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Abstract Let E be a holomophic vector bundle over a compact Astheno-Kähler manifold
(M,ω). The authors would prove that E is a numerically flat vector bundle if E is pseudo-
effective and the first Chern class cBC
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1 Introduction

In [8], Demailly, Peternell and Schneider introduced the conception of numerically flat vector

bundles. Let E be a vector bundle over a compact Kähler manifold (M,ω). Demailly, Peternell

and Schneider [8, Theorem 1.8] proved that E is numerically flat if and only if there exists a

filtration

0 = E0 ⊆ · · · ⊆ Es = E

by subbundles whose quotients are Hermitian flat. Meanwile, they raised an interesting question

whether the above characterization holds in non-Kähler case and pointed out the difficulty is

to show the second Chern number of a numerically flat vector bundle is zero. Recently, Li, Nie

and the second author (see [14, Theorem 1.4]) proved that the conjecture of Demailly, Peternell

and Schneider holds on Astheno-Kähler manifolds and they established some other equivalent

descriptions about numerically flatness.

In [4], Campana, Cao and Matsumura showed that a pseudo-effective vector bundle over a

projective manifold with vanishing first Chern class is numerically flat (see also [12, Theorem

3.4]). This is a key lemma in the classification theory of compact Kähler manifolds with

nef anticanonical line bundle and projective manifolds with pseudo-effecitve tangent bundle.

Recently, Wu [15] generalized this theorem to compact Kähler manifolds. In this paper, we

would generalized this theorem to Astheno-Kähler manifolds.
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Theorem 1.1 Let E be a holomophic vector bundle over a compact Astheno-Kähler man-

ifold (M,ω). If E is pseudo-effective and the first Chern class cBC
1 (E) is zero. Then E is a

numerically flat vector bundle.

2 Preliminary

In this section, firstly, we recall some definitions about positivity of vector bundles.

Definition 2.1 (see [6, 8]) Let (M,ω) be a compact Hermitian manifold and L be a line

bundle over M. L is called numerically effective (short for nef) if for every ε > 0, there exists

a smooth hermitian metric hε on L such that the curvature satisfies
√
−1Θ(L, hε) ≥ −εω. A

singular Hermitian metric on a line bundle L is a hermitian metric h which is given in any

trivialization by a weight function e−ϕ such that ϕ is locally integrable. L is called pseudo-

effective if there exists a singular metric h on L such that the curvature
√
−1Θ(L, h) is a closed

positive (1, 1)-current.

Definition 2.2 (see [3, 8]) We say that a holomorphic vector bundle E is nef over M if

OE(1) is nef over P(E). Furthermore, we say that E is numerically flat if both E and the dual

bundle E∗ is nef. E is called pseudo-effective when OE(1) is a pseudo-effective line bundle and

additionally requires that the image of the non-nef locus of OE(1) is properly contained in M .

In [8], Demailly, Peternell and Schneider study the fundamental properties about nef vector

bundles in detail and give the structure theorem of compact Kähler manifolds with nef tangent

bundle. In [15], Wu gives the following equivalent definition of pseudo-effective vector bundles.

Proposition 2.1 (see [15]) Let (M,ω) be a compact Hermitian manifold and E be a

holomorphic vector bundle over X. Then E is pseudo-effective if and only if for every ε > 0

there exists a singular metric hε with analytic singularities on OE(1), the curvature current

iΘ(OE(1), hε) ≥ −επ∗ω, and the projection π(Sing(hε)) of the singular set of hε is not equal to

X.

A plurisubharmonic function u is said to have analytic singularities if u can be written

locally as

u =
α

2
log(|f1|2 + · · ·+ |f1|N ) + v,

where v is a smooth function, fi are holomorphic functions and α is a positive constant. A sin-

gular hermitian metric h on a line bundle has analytic singularities if ϕ has analytic singularities

where e−ϕ is the local weight function for h.

The Bott-Chern cohomology and the Aeppli cohomology provide important invariants for

the study of the geometry of compact (especially, non-Kähler) complex manifolds. These coho-

mology groups have been introduced by Bott and Chern in [2] and Aeppli in [1].

