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Abstract In this paper, the authors provide a brief introduction of the path-dependent
partial differential equations (PDEs for short) in the space of continuous paths, where the
path derivatives are in the Dupire (rather than Fréchet) sense. They present the connec-
tions between Wiener expectation, backward stochastic differential equations (BSDEs for
short) and path-dependent PDEs. They also consider the well-posedness of path-dependent
PDEs, including classical solutions, Sobolev solutions and viscosity solutions.
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1 Introduction

Let us begin with the space of d-dimensional continuous paths Ω = C0([0, T ];R
d) starting

from origin, and equipped with the uniform norm

‖ω‖ := max
s∈[0,T ]

|ωs|, ω ∈ Ω,

where T > 0 is a fixed constant. Suppose that B(Ω) is the Borel σ-algebra of Ω and Bt(ω) := ωt

is the canonical process. In 1923, Wiener [41] introduced a probability measure P on (Ω,B(Ω)),

under which the canonical process is a d-dimensional standard Brownian motion, i.e., B is

incrementally stable and incrementally independent such that E[BsB
⊤
t ] = min(s, t)Id for any

s, t ∈ [0, T ]. The probability measure P is called the Wiener measure, the space Ω is called

the Wiener space and a function defined on Ω is called a Wiener functional. Afterwards, many

interesting and important probability models has been realized as Wiener functionals on Wiener

space, for example, diffusion processes.

Manuscript received May 3, 2023. Revised July 9, 2023.
1School of Mathematics, Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan
250100, China. E-mail: peng@sdu.edu.cn

2Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
E-mail: yssong@amss.ac.cn

3Zhongtai Securities Institute for Financial Studies, School of Mathematics, Shandong University, Jinan
250100, China. E-mail: flwang@sdu.edu.cn

∗This work was supported by the National Key R&D Program of China (Nos. 2018YFA0703900, 2020Y-
FA0712700, 2018YFA0703901), the National Natural Science Foundation of China (Nos. 12031009,
12171280) and the Natural Science Foundation of Shandong Province (Nos. ZR2021YQ01,
ZR2022JQ01).



838 S. G. Peng, Y. S. Song and F. L. Wang

The present paper is a survey to the recent developments of the following type of path-

dependent PDEs,




Dtu(t, ω) +

1

2
tr(D2

xu(t, ω)) = 0, (t, ω) ∈ [0, T )× Ω,

u(T, ω) = ξ(ω),
(1.1)

and its generalization to quasilinear cases, see (6.3)–(6.4). Here Dt, Dx and D2
x are not in the

Fréchet sense but in the Dupire’s horizontal/vertical sense (see Section 3 for details). Moreover,

the solution u = u(t, ω) depends only on the past history path rather than the whole path at

time t, i.e.,

u(t, ω) = u(t, ω·∧t) is non-anticipative.

To our best knowledge, the (first-order) path-dependent PDE has been studied by Lukoy-

anov [21], which was called functional Hamilton-Jacobi equation in the paper. Independently,

the term “path-dependent PDE” was proposed in Peng’s talk in ICM2010 (see [28, p. 400]),

which provides a one-to-one correspondence between path-dependent PDEs and BSDEs (or

G-martingales). In fact, a Markovian BSDE can be seen as a semi-linear parabolic PDE via the

nonlinear Feynman-Kac formula introduced by Peng [24] and Pardoux and Peng [23]. A main

observation of [28] is that the solution to a general BSDE is in fact a non-anticipative process

on Wiener space. Thus a very interesting and long-standing problem is to interpret a classical

BSDE in the sense of Pardoux and Peng [22] as a path-dependent PDE.

The presentation of Dupire’s path derivatives have promoted the development of path-

dependent PDEs. Indeed, with the help of Dupire’s derivatives and BSDEs theory, Peng

and Wang [32] established the well-posedness of classical solutions to systems of semi-linear

path-dependent PDEs provided that some regularity conditions are satisfied. A more general

framework of semi-linear path-dependent parabolic integro-differential equations have been s-

tudied in [16, 40]. However, the path-dependent PDEs rarely have classical solutions due to

the absence of any regularizing effect, which is different from the finite-dimensional parabolic

case. Therefore, much research is devoted to various types of weaker notions of solutions of the

path-dependent PDEs.

Based on a space of smooth, cylindrical and non-anticipative processes, Peng and Song [31]

introduced P-weighted Sobolev spaces and the corresponding Sobolev path derivatives. In this

framework, each solution of the BSDE is identified with the Sobolev solution of the correspond-

ing semi-linear path-dependent PDE. In particular, it removes the smooth assumptions on the

terminal conditions compared with the classical solutions case.

On the other hand, the theory of viscosity solutions for Hamilton-Jacobi-Bellman equations

introduced by Crandall and Lions [9] is a fundamentally important approach in the research

of PDEs theory. However, the extension of the viscosity solution to the second order path-

dependent PDEs is still to be further explored. In this case the space of Ω is infinite dimensional

and lacks local compactness, which results in the main difficulty. Various types of notions of
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viscosity solutions to deal with the uniqueness and existence results have been introduced, see

Section 7 for details.

The paper is organized as follows. In Section 2, we start with a revisit to Wiener expectation

to illustrate the main idea of path-depend PDEs. Section 3 is devoted to the introduction of

Dupire’s derivatives. In Sections 4–5, we introduce classical solutions and Sobolev solutions

of (systems of) path-dependent heat equations, respectively. In Section 6, we discuss semi-

linear path-dependent PDEs via BSDEs in Wiener space and the development of the notion

of fully nonlinear path-dependent PDEs and the related BSDEs. In Section 7, we give a brief

introduction of the developments of viscosity solutions.

2 Revisit to Wiener Expectation

In this paper, we denote by 〈·, ·〉 and | · | the scalar product and the associated norm of

an Euclidian space, respectively. For a given set of parameters α, C(α) will denote a positive

constant only depending on these parameters which may change from line to line.

In what follows, we provide an elementary way to introduce the Wiener expectation E[·] (ex-

pectation associated to the Wiener measure) on the measurable space (Ω,B(Ω)) from the view

of path-dependent PDE. Many more powerful nonlinear expectations such as G-expectations

may be established in this way (see [26–27, 29]).

