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Abstract The well-posedness of the dynamic framework in earth-system model (ESM for
short) is a common issue in earth sciences and mathematics. In this paper, the authors
first introduce the research history and fundamental roles of the well-posedness of the
dynamic framework in the ESM, emphasizing the three core components of ESM, i.e.,
the atmospheric general circulation model (AGCM for short), land-surface model (LSM
for short) and oceanic general circulation model (OGCM for short) and their couplings.
Then, some research advances made by their own research group are outlined. Finally,
future research prospects are discussed.
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1 Introduction

The earth-systemmodel (ESM for short) is a mathematical expression describing the coupled

evolution of global climate and eco-environmental systems (see [1]). Specifically, it is composed

of complex numerical models based on various mathematical equations describing the processes

of the atmosphere, hydrosphere, cryosphere, surface layer of the earth, lithosphere and biosphere

as well as their coupled evolutions (see [2]). The ESM plays a crucial role in predicting global

climate change and planning for sustainable development (see [1]), so its advancement is an

important index for measuring the overall progress of a country’s earth science research (see [3]).

During the development of the ESM, many major breakthroughs have been closely related

to the development of mathematical theories and the introduction of advanced mathematical

methods. In the 1970s and 1980s, Zeng [4–5] developed the three-dimensional compressible baro-

clinic hydrodynamic equations coupled with thermodynamic equations with reasonable initial

data and boundary conditions, which provided the precise dynamic frameworks for atmospheric

and oceanic general circulation models (i.e., the “climate-system model”). The well-posedness
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of this dynamic framework was preliminarily analyzed. Similarly, equations describing the phys-

ical processes of the earth’s surface layer, the ecological processes of vegetation and geochemical

processes were later developed, and provided the dynamic frameworks for the “environmental

ecosystem model.” The coupling between the climate-system model and environmental ecosys-

tem model creates the ESM.

After mathematical modeling, in the 1980s and 1990s, Zeng et al. [6–15] developed several

effective numerical algorithms for solving the primitive equations of atmospheric dynamics in a

spherical coordinate system, gradually constructing three generations of an atmospheric general

circulation model (IAP-AGCM for short). Zhang et al. [16–18] also gradually developed two

generations of an oceanic general circulation model (IAP-OGCM for short). After considering

the mathematical consistency between the frameworks of IAP-AGCM and IAP-OGCM, Zeng

and his research team in [19] developed the first climate-system model IAP-NCSM and numer-

ical climate prediction system IAP-NCP in China, which consisted of atmospheric, ocean and

land-surface models; IAP-NCSM was also a component of the IPCC climate simulation assess-

ment. Since 1998, IAP-NCP was applied in practical real time prediction of seasonal climate

anomalies in China (see [20–23]) to predict large-scale patterns of summer rainfall anomalies,

and major climatic disasters have been successfully predicted such as the catastrophic flood over

the Changjiang River basin during the summer of 1998, floods in South China and droughts in

North China in 1999, and massive droughts nationwide in 2000 and 2001.

Since 2007, the Institute of Atmospheric Physics (IAP for short) in the Chinese Acade-

my of Sciences (CAS for short), has begun to develop the ESM of China. On the basis of

the climate-system model IAP-NCSM, it has gradually incorporated a sea-ice model, dynam-

ic global-vegetation model, aerosol and atmospheric chemistry model, marine biogeochemical

model and a land-surface biogeochemical model, among others. In 2015, the first generation of

the Chinese Academy of Sciences-Earth System Model (CAS-ESM 1.0 for short) was released,

indicating that China had made significant progress in the research and development of the

ESM. After continuous improvement, the second generation of CAS-ESM (CAS-ESM 2.0 for

short) was released in 2018. It is worth noting that CAS-ESM was independently developed by

China, possessing distinct Chinese characteristics and unique advantages (see [1, 24]).

CAS-ESM 2.0 has also participated in the sixth phase of the Coupled Model Intercompar-

ison Project (CMIP6 for short) and produced a large number of public simulation datasets

(see [25]). Many foreign research teams have used these simulation datasets and created com-

parisons between CAS-ESM 2.0 and more than thirty other models worldwide. The results

show that CAS-ESM 2.0 is one of the best models for comprehensiveness and simulation per-

formance in the world. Now, CAS-ESM 2.0 has become the core software of “Earth System

Science Numerical Simulator Facility” which is a major national infrastructure component for

science and technology completed by the IAP and some other institutes of mathematics and

computational technology. In addition, the immense number of databases in this facility are

publicly available worldwide.

When constructing and developing a numerical model (e.g., introducing new sub-system

models or developing/improving parameterizations), we also pay substantial attention to the
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research on the well-posedness of the dynamic framework of models. If the physical models

are not well-posed in a mathematical sense, the simulation results are “unreasonable”, and

uncertainty may substantially increase with simulation time. Therefore, in order to correctly

simulate or predict the progressive evolution of the Earth system, it is necessary to further

investigate the well-posedness of the model’s framework.

