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1 Introduction

Canonical metrics on Kähler manifolds are a fundamental problem in complex geometry.

Given a compact Kähler manifold (M,ω0), a Kähler metric ω ∈ [ω0] is called extremal if it is a

critical point of the functional

f(ω) =

∫

M

[S(ω)]2ω
n

n!
,

where S(ω) is the scalar curvature. The gradient of the scalar curvature being a holomorphic

vector field is the Euler-Lagrange equation for this variational problem. If S(ω) ≡ constant,

then ω is an extremal metric.

Extremal metrics were introduced by Calabi and have been studied extensively for the

last 30 years. Tian provided an analytic stability condition that he proved to be equivalent

to the existence of a Kähler-Einstein metric, and also defined the algebro-geometric notion

of K-stability (see [24]). Donaldson extended Tian’s definition of K-stability by giving an

algebro-geometric definition of the Futaki invariant and conjectured that it is equivalent to the

existence of a constant scalar curvature Kähler (cscK for short) metric (see [12]). The Yau-

Tian-Donaldson conjecture states that a manifold M admits a cscK metric in the class c1(L) if

and only if (M,L) is K-stable. This conjecture was generalized to extremal metrics.

In recent years, several researchers have made progress towards this conjecture, including

Chen-Cheng, Darvas-Lu and Li (see [3, 8–9, 10–11, 18, 20]).

Donaldson [12] initiated a program to study extremal metrics on toric manifolds and for-

mulated K-stability for polytopes. He conjectured that stability implies the existence of the

cscK metric on toric manifolds, and solved the problem for cscK metrics on toric surfaces (see

[14]). Chen, Li and Sheng solved the problem for extremal metrics for toric surfaces (see [7])

and generalized the result to homogeneous toric bundles (see [5]). Recently, Chen, Cheng and

Li proved the existence of cscK metrics under uniform stability conditions for toric manifolds

of any dimension. However, the conjecture is still open in general.
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Examples from Apostolov, Calderbank, Gauduchon and Friedman [2] suggest that the con-

dition of K-stability may need to be modified for polarized manifolds. Székelyhidi introduced

K̂-stability and proved that (M,L) is K̂-stable when M admits a cscK metric in c1(L) and has

a discrete automorphism group (see [23]). He formulated a variant of the Yau-Tian-Donaldson

conjecture, which states that the manifold M admits an extremal metric in c1(L) if and only if

(M,L) is K̂-stable.

Donaldson suggested in [15] that Szekelyhidi’s definition (see [23]) gives the correct for-

mulation of the YTD conjecture. Recently, Li–Lian–Sheng solved the Yau-Tian-Donaldson

conjecture of the filtration version for toric manifolds (see [19]).

Theorem 1.1 Let (M,ω) be an n-dimensional compact toric manifold, and ∆ be its Delzant

polytope. A is a smooth function on ∆. Then (∆, A) is K̂-stable if and only if there exists a

smooth Tn-invariant metric g on M such that the scalar curvature of g is A.

Let A be a constant or a linear function on ∆. As a consequence we have solved the Yau-

Tian-Donaldson conjecture of the filtration version for n-dimensional toric manifolds (see also

the feature article [16]).

2 Delzant Polytope and Toric Manifolds

2.1 Delzant polytope

A toric manifold is a symplectic manifold (M,ω) of dimension 2n that admits an effective

n-torus Tn-Hamiltonian action.

The torus action gives rise to a moment map τ : M → t∗, where t ∼= Rn is the Lie algebra

of Tn and t∗ is its dual. The image ∆ = τ(M) is a convex polytope in t∗ known as the Delzant

polytope of M .

Definition 2.1 A convex polytope ∆ in t∗ is a Delzant polytope if:

(I) There are n edges meeting at each vertex;

(II) the edges meeting at the vertex p are rational, i.e., each edge is of the form p + tvi,

0 ≤ t ≤ ∞, where vi ∈ Zn;

(III) the v1, · · · , vn in item (II) can be chosen to be a basis of Zn.

Example 2.1 The following is some examples of Delzant polotopes and a non-Delzant

polotope.

Figure 1 Delzant polotope.
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Figure 2 Non-Delzant polotope.

Delzant’s theorem is a fundamental result in symplectic geometry that relates toric mani-

folds to Delzant polytopes. It provides a powerful tool for studying toric manifolds and their

geometry, and the connection has important applications in various areas of mathematics and

physics.

