76(@03”) + Kl + K2 + KS-
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Using the estimates in [47, Chap. 3.1], we could derive an estimate of K; + K3 as
1
[Kq| + |Ks| < Ce||gol g2 |v] g

The estimate of |Ka| < Ce?||@o| m2|v|m needs the technique of flux correctors, which is also
introduced in [47, Chap. 3.1].

The next lemma presents the convergence rate of initial conditions.

Lemma 4.2 Under the same assumptions of Theorem 4.1, let w. be defined by
we =ul, —ug, — EX?B<§)95852 (8jug’*)
as in Lemma 4.1. If ug, € H?, then
lwell < Ce* [luo o] .
where the positive constant C' only depends on m, M and 2.
Proof Because 0. € C§°(Q2) and S? (@-ué{*) is smooth on (2, we can see that
X7 (2 )0-82 (0705..) € H(©),

which leads w. € V due to Vo C V C H'. Then, replacing v with w. in (4.4) and (4.5),

respectively, we obtain
e (Ue v we) = (L(0), we)v = @(uo v, we).
Utilizing the estimate (4.7), we can show

C”wEHH1 < CLE(U)E,U)E) = as(us,*aws) - a(uO,*yws) + <REUO,*7U)E>H1
= <£(O)7w€>V - <£(O),w5>v + <R5UO,*aws>H1

< I Relloplluo.«

| mr2 || we || 11

1
< Ce||uo x| a2 [lwell

where the positive constant c is from Korn’s inequality, and consequently it gives us the target

estimate.
The next lemma paves a path to the proof of Theorem 4.1.

Lemma 4.3 Under the same assumptions and notations of Theorem 4.1, let w. be defined
by
wd =ud —uy — 5)@5 (5)0583 (@-u@)

as in Lemma 4.1. If ug € H*(I; H?), then
1
max|fwe (Ol < Ce* [uollm 1:12),

where the positive constant C' only depends on m, M, T and €.
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To prove this lemma, we need the following proposition which is essentially integration by

parts for the vector-valued Sobolev spaces.

Proposition 4.1 (see [25, Proposition 2.2.43]) Let u € H(I; X*) and v € H'(I; X), we

have
(u(t),v(t))x — (u(s),v(s))x :/ (a(t), v(t))x + (u(t),o(t)) xdt
forall0<s<t<T.

Proof of Lemma 4.3 We define u; . by
a . _ oL 2(9.,08
uf . 1= EX; - 0.S; (ajuo),

which leads w. = u. —ug—u1 .. Furthermore, we have u; .(t) € Vj for allt € T and 1y .(t) € Vj
for a.e. t € I via the properties of 6. and S.. Note that wg(t) + @1,.(t) € V, we can hence
replace v with it in (4.1), which implies for a.e. t € I,

ac (ue(t), —e (1)) + T (o () + e () = T (e (t)) = (L(F), —t0e(t))v-
Note the assumption for J in (4.3), then J (uo(t) + @1,:(t)) = J (uo(t)) and for a.e. t € I,
ac (ue (), e (1)) + T (e (1)) — T (o (1)) < (L(#), e (t))v- (4.8)

Similarly, it also holds that u.(t) — @1..(t) € V for a.e. t € V, and taking it into the variational
form (4.2) gives us that for a.e. ¢t € I,

a(uo(t), we(t)) + T (ie(t)) = T (o (1)) = (L(1), e (1)), (4.9)

where the relation J (e (t) — t1,(t)) = J(t(t)) is considered. Combining (4.8) and (4.9), we

derive an important inequality—
ac (ue(t), we (t)) — aluo(t), we(t)) <0

for a.e. t € I.
Observing (4.7) and substituting w(s) for v, we obtain that for a.c. s € I,

ac(we(s), e (s)) = ac(uc(s), we(s)) —a(uo(s), we(s)) + (Reuo(s), we(s)) m
< (Reuo(s), we(s)) - (4.10)