In this paper, we will firstly focus on the major core components of CAS-ESM 2.0: The

atmospheric general circulation model (AGCM for short), land-surface model (LSM for short)

and oceanic general circulation model (OGCM for short), and then make a review on research

advances on their well-posedness made by our research team in recent years. In the conclusions,

future research prospects will be outlined as well.

2 Climate-System Models

The well-posedness is the cornerstone of developing climate-system/earth-system models.

As early as 1979, Zeng [4] dedicated a chapter in book “Mathematical and Physical Founda-

tions of Numerical Weather Prediction” to discuss the well-posedness theory of several type-

s of atmospheric models using applied mathematical methods, and clearly showed that the

corresponding partial differential equations with boundary conditions and initial data should

be internally consistent, and the existence, uniqueness and stability of the classical solution

(with continuous partial derivatives of any order) to a two-dimensional barotropic model and

three-dimensional baroclinic model can be proved. By using mathematical tools and analytical

methods (such as the functional space and generalized functions), Zeng also has proved the

existence of a generalized solution to the non-divergent barotropic model, and showed that the

solution is not unique; the differences among the solutions are any time-dependent functions

(this problem was encountered in early numerical weather prediction). However, because the

viscosity terms were not introduced in the model as they are in the Navier-Stokes equations, the

relevant problems of the generalized solution have not been studied for the three-dimensional

compressible atmosphere model in that time.

In the 1980s, the rapid development of computers facilitated the AGCM for numerical

weather forecasting and climate prediction; these were further supported by studies on the

well-posedness of mathematical models and numerical algorithms. Under this background, the

IAP of CAS developed the IAP-AGCM. Meanwhile, Zeng [5] also preliminarily put forward an

ocean-atmosphere coupled model in 1983 and outlined the boundary conditions of the ocean-

atmosphere interface. Later, these research results received attention from mathematicians

both domestically and internationally.

On the basis of Zeng’s research results, in the early 1990s, Lions, together with Teman and

Wang [26–28] proved the existence of global weak solutions to the atmospheric equations and

coupled ocean-atmosphere equations with viscosities, diffusions in the form as in the Navier-

Stokes equation, etc. However, in their papers, the atmospheric dynamics equations adopted

many approximations that are inconsistent with the actual physical processes, such as: (1)



806 R. X. Lian and Q. C. Zeng

The upper atmospheric pressure was prescribed as a positive constant; (2) Dirichlet boundary

conditions or Neumann boundary conditions were used but not the actural ones; (3) the non-

divergence of the vertically integrated wind was required; and (4) the external forcing terms

were known functions.

To address these shortcomings, Zeng [29] made some improvements as follows: (1) The

upper atmospheric pressure was set to zero; (2) tangential flow at the interface was allowed

to ensure the boundary conditions more reasonable; (3) the non-divergence approximation was

eliminated; and (4) the external forcing terms were related to temperature and pressure. Later,

Mu and Zeng et al. [30] proved the existence of a global weak solution to the initial boundary

value problem of such improved atmospheric dynamics model in 2001 and also proved the

uniqueness of a global strong solution. Zeng and Mu [31] presented a new dynamic framework

of the ocean-land-atmosphere coupled model in 2001. In this section, we firstly introduce some

referential dynamic frameworks (see [31]).

2.1 Atmospheric general circulation model (AGCM for short)

Let the atmosphere cover a rotating sphere with radius a and angular velocity ω, subject to

Earth’s gravity and the Coriolis force. Denote the standard reference atmospheric pressure p̃(z),

the standard reference temperature T̃ (z) and the standard reference geopotential Φ̃(z), which

are only dependent on the height variable z. The standard reference earth-surface pressure

p̃s(θ, λ) is a function related to the colatitude θ and the longitude λ. Since p̃(z) is a monotonic

function of z, we can also take p instead of z as the vertical coordinate. Then, the hydrostatic

conditions and Earth’s standard surface pressure can be given as follows:



RT̃ = −p

dΦ̃(p)

dp
,

p̃|z=zs(θ,λ) = p̃s(θ, λ),

(2.1)

where zs(θ, λ) is the elevation of Earth’s surface. For convenience, we introduce the terrain

coordinate ζ = p
ps

∈ [0, 1], where ps = p(θ, λ, zs) is the pressure at Earth’s surface. Thus, we

have




~V (θ, λ, ζ, t) = ~θ0vθ(θ, λ, ζ, t) + ~λ0vλ(θ, λ, ζ, t),

T ′(θ, λ, ζ, t) = T (θ, λ, ζ, t)− T̃ (p),

Φ′(θ, λ, ζ, t) = Φ(θ, λ, ζ, t) − Φ̃(p),

p′s(θ, λ, t) = ps(θ, λ, t)− p̃s(θ, λ)