Delzant’s theorem establishes a correspondence between toric manifolds and Delzant poly-

topes. Given a Delzant polytope ∆, Delzant associates a closed connected symplectic manifold

(M∆, ω) of dimension 2n together with a Hamiltonian Tn-action τ : T n → Diff(M∆, ω) whose

moment map µτ : M∆ → t∗ satisfies µτ (M∆) = ∆.

The Delzant theorem states that toric manifolds are classified by Delzant polytopes, which

means that there is a one-to-one correspondence between toric manifolds and Delzant polytopes

given by the map

{Toric manifolds} ↔ {Delzant polytopes}

{M2n, ω, T n, τ} 7→ τ(M).

Example 2.2 The following is some examples of toric manifolds and Delzant polytope.

C

C

Figure 3 CP
1 and CP

2.
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C

 

Figure 4 CP
3 and Hirzebruch surfaces.

2.2 Abreu’s equation

There are two natural types of local coordinates on a toric manifold: Complex log affine

coordinates z ∈ Cn and symplectic (Darboux) coordinates ξ ∈ ∆ ⊂ Rn. The open dense subset

M◦ of M is defined as the set of points where the Tn-action is free. In complex coordinates,

M◦ is given by

M◦ = R
n × iTn = x+ iy : x ∈ R

n, y ∈ R
n/Zn,

where the T
n-action is given by t · (x + iy) = x + i(y + t) and the complex structure J is

multiplication by i. The Kähler form is given by a potential f ∈ C∞(M◦), which depends only

on the x coordinates: f = f(x) ∈ C∞(Rn). Since f is a smooth strictly convex function on t,

its gradient defines a normal map ∇f from t to t∗, given by

ξ = ∇f (x) =
( ∂f

∂x1

, · · · , ∂f

∂xn

)
.

Let u = L(f) be the Legendre transformation of f .

In symplectic coordinates, M◦ can be described as

M◦ = {(ξ, y) : ξ ∈ ∆ ⊂ R
n, y ∈ R

n/Zn},

where the Tn-action is given by t · (ξ, y) = (ξ, y+ t). The moment map, restricted to ∆, is given

by

τf : ∆ → t
∇f

−−→ ∆,

(z1, · · · , zn) 7→ (x1, · · · , xn) 7→ (ξ1, · · · , ξn).

Let M be a compact complex manifold equipped with a torus action by Tn. Let C∞
Tn(M)

denote the set of smooth Tn-invariant functions on M , and let ωg be a Kähler form on M .
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Define

C∞(M,ωg) =
{
φ ∈ C∞

Tn(M)
∣∣∣ωg +

√
−1

2π
∂∂φ > 0

}
.

Given a polytope ∆ in Rn with facets ℓ1, · · · , ℓd, let νi be the inward pointing normal vector

to the facet ℓi, and let li(ξ) =
∑
j

ξjν
j
i − λi be the equation for the facet ℓi. Then

∆ = {ξ | li(ξ) > 0, 0 ≤ i ≤ d− 1}.

Let v(ξ) =
∑
i

li(ξ) log li(ξ) be the Guillemin symplectic potential function. Define

C∞(M,ωg) =
{
φ ∈ C∞

Tn(M)
∣∣∣ωg +

√
−1

2π
∂∂φ > 0

}
.

We say a convex function u satisfies “Guillemin’s boundary condition” if u ∈ C∞(∆, v).

In terms of coordinates ξ and Legendre transform function u of f , the scalar curvature can

be written as

R(u) = −ΣU ijwij ,

where (U ij) is the cofactor matrix of the Hessian matrix (uij), and w = (det(uij))
−1.

It is well known that ωf gives an extremal metric if and only if R(u) is a linear function of

∆. Let A be a smooth function on ∆. The Abreu equation in [1] is given by

−ΣU ijwij = A.

2.3 Extremal metric on toric manifolds

Guillemin constructed a natural Kähler form ωg on a toric symplectic manifold M and

denoted its class by [ωg]. This metric is known as the Guillemin metric. Let v = L(g), where

g is the potential function of the Guillemin metric.

The following theorem is due to Guillemin.

Theorem 2.1 (see Guillemin [17]) Suppose that ∆ is defined by linear inequalities 〈ξ, vi〉−
λi > 0, where vi is the inward pointing normal vector to the facet Fi of ∆, and 〈ξ, vi〉 − λi = 0

defines the facet. Write li(ξ) = 〈ξ, vi〉 − λi. Then

v(ξ) =
∑

i

li log li.