By the assumption that £ € H(I; V*), we can get u. € H'(I; V). Moreover, from the regularity
ug € HY(I; H?), it is not hard to deduce that u; . € H'(I; H'), which shows w. € H'(I; H').
According to the linearity of the operator R., we naturally obtain that for a.e. s € I,

nguO

10 (5) = Ret(s)
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in (H')* and Reup € H*(I; (H')*). Then R.uo and w, fulfill the requirements of Proposition

4.1, and we hence have
t
/ (Reuo(s), we(8))grds
0

= <R5U0(t)7ws(t)>H1 - <Rsu0,*aw5(0)>H1 /(; <R€a0(5)7w€(5)>H1d5a

which gives an expression of the time integration of the RHS of (4.10). Meanwhile, take the
time integration of the LHS of (4.10), we have

/0 ae(we(s), e (s))ds = %{aa(wa(t)7 we(t)) — a:(we(0), w:(0))}.

Combining the coercivity of a.(-,-) and Holder’s inequality, we obtain

lwe (B)II7 < C{Hwe(o)llip + | Reuo()l[E)e + [Revo el ey lwe (0|0

t
+/0 Rt () sy + hwe(s) s s (411)

where the positive constant C only depends on m, M and d.
It has been proved that ||w.(0)||g < CE%HUO7*||H2 in Lemma 4.2. Together with the

estimate ||R|lop < Ce? from Lemma 4.1, we can obtain the following estimates:

lwe ()72 < Celluo 7,
IReuo(®) Ity < RS, Iu0(®)lIF2 < Celluollgc (1022

IRetioell -l (0) a2 < Ot RelloplttoeZre < Celunele,
t t t
/0 [Retto(3) |21, < IR, / liio(s)]|22ds < Ce / i ()||2=s,

and (4.10) boils down to

t t
s (O < C{elolqrimny +2 [ o) ads+ [ o) s)

where the positive constant C' only depends on m, M and ). Finally, we complete the proof
by Grénwall’s inequality and the embedding H*(I; H?) < L°°(I; H?).
Now we turn to prove Theorem 4.1.

Proof Let w. be defined as Lemma 4.3. In order to estimate wq(t) — r-(t), we are left to
handle

o7 (2)6-820u30) — o7 () i 1)

€
Note that

on (x5 (£)0-S2(0,u (1)

= @) (2) 0520505 1))
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+ 57 () 0n(e6.)82 (0505 (1))

+ x5 (2) 0520 1))
= Jl + JQ + J37

where the property 0;S.(f) = S:(0;f) is utilized (see [47-48]). Similarly,

o (=x5”(2)05u (1)) = 05 ()i (0 + x5 (2 ) duwut (1)
= Ky + K.

According to the boundary layer estimate (i.e., [47, Proposition 3.1.8.]), we will have

|2l L2 () < Ce *m max HX?BHLQ(Y)HuO(t)”HZ-
For Js3, we can show that
Il < Oz max I v o (O
by [47, Proposition 3.1.5.]. The estimates for K> will be straightforward:

1K L20) < EmaXIIXJﬁIILoomHuO( ) a2

For J; — K1, we can show that

|J1 — K1l 20
< [[@5) () 0820500 (1) = 0™ (2 ) S2@ud )| o
+ @) (2) 820530 — @0x?) ()2 0,

= Nl +N27

where Ny < Ce2 Zﬂ ||akx?ﬁ||L2(Q)Huo(t)HHQ is again from [47, Proposition 3.1.8.] and
7,

No <3 110X |1 (v) 82 (;ug () — 05uf (8)| 2(e)
7B
< Cgﬂ;iyx HX;;HW#‘X’(Y;Rd)Huo(t)HH27

here in the last line above we have used [47, Proposition 3.1.6.]. Furthermore, the estimate of

|we(t) = re(®) | L2(Qura) < 05{ Z(HXJBHIB(Q) + HXJ[;HLoo(Q))||a Uo( )HL2(Q)}
7,8

is straightforward. Thus, combining all the estimates above, we derive that
1
Jwe(t) = 7Ol < Ceb max =y o (1) 1

which completes the proof.
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5 Numerical Experiments