(2.2)

and the following dynamical equations:




dF

dt
= A+ B + C +D +Q,

κa

∂p′s
∂t

+∇ · (ps~V ) +
∂psζ̇

∂ζ
= κaDsa,

RT ′ = −ζ
∂Φ′

∂ζ
,

(2.3)
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where

F = (vθ, vλ, cpT
′), (2.4)

d

dt
=

∂

∂t
+ vθ

∂

a∂θ
+ vλ

∂

a sin θ∂λ
+ ζ̇

∂

∂ζ
(2.5)

and κa = 1 (κa = 0 means the approximation of non-divergence of the vertically integrated

wind). A represents the pure dynamical terms (Coriolis force term, advection term and pure

kinetic term), B and C are the parameterized process operators (they are very complex and also

not fully understood in the climate-system model), D is the turbulent dissipation term (positive-

definite operator), ∇· is the two-dimensional divergence operator on the sphere, ζ̇ ≡ dζ
dt and Q

represents the source terms (such as radiation heating). The concrete formulas for A and D

are as follows:




Avθ = −
(
2ω cos θ +

vλ

a
cot θ

)
vλ −

∂Φ′

a∂θ
−

RT ′

p̃s

∂p̃s

a∂θ
,

Avλ = −
(
2ω cos θ +

vλ

a
cot θ

)
vθ −

∂Φ′

a sin θ∂λ
−

RT ′

p̃s

∂p̃s

a sin θ∂λ
,

AcpT ′ =
cpC

2
0

Rp̃sζ

(
p̃sζ̇ + ζκ

(∂p′sa
∂t

+ ~V · ∇p̃s − κDsa

))
,

DF = ∇ ·
khF

p̃s
∇F +

∂

∂ζ

(kzF
p̃s

( gζ

RT̃

)2 ∂p̃sF

∂ζ

)
,

Dsa ≡ ∇ · ksaρ̃sa∇
p′s
ρ̃sa

.

(2.6)

But the concrete formulas for B, C and Q are omitted in this paper.

The upper bound of the atmosphere is infinity, i.e., z → ∞ or p → 0, i.e., ζ → 0. Note

that, from zs to infinity, the whole air mass is finite, so it is natural to assume that the energy

of the whole column is also finite (see [4]). Therefore, the upper boundary conditions of the

atmospheric dynamics equations should be





ζ̇ = 0 as ζ → 0,

~V ∈ L2
ζ , i.e.,

∫ 1

0

|~V |2dζ < ∞,

cpT
′ ∈ L2

ζ , i.e.,

∫ 1

0

c2pR
2
(
ζ
∂Φ′

∂ζ

)2

dζ < ∞.

(2.7)

The bottom boundary of the atmosphere is the Earth’s surface. If it is a land surface, its

altitude does not change with time. In the case of the ocean surface, the height is variable with

time (see Subsection 2.3). The bottom boundary of the atmospheric model often interacts with

the upper interface of the underlying material (OGCM or LSM). Thus, we can formulate the

corresponding bottom boundary conditions.
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Note, if κa = 0 is taken, so that we have

∫ 1

0

(
∇ · (ps~V ) +

∂psζ̇

∂ζ

)
dζ = 0. (2.8)

This means that there is no prediction equation for p′s, if the non-divergence appoximation of

the vertically integrated wind is taken. Further analysis shows that if κa = 0, the solution ps

is not unique, and the difference among the different solutions is an arbitrary time-dependent

function (see [4]). That is why, in the early years of numerical weather prediction, the computed

mean value of ps for the whole region fluctuated even monotonically increases or decreases with

time.

Moreover, we can also consider the well-posedness of the framework in AGCM with the

water vapor phase transformation. Using methods similar to those in Zeng [29], we know that

the external forcing term in the temperature equation is taken as a nonlinear function related

to pressure and temperature, and the accurate method should directly represent the process

of the water-vapor phase transition and heat release according to the laws of thermodynamics.

Additionally, the equations describing specific humidity and the liquid water content variable

should be also introduced.

2.2 AGCM coupled a simplified land-surface model

It is the surface soil (with a small amount of rock) that interacts with the atmosphere, where

vegetation above the ground is considered to be the physical component of the soil (without

detained canopy and ice-snow cover), and no volcanic eruption is assumed. The state functions

in the LSM are the temperature deviation T ′

l and the wetness deviation w′

g. Then, we have the

governing equation for T ′

l as follows:

ρlcl
∂T ′

l

∂t
= h−2

l

∂

∂η

(
ρlkl

∂clT
′

l

∂η

)
, −1 ≤ η =

z

hl

≤ 0, (2.9)

where ρl, cl, hl are the soil density, relative heat capacity and thickness of the active layer of

the soil, respectively. The governing equation for w′

g is similar and is omitted here.