Set Ωt := {ω·∧t : ω ∈ Ω} and denote by B(Ω) (resp. B(Ωt)) the Borel σ-algebra of

Ω (resp. Ωt) for each t ∈ [0, T ]. Consider the following space of cylindrical functions on Wiener

space:

Lip(Ωt) := {ϕ(Bt1 , · · · , Btk) : k ∈ N, t1 < · · · < tk ∈ [0, t], ϕ ∈ Cb.Lip(R
k×d)},

and Lip(Ω) := Lip(ΩT ), where Cb.Lip(R
k×d) denotes the space of all bounded and Lipschitz

functions on Rk×d. Then we could define the Wiener expectation E[ξ] for each ξ ∈ Lip(Ω).

Indeed, for each ξ ∈ Lip(Ω) with the form of

ξ = ϕ(Bt1 , Bt2 , · · · , Btk), 0 = t0 < t1 < · · · < tk = T,

and for each t ∈ [ti−1, ti], i = 1, · · · , k, we define the conditional expectation by

Et[ξ] := ui(t, Bt;Bt1 , · · · , Bti−1). (2.1)

Here, the function ui(t, x;x1, · · · , xi−1) with parameters (x1, · · · , xi−1) ∈ R(i−1)×d is the solu-

tion of the following heat equation:

∂tui(t, x;x1, · · · , xi−1) +
1

2
tr(∂2xui(t, x;x1, · · · , xi−1)) = 0, (t, x) ∈ [ti−1, ti)× R

d (2.2)

with terminal conditions

ui(ti, x;x1, · · · , xi−1) = ui+1(ti, x;x1, · · · , xi−1, x) for i < k,
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and uk(tk, x;x1, · · · , xk−1) = ϕ(x1, · · · , xk−1, x). The Wiener expectation of ξ is defined by

E[ξ] = E0[ξ]. From the properties of PDE (2.2), we have the following result.

Lemma 2.1 The mappings Et[·] : Lip(Ω)→Lip(Ωt) satisfy the following: For each ξ, η ∈

Lip(Ω),

(i) monotonicity : Et[ξ] ≥ Êt[η] if ξ ≥ η;

(ii) constant preserving : Et[ξ] = ξ for ξ ∈ Lip(Ωt);

(iii) linear additivity : Et[ξ + η] = Et[ξ] + Et[η];

(iv) consistency : Es[Et[ξ]] = Ês[ξ] for s ≤ t.

Finally, for each given p ≥ 1, we denote by Lp(Ωt) (resp., L
p(Ω)) the completion of Lip(Ωt)

(resp., Lip(Ω)) under the norm

‖ξ‖Lp := (E[|ξ|p])
1
p .

Then the canonical process Bt = (Bi
t)

d
i=1 is a d-dimensional Brownian motion on the Wiener

space (Ω, L1(Ω),E[·]). Moreover, Et[·] can be continuously extended to the mapping from L1(Ω)

to L1(Ωt). For the sake of convenience, denote by Lp(Ωt;R
d) (resp., Lp(Ω;Rd)) the Rd-valued

random vector such that each component belongs to Lp(Ωt) (resp., L
p(Ω)).

In the above construction of Wiener expectation, (2.2) can be viewed as a discrete type of

path-dependent PDE. Indeed, for each t ∈ [ti−1, ti), i = 1, · · · , k, we denote

u(t, ω) := ui(t, ωt;ωt1 , · · · , ωti−1)

and set

Dtu(t, ω) := ∂t+ui(t, x;x1, · · · , xi−1)|x=ωt,x1=ωt1 ,··· ,xi−1=ωti−1
,

Dxu(t, ω) := ∂xui(t, x;x1, · · · , xi−1)|x=ωt,x1=ωt1 ,··· ,xi−1=ωti−1
,

D2
xu(t, ω) := ∂2xui(t, x;x1, · · · , xi−1)|x=ωt,x1=ωt1 ,··· ,xi−1=ωti−1

.

Then, for each ξ ∈ Lip(Ω), it follows from (2.1) and (2.2) that

u(t, ω) = Et[ξ]

is a classical solution to the path-dependent heat equation (1.1). It is clear that u(t, ω) =

u(t, ω·∧t) since Et[ξ] is progressively measurable (with respect to the filtration B(Ωt)).

Remark 2.1 Suppose ξ = ϕ(BT ), then it is easy to check that

u(t, ω) = Et[ϕ(BT )] = v(t, ωt),

in which v is the solution to the following heat equation




∂tu(t, x) +

1

2
tr(∂2xu(t, x)) = 0, (t, x) ∈ [0, T )× R

d,

u(T, x) = ϕ(x).
(2.3)
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In this case the path-dependent PDE (1.1) reduces to



∂tv(t, ωt) +

1

2
tr(∂2xv(t, ωt)) = 0, (t, ωt) ∈ [0, T )× R

d,

v(T, ω) = ϕ(ωT ).

A natural question is how to characterize the path-dependent heat equation (1.1) for a

general Wiener functional ξ(ω). For instance, how to define the corresponding time and space

derivatives Dtu(t, ω) and Dxu(t, ω) for a progressively measurable function u(t, ω).

3 Dupire’s Derivatives

In the seminal paper [10], Dupire introduced the path derivatives of progressively measurable

functions. An important advantage of Dupire’s derivative is that it emphasizes simply the

perturbation of the point ωt instead of the whole path ω at time t. As a trade-off, one needs

to define the derivatives on a larger space of RCLL (right continuous with left limit) paths,

instead of on Wiener space Ω.

Let Ω̃ be the space of all Rd-valued RCLL functions ω̃ on [0, T ]. As mentioned above, we

are interested in progressively measurable functions. Thus, we introduce the following distance

on [0, T ]× Ω̃. For each (ti, ω̃i) ∈ [0, T ]× Ω̃, i = 1, 2, set

‖ω̃i‖t := sup
s∈[0,t]

|ω̃i
s|, d∞((t1, ω̃1), (t2, ω̃2)) := |t1 − t2|

1
2 + sup

s∈[0,T ]

|ω̃1
s∧t1 − ω̃2

s∧t2 |.

Now we shall introduce the Dupire’s path derivatives. Consider a progressively measurable

function ũ on [0, T ]× Ω̃.