The problem of prescribing scalar curvature for the Guillemin metric reduces to finding a

smooth convex solution u in ∆ for the 4-th order PDE

−ΣU ijwij = A (2.1)

subject to the boundary condition

u−
∑

i

li log li ∈ C∞(∆)

(see [13, 22]).
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3 K-stability and Existence of Extremal Metrics

3.1 K-stability and existence of extremal metrics

For any smooth function A on ∆, Donaldson defines a functional on C∞(∆) as follows:

FA(u) = −
∫

∆

log det(uij)dµ+ LA(u),

where LA is the linear functional

LA(u) =

∫

∂∆

udσ −
∫

∆

Audµ.

When A is constant, the functional FA is called the Mabuchi functional, and LA is the Futaki

invariants.

We introduce several classes of functions.

Denote P as the set of rational piecewise linear convex functions on ∆.

Set

C = {u ∈ C(∆) : u is convex on ∆ and smooth in ∆},
S =

{
u ∈ C(∆) : u is convex on ∆ and u− v is smooth on ∆

}
.

For a fixed point po ∈ ∆, we consider

Ppo
= {u ∈ P : u ≥ u(po) = 0}, (3.1)

Cpo
= {u ∈ C : u ≥ u(po) = 0}, (3.2)

Spo
= {u ∈ S : u ≥ u(po) = 0}. (3.3)

We say functions in Ppo
, Cpo

and Spo
are normalized at po. Let

C∗ =

{
u | there exists a constant C > 0 and a sequence of uk in Ppo

such

that
∫
∂∆

ukdσ < C and uk locally uniformly converges to u in ∆

}
.

Let P > 0 be a constant, we define

CP
∗ =

{
u ∈ C∗

∣∣∣
∫

∂∆

udσ ≤ P
}
.

Definition 3.1 Let A ∈ C∞(∆) be a smooth function on ∆. (∆, A) is called K-stable if

LA(u) ≥ 0 for all rational piecewise-linear convex functions u and

LA(u) = 0

if and only if u is a linear function.

Donaldson also introduced a stronger version of stability, which we call uniform stability.

We fix a point p ∈ ∆ and say that u is normalized at p if u ≥ u(p) = 0.
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Definition 3.2 (∆, A) is called uniformly stable if there is a constant λ > 0 such that for

any normalized convex function u ∈ C∞(∆), we have

LA(u) ≥ λ

∫

∂∆

u.

Sometimes we say that ∆ is (A, λ)-stable.

It is easy to show that uniform stability implies K-stability.

For any dimension, Chen, Li and Sheng have proved in [6] the following theorem.

Theorem 3.1 If the Abreu equation (2.1) has a smooth solution in S(∆, v), then (∆, A) is

uniformly stable.

3.2 Test configurations and K-stability

Consider a compact complex manifold X with an ample line bundle L.

Definition 3.3 A test configuration for (X,L) of exponent r consists of:

(1) A scheme χ with a C∗-action.

(2) A C∗-equivariant line bundle L → χ.

(3) A flat C∗-equivariant map π : χ → C, where C∗ acts on C by multiplication in the

standard way, such that any fibre χt = π−1(t) for t 6= 0 is isomorphic to X and the pair (X,Lr)

is isomorphic to (χt,Lχt
).

The number r is called the exponent of the test-configuration. The C∗-action on χ induces

an action on the central fibre : The scheme X0 = π−1(0).

A test configuration for (M,L) of exponent r > 0 can be constructed by embedding M into

CPNr using a basis of sections of Lr and a C∗-subgroup of GL(Nr + 1,C).

For toric varieties, Donaldson showed that any rational piecewise linear convex function on

the moment polytope gives rise to a test-configuration of the variety.

Definition 3.4 The pair (X,L) is K-stable if for each test configuration for (X,L), the

Futaki invariant of the induced action on (χ0,LX0
) is ≥ 0 with equality if and only if the test

configuration is trivial.

3.3 Filtrations

Let (X,L) be a polarized manifold. We denote Rk = H0(X,Lk), and

R =
⊕

k≥0

Rk =
⊕

k≥0

H0(X,Lk)

as the homogeneous coordinate ring of (X,L) (see [4, 21, 23]).

Definition 3.5 A filtration of R is a chain of finite-dimensional subspaces

C = F0R ⊂ F1R ⊂ F2R ⊂ · · · ⊂ R,

such that the following conditions hold:

(1) The filtration is multiplicative, i.e.,

(FiR)(FjR) ⊂ Fi+jR
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for all i, j ≥ 0;

(2) The filtration is compatible with the grading Rk of R, i.e., if f ∈ FiR for some i ≥ 0,

then each homogeneous piece of f is also in FiR;

(3)
⋃
i≥0

FiR = R.

