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Mean Curvature Flow of Arbitrary Codimension in
Complex Projective Spaces*

Li LEI! Hongwei XU?

Abstract Recently, Pipoli and Sinestrari [Pipoli, G. and Sinestrari, C., Mean curvature
flow of pinched submanifolds of CP", Comm. Anal. Geom., 25, 2017, 799-846] initiated
the study of convergence problem for the mean curvature flow of small codimension in the
complex projective space CP™. The purpose of this paper is to develop the work due to
Pipoli and Sinestrari, and verify a new convergence theorem for the mean curvature flow
of arbitrary codimension in the complex projective space. Namely, the authors prove that
if the initial submanifold in CP™ satisfies a suitable pinching condition, then the mean
curvature flow converges to a round point in finite time, or converges to a totally geodesic
submanifold as t — oo. Consequently, they obtain a differentiable sphere theorem for
submanifolds in the complex projective space.
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1 Introduction

Let Fy : M™ — N™"4 be an n-dimensional submanifold isometrically immersed in an (n+q)-
dimensional Riemannian manifold N. The mean curvature flow with initial value Iy is a smooth

family of immersions F': M x [0,T) — N satisfying

0
5 @ t) = H(, 1), (1.1)
F(-,0) = Fp,

where H(x,t) is the mean curvature vector of the submanifold M; = Fy(M), F; = F(-,t).

In 1984, Huisken [13] first proved that uniformly convex hypersurfaces in Euclidean space
will converge to a round point along the mean curvature flow. Later, Huisken [14-15] verified
the beautiful convergence theorems for the mean curvature flows of convex hypersurfaces in
certain Riemannian manifolds and pinched hypersurfaces in spheres.

In [10, 36], Gu and Xu proved a convergence theorem for the Ricci flow of submanifolds of

arbitrary codimension in a Riemannian manifold. Consequently they obtained a differentiable
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sphere theorem for submanifolds in the space form F"*4(c) under the pinching condition |h|? <
2¢c + % Notice that if ¢ = 0, the pinching condition above is the best possible. Meanwhile,
under the same pinching condition for the initial submanifold, Andrews-Baker-Liu-Xu-Ye-Zhao
[1-2, 21] proved a convergence theorem for the mean curvature flow of submanifolds and a
differentiable sphere theorem for submanifolds in the space form F"4(c). Afterwards, Liu, Xu
and Zhao [22] obtained a convergence result for mean curvature flow of arbitrary codimension
in certain Riemannian manifolds. Recently, inspired by the rigidity theory of submanifolds (see
[29, 33-35, 39]), and by developing new techniques, Lei and Xu [16-18] verified an optimal
convergence theorem for the mean curvature flow of submanifolds in hyperbolic spaces and
a new convergence theorem for the mean curvature flow of submanifolds in spheres, which
improve the convergence theorems due to Baker [2], Huisken [15] and Liu-Xu-Ye-Zhao [21]. For
more results on rigidity, sphere and convergence theorems, we refer the readers to [3-5, 7-9, 11,
19-20, 23-25, 28, 30-32, 37-38, 40].

More recently, Pipoli and Sinestrari [26] first proved the following convergence theorem for

mean curvature flow of small codimension in the complex projective space.

Theorem A Let Fy : M"™ — CP"3* be a closed submanifold of dimension n and codi-
mension q in the complex projective space with Fubini-Study metric. Suppose either n > 5 and
n+q

g=1,0r2<qg< 23 Let F: M" x [0,T) — CP"=
value Fy. If Fy satisfies

be the mean curvature flow with initial

1
n—1

1 |H|2+n—3—4q
n—1 n ’

|H|? + 2, g=1,
Ih|* <

then Fy converges to a round point in finite time, or converges to a totally geodesic submanifold

as t — oo. In particular, M is diffeomorphic to either S™ or CP%.

In this paper, we investigate the mean curvature flow of arbitrary codimensional submani-

folds in the complex projective space, and prove the following theorems.

Theorem 1.1 Let Fy : M"™ — CP"*" be an n-dimensional closed hypersurface in CP*+
(n>3). Let F: M™ x [0,T) — CP"*" be the mean curvature flow with initial value Fy. If Fy

satisfies

n* < o(|H]?), (1.2)

then Fy converges to a round point in finite time. Here o(|H|?) is given by
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1
PHP) =2+ an + (b + — ) |1HI* = VETH[ + 24,5, HP,

an, =24/ (n? — 4n + 3)by,,
n—3 2n—2>5 }
dn—4"'n2+n—-2J"

b,, = min {
Remark 1.1 By a computation, if n > 3, we have p(x) > —£5 + 2 for x > 0. Furthermore,

if n > 3, we have p(x) > /2(n — 3) for > 0. Therefore, Theorem 1.1 substantially improves

the hypersurface case of Theorem A.