Definition 3.1 The function ũ is said to be continuous at (t, ω̃) ∈ [0, T ] × Ω̃, if for any

ε > 0 there exists δ > 0 such that for each (t′, ω̃′) ∈ [0, T ] × Ω̃ with d∞((t, ω̃), (t′, ω̃′)) < δ,

we have |ũ(t, ω̃) − ũ(t′, ω̃′)| < ε. ũ is said to be in C([0, T ] × Ω̃) if it is continuous at each

(t, ω̃) ∈ [0, T ]× Ω̃.

Definition 3.2 The function ũ is said to be vertically differentiable at (t, ω̃) ∈ [0, T ]× Ω̃,

if there exists a vector p ∈ Rd, such that

ũ(t, ω̃ + h1[t,T ]) = ũ(t, ω̃) + 〈p, h〉+ o(|h|) as h→ 0, h ∈ R
d. (3.1)

Set Dxũ(t, ω̃) := p. ũ is said to be vertically differentiable if Dxũ(t, ω̃) exists for each (t, ω̃) ∈

[0, T ]× Ω̃. We can similarly define D2
xũ(t, ω̃).

Note that the vertical derivatives involve the RCLL function 1[t,T ] and then the space Ω̃ is

necessary in this framework.

Definition 3.3 The function ũ is said to be horizontally differentiable at (t, ω̃) ∈ [0, T )× Ω̃,

if there exists a constant a ∈ R, such that

ũ(t+ h, ω̃·∧t) = ũ(t, ω̃) + ah+ o(h) as h ↓ 0, h ∈ R
+. (3.2)
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We denote Dtũ(t, ω̃) := a. ũ is said to be horizontally differentiable if Dtũ(t, ω̃) exists for each

(t, ω̃) ∈ [0, T )× Ω̃.

It is clear that Dupire’s derivatives just involve the perturbation of a single point and they

also satisfy the classic properties: Linearity, product and chain rule.

Example 3.1 Suppose ũ(t, ω̃) = f(t, ω̃t) for some function f ∈ C1,1([0, T ]× R
d), then

Dtũ(t, ω̃) = ∂tf(t, ω̃t), Dxũ(t, ω̃) = ∂xf(t, ω̃t),

which are the classic derivatives.

Example 3.2 Suppose ũ(t, ω̃) =
∫ t

0 ϕ(ω̃s)ds for some function ϕ ∈ C1(Rd), then

Dtũ(t, ω̃) = ϕ(ω̃t), Dxũ(t, ω̃) = 0.

On the other hand, the Fréchet’s derivative Dωũ(t, ω̃) (with respect to ω) is given by

ω̃′ → Dωũ(t, ω̃)ω̃
′ :=

∫ t

0

∂xϕ(ω̃s)ω̃
′
sds.

It is obvious that

Dxũ(t, ω̃) = Dωũ(t, ω̃)1[t,T ] = 0.

The following collections shall be used frequently in this paper.

Definition 3.4 Let ũ be progressively measurable function on [0, T ]× Ω̃.

(i) ũ is said to be in Cb.Lip([0, T ]× Ω̃) ⊂ C([0, T ]× Ω̃) if ũ is bounded and satisfies

|ũ(t, ω̃)− ũ(t′, ω̃′)| ≤ C(ũ)d∞((t, ω̃), (t′, ω̃′)), (t, ω̃), (t′, ω̃′) ∈ [0, T ]× Ω̃.

(ii) ũ is said to be in Cl.Lip([0, T ]× Ω̃) ⊂ C([0, T ]× Ω̃) if

|ũ(t, ω̃)− ũ(t′, ω̃′)| ≤ C(ũ)(1 + (‖ω̃‖t)
C(ũ) + (‖ω̃′‖t′)

C(ũ))d∞((t, ω̃), (t′, ω̃′))

for any (t, ω̃), (t′, ω̃′) ∈ [0, T ]× Ω̃.

(iii) ũ is said to be in C
1,2
b.Lip([0, T ]×Ω̃) ⊂ C([0, T ]×Ω̃) if ũ, Dtũ, Dxũ, D

2
xũ are in Cb.Lip([0, T ]×

Ω̃). Similarly, we can define C
0,1
b.Lip([0, T ]× Ω̃), C0,2

b.Lip([0, T ]× Ω̃) and C1,2
l.Lip([0, T ]× Ω̃).

Definition 3.5 Given two progressively measurable functions ũ : [0, T ] × Ω̃ → R and u :

[0, T ]× Ω → R. Then

(i) u is said to be consistent with ũ on [0, T ]× Ω if

u(t, ω) = ũ(t, ω), (t, ω) ∈ [0, T ]× Ω. (3.3)

(ii) u is said to be in C
1,2
b.Lip

(
[0, T ]× Ω

)
if there exists ũ ∈ C

1,2
b.Lip([0, T ]× Ω̃) such that (3.3)

holds and we denote

Dtu(t, ω) := Dtũ(t, ω), Dxu(t, ω) := Dxũ(t, ω), D2
xu(t, ω) := D2

xũ(t, ω). (3.4)

Similarly, we can define C
1,2
l.Lip([0, T ]× Ω).
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Remark 3.1 By Zhang [43, Lemma 9.4.2], the path derivatives in (3.4) is independent of

the choice of ũ, i.e., if ũ′ is another smooth function consistent with u, then

Dtũ
′ = Dtũ, Dxũ

′ = Dxũ, D2
xũ

′ = D2
xũ on Ω.

With the help of the above path derivatives, Dupire [10] introduced the the following func-

tional Itô formula. Then it was generalized by Cont and Fournié [2–4] to a more general

formulation (see also [17]).

Theorem 3.1 Let (Ω,F , (Ft)t∈[0,T ], P ) be a probability space. If X is a continuous semi-

martingale and u is in C
1,2
l.Lip([0, T ]× Ω), then for each t ∈ [0, T ],

u(t,X)− u(0, 0) =

∫ t

0

Dsu(s,X) ds+

∫ t

0

Dxu(s,X)dXs +
1

2

∫ t

0

tr[D2
xu(s,X)d〈X〉s] a.s.

In particular, if X is a Brownian motion, then each t ∈ [0, T ],

u(t, B)− u(0, 0) =

∫ t

0

Dsu(s,B) ds+

∫ t

0

Dxu(s,B)dBs +
1

2

∫ t

0

tr[D2
xu(s,B)]ds a.s.