Usually, on the land surface, there are upward heat conduction fluxes and heat radiation

from below the soil layers and downward heat conduction flux and radiation flux from the

atmosphere, allowing the upper boundary thermal conditions of the soil layer and the bottom

boundary thermal conditions of the atmosphere can be obtained. The bottom boundary of the

soil layer is set as having no heat flow or known function. In addition, the surface of the soil is

fixed, but there is frictional resistance to the atmosphere. Then, we have the bottom conditions
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of AGCM and the upper boundary conditions of the soils (ζ = 1, η = 0) as follows:




ζ̇ = 0,

∂p̃s~V

∂ζ
= −αs

~V , ζ → 1, η → 0,

∂p̃sT
′

∂ζ
= βs

∂clT
′

l

∂η
+Qst,

(2.10)

furthermore, the bottom boundary conditions of the soils (η = −1) are as follows:

∂clT
′

l

∂η
= Qsb, η → −1, (2.11)

where αs and βs denote two functions dependent on (θ, λ, t). However, the conductive heat flux

Qst and Qsb may be two functions related to state functions.

Therefore, for the AGCM with a simplified LSM, the energy equation is as follows:

d

dt
Eal = −(Da +Dl +Das) + (Fb + Fe + Fq), (2.12)

where

Eal = Eak + Eae + El + κaEals, (2.13)

and Eak, Eae, El are the atmospheric kinetic energy, available relative potential energy and heat

energy of the soil, respectively. Eals is the available atmospheric surface potential energy. As

κa = 1, Eak, Eae, El and Eals satisfy

(Eak, Eae) =

∫

S2

∫ 1

0

p̃s

g

[ |~V |2

2
,
(RT ′)2

2C2
0

]
dζdS, (2.14)

El =

∫

S2

∫ 0

−1

hgρg
cg

cp

(T ′

g)
2

2C2
0

R2dζdS, (2.15)

Eals =

∫

S2

ρ̃sag
1

2

( p′s
ρ̃sag

)2

dS, (2.16)

where Da, Dl and Das are positive definite functions, and Fb, Fe and Fq are external forcings in

the atmosphere and terrestrial surface system. In particular, there is no surface potential energy

if κa = 0. It is easy to provide the initial data on the atmosphere and the soil layer. Equations

(2.12)–(2.13) and the positive definite functions (2.14)–(2.16) are very useful for proving the

well-posedness of the initial boundary value problems relevant to this coupled system.

2.3 Ocean general circulation model (OGCM for short)

Seawater contains salt, denoted by salinity S. The density ρ of the oceanic water can be

described by the following state equation:

ρ = ρ0(1− αT (T − T0) + αS(S − S0)), (2.17)
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where ρ0, T0 and S0 are standard values, and αT and αS are two positive constants. By using

the hydrostatic conditions, we have

dρ

dz
= −ρg. (2.18)

The height coordinate of the sea surface is z (Let the average of sea surface height with respect

to time be zero, i.e., z̃so = 0), the upper elevation of the ocean is zso, and the height of the sea

floor is zb(θ, λ) = −h̃(θ, λ). Denote the standard reference profiles of T̃ (z), S̃(z), p̃(z) and ρ̃(z).

Let ξ = z−zso

zso+h̃
∈ [−1, 0], and let the vertical coordinates of the surface and lower interfaces of

the ocean be ξ = 0 and ξ = −1, respectively. As in AGCM, we have equations for the OGCM

as follows:




dF

dt
= A+B + C +D +Q,

κ0
∂z′so
∂t

+∇ · (h∗~V ) +
∂h∗ξ̇

∂ξ
= κ0Dso,

∂p′

∂ξ
= −h∗gρ′,

(2.19)

where h∗ is some smoothed value of h̃. Note that p′ and ρ′ here are the deviations of the

pressure and density in the sea water from the standard values p̃ and ρ̃ at their given heights,

T ′ = T − T̃ (z), S′ = S − S̃(z), z′so = zso − z̃so and

F = (vθ, vλ, c0T
′, S′). (2.20)

The terms A, B, C, D and Q are similar as in AGCM, where κ0 is taken as 1 or 0. The upper

boundary conditions are




ξ̇ = 0,

p′ = κ′

0p
′

s + ρ0gz
′

so,

h̃−2ρ0kz0V
∂h∗~V

∂ξ
= −~τa, ξ → 0,

h̃−2ρ0c0T kz0T ′

∂h∗T ′

∂ξ
= H ′

s0,

h̃−2ρ0kz0S′

∂h∗S′

∂ξ
= F ′

s0,

(2.21)

and the bottom boundary conditions are




ξ̇ = 0,

h̃−2ρ0kz0V
∂h∗~V

∂ξ
= −~τb, ξ → −1,

∂h∗T ′

∂ξ
=

∂h∗S′

∂ξ
= 0,

(2.22)
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where ~τa, H
′

s0, F
′

s0 and ~τb are all flux functions. Since the oceanic surface is time-varying,

when ξ = 0, zso or z′so (the sea surface height or sea surface height deviation) and ps or p′s

(sea surface pressure or sea surface pressure deviation) are two important predicted variables.

Using (2.21)2, we know that the pressure deviation at the upper ocean interface is calculated

by the atmospheric pressure deviation at the mean sea level plus the sea water mass deviation

of the water column due to the deviation of the sea surface height.