Theorem 1.2 Let Fy : M"™ — CP"#* be an n-dimensional closed submanifold in CP"#* .
n+q

Suppose that the dimension and codimension satisfy 2 < q < n—4. Let F: M"x[0,T) — CP 2

be the mean curvature flow with initial value Fy. If Fy satisfies

1 3
h?< —HPP+2- = 1.3
||<n_1||+ e (1.3)

then F; converges to a round point in finite time, or converges to a totally geodesic submanifold

CP% ast — oo.
Notice that Theorem 1.2 improves the ¢ > 2 case of Theorem A.

Theorem 1.3 Let Fy : M"™ — CP"#* be an n-dimensional closed submanifold in CP"#* .
n+q

Suppose that the dimension and codimension satisfy ¢ > n—4 > 2. Let F: M"x[0,T) — CP 2

be the mean curvature flow with initial value Fy. If Fy satisfies
n* <o(IH), (1.4)

then F; converges to a round point in finite time. Here 1(|H|?) is given by
9 n? —3n
HI*) =
v(HI) n2—3n—3+n3—4n2—|—3
3\ IHI* + 2(n = 1)(n2 — 3)|H|2 4+ 9(n — 1)?
B n3 —4n? + 3 ’
Remark 1.2 The function 1 satisfies ¢(x) > £ for x > 0, and the equality holds if and

—%asx—>+oo.

|H?

only if x = 0. In addition, the function ¥ (z) has an asymptote

n—1
From the convergence results of the mean curvature flow, we obtain a classification theorem
for submanifolds in complex projective space.
Theorem 1.4 Let M™ be an n-dimensional closed submanifold in CP*#*. If M satisfies
@(|H|2)7 g=1n2>3,
2 1 9 3
|h|* < ——|H* +2—- =, 2<q¢<n—4, (1.5)
n—1 n

U(|H[?), qg>n—4>2,
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then (i) M is diffeomorphic to S™ or CP%, or (ii) M is congruent to the totally geodesic RP™.
2 Notations and Formulas

Let CP™ be the m-dimensional complex projective space with the Fubini-Study metric gpg.
Let J be its complex structure. We denote by V the Levi-Civita connection of (CP™, grs).
Since the Fubini-Study metric is a Kihler metric, we have V.J = 0. The curvature tensor R of

CP™ can be written as

R(X,Y,Z,W) = (X, Z){(Y,W) — (X, W)Y, Z)
(X, JZ)Y, JW) — (X, JW)Y, JZ)
+2X, JYNZ, JW). (2.1)

Let (M™, g) be a real n-dimensional Riemannian submanifold immersed in (CP™, gpg). Let
g be its codimension, i.e., n + ¢ = 2m. At a point p € M, let T, M and N,M be the tangent
space and normal space, respectively. For a vector in T,M & N,M, we denote by (-)T and
(-)V its projections onto T, M and N, M, respectively. We use the same symbol V to represent
the connections of tangent bundle TM and normal bundle NM. Denote by I'(E) the space of
smooth sections of a vector bundle E. For X,Y € I'(T'M), £ € I'(NM), the connections V are
given by VxY = (VxY)T and Vx¢& = (Vx&)Y. The second fundamental form of M is defined
as h(X,Y) = (VxY)N.

Throughout this paper, we shall make the following convention on indices:
1§A7B707§n+Qa 1§7’7.]7k.7§n3 n+1§a56777§n+q

We choose a local orthonormal frame {e;} for the tangent bundle and a local orthonormal
frame {e,} for the normal bundle. With the local frame, the components of h are given by

he; = (h(ei,ej),eq). The mean curvature vector is defined as H = )  H%,, where H* =

Z hs;. Let h=h- LH ® g be the traceless second fundamental form. We have the relations
|fi|2 = [h? = L|H|? and |Vh|> = |Vh|]> — L|VH].

We denote by (Jap) the matrix of J with respect to the frame {e4}, i.e., Jap = (ea, Jep).
This matrix satisfies Jap = —Jpa and Y JapJpc = —dac.