Finally, we give the non-Markovian Feynman-Kac formula based on functional Itô’s formula.

Lemma 3.1 Consider the progressively measurable function u(t, ω) = Et[ξ] for a Wiener

functional ξ. Suppose u(t, ω) ∈ C
1,2
l.Lip([0, T ]×Ω). Then u(t, ω) is the unique C

1,2
l.Lip([0, T ]×Ω)-

solution of path-dependent PDE (1.1).

Proof Applying functional Itô’s formula (Theorem 3.1) yields that for each t ∈ [0, T ],

u(t, ω)− u(0, 0) =

∫ t

0

Dsu(s, ω) ds+

∫ t

0

Dxu(s, ω)dBs +
1

2

∫ t

0

tr[D2
xu(s, ω)]ds,

which together with the fact that u(t, ω) is a martingale indicates that

Dsu(s, ω) +
1

2
tr[D2

xu(s, ω)] = 0.

Note that u(T, ω) = ξ(ω). Thus u is a C1,2
l.Lip([0, T ]×Ω)-solution of path-dependent PDE (1.1).

Suppose u′ ∈ C
1,2
l.Lip([0, T ] × Ω) is also a solution of path-dependent PDE (1.1). It follows

from Theorem 3.1 that u′ is a martingale,

du′(t, ω) = Dxu
′(t, ω)dBt,

i.e.,

u′(t, ω) = Et[ξ] = u(t, ω),

which completes the proof.

Remark 3.2 Note that u(t, ω) = Et[ξ] = E[ξ(Bt,ω)] for each (t, ω) ∈ [0, T ]× Ω, in which

Bt,ω
s := ωs1[0,t] + (Bs −Bt + ωt)1(t,T ], s ∈ [0, T ].

Then we could prove that u(t, ω) is in C1,2
l.Lip([0, T ]×Ω;Rd) under some appropriate assumptions

on the terminal condition ξ, which will be stated in Section 4.
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4 Classical Solutions of Path-Dependent Heat Equations

In this section, we will prove the path-dependent PDE (1.1) admits a classical C1,2-solution

when the terminal condition is smooth enough.

Remark 4.1 In order to simplify the presentation, in this section we consider only C1,2
b.Lip-

solutions. By slightly more involved estimates, we can extend our results to the case of C1,2
l.Lip-

solutions (see [32]).

The following directional derivatives will be used frequently in the subsequent discussions.

Definition 4.1 Given an R-valued function ξ̃ defined on Ω̃.

(i) ξ̃ is said to be in C2(Ω̃), if for each ω̃ ∈ Ω̃ and t ∈ [0, T ], there exists a vector p ∈ Rd

and a symmetric matrix A ∈ Rd×d such that,

ξ̃(ω̃ + h1[t,T ]) = ξ̃(ω̃) + 〈p, h〉+
1

2
〈Ah, h〉+ o(|h|2) as h→ 0, h ∈ R

d.

We denote Dξ̃(t, ω̃) := p and D2ξ̃(t, ω̃) := A. Similarly, we can define C2
b(Ω̃).

(ii) ξ̃ is said to be in C2
b.Lip(Ω̃) ⊂ C2

b(Ω̃) if there exist some constants C > 0 depending only

on ξ̃ such that for each ω̃, ω̃′ ∈ Ω̃, t, t′ ∈ [0, T ],

|ξ̃(ω̃)− ξ̃(ω̃′)|+ |Dξ̃(t, ω̃)− Dξ̃(s, ω̃′)|+ |D2ξ̃(t, ω̃)− D
2ξ̃(s, ω̃′)|

≤ C(|t− t′|+ ‖ω̃ − ω̃′‖).

Similarly, we can define Cb.Lip(Ω̃) and C
1
b.Lip(Ω̃).

Lemma 4.1 Suppose that ξ̃ ∈ C2
b.Lip(Ω̃). Then the function

ũ(t, ω̃) := E[ξ̃(Bt,ω̃)] = E[ξ̃(ω̃s1[0,t] + (Bs −Bt + ω̃t)1(t,T ])]

is in C
0,2
b.Lip([0, T ]× Ω̃).

Proof The proof will be divided into the following two steps.

(1) ũ ∈ Cb,Lip([0, T ]× Ω̃). For any ω̃, ω̃′ ∈ Ω̃, t, t′ ∈ [0, T ],

|ξ̃(ω̃s1[0,t] + (Bs −Bt + ω̃t)1(t,T ])− ξ̃(ω̃s1[0,t′] + (Bs −B′
t + ω̃t′)1(t′,T ])|

≤ C(ξ̃)
(
‖ω̃·∧t − ω̃′

·∧t′‖+ sup
t∧t′≤s≤t∨t′

|Bs −Bt∧t′ |
)
.

It follows that

|ũ(t, ω̃)− ũ(t′, ω̃′)| ≤ C(ξ̃)
(
‖ω̃·∧t − ω̃′

·∧t′‖+ E

[
sup

t∧t′≤s≤t∨t′
|Bs −Bt∧t′ |

])

= C(ξ̃)d∞((t, ω̃), (t′, ω̃′)),

which is the desired result. In particular, ũ is progressively measurable.
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(2) Dxũ, D
2
xũ ∈ Cb,Lip([0, T ]× Ω̃). For each h ∈ R

d, by Taylor’s expansion we have

ξ̃(ω̃s1[0,t] + (Bs −Bt + h+ ω̃t)1(t,T ])

= ξ̃(ω̃s1[0,t] + (Bs −Bt + ω̃t)1(t,T ])

+ h

∫ 1

0

Dξ̃(t, ω̃s1[0,t] + (Bs −Bt + θh+ ω̃t)1(t,T ])dθ,

which together with dominated convergence theorem indicates that

Dxũ(t, ω̃) = lim
h→0

ũ(t, ω̃ + h1[t,T ])− ũ(t, ω̃)

h
= E[Dξ̃(t, Bt,ω̃)].