The numerical experiments in this section are carried out to validate the convergence es-
timate obtained in Theorem 4.1. We consider a 2D square domain = (0,1) x (0,1) and
equally divide it into N x N entirely periodic cells, means that ¢ = % Each cell is consti-
tuted by two patterns of isotropic linear elastic materials, i.e., reinforced phase and matrix,
we denote the pairs of Young’s modulus and Possion’s ratio by (Ey, o) and (Eq,v1), respec-
tively. In plane stress problems (see [46]), the elastic tensor A could be expressed by (E,v) as
ALY = Noaibgj + 1(0apdij + 0ajdpi), where

FEv FE

S T BT

noticing here \ differs from the first Lamé parameter in 3D elastic problems.

Figure 1 (a) and (b), two cell configurations; (c) an illustration of the domain with the cell
configuration (a), where N = 4 and a homogeneous Dirichlet boundary condition is set on {1} x
(0,1), a boundary traction is applied on {0} x (0,1), Tresca’s law is modeled on (0,1) x {0}.

Our experiments are for the cell configurations in Figure la and 1b, which determine 1-
periodic tensor-valued functions A(y). We consider the problem (1.2), while the elastic tensor
Ais replaced by A(f) (the original small periodic problem) or A (the homogenized problem), and

the settings of boundary conditions are demonstrated in Figure 1c. All parameter values and
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solvability conditions are listed in Table 1. Note that Figure 1c demonstrates the elastic body
that is formed by periodically duplicating the cell Figure 1a, and only the matrix corresponding
to the material parameters (Ey,v1) contacts with the rigid body (see the lower boundary of
Figure 1lc for the illustration). Therefore, the value of Hy in Table 1 has a solid physical
background and can be measured from a physical experiment. However, if the domain consists
of the cells of Figure 1b, then Hr is ambiguous because reinforced phase also contacts on I'c.
In certain situations, according the force balance law on the whole domain, we may obtain the
total internal force applied on the contact boundary by conducting physical experiments. By
using the averaged friction coefficient, the value of Hr could also be estimated by the product
of the averaged friction coefficient and normal internal force.
Table 1 The parameter values and solvability conditions
used in numerical experiments.

(Eo,0), (E1,1)  (77.2GPa, 0.33), (117.0 GPa, 0.43)

T 1.0s
f(z1,72,1) (0.0,—1.0 x 10-%) GN/m”
t(zy1, x2,t) (0.08(1.25 — x2)t, —0.01¢t) GPa
Hr 0.004 GPa

According to the assumptions (4.4) and (4.5), we have u. () = ug»(x) = 0 for the initial
conditions. To solve (1.2), we first take a semi-discretization of « w.r.t. the temporal variable,
that is @(t) «— du™ := %, where At is the time step size. We then convert (1.2) into
a variational inequality of the second kind (see [30]) for du™, which is corresponding to the
minimizer of a nonsmooth convex functional. Some previous efforts from the author on solving
contact problems could be found in [19-20], and interested readers may refer to [19] for a
comparative study of numerical methods with real observed data.