Definition 2.3 The Bott-Chern cohomology of a complex manifold M is the bi-graded al-
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gebra

H
•,•
BC(M) =

ker ∂ ∩ ker ∂

im ∂∂
. (2.1)

The Aeppli cohomology of a complex manifold M is the bi-graded H
•,•
A (M)-module

H
•,•
A (M) =

ker ∂∂

im ∂ + im ∂
. (2.2)

Definition 2.4 Let ω be a Hermitian metric on a compact complex manifold.

• ω is said to be Gauduchon if ∂∂ωn−1 = 0. In this case, we can define the first Chern

number of a vector bundle E as cBC
1 (E) · [ωn−1].

• ω is said to be Astheno-Kähler if ∂∂ωn−2 = 0. In this case, we can define the second

Chern number of a vector bundle E as cBC
2 (E) · [ωn−2].

Gauduchon [10] proved that given any Hermitian form ω there exists a conformal factor

eΦ such that the new form eΦω is Gauduchon metric. Astheno-Kähler metric was introduced

by Jost and Yau [13] in their study of Hermitian harmonic maps from Hermitian manifolds to

general Riemmanian manifolds.

Now, we wish to introduce the pushforward formula of Segre forms which was proved by

Guler [11] for projective manifolds and by Diverio [9] for general compact complex manifolds.

Let E be a rank r holomorphic vector bundle on a complex manifold X and

c•(E) = 1 + c1(E) + · · ·+ cr(E) ∈ H•(X,Z)

be the total Chern class of E. The inverse of c•(E) is defined by the total Segre class

s•(E) = 1 + s1(E) + · · ·+ sr(E) ∈ H•(X,Z).

Given a Hermitian metric H on E, then these Segre forms sk(E,H) can be defined by the

following relation:

sk(E,H) + c1(E,H)sk−1(E,H) + · · ·+ ck(E,H) = 0, 0 ≤ k ≤ min(r, n).

For example,

s1(E,H) = −c1(E,H)

and

s2(E,H) = c1(E,H)2 − c2(E,H).

Let π : P(E) → M be the projectivized bundle of hyperplanes of E, and OE(1) be the associated

canonical line bundle. Denote h the induced metric on OE(1) and α =
√
−1
2π Θ(OE(1), h). We

have the following formula of Segre forms which is proved by Diverio.

Lemma 2.1 (see [9, 11]) For each 0 ≤ k ≤ n, we have the equality

π∗(α
r−1+k) = sk(E,H).
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Recently, Li, Nie and the second author established some equivalent descriptions about

numerically flat vector bundles on Astheno-Kähler manifolds.

Theorem 2.1 (see [14, Theorem 1.4]) Let (M,ω) be an n-dimensional compact Astheno-

Kähler manifold, ω̃ be a Gauduchon metric conformal to ω, and E be a holomorphic vector

bundle over M. Then the following statements on E are equivalent:

• E is numerically flat.

• E is ω̃-semistable and cBC
1 (E) · [ω̃n−1] = chBC

2 (E) · [ωn−2] = 0.

• E is approximate Hermitian flat.

• There exists a filtration

0 = E0 ⊆ · · · ⊆ Es = E

by subbundles whose quotients are Hermitian flat.

3 Proof of Theorem 1.1

In this section, we would prove Theorem 3.1 which generalizes [5, Theorem 1]. Theorem 1.1

is a corollary of the following theorem.

Theorem 3.1 Let E be a pseudo-effective vector bundle over a compact Astheno-Kähler

manifold (M,ω). Let ω̃ be a Gauduchon metric conformal to ω. If cBC
1 (E) · [ω̃n−1] = 0. Then

E is a numerically flat vector bundle.