Then for any ω̃, ω̃′ ∈ Ω̃, t, t′ ∈ [0, T ], we have

|Dξ̃(t, ω̃s1[0,t] + (Bs −Bt + ω̃t)1(t,T ])− Dξ̃(t′, ω̃s1[0,t′] + (Bs −B′
t + ω̃t′)1(t′,T ])|

≤ C(ξ̃)
(
|t− t′|+ ‖ω̃·∧t − ω̃′

·∧t′‖+ sup
t∧t′≤s≤t∨t′

|Bs −Bt∧t′ |
)
,

which indicates that

|Dxũ(t, ω̃)−Dxũ(t
′, ω̃′)|

≤ C(ξ̃)(|t− t′|+ d∞((t, ω̃), (t′, ω̃′)))

≤ C(ξ̃, T )d∞((t, ω̃), (t′, ω̃′)).

By a similar analysis, we could deduce that

D2
xũ(t, ω̃) = E[D2ξ̃(t, Bt,ω̃)]

and D2
xũ ∈ Cb,Lip([0, T ]× Ω̃). The proof is complete.

Compared with the case of vertical derivatives, it is difficult to prove u is horizontally

differentiable due to the path-dependency. In order to prove the existence of Dtũ, we need the

following results.

First, for a fixed constant t ∈ [0, T ) we introduce an approximation procedure: For any

ω̃ ∈ Ω̃, we set

ω̃(n)
s = ω̃s1[0,t)(s) +

n∑

i=1

ω̃tn
i
1[tn

i−1,t
n
i
)(s) + ω̃T1{T}(s)

with tni = t+ i
n
(T − t), i = 0, · · · , n. Then set

ξ̃(n)(ω̃) := ξ̃(ω̃(n))

and

ũ(n)(r, ω̃) := E[ξ̃(n)(Br,ω̃)], (r, ω̃) ∈ [t, T ]× Ω̃.
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Lemma 4.2 Suppose that ξ̃ ∈ C
2
b.Lip(Ω̃). Then Dxũ

(n)(r, ω̃) and D2
xũ

(n)(r, ω̃) exist for any

(r, ω̃) ∈ [t, T ]× Ω̃. Moreover

|ũ(n)(r, ω̃)− ũ(r, ω̃)|+ |Dxũ
(n)(r, ω̃)−Dxũ(r, ω̃)|+ |D2

xũ
(n)(r, ω̃)−D2

xũ(r, ω̃)|

≤ C(ξ̃, T )(n− 1
4 + ‖ω̃

(n)
·∧r − ω̃·∧r‖).

Proof The proof is similar as in Lemma 4.1 (see also [32, Lemma 3.13]) and we omit it.

Lemma 4.3 Suppose that ξ̃ ∈ C2
b.Lip(Ω̃). Then ũ(n) ∈ C

1,2
b.Lip([0, T ]× Ω̃). Moreover




Dtu

(n)(r, ω̃) +
1

2
tr(D2

xu
(n)(r, ω̃)) = 0, (r, ω̃) ∈ [t, T )× Ω̃,

u(n)(T, ω̃) = ξ̃(n)(ω̃).
(4.1)

Proof Note that ξ̃(n)(ω̃) depends only on ω̃·∧t, ω̃tn1
, ω̃tn2

, · · · , ω̃T , which can be seen as a

cylindrical function on [t, T ]. By a similar analysis as in Section 2, (4.1) is a discrete type of

path-dependent PDE on [t, T ] and then ũ(n)(r, ω̃) is the unique C1,2
b.Lip([0, T ]× Ω̃)-solution.

Now we are in a position to prove that path-dependent PDE (1.1) has a C1,2
b.Lip([0, T ]× Ω)-

solution.

Theorem 4.1 Denote u(t, ω) = ũ(t, ω) for each (t, ω) ∈ [0, T ] × Ω. Then u is the unique

C
1,2
b.Lip([0, T ]× Ω)-solution of the path-dependent PDE (1.1).

Proof For each δ > 0 satisfying t+ δ ≤ T and for any ω ∈ Ω, according to the independent

increment of Brownian motion, we get

u(t, ω) = E[Et+δ[ξ̃(ωs1[0,t] + (Bs −Bt + ωt)1(t,T ])]]

= E[E[ξ̃(ω′
s1[0,t+δ] + (Bs −Bt+δ + ω′

t+δ)1(t+δ,T ])]ω′=B
t,ω

·∧(t+δ)
]

= E[u(t+ δ, B
t,ω

·∧(t+δ))].

It follows that

u(t+ δ, ω·∧t)− u(t, ω) = u(t+ δ, ω·∧t)− E[u(t+ δ, B
t,ω

·∧(t+δ))].

With the help of Lemma 4.2, we obtain

|ũ(n)(t+ δ, ω·∧t)− u(t+ δ, ω·∧t)| ≤ C(ξ̃, T )n− 1
4

and

E[|ũ(n)(t+ δ, B
t,ω

·∧(t+δ))− u(t+ δ, B
t,ω

·∧(t+δ))|]

≤ C(ξ̃, T )
(
n− 1

4 + E

[
sup

s∈[t,T )

∣∣∣Bs −

n∑

i=1

Btn
k
1[tn

k−1,t
n
k
)(s)

∣∣∣
])

≤ C(ξ̃, T )n− 1
4 .
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Thus, we conclude that

u(t+ δ, ω·∧t)− u(t, ω) = lim
n→∞

E[ũ(n)(t+ δ, ω·∧t)− ũ(n)(t+ δ, B
t,ω

·∧(t+δ))].

In view of Lemma 4.3 and Theorem 3.1, we have

ũ(n)(t+ δ, ω·∧t)− ũ(n)(t+ δ, B
t,ω

·∧(t+δ))

= ũ(n)(t+ δ, ω·∧t)− ũ(n)(t, ω) + ũ(n)(t, ω)− ũ(n)(t+ δ, B
t,ω

·∧(t+δ))

=

∫ t+δ

t

Dsũ
(n)(s, ω·∧t)ds−

∫ t+δ

t

Dsũ
(n)(s,Bt,ω

·∧s)ds

−

∫ t+δ

t

Dxũ
(n)(s,Bt,ω

·∧s)dBs −
1

2

∫ t+δ

t

tr(D2
xũ

(n)(s,Bt,ω
·∧s))ds. (4.2)

Applying Lemmas 4.2–4.3 again, we get

E[|Dxũ
(n)(s,Bt,ω

·∧s)−Dxu(s,B
t,ω
·∧s)|+ |D2

xũ
(n)(s,Bt,ω

·∧s)−D2
xu(s,B

t,ω
·∧s)|]

≤ C(ξ̃, T )n− 1
4 ,

E[|Dsũ
(n)(s, ω·∧t)−Dsũ

(n)(s,Bt,ω
·∧s)|]

≤ C(ξ̃, T )E
[

sup
s∈[t,t+δ]

|Bs −Bt|
]

≤ C(ξ̃, T )δ
1
2 ,

which together with (4.2) implies that

u(t+ δ, ω·∧t)− u(t, ω) = −
1

2
E

[ ∫ t+δ

t

tr(D2
xu(s,B

t,ω
·∧s))ds

]
+ o(δ).