In our numerical experiments, we partition every cell into 32 x 32 elements, which says
that the original problem and homogenized problem are solved on a 1024 x 1024 mesh for
N = 32, and we discretize the whole system in the bilinear finite element space. As for temporal
discretizations, we fix the time step size as At = ﬁ for all numerical cases. We implement
a Nestrov accelerated proximal gradient descent method (see [43]) to solve the nonsmooth

optimization problem of every time step. Two notations are introduced to measure asymptotic

CeIrors:
Brr, = sup ||V(us(t)*Uo(t))HL2’
+€(0,T] [Vuo(t)| 2
2 1
[P . « af xT . B 2
] {2 owe(t) - 0 (ug (1) + x5 (2) ol )|}
rro = sup ,
+€(0,T] [ Vuo(t)| 2

where u. and ug are numerical solutions. Since ug obtained by numerical method are only
piecewisely bilinear, taking partial derivatives to order 2 is problematic in Erry. Therefore,

calculations of L?-norm in Err, are first conducted on every element then taking a summation.
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The numerical results are listed in Table 2, and our algorithms are build up from PETSc (see

[8]) and source codes are hosted on GitHub?.

Table 2 (a) Numerical results for the cell configuration in Figure 1a, (b) for the cell
configuration in Figure 1b.

(a) (b)
N ¢ h Err; Erry N & h Err; Err,
4 1 2 017981 0.05691 4 1 1 0.20064 0.08512
8 % 55 018118 0.04087 8 % w5 019946 0.06018
16 & =5 0.18116 0.02897 16 & =5 019910 0.04240
32 55 oy 0.18186  0.02043 32 55 g 019914 0.02987

We can see that Erre ~ O(,/2), which agrees satisfactorily with our theorem. Meanwhile,
those data of Err; show that ug cannot approximate u. in gradients. In general, it will be
much harder to prove or disprove an optimal estimate of asymptotic errors in L?-norm, and
existing methods are mostly based on the maximum principle or the duality technique, which

are both inapplicable for our problems.

6 Conclusions and Further Discussions

The study of this paper originates from the modeling of friction contacts of composite ma-
terial structures. Specifically, we consider the quasistatic Tresca friction law, which could be
categorized as non-smooth and nonlinear contact BC. Our theoretical results are based on two
different homogenization settings. One is H-convergences, that the coefficients of the linear
elasticity system H-converge to the homogenized ones, and we obtain a qualitative theorem
which states that the oscillating solutions converge weakly to the homogenized solution in a
proper space. Another is the homogenization with small periodicity, it means that the coef-
ficients have small periodicity, and then we derive a quantitative theorem on the estimate of
asymptotic errors in H'-norm. Our numerical experiments show that the convergence rate
seems to be optimal.

In our numerical illustrations, the Tresca friction bound is independent of the heterogeneity
of composite materials, which is an approximation to the friction experiment setting for the
structural systems of composite materials. Here we assume that the reinforced phases (e.g.,
(Ep, ) in Figure 1a) have a positive distance away from contact boundaries and the friction
contacts only happen on matrix materials (e.g., (E1,v1) in Figure 1a). It should be admitted
that allowing material-dependent BCs is challenging in mathematical analysis, and existing
results show that this problem is related to some delicate descriptions of the domain (see [26-
27, 49)).

2https://github.com/Laphet/MS-TrescaBP.git
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It is worth pointing out, in real problems simulated, the homogenized solution may not
meet the regularity assumption of Theorem 4.1. In this case, the first-order expression may
be a poor approximation to the original oscillating solution, and could not precisely capture
the refined information on the contact boundaries. However, the Newton-like methods are
commonly adopted to solve frictional contact problems, while its performance is hinged on
linear solvers for each Newton step, which could be accelerated by using first-order expressions
as initial guesses.

The Coulomb friction contact problems of the structural systems made from composite
materials essentially have the multiscale and strongly nonlinear features, especially on the
contact boundaries, and it is difficult to analyze them in mathematics. Another alternative
model for Coulomb’s law is the so-called normal compliance model (see [35, 50]), which in some
sense is friendly to mathematical analysis. Hence, it is natural to consider the homogenization

with normal compliance contact laws which will be our future work.
Declarations

Conflicsts of interest The authors declare no conflicts of interest.

References

[1] Allaire, G., Homogenization and two-scale convergence, SIAM Journal on Mathematical Analysis, 23(6),
1992, 1482-1518.