2.4 Land-atmosphere-ocean coupled model

The earth-surface area (S) is divided into the marine area (O) and land area (L = S −O).

Because lateral interaction between the sea and land are often neglected, the total energy of

the coupled land-atmosphere-ocean model is described as

d

dt
(Eak + Eap + El + Eok + Eop + Elaos)

= −(Da +Dl +Do +Dlaos) + (Fa + Fo + Flaos), (2.23)

where Eok and Eop are the oceanic kinetic and available relative potential energy, respectively,

and Elaos is the available surface potential energy. Da+Dl+Do+Dlaos are due to the “turbulent

dissipation term” in the coupled system and are positive definite functions. Fa+Fo+Flaos are

due to the external forcing field in the coupled system. Note that the surface potential energy

of the land area is different from that of the ocean area, and

Elaos =
1

2

∫

S−O

∫ 0

−1

ρ̃sag
( p′s
ρ̃sag

)2

dζdS

+
1

2

∫

O

( p′s√
ρ̃sag

+ κ′

0

√
ρ̃sagz

′

so

)2

dS +
1

2

∫

O

ρ0g
(
1− κ′2

0

ρ̃sa

ρ0

)
z′2sodS (2.24)

as ρ0 >> ρ̃sa, Elaos is positively definite.

3 Well-Posedness of the Atmosphere-Ocean Coupled Model

Since Zeng [29] proposed an improved dynamical framework for IAP-AGCM in 1998, there

have been some important theoretical results on the well-posedness of the atmospheric primitive

equations. Firstly, Mu and Zeng et al. [30] proved the existence of the weak solution and the

uniqueness of the strong solution to the initial boundary value problem of the atmospheric

dynamic equations with applicable physical conditions. Since then, many validating research

results have been published both domestically and internationally. For example, Huang and

Guo [32] proved the existence of attractors to the dynamical framework of IAP-AGCM in 2007.

Moreover, Guillén-Gonzaléz et al. [33], Temam and Ziane [34], Cao and Titi [35] and others

proved the local and global existence and uniqueness of a strong solution to the initial boundary

value problem of the primitive equations. Guo and Huang [36–38] proved the existence of a

unique global strong solution and the existence of global attractors to the large-scale dry and

moist atmospheric dynamics equations.
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Based on multiscale analysis, Cao and Titi [39–41] studied the initial boundary value prob-

lem of the primitive equations with only horizontal viscosity or only vertical dissipation, reaf-

firming the existence and uniqueness of the strong solution. In addition, there are some conclu-

sions related to the existence and uniqueness of the strong solution to the moist atmospheric

equations (see references [42–45]). It should be noted that the references [33–45] all take posi-

tive constant pressure as the upper boundary of atmosphere and some approximations adopted

are inconsistent with the actual physical processes. However, the theoretical achievements in

these papers provide some new useful research methods for studying the well-posedness of the

models used in real-world forecasting.

Due to the increased complexity of the dynamic framework of the climate-system/earth-

system models compared to the primitive equations, there are still some difficulties should be

overcomed in order to prove their well-posedness. For example, in the dynamic framework of the

AGCM, the difficulties are from: (1) Taking the upper atmospheric pressure as zero, leading to

the singularity of some terms; (2) more complex boundary conditions being given in the model,

which creates some additional boundary terms to resolve; (3) the non-divergence approximation

of the vertically integrated wind being eliminated, making it necessary to prove the higher-order

regularity estimations of the atmospheric pressure deviation at the lower atmospheric interface;

and (4) the external forcing terms being assumed to be nonlinear functions related to the

atmospheric temperature and pressure rather than to known functions, so a lot of complex

normal estimations are introduced. When studying the dynamic framework of the ocean-

atmosphere coupled model, the difficulties caused by the complex coupled boundary conditions

have to be overcome, and the higher-order regularity estimations of the ocean salinity deviation

and the high deviation of the ocean interface must be proven.

In recent years, our research group has made great efforts to solve these difficulties. Now

there has been some progress in the well-posedness of the dynamic framework of the AGCM

and OGCM.

3.1 Well-posedness of the atmospheric general circulation model

a) In 2018, Lian, Zeng and Jin [46] proved the L1 stability of the global weak solution of IAP-

AGCM by using the energy estimation method. Firstly, the dynamic framework of IAP-AGCM

was expressed as an operator equation; next, a sequence of weak solutions of the operator

equation was given, and the initial data sequence of the global weak solutions sequence was

assumed to converge in L1. Then, the energy estimates were established, and using compactness

arguments, the L1 stability of the global weak solution was shown. By Egorov Theorem, we also

proved that the global weak solution was stable almost everywhere. Now let us demonstrate

the main results as follows.