Using dominated convergence theorem, we have

lim
δ↓0

u(t+ δ, ω·∧t)− u(t, ω)

δ
= −

1

2
tr(D2

xu(t, ω)),

which implies that Dtu ∈ Cb,Lip([0, T ] × Ω). Therefore, u ∈ C
1,2
b.Lip([0, T ] × Ω) satisfies (1.1),

which ends the proof.

Remark 4.2 Using the above argument, we can also deal with the classical solution of a

system of path dependent PDE (1.1), namely, u(t, ω) can be Rn-valued.

Example 4.1 Given a function ξ : Ω → R by

ξ(ω) =

∫ T

0

ϕ(ωs) ds

for some real valued function ϕ ∈ C2
b.Lip(R

d). Then, we set

ξ̃(ω̃) =

∫ T

0

ϕ(ω̃s) ds, ω̃ ∈ Ω̃.
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It is easy to check ξ̃ ∈ C
2
b.Lip(Ω̃) with

Dξ̃(t, ω̃) =

∫ T

t

∂xϕ(ωs) ds and D
2ξ̃(t, ω̃) =

∫ T

t

∂2xϕ(ωs) ds.

In this case,

u(t, ω) = E

[ ∫ T

0

ϕ(Bt,ω
s ) ds

]
=

∫ t

0

ϕ(ωs) ds+

∫ T

t

E[ϕ(ωt +Bs −Bt)] ds.

On the other hand, by the classic Feynman-Kac formula, we deduce that

us(t, x) = E[ϕ(x +Bs −Bt)], (t, x) ∈ [0, s]× R
d

is the solution of the following parabolic PDE:




∂tu

s(t, x) +
1

2
tr[∂2xu

s(t, x)] = 0, (t, x) ∈ [0, s)× R
d,

us(s, x) = ϕ(x).

It follows that

u(t, ω) =

∫ t

0

ϕ(ωs) ds+

∫ T

t

us(t, ωt) ds.

According to the definitions of Dupire’s path derivatives, we obtain

Dtu(t, ω) =

∫ T

t

∂tu
s(t, ω(t)) ds, Dxu(t, ω) =

∫ T

t

∂xu
s(t, ω(t)) ds,

D2
xu(t, ω) =

∫ T

t

∂2xu
s(t, ω(t)) ds.

Consequently,

Dtu(t, ω) +
1

2
tr(D2

xu(t, ω)) = 0,

which is the path-dependent PDE (1.1).

Remark 4.3 Compared with the finite-dimensional parabolic case, it is difficult to prove the

path regularities of solutions of the path-dependent PDE (1.1) for general terminal conditions

due to the absence of any regularizing effect. Thus, various types of weaker notions of solutions

were introduced to deal with the path-dependent PDE (1.1).

5 Sobolev Solutions for Path-Dependent Heat Equations

Based on Dupire’s path-derivative, Peng and Song [31] introduced a new type of Sobolev

path-functions and the corresponding path derivatives. One advantage of this framework is

that it removes the smooth assumptions on the terminal conditions.

We first give some notations. Let (Ft)0≤t≤T be the natural filtration generated by the

Brownian motion B augmented with the family N P of P-null sets of FT . Then, for each p ≥ 1,

we consider the following collections:
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• Mp(0, T ) is the collection of Rd-valued F -progressively measurable processes (zt)0≤t≤T

satisfying

‖z‖Mp = E

[ ∫ T

0

|zt|
pdt

] 1
p

<∞;

• Hp(0, T ) is the collection of Rd-valued F -progressively measurable processes (zt)0≤t≤T

satisfying

‖z‖Hp = E

[(∫ T

0

|zt|
2dt

) p
2
] 1

p

<∞;

• Sp(0, T ) is the collection of real-valued F -adapted continuous processes (yt)0≤t≤T satisfy-

ing

‖y‖Sp = E

[
sup

t∈[0,T ]

|yt|
p
] 1

p

<∞.

• Denote by Mp(0, T ;Rd) the Rd-valued process such that each component belongs to

Mp(0, T ). Similarly, we can define Hp(0, T ;Rd) and Sp
G(0, T ;R

d).

For a given p > 1, the classical Sobolev space W 1,p(Rd) is the completion of C∞
0 (Rd) under

the norm ‖u‖Lp(Rd)+‖∂xu‖Lp(Rd), where C
∞
0 (Rd) is the space of all infinitely differentiable real

functions u with compact supports. From the view of this point, we introduce the counterpart

in the space of continuous paths.

Definition 5.1 A progressively measurable function u is said to be in C∞(0, T ) if there exists

a time partition (ti)
n
i=0 with 0 = t0 < t1 < · · · < tn = T , such that for each k = 0, 1, · · · , n− 1

and t ∈ [tk, tk+1),

u(t, ω) = uk(t, ωt;ωt1 , · · · , ωtk).

Here for each k, the function uk : [tk, tk+1]× Rd×(k+1) → R is a C∞-function with

uk(tk, x;x1, · · · , xk−1, x) = uk(tk, x;x1, · · · , xk−1),

all of whose derivatives have at most polynomial growth.