[2] Allaire, G. and Conca, C., Bloch wave homogenization and spectral asymptotic analysis, Journal de
Mathématiques Pures et Appliquées. Neuvieme Série, 77(2), 1998, 153-208.

[3] Altmann, R., Henning, P. and Peterseim, D., Numerical homogenization beyond scale separation, Acta
Numerica, 30, 2021, 1-86.

[4] Armstrong, S., Kuusi, T. and Mourrat, J.-C., Quantitative Stochastic Homogenization and Large-Scale
Regularity, 352, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences], Springer-Verlag, Cham, 2019.

[5] Avellaneda, M. and Lin, F.-H., Compactness methods in the theory of homogenization, Communications
on Pure and Applied Mathematics, 40(6), 1987, 803-847.

(6] Babuska, I. and Lipton, R., Optimal local approximation spaces for generalized finite element methods
with application to multiscale problems, Multiscale Modeling & Simulation, 9(1), 2011, 373-406.

[7] Babuska, I., Lipton, R., Sinz, P. and Stuebner, M., Multiscale-spectral GFEM and optimal oversampling,
Computer Methods in Applied Mechanics and Engineering, 364, 2020, 112960.

[8] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune, Kris Buschel-
man, Emil M. Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Vaclav
Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong,
Scott Kruger, Dave A. May, Lois Curfman Mclnnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson,
Jose E. Roman, Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang,
Hong Zhang and Junchao Zhang, PETSc Web page, 2022.

[9] Bensoussan, A., Lions, J.-L. and Papanicolaou, G., Asymptotic Analysis for Periodic Structures, AMS
Chelsea Publishing, Providence, RI, 2011, Corrected reprint of the 1978 original [MR0503330].

[10] Braides, A., I'-convergence for Beginners, volume 22 of Oxford Lecture Series in Mathematics and its
Applications, Oxford University Press, Oxford, 2002.

[11] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer-
Verlag, New York, 2011.

[12] Chiado Piat, V., Dal Maso, G. and Defranceschi, A., G-convergence of monotone operators, Annales de
UInstitut Henri Poincaré C. Analyse Non Linéaire, 7(3), 1990, 123-160.



Homogenization with the Quasistatic Tresca Friction Law 801

(13]
(14]
(15]
(16]
(17]
(18]
(19]

(20]

[21]
[22]
23]
[24]
[25]
[26]
[27]
28]
[29]
[30]

(31]

(32]
(33]

(34]

(35]
(36]

(37]

Chung, E. T., Efendiev, Y. and Hou, T. Y., Adaptive multiscale model reduction with generalized multi-
scale finite element methods, Journal of Computational Physics, 320, 2016, 69-95.

Chung, E. T., Efendiev, Y. and Leung, W. T., Constraint energy minimizing generalized multiscale finite
element method, Computer Methods in Applied Mechanics and Engineering, 339, 2018, 298-319.

Cioranescu, D., Damlamian, A. and Griso, G., Periodic unfolding and homogenization, Comptes Rendus
Mathématique. Académie des Sciences. Paris, 335(1), 2002, 99-104.

Cioranescu, D., Damlamian, A. and Griso, G., The periodic unfolding method in homogenization, SIAM
Journal on Mathematical Analysis, 40(4), 2008, 1585-1620.

Cioranescu, D. and Donato, P., An Introduction to Homogenization, volume 17 of Oxford Lecture Series
in Mathematics and its Applications, The Clarendon Press, Oxford University Press, New York, 1999.

Conca, C. and Vanninathan, M., Homogenization of periodic structures via Bloch decomposition, SIAM
Journal on Applied Mathematics, 57(6), 1997, 1639-1659.

Cui, J.-Z., On problems of elastic contact with initial gaps, Chinese Journal of Theoretical and Applied
Mechanics, 16, 1980, 261-268 (in Chinese).