Let ~Um = (~V m, T ′m) be a sequence of weak solutions to the dynamic framework of the

AGCM (2.3) with the sequence of initial data ~Um|t=0 = (~V m
0 , T ′m

0 ) = ~Um
0 satisfying ‖~Um

0 −



Dynamic Framework in Earth-System Models 813

~U0‖L1(Ω) → 0 as m → +∞ and ‖~Um
0 ‖L2(Ω) < +∞; then, we obtain

‖~Um − ~U‖L1([0,M ];L1(Ω)) → 0 as m → +∞. (3.1)

Moreover, assuming ~Um
0 → ~U0 as m → +∞ and

‖~Um
0 ‖L2(Ω) + ‖~U0‖L2(Ω) < +∞, (3.2)

then we have ~Um → ~U as m → +∞ a.e..

b) In the same year, using energy estimation methods and decomposing the velocity field into

the barotropic velocity field and baroclinic velocity field, Lian and Zeng [47] proved the existence

and uniqueness of a first-order regular global strong solution to the dynamic framework of IAP-

AGCM. Firstly, we established the basic energy estimation of state variables ~V , T ′, and then

we decomposed the velocity field ~V into the barotropic velocity field ~V and baroclinic velocity

field
~̃
V . Next, using energy estimation methods, we obtained the a priori L3 and L4 estimates

of
~̃
V , T ′, and L2 estimates of ∇~V and further obtained the first-order regularity estimations

of state variables ~V , T ′. In conducting the above proof, by Hardy’s inequality, the singularity

caused by taking the upper atmospheric pressure as zero was overcome, and then we used the

method of contradiction to prove the existence of the unique global strong solution. The main

results are as follows.

For any given M > 0, let ~U0 = (vθ0, vλ0, T
′

0) ∈ H1(Ω); then, there exists a unique global

strong solution ~U = (~V , T ′) to the dynamic framework of the AGCM (2.3) satisfying:

~V , T ′ ∈ C([0,M ];H1(Ω)) ∩ L2([0,M ];H2(Ω)). (3.3)

This result confirms the hypothesis of the existence of a global strong solution in Mu et al. [30]

(2001).

3.2 Well-posedness of the AGCM with the water-vapor phase transformation

a) In 2020, Lian and Ma [48] proved the existence and uniqueness of the first order regular

global strong solution to the dynamic framework of IAP-AGCM with the phase transformation

of water vapor.

The phase transformation of water vapor is addressed in the following aspects. The radiant

heating term and the latent heating term are added to the thermodynamic equation in the

following form:

dQ

dt
= −κaT

′ − LFq, (3.4)

where −κaT
′ denotes the radiant heating, −LFq denotes the latent heating, and Fq represents

the mass of water that is added by condensation or removed by evaporation. Moreover, we

also add the specific humidity equation and the liquid water content equation into the dynamic
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framework of IAP-AGCM as follows:





∂q

∂t
+ (~V ∗ · ∇)q + ζ̇∗

∂q

∂ζ
=

khq

p̃s
∆q + kzq

∂

∂ζ

(( gζ

RT̃

)2 ∂q

∂ζ

)
+ Fq,

∂mw

∂t
+ (~V ∗ · ∇)mw + ζ̇∗

∂mw

∂ζ
=

khmw

p̃s
∆mw + kzmw

∂

∂ζ

(( gζ

RT̃

)2 ∂mw

∂ζ

)
− Fq + Pr,

(3.5)

where Pr is the precipitation rate, and Fq and Pr are nonlinear functions depending on temper-

ature and pressure; for their specific forms, refer to [29, 48]. Let ~U0 = (vθ0, vλ0, T
′

0, q0,mw0) ∈

H1(Ω); then, there exists a unique global strong solution ~U to the dynamic framework of

IAP-AGCM with the phase transformation of water vapor satisfying

~V , T ′, q,mw ∈ C([0,M ];H1(Ω)) ∩ L2([0,M ];H2(Ω)). (3.6)

b)In 2022, Ma, Lian and Zeng [49] also proved the existence and uniqueness of the second-

order regular local strong solution to the dynamic framework of IAP-AGCM with the phase

transformation of water vapor.

First, the linear equations corresponding to the dynamic framework of IAP-AGCM with

the phase transformation of water vapor, the initial data and the boundary conditions were

given. Then, under the assumption that the initial data satisfies the second-order regularity,

the higher-order regularity estimations of the state functions in local time were established by

adopting the energy estimation method. In other words, the second-order regularity estimations

of the velocity field, temperature deviation, specific humidity and liquid water content in local

time were also proven, and then the existence and uniqueness of the local strong solution with

second-order regularity was proved by using the contractive mapping principle. We show the

main results as follows.

Let ~U0 = (~V0, T
′

0, q0,mw0) ∈ H2(Ω); there exists a unique local strong solution ~U =

(~V , T ′, q,mw) to the dynamic framework of IAP-AGCM with the phase transformation of water

vapor on Ω× [0, tδ] for some small enough tδ > 0 satisfying





~V , T ′, q,mw ∈ L∞([0, tδ];H
2(Ω)) ∩ L2([0, tδ];H

3(Ω)),

∂~V

∂t
,
∂T ′

∂t
,
∂q

∂t
,
∂mw

∂t
∈ L2([0, tδ];H

1(Ω)).