For any u ∈ C∞(0, T ), by Itô’s formula, we have

u(t, ω) = u(0, ω) +

∫ t

0

Au(s, ω)ds+

∫ t

0

Dxu(s, ω)dBs, t ∈ [0, T ],

where A is the following heat differential operator:

A(s, ω) := Dtu(s, ω) +
1

2
tr(D2

xu(s, ω)). (5.1)

Then we define the following norm:

‖u‖
W

1
2
,1;p

A

:= {‖u‖pSp + ‖Au‖pMp + ‖Dxu‖
p
Hp}

1
p .
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Denote by W
1
2 ,1;p

A (0, T ) the completion of C∞(0, T ) with respect to the norm ‖ · ‖
W

1
2
,1;p

A

. It

is easy to check thatW
1
2 ,1;p

A (0, T ) is a subspace of Sp(0, T ). Moreover, the differential operators

Dx and A can be continuously extended to this space:

Dx :W
1
2 ,1;p

A (0, T ) → Hp(0, T ), A :W
1
2 ,1;p

A (0, T ) → Mp(0, T ).

Then W
1
2 ,1;p

A (0, T ) is said to be a P-weighted Sobolev space. We have the following result.

Theorem 5.1 (see [31, Theorem 2.9]) For each given u ∈ Sp(0, T ), the following two

conditions are equivalent:

(i) u ∈W
1
2 ,1;p

A (0, T );

(ii) there exists (u0, η, v) ∈ R×Mp(0, T )×Hp(0, T ) such that

u(t, ω) = u0 +

∫ t

0

ηsds+

∫ t

0

vsdBs. (5.2)

Moreover, we have

Au(t, ω) = η(t, ω), Dxu(t, ω) = v(t, ω).

From the above theorem, the Itô’s process u of the form (5.2) gives us a generalized path-

dependent Itô’s formula:

u(t, ω) = u0 +

∫ t

0

Au(s, ω)ds+

∫ t

Dxu(t, ω)dBs.

Based on the above discussions, in the P-Sobolev space W
1
2 ,1;p

A (0, T ) the path-dependent coun-

terpart of (1.1) is formulated as:
{
Au(t, ω) = 0, (t, ω) ∈ [0, T )× Ω,

u(T, ω) = ξ(ω).
(5.3)

Now we are in a position to show the well-posedness of the path-dependent PDE (5.3).

Theorem 5.2 Assume ξ ∈ Lp(Ω) for some p > 1. Then u(t, ω) := Et[ξ] is the unique

W
1
2 ,1;p

A (0, T )-solution to the path-dependent heat equation (5.3).

Proof It follows from martingale representation theorem that there is a process Z ∈

Hp(0, T ) such that

u(t, ω) = E[ξ] +

∫ t

0

ZsdBs, ∀t ∈ [0, T ].

Applying Theorem 5.1, we have u ∈ W
1
2 ,1;p

A (0, T ) and

Au(t, ω) = 0, Dxu(t, ω) = Z(t, ω).

On the other hand, assume u′ is also a W
1
2 ,1;p

A (0, T )-solution to the path-dependent PDE

(5.3). It follows that

u′(t, ω) = u′0 +

∫ t

0

Dxu
′(s, ω)dBs,

which implies that u′(t, ω) is a martingale, i.e., u′(t, ω) = Et[ξ](ω). The proof is complete.
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Remark 5.1 Remark that in the P-Sobolev space we do not need to define the path deriva-

tives on a larger space of right continuous paths with left limit. Moreover, the path-dependent

PDE (5.3) can be also a system of PDEs.

6 Nonlinear Path-Dependent PDEs

In this section, we will generalize the path-dependent heat equation (1.1) to the nonlinear

linear case through BSDEs theory (see Peng [28]).

Consider the following backward stochastic differential equation (BSDE for short):

Yt = ξ +

∫ T

t

g(s, ω, Ys, Zs) ds−

∫ T

t

Zs dBs, t ∈ [0, T ], (6.1)

where ξ ∈ Lp(Ω;Rn) and the driver g : Ω × [0, T ] × R
n × R

n×d → R
n is an F -progressively

measurable process satisfying the following conditions:

(i) For each (y, z) ∈ R× Rd, g(·, y, z) ∈ Hp(0, T ;Rn);

(ii) there exists some positive constant L such that for any (y, z), (y′, z′) ∈ Rn × Rn×d,

|g(t, y, z)− g(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|).

Theorem 6.1 (see [22]) Suppose that conditions (i) and (ii) are fulfilled. Then, the BSDE

(6.1) admits a unique solution (Y, Z) ∈ Sp(0, T ;Rn)×Hp(0, T ;Rn×d).

The BSDEs provide a probabilistic interpretation of a system of semi-linear PDEs. Indeed,

when ξ(ω) = ϕ(ωT ) and g(t, ω, y, z) = f(t, ωt, y, z) for some smooth functions ψ and f , it follows

from Pardoux and Peng [23] that (Yt, Zt) ≡ (u(t, Bt), ∂xu(t, Bt)), where u is the solution to the

following semi-linear PDE:




∂tu(t, x) +

1

2
tr(∂2xu(t, x)) + f(t, x, u, ∂xu) = 0, (t, x) ∈ [0, T )× R

d,

u(T, x) = ϕ(x).
(6.2)

In particular, the authors introduced a probabilistic approach to prove the regularities of solu-

tions to semi-linear PDEs in [23]. Thus a very natural problem is to interpret a general BSDE

as the following semi-linear path-dependent PDE:




Dtu(t, ω) +

1

2
tr(D2

xu(t, ω)) + g(t, ω, u,Dxu) = 0, (t, ω) ∈ [0, T )× Ω,

u(T, ω) = ξ(ω).
(6.3)

With the help of Dupire’s derivatives, Peng and Wang [32] studied the well-posedness of

classical solutions to the semi-linear path-dependent PDE (6.3). Under some regularity as-

sumptions for the terminal condition and the driver, we first apply Kolmogorovs continuity

criterion to obtain the differentiability of the solution to the BSDE (6.1) through the “frozen

method”, which is introduced by Peng [25–26] to construct nonlinear expectations. Next, using

an approximation method based on discrete types of path-dependent PDEs as in Section 3,
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we obtain the path regularity of the solution Z. Finally, with the help of the aforementioned

results, we prove that the BSDE (6.1) can be formulated as the solution of the semi-linear

path-dependent PDE (6.3). Indeed, the path-dependent function u(t, ω) := Yt(ω) is the unique

solution of the path-dependent PDE (6.3).

Theorem 6.2 (see [32]) Under some regularity conditions on the terminal value ξ and

the driver g, the path-dependent PDE (6.3) admits a unique solution u ∈ C
1,2
l.Lip([0, T ] × Ω).