Cui, J.-Z., Li, G.-R., Li, G.-Z., et al. The variational inequality method on contact problems and its
application software, In Adey, R. A., editor, Engineering Software III, pages 387—400, Springer-Verlag
Berlin, Heidelberg, 1983.

Dal Maso, G., An Introduction to I'-Convergence, volume 8 of Progress in Nonlinar Differential Equations
and their Aplications, Birkh&user, Boston, Inc., Boston, MA, 1993.

Eck, C., Jarusek, J. and Krbec, M., Unilateral Contact Problems, volume 270 of Pure and Applied Math-
ematics (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2005.

Efendiev, Y., Galvis, J. and Hou, T. Y., Generalized multiscale finite element methods (GMsFEM), Journal
of Computational Physics, 251, 2013, 116-135.

Engquist, B. and Souganidis, P. E., Asymptotic and numerical homogenization, Acta Numerica, 17, 2008,
147-190.

Gasinski, L. and Papageorgiou, N. S., Nonlinear Analysis, volume 9 of Series in Mathematical Analysis
and Applications, Chapman Hall/CRC, Boca Raton, FL, 2006.

Geng, J. and Zhuge, J. P., Oscillatory integrals and periodic homogenization of Robin boundary value
problems, SIAM Journal on Mathematical Analysis, 52(1), 2020, 104-134.

Gérard-Varet, D. and Masmoudi, N., Homogenization and boundary layers, Acta Mathematica, 209(1),
2012, 133-178.

Gloria, A. and Otto, F., Quantitative results on the corrector equation in stochastic homogenization,
Journal of the European Mathematical Society (JEMS), 19(11), 2017, 3489-3548.

Gustafsson, B. and Mossino, J., A criterion for H-convergence in elasticity, Asymptotic Analysis, 51(3-4),
2007, 247-269.

Han, W. M. and Reddy, B. D., Plasticity, volume 9 of Interdisciplinary Applied Mathematics, Springer-
Verlag, New York, 1999.

Han, W. M. and Sofonea, M., Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, vol-
ume 30 of AMS/IP Studies in Advanced Mathematics, American Mathematical Society, Providence, RI;
International Press, Somerville, MA, 2002.

Jikov, V. V., Kozlov, S. M. and Oleinik, O. A., Homogenization of Differential Operators and Integral
Functionals, Springer-Verlag, Berlin, 1994.

Kenig, C. E., Lin, F. H. and Shen, Z. W., Homogenization of elliptic systems with Neumann boundary
conditions, Journal of the American Mathematical Society, 26(4), 2013, 901-937.

Kikuchi, N. and Oden, J. T., Contact Problems in Elasticity: Astudy of Variational Inequalities and Finite
Element Methods, volume 8 of SIAM Studies in Applied Mathematics, Society for Industrial and Applied
Mathematics (STAM), Philadelphia, PA, 1988.

Klarbring, A., Mikeli¢, A. and Shillor, M., Frictional contact problems with normal compliance, Interna-
tional Journal of Engineering Science, 26(8), 1988, 811-832.

Liu, Z. H., Migérski, S. and Ochal, A., Homogenization of boundary hemivariational inequalities in linear
elasticity, Journal of Mathematical Analysis and Applications, 340(2), 2008, 1347-1361.

Lukkassen, D., Nguetseng, G. and Wall, P., Two-scale convergence, International Journal of Pure and
Applied Mathematics, 2(1), 2002, 35-86.



802

(38]

(39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]
[47]
(48]
[49]
(50]
51]
(52]
(53]

(54]

(53]
[56]
[57]
(58]
[59]

[60]

C. Q. Ye, E. T. Chung and J.-Z. Cut

Ma, C. P., Scheichl, R. and Dodwell, T., Novel design and analysis of generalized finite element methods
based on locally optimal spectral approximations, SIAM Journal on Numerical Analysis, 60(1), 2022,
244-273.

Malqvist, A. and Peterseim, D., Localization of elliptic multiscale problems, Mathematics of Computation,
83(290), 2014, 2583-2603.