Proof By Theorem 2.1, we just need to prove that E is ω̃-semistable and chBC
2 (E)·[ωn−2] =

0. The proof of semistable is the same as the proof of [5, Theorem 1]. The key point is the

vanishing of the second Chern number. Since E is pseudo-effective, det(E) is a pseudo-effective

line bundle (see [15, Corollary 1]). We know that cBC
1 (E) is zero since det(E) is pseudo-effective

and the first Chern number vanishes. By the Bogomolov inequality (see [14, Proposition 2.6]),

we obtain

cBC
2 (E) · [ωn−2] ≥ r − 1

2r
cBC
1 (E)2 · [ωn−2] = 0. (3.1)

On the other hand, we have

sBC
2 (E) · [ωn−2] ≥ 0, (3.2)

which will be proved in Proposition 3.1. Combining the two Chern number inequalities, we

conclude that chBC
2 (E) · [ωn−2] = 1

2 (c
BC
1 (E)2 − 2cBC

2 (E)) · [ωn−2] = 0. This completes the

proof.

By the definition of pseudo-effectivity (Proposition 2.1), for every ε > 0, there exists a

singular metric hε with analytic singularity on OP(E)(1), such that the curvature current

i

2π
Θ(OP(E)(1), hε) ≥ −επ∗(e(n−1)φω)
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and π(Sing(hε)) is not equal to M . By a classical result of Gauduchon [10], we can find a

unique smooth function φ such that maxM φ = 0 and ω̃ = eφω is Gauduchon. Choose a smooth

Hermitian metric H on E, denoted by h the induced metric on OP(E)(1), let α = c1(OP(E)(1), h)

and consider the singular metric hε = he−ϕε , where ϕε is a function in P(E). Then we have

α+ i∂∂ϕε + επ∗(e(n−1)φω) ≥ 0.

When the metric on OP(E)(1) is singular, we could not just follow Lemma 2.1, we define

new currents Sδ,ε with bounded potential functions:

Sδ,ε = α+ επ∗(e(n−1)φω) + i∂∂ log(eϕε + δ),

where δ is a positive constant. The Sδ,ε have a positive lower bound that does not depend on

δ, we have

Sδ,ε +Kπ∗(e(n−1)φω) ≥ 0.

By the definition of Monge-Ampère operators (see [7]), we know that

(Sδ,ε +Kπ∗(e(n−1)φω))r+1 ≥ 0.

By the positivity of (Sδ,ε +Kπ∗(e(n−1)φω))r+1 and some careful calculation, we have the fol-

lowing proposition.

Proposition 3.1 Let E be a pseudo-effective vector bundle over a compact Astheno-Kähler

manifold (M,ω). Let ω̃ be a Gauduchon metric conformal to ω. If cBC
1 (E) · [ω̃n−1] = 0. Then

sBC
2 (E) · [ωn−2] ≥ 0.

Proof

0 ≤
∫

P(E)

π∗ηε(Sδ,ε +Kπ∗(e(n−1)φω))r+1 ∧ π∗ωn−2

=

∫

P(E)

π∗ηεS
r+1
δ,ε ∧ π∗ωn−2 + (r + 1)K

∫

P(E)

π∗ηεS
r
δ,ε ∧ π∗(eφω)n−1

+
r(r + 1)K2

2

∫

M

ηεe
2(n−1)φωn. (3.3)

For each ε > 0, we can choose a smooth function 0 ≤ ηε ≤ 1, which is equal to 1 in a domain

of π(Zε) (Zε are singularities of ϕε) such that

r(r + 1)K2

2

∫

M

ηεe
2(n−1)φωn < ε. (3.4)

Since the support of 1 − π∗ηε belongs to P(E) \ Zε, by the continuity of Monge-Ampère

operators (see [7, Corollary 3.6]) along the bounded decreasing sequences, we can choose δ > 0

small enough such that
∫

P(E)

(1− π∗ηε)S
r+1
δ,ε ∧ π∗ωn−2 > −ε

3
(3.5)
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and

∫

P(E)

(1− π∗ηε)S
r
δ,ε ∧ π∗ω̃n−1 > − ε

3K(r + 1)
. (3.6)

The reader can refer to [5, Page 529] for details.