(3.7)

On this basis, the authors’ group also studied the existence and uniqueness of the second-

order regular global strong solution to the dynamic framework of IAP-AGCM with the phase

transformation of water vapor. The relevant results have been submitted in a paper.

3.3 Well-posedness of the ocean-atmosphere coupled model

Based on the above dynamic framework of the AGCM and OGCM, using actual physical

frictional stress and flux, we give the following physical boundary conditions at the ocean-
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atmosphere interface:





kzF
∂~Va

∂ζ

∣∣∣
ζ=1

+ ks1f(|~V10|)(~Va|ζ=1 − ~Vo|ξ=0) = 0,

kzF
∂T ′

a

∂ζ

∣∣∣
ζ=1

+ ks2f(|~V10|)(T
′

a|ζ=1 − T ′

o|ξ=0) = 0,

kzoF
∂~Vo

∂ξ

∣∣∣
ξ=0

+ ks3f(|~V10|)(~Vo|ξ=0 − ~Va|ζ=1) = 0,

kzoF
∂T ′

o

∂ξ

∣∣∣
ξ=0

+ ks4f(|~V10|)(T
′

o|ξ=0 − T ′

a|ζ=1) = 0,

kzoF
∂S′

∂ξ

∣∣∣
ξ=0

+ ks5(P +R − E)S′|ξ=0 + α|~V10|
3S′|ξ=0 = 0,

(3.8)

where ksi(i = 1, 2, · · · , 5) and α are all positive constants, and f(|~V10|) > 0 is a coefficient

depending on the wind velocity at 10m height. ~Va|ζ=1 and ~Vo|ξ=0 stand for the atmospheric

velocity and the oceanic velocity at the ocean-atmosphere interface, and T ′

a|ζ=1 and T ′

o|ξ=0

stand for the atmospheric temperature deviation and oceanic temperature deviation at the

ocean-atmosphere interface, respectively. The positive constants P , R and E respectively s-

tand for the influences of precipitation, river runoff and evaporation, and this ocean salinity

boundary condition was proposed by Jin et al. [50]. Then, the ocean-atmosphere coupled model

is obtained. Based on the above research on the well-posedness of the dynamic framework of

the atmospheric and oceanic general circulation models, we further studied the existence and

stability of the global weak solutions as well as the existence and uniqueness of the first-order

regular global strong solution to the ocean-atmosphere coupled model, and the relevant results

have been submitted.

In addition, Lian et al. [51–53] studied the well-posedness of IAP-AGCM with stochastic

external forces, and the well-posedness of IAP-OGCM. In the future, we will study the well-

posedness of the fully coupled dynamic framework of CAS-ESM. These studies can theoretically

guarantee coupling coordination among different subsystems in the earth-system model and the

stability of the long-time integration of the model, providing a theoretical basis and technical

guidance for improvements to and developments of the earth-system model.

4 Summary: The Unity of Theory and Practice

Recalling the research history of the well-posedness of the earth-system model, we have

specific and profound experience: Theory can guide practical activities, and new theories can

also be discovered in practical activities. Therefore, in the future, we will try to apply new

methods, new theories and new technologies of applied mathematics to investigate the earth-

system model. We will also actively extract and summarize new mathematical problems in the

process of model development, introducing the scientific issues to the mathematicians. In addi-

tion, through the China Society for Industrial and Applied Mathematics and other high quality

platforms, we hope to promote academic communications and project cooperation between the
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fields of mathematics and earth sciences, carrying out science popularization, information dis-

semination and talent scouting. Taking the mathematical research of the earth-system model as

an example, we hope that a breakthrough in the earth sciences will be made, the theory of the

earth-system model will be promoted into a complete knowledge system and multidisciplinary

fusion will be more close.

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

[1] Zeng, Q. C. and Lin, Z. H., Recent progress on the earth system dynamical model and its numerical
simulations, Advances in Earth Science, 25(1), 2010, 1–6 (in Chinese).

[2] Wang, B., Zhou, T. J., Yu, Y. Q., et al., A perspective on earth system model development, Acta Meteo-

rologica Sinica, 66(6), 2008, 857–869 (in Chinese).

[3] Wang, H. J., Zhu, J. and Pu, Y. F., The earth system simulation, SCIENTIA SINICA Physica, Mechanica

& Astronomica, 44(10), 2014, 1116–1126 (in Chinese).

[4] Zeng, Q. C., Mathematical and Physical Foundations of Numerical Weather Prediction, Science Press,
Beijing, 1979 (in Chinese).

[5] Zeng, Q. C., Some Numerical Ocean-atmosphere Coupling Models, Proceedings of the First International
Symposium on Integrated Global Ocean Monitoring, Tallin, 1983.

[6] Liang, X. Z., Design and Climate Simulation of IAP GCM, Doctoral Dissertation, Institute of Atmospheric
Physics, Chinese Academy of Sciences, 1986 (in chinese).