Malqvist, A. and Peterseim, D., Numerical Homogenization by Localized Orthogonal Decomposition, vol-
ume 5 of STAM Spotlights, Society for Industrial and Applied Mathematics (STAM), Philadelphia, PA,
2021.

Milton, G. W., The Theory of Composites, volume 6 of Cambridge Monographs on Applied and Compu-
tational Mathematics, Cambridge University Press, Cambridge, 2002.

Mosco, U., Composite media and asymptotic Dirichlet forms, Journal of Functional Analysis, 123(2),
1994, 368—421.

Nesterov, Yu., Gradient methods for minimizing composite functions, Mathematical Programming, 140(1),
2012, 125-161.

Oleinik, O. A., Shamaev, A. S. and Yosifian, G. A., Mathematical Problems in Elasticity and Homogeniza-
tion, volume 26 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam,
1992.

Pankov, A., G-Convergence and Homogenization of Nonlinear Partial Differential Operators, volume 422
of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.

Sadd, M. H., Chapter 7-Two-dimensional formulation, Elasticity (Fourth Edition), pages 145-162, Aca-
demic Press, London, 2021.

Shen, Z. W., Periodic Homogenization of Elliptic Systems, volume 269 of Operator Theory: Advances and
Applications, Birkhduser/Springer, Cham, 2018. Advances in Partial Differential Equations (Basel).

Shen, Z. W. and Zhuge, J. P., Convergence rates in periodic homogenization of systems of elasticity,
Proceedings of the American Mathematical Society, 145(3), 2017, 1187-1202.

Shen, Z. W. and Zhuge, J. P., Regularity of homogenized boundary data in periodic homogenization of
elliptic systems, Journal of the Eurpoean Mathematical Society (JEMS), 22(9), 2020, 2751-2776.

Shillor M., Sofonea, M. and Telega, J. J., Models and Analysis of Quasistatic Contact, Springer-Verlag,
Berlin, Heidelberg, 2004.
Tartar, L., The General Theory of Homogenization, volume 7 of Lecture Notes of the Unione Matematica

Italiana, Springer-Verlag, Berlin, UMI, Bologna, 2009.

Temizer, I., On the asymptotic expansion treatment of two-scale finite thermoelasticity, International
Journal of Engineering Science, 53, 2012, 74-84.

Torquato, S., Random Heterogeneous Materials, volume 16 of Interdisciplinary Applied Mathematics,

Springer-Verlag, New York, 2002.

Yang, Z. H., Cui, J. Z., Wu, Y. T., et al., Second-order two-scale analysis method for dynamic thermo-
mechanical problems in periodic structure, International Journal of Numerical Analysis and Modeling,
12(1), 2015, 144-161.

Yang, Z. H., Huang, J. Z. and Feng, X. B., et al., An efficient MultiModes Monte Carlo ho-mogenization
method for random materials, SIAM Journal on Scientific Computing, 44(3), A1752-A1774, June 2022.

Yang, Z. H., WANG, X. T. and Guan, X. F., et al., A normalizing field flow induced two-stage stochastic
homogenization method for random materials, Communications in Computational Physics, to appear.

Ye, C. Q., Cui, J. Z. and Dong, H., Asymptotic analysis of nonlinear robin-type boundary value problems
with small periodic structure, Multiscal Modeling & Simulation, 19(2), 2021, 830-845.

Yosifian, G. A., On some homogenization problems in perforated domains with nonlinear boundary con-
ditions, Applicable Analysis, 65(3-4), 1997, 257-288.

Yosifian, G. A., Some homogenization problems for the system of elasticity with nonlinear boundary
conditions in perforated domains, Applicable Analysis, T1(1-4), 1999, 379-411.

Yosifian, G. A., Homogenization of some contact problems for the system of elasticity in perforated do-
mains, Rendiconti del Seminario Matematico della Universita di Padova, 105, 2001, 37-64.