Moreover,

u(t, ω) = Yt(ω), Dxu(t, ω) = Zt(ω), (t, ω) ∈ [0, T ]× Ω,

where (Y, Z) is the solution to the BSDE (6.1).

The above theorem provides an alternative method for the study of the BSDEs theory.

For instance, we could study more general semi-linear path-dependent PDE through forward

and backward stochastic differential equations (FBSDEs for short) as in [23]. Indeed, Wang

[40] obtained the uniqueness and existence of classical solutions to general semi-linear path-

dependent parabolic integro-differential equations (see also [16]), which generalized the results of

[23] to the path-dependent situation. However, we usually cannot obtain the classical solutions

to the path-dependent PDE (6.3) when the coefficients are only Lipschitz functions.

Under more general conditions, Peng and Song [31] established the uniqueness and existence

of Sobolev solutions to the following semi-linear path-dependent PDEs:
{
Au(t, ω) + g(t, ω, u,Dxu) = 0, (t, ω) ∈ [0, T )× Ω,

u(T, ω) = ξ(ω),
(6.4)

where A is the extended heat operator of Dtu+ 1
2D

2
xx.

Theorem 6.3 (see [31, Theorem 2.11]) Assume that conditions (i) and (ii) are satisfied.

Then the path-dependent PDE (6.4) admits a unique solution u ∈ W
1
2 ,1;p

A (0, T ). Moreover,

u(t, ω) = Yt(ω), Dxu(t, ω) = Zt(ω), (t, ω) ∈ [0, T ]× Ω,

where (Y, Z) is the solution to the BSDE (6.1).

According to the above theorem, the BSDE (6.1) can be directly seen as a well-posed path-

dependent PDE (6.4). Thus the results of existence, uniqueness, monotonicity and regularity

of BSDEs, obtained in the past decades can be directly applied to obtain the corresponding

properties in the PPDEs framework.

Remark 6.1 As far as we know, there is no such literature to study classical solutions

to fully nonlinear path-dependent PDEs, which is much more difficult due to the complicated

structure. On the other hand, in the framework of P-Sobolev space, the time derivative Dtu

and the second order space derivative D2
xu are ‘mixed’ together to Au = Dtu + 1

2 tr(D
2
xu).

Thus only the derivatives A and Dxu are well-defined, which cannot be applied to study a fully

nonlinear PPDE.



Survey on Path-Dependent PDEs 853

In order to deal with fully nonlinear PPDEs, [31] and [37] introduce the G-expectation

weighted Sobolev spaces, or “G-Sobolev spaces”. In the second order G-Sobolev spaceW 1,2;p
G (0,

T ), the derivativesDtu,Dxu andD2
xu are all well defined separately due to the unique decompo-

sition of G-Itô processes. Furthermore, the unique decomposition of generalized G-Itô processes

makes it possible to well define the derivatives AGu := Dtu + G(D2
xu) and Dxu for u in the

first order G-Sobolev space W
1
2 ,1;p

G (0, T ) without requiring the existence of Dtu and D2
xu. As

an application, [37] proved the wellposedness in W
1
2 ,1;p

G (0, T ) of the following fully nonlinear

PPDE:

AGu+ g(t, ω, u,Dxu) = 0, (6.5)

and established the one-to-one correspondence between fully nonlinear path-dependent PDE

(6.5) and the BSDE driven by G-Brownian motion (see [15]).

7 Viscosity Solutions

The theory of viscosity solutions for Hamilton-Jacobi-Bellman equations was introduced

by Crandall and Lions in [9]. Since then, important progresses have been made in the field

of viscosity solutions theory, as it has rich connections with stochastic control, mathematical

finance and so on (see [14, 42]). An important advantage of a viscosity solution is that we

only need it to be a continuous function compared with classical solution (see [8]). Motivated

by this, many experts have been devoted to the study of viscosity solutions of path-dependent

PDEs.

In path-dependent case the main difficult comes from the fact that the space of Ω is infinite

dimensional and thus lacks local compactness. Then the viscosity solutions theory introduced

by Lions [18–20] cannot be applied to the path-dependent case, which is not a separable Hilbert

space. Note that the viscosity solutions for first order path-dependent PDEs have been inves-

tigated in Lukoyanov [21] through adapting elegantly the compactness arguments. However,

there is no an unified framework for viscosity solutions of second order path-dependent PDEs

at the moment.

In [30], Peng firstly proposed a notion of viscosity solutions for path-dependent PDEs on

the space of right continuous paths and established the comparison theorem using compactness

argument. Then, Tang and Zhang [38] formulated a different notion of viscosity solutions for

path-dependent PDEs on the space of RCLL paths. They proved that the value function of a

non-Markovian stochastic optimal control problem is a viscosity solution of the related path-

dependent Hamilton-Jacobi-Bellman equations. However, they did not consider the comparison

theorem.

In [11], Ekren et al. firstly established the uniqueness and existence results of viscosity

solutions for semi-linear path-dependent PDEs with the help of BSDEs theory. In this setting,

they used the optimal stopping approach to define viscosity solutions in order to avoid the local
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compactness. Unlike the classical case, supersolutions and subsolutions are defined through a

larger set of tangent test functions. Specifically, the tangency condition is not point-wise but

in the sense of mean with respect to an appropriate class of probability measures. Afterwards,

Ekren, Touzi and Zhang [12–13] extended the results of [11] to the fully nonlinear case by some

more delicate and involved estimates. For more research on this topic, we refer to [33–36, 39]

and the references therein.

On the other hand, Cosso and Russo [7] established the well-posedness for viscosity solutions

to path-dependent heat equation (1.1) using classical Crandall-Lions notion. The arguments

of [7] rely heavily on the so-called Borwein-Preiss smooth variant of Ekeland’s variational prin-

ciple, which exploits the completeness of the space instead of the missing local compactness.

They constructed a gauge-type function and then obtained the comparison theorem of viscosity

solutions to the path-dependent heat equations. We refer the reader to [5, 44] and the references

therein for more research on this topic.

Finally, we would like to mention that Barrasso and Russo [1] proposed the notion of decou-

pled mild solutions to semilinear path-dependent equations, and Cosso and Russo [6] introduced

the so-called strong-viscosity solution, which is quite similar to the notion of good solution for

PDEs. There are still many questions and many difficulties to be solved in this field.
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