Given a filtration χ of R, the Rees algebra of χ is defined as

Rees(χ) =
⊕

i≥0

(FiR)ti ⊂ R[t].

The associated graded algebra of χ is defined as

gr(χ) =
⊕

i≥0

(FiR)/(Fi−1R),

where F−1R = 0.

The fiber of the Rees algebra of χ at non-zero t is isomorphic to R, while the fiber at t = 0

is isomorphic to gr(χ).

We call a filtration finitely generated if its Rees algebra is finitely generated. The main

advantage of considering filtrations instead of test configurations is that filtrations are more

general, as they are not all necessarily finitely generated.

3.4 Filtration for toric manifolds

For toric varieties, Donaldson showed that any rational piecewise linear convex function

defined on the moment polytope corresponds to a test-configuration of the variety. Székelyhidi

showed that any positive convex function on the polytope gives rise to a filtration of the homo-

geneous coordinate ring.

Suppose that f : ∆ → R is a positive convex function, where ∆ is the moment polytope

corresponding to the polarized toric variety (X,L). A basis of sections of H0(X,Lk) can be

identified with the rational lattice points in ∆
⋂

1

k
Zn. If α ∈ ∆

⋂
1

k
Zn, we write sα for the

corresponding section of Lk.

Now, on Rk = H0(X,Lk), define the filtration as follows:

FiR
k = span{sα : kf(α) ≤ i}.

The convexity of f ensures that the filtration of the graded ring of (X,L) defined in this way

satisfies the multiplicative property. The other two conditions also follow easily.

Let fk : ∆ → R be the largest convex function that, on the points α ∈ ∆
⋂

1

k
Zn, is defined

by

fk(α) =
1

k
⌈kf(α)⌉.

fk is a rational piecewise-linear approximation to the function f .

Donaldson showed that the test-configuration corresponding to fk has Futaki invariant

La(fk) =

∫

∂∆

fkdσ − a

∫

∆

fkdµ,



Extremal Kähler Metrics of Toric Manifolds 835

where dσ is a certain measure on the boundary and a is a normalizing constant. Since fk is a

decreasing sequence of functions converging to f pointwise, we have

lim
k→∞

La(fk) =

∫

∂∆

fdσ − a

∫

∆

fdµ.

Definition 3.6 Let A ∈ C∞(∆) be a smooth function on ∆. (∆, A) is called K̂-stable if

LA(u) ≥ 0 for all convex functions u : ∆ → R, and LA(u) = 0 if and only if u is a linear

function in ∆.

Since test configurations and filtrations are algebraic objects, both K-stability and K̂-

stability are algebraic conditions. It is evident that uniform stability implies K̂-stability. How-

ever, the converse is not straightforward.

4 Proof of Theorem 1.1

Let ∆ be a n-dimensional convex polytope and A be a scalar function on ∆. We define Q
to be the set of lower semi-continuous functions u in CP

∗ such that

∫

∂∆

udσ = 1, u(o) = inf
∆

u = 0,

where o is the center of ∆. We have the following results (see [19]).

Theorem 4.1 Suppose (∆, A) is K̂-stable. If u ∈ Q and LA(u) = 0, then u ∈ L∞(∆).

Theorem 4.2 Let (M,ω) be an n-dimensional compact toric manifold with Delzant polytope

∆. Then (∆, A) is K̂-stable if and only if there exists λ > 0 such that (∆, A) is uniformly K-

stable.

To prove Theorem 1.1, we use the continuity method. Let I = [0, 1] be the unit interval.

At t = 0, we start with the Guillemin metric, and let A0 be its scalar curvature on ∆. Then ∆

must be (A0, λ0)-stable for some constant λ0 > 0.

We then define At = tA + (1 − t)A0 and λt = tλ+ (1 − t)λ0. It is easy to verify that ∆ is

(At, λt)-stable for any t ∈ [0, 1]. We define

Λ = {t | S(u) = At has a solution in S},

and we need to show that Λ is both open and closed.

Openness of Λ is standard. To show that Λ is closed, we use Chen-Cheng’s calculation to

obtain the following theorem.

Theorem 4.3 If ∆ is (A, λ)-stable, then the entropy
∫
M

F eFωn
g is bounded, where F =

log
ωn

f

ωn
g
.

Using the results of Chen-Cheng, we obtain [0, 1] ⊂ Λ.
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