[7] Zeng, Q. C. and Zhang, X. H., Available energy-conserving schemes for primitive equations of spherical
baroclinic atmosphere, Chinese Journal of Atmospheric Sciences, 11(27), 1987, 121–142 (in chinese).

[8] Zeng, Q. C., Zhang, X. H., Liang, X. Z., et al., Documention of IAP two-level atmospheric general circu-
lation model, TRO44.DOE/ER/60341-H1, 1989.

[9] Zhang, X. H., Dynamical framework of IAP Nine-level atmospheric general circulation model, Advances
in Atmospheric Sciences, 7(1), 1990, 66–77.

[10] Zeng, Q. C., Yuan, C. G., Wang, W. Q., et al., Experiments in numerical extraseasonal prediction of
climate anomalies, Chinese Journal of Atmospheric Sciences, 14(1), 1990, 10–25 (in chinese).

[11] Bi, S. Q., Climate simulation efficacy of IAP nine-level atmospheric general circulation model, Doctoral
Dissertation , Institute of Atmospheric Physics, Chinese Academy of Sciences, 1993 (in chinese).

[12] Liang, X. Z., Descripton of a nine-level grid point atmospheric general circulation model, Advances in

Atmospheric Sciences, 13(3), 1996, 269–298.

[13] Zuo, R. T., Zhang, M., Zhang, D. L., et al., Designing and climatic numerical modeling of 21-level AGCM
(IAP AGCM-III) part I dynamical framework, Chinese Journal of Atmospheric Sciences, 28(5), 2004,
659–674 (in chinese).

[14] Lin, Z. H., Wang, H. J., Zhou, G. Q., et al., Recent advances in dynamical extra-seasonal to annual climate
prediction at IAP/CAS, Advances in Atmospheric Sciences, 21(3), 2004, 456–466.

[15] Zhang, M, Zuo, R. T. and Zeng, Q. C., IAP Nine-level Atmospheric General Circulation Model, Beijing,
China Meteorological Press, 2007 (in chinese).

[16] Zhang, X. H. and Liang, X. Z., A numerical world ocean general circulation model, Advances in Atmo-

spheric Sciences, 6(1), 1989, 44–61.

[17] Zhang, R. H. and Endoh. M., A free surface general circulation model for the tropical Pacific Ocean,
Journal of Geophysical Research, 97, 1992, 11237–11255.

[18] Zhang, R. H., A free surface Tropical Pacific circulation model and its applications, Science in China

(Series B), 25(2), 1995, 204 (in chinese).

[19] Zeng, Q. C., Lin, Z. H. and Zhou, G. Q., Dynamical Extraseasonal Climate Prediction System IAP DCP-II,
Chinese Journal of Atmospheric Sciences, Beijing, 27(3), 2003, 289–303 (in Chinese).



Dynamic Framework in Earth-System Models 817

[20] Lin, Z. H., Li, X., Zhao, Y., et al., An improved short-term climate prediction system and its application
to the extraseasonal prediction of rainfall anomaly in China for 1998, Climatic and Environment Research,
3(4), 1998, 339–348 (in chinese).

[21] Lin, Z. H., Li, X., Zhou, G. Q., et al., Extra seasonal prediction of summer rainfall anomaly over China
with improved IAPPS SCA, Chinese Journal of Atmospheric Sciences, 23(4), 1999, 351–366 (in chinese).

[22] Lin, Z. H., Zhao, Y., Zhou, G. Q., et al., Prediction of Summer Climate Anomaly over China for 1999 and
Its Verification, Climatic and Environment Research, 5(2), 2000, 97–108 (in Chinese).

[23] Lin, Z. H., Zhao, Y., Zhou, G. Q., et al., Numerical prediction of summer precipitation anomalies over
China in 2000, Progress in Natural Science : Materials International, 12(7), 2002, 771–774 (in Chinese).

[24] Zeng, Q. C., Zhou, G. Q., Pu, Y. F., et al., Research on the earth system dynamic model and some related
numerical simulations, Chinese Journal of Atmospheric Sciences, 32(4), 2008, 653–690 (in Chinese).

[25] Zhang, H., Zhang, M. H., Jin, J. B., et al., Description and climate simulation performance of CAS-ESM
version 2, Journal of Advances in Modeling Earth Systems, 12(12), 2020, e2020MS002210.

[26] Lions, J. L., Temam, R. and Wang, S. H., New formulations of the primitive equations of atmosphere and
applications, Nonlinearity, 5(2), 1992, 237–288.

[27] Lions, J. L., Temam, R. and Wang, S. H., Models of the coupled atmosphere and ocean (CAO I & CAO
II), J. Odean (Ed.), Computational Mechanics Advance, 1, Elsevier, Amsterdam, 1(1), 1993, 5–54, 55–119.

[28] Lions, J. L., Temam, R. and Wang, S. H., Mathematical theory for the coupled atmosphere-ocean models
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