∫

P(E)

Sr
δ,ε ∧ π∗(eφω)n−1 =

∫

P(E)

Sr
δ,ε ∧ π∗(ω̃)n−1

=

∫

P(E)

(α +
√
−1∂∂ log(eϕε + δ) + επ∗(e(n−1)φω))r ∧ π∗ω̃n−1

=

∫

P(E)

(α +
√
−1∂∂ log(eϕε + δ))r ∧ π∗ω̃n−1

+ rε

∫

P(E)

(α+
√
−1∂∂ log(eϕε + δ))r−1 ∧ π∗(e

2(n−1)
n

φω)n

=

∫

P(E)

αr ∧ π∗ω̃n−1 + rε

∫

P(E)

αr−1 ∧ π∗(e
2(n−1)

n
φω)n

=

∫

M

s1(E,H) ∧ ω̃n−1 + rε

∫

M

e2(n−1)φωn

= rε

∫

M

e2(n−1)φωn. (3.7)

The fourth equality comes from ∂∂π∗(e
2(n−1)

n
φω)n = π∗∂∂(e

2(n−1)
n

φω)n = 0, ∂∂ω̃n−1 = 0 and

Stoke’s theorem. The fifth equality comes from Theorem 2.1, in the last equality, we use the

condition: sBC
1 (E) · [ω̃n−1] = −cBC

1 (E) · [ω̃n−1] = 0. Combining with (3.3)–(3.7), we get

0 ≤ ε+ r(r + 1)Kε

∫

M

e2(n−1)φωn +
2ε

3
+

∫

P(E)

Sr+1
δ,ε ∧ π∗ωn−2. (3.8)

Now we would calculate the second Segre number sBC
2 (E) · [ωn−2]. Since ∂∂ωn−2 = 0, we have

sBC
2 (E) · [ωn−2] =

∫

M

s2(E,H) ∧ ωn−2, (3.9)

where H is a arbitrary Hermitian metric on E and the second Segre number does not depend

on the Hermitian metric H .

∫

M

s2(E,H) ∧ ωn−2 =

∫

P(E)

αr+1 ∧ π∗ωn−2

=

∫

P(E)

(α+ i∂∂ log(eϕε + δ))r+1 ∧ π∗ωn−2

=

∫

P(E)

(Sδ,ε − επ∗(e(n−1)φω))r+1 ∧ π∗ωn−2

=

∫

P(E)

Sr+1
δ,ε ∧ π∗ωn−2 − (r + 1)ε

∫

P(E)

Sr
δ,ε ∧ π∗(eφω)n−1

+
r(r + 1)

2
ε2

∫

M

Sr−1
δ,ε ∧ π∗(e2(n−1)φωn). (3.10)
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It is easy to see that
∫

P(E)

Sr−1
δ,ε ∧ π∗(e2(n−1)φωn) =

∫

P(E)

αr−1 ∧ π∗(e2(n−1)φωn)

=

∫

M

e2(n−1)φωn. (3.11)

So the integration above is bounded. Combining with (3.10)–(3.11) and (3.7), we obtain
∫

M

s2(E,H) ∧ ωn−2 =

∫

P(E)

Sr+1
δ,ε ∧ π∗ωn−2 − r(r + 1)ε2

∫

M

e2(n−1)φωn

+
r(r + 1)

2
ε2

∫

M

e2(n−1)φωn. (3.12)

Conmbining with (3.12) and (3.8)–(3.9), let ε → 0, we have

sBC
2 (E) · [ωn−2] ≥ 0. (3.13)

Remark 3.1 By [14, Theorem 1.4], there exists a filtration

0 = E0 ⊆ · · · ⊆ Es = E

by subbundles whose quotients are Hermitian flat. Hence, all Chern classes ck(E) and Segre

classes sk(E) vanish. Unlike the Gauduchon metrics the Astheno-Kähler metrics impose some

constraints on the underlying manifold. It is still unknown that is a numerically flat vector

bundle equivalent to the existence of a filtration

0 = E0 ⊆ · · · ⊆ Es = E

by subbundles whose quotients are Hermitian flat in non-Astheno-Kähler complex manifold.
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