B
At each point p € M, we define a tensor P : N,M — T,M by
P¢ = (J&)T for £ € N,M.

Then we have

PP =3 [Peal? <3 Jeal = ¢
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and

PP = 32 (a)? = 3o (ia) = 3o () == S ()®
i A ,J .3

We have the following estimates for the gradient of the second fundamental form

Lemma 2.1 For an n-dimensional submanifold in (C]P’nTH, we have

3
—~ |[VHPP+2(n-1
5 [VHP +2(n—1).

q=1,
2 3 2 2
|Vh|" > m|VH| +2(n—q)|Pl*, 2<qg<n,
3

Proof Let S be the symmetric part of Vh, i.e., S = —(V hGy, + Vjihi, + Vih ) Using

the same argument as in the proof of [13, Lemma 2.2], we have

P2 > ( > ) (2.2)

By the Codazzi equation, we have >~ S%, = V,H* + 2> JorJr:. Then we obtain
k k

> %k)2 = |VHP +4 3 ViH "o Jii +4Y (Zjakjki)g. (2.3)
i k

a,ik o, k

Using the Codazzi equation, the symmetry of h and the skew-symmetry of R, we get
2 1 2 2 oY a
IS = §|Vh| T3 Z Vichi;Vihiy
a,i,5,k

|Vh|2+— > Vih$ (Vih + Raije)

azgk

2 =
:|Vh|2+§ > Vihe Raijk

a,i,,k
) _
= |Vh]* + 3 Z (Vih§y + Rajki) Raijk
a,i,,k
) _
= |Vh[* + 3 Z RajkiRaijk
a,i,5,k
= |Vh]* -2 Z [Jajdjidar ki + (Jai)*(Jjk)?]
a,i,j,k
2
- |Vh|2—ZZ(ZJakJM) 2P (n — |P|?). (2.4)
i k
From (2.2)—(2.4), we obtain
VA > —— |3IVH| +12 Y | ViH " JayJyi +2(n + 8) Z (Zjakjkz) }
a,i,k

+ 2|P|2(n —|P?). (2.5)
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If g =1, we have Y JokJi; = 0 and |P|?> = 1. Thus (2.5) becomes
3

3
|Vh|> > n—+2|VH|2 +2(n —1).

If ¢ > 2, from (2.5) we get

2 1 2
v 2> ‘7,HO¢ A/ .
IVl n—|—2ai(3\/n—|—8 e n—i—SZk Jakj]”)

3
—~ _|VH|? +2|P|*(n — |PJ?).
+n+8| |” +2|P|*(n — |P|7)

From |P|? < q and |P|? < n, we complete the proof of Lemma 2.1.

L. Lei and H. W. Xu

Let F': M™ x [0,T) — CP™ be a mean curvature flow in a complex projective space. For a

fixed t, letting F; = F(-,t), then F}; : M™ — CP™ is a Riemannian submanifold in CP™. We

denote by M; the submanifold at time t. Following [1, 26], we have the evolution equations

below.

di|h|? = Alh|? — 2|Vh|?

+2Z(th§hf§) v2 Y (S nd - wihg)

0Bk
+2 Z h$:hl i Bokpr + 8 Z h?khfk}_%aﬁij
o, 3,i,7,k o, 3,i,7,k
+4 Y (hGhS Rk — i Rag),

a,i,j,k,l

O|H|> = AlH|> — 2|VH|2+2Z(ZH°‘ a)2+2 > H*H”Rokps.

i, o, B,k

From (2.1), these evolution equations can be written as the following form.

Lemma 2.2 For mean curvature flow F : M™ x [0,T) — CP™, we have

(i) O¢|h|? = A|h|? — 2|Vh|? — 2n|h|> + 4| H|? + 2Ry + 25,
(ii) ;| H|?> = A|H|? — 2|VH|? + 2n|H|?> + 2R3 + 652,
(iii) 9|h|*> = Alh|? — 2|Vh|?> — 2n|h[*> + 2Ry — 2Ry + 25, — 85,

where

2] g8k

;(zm )

«

= () X (g - i)
a,B
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S1=3Y" (Z h?ij)z +4 Y ARG (Tiadjs = Jisdja)

5,k @ o, B,i,5,k
+6 > (hehgyJudie — hghS Ju )
a,i,7,k,l
+8 > hghl Jasdis,
o, 3,i,7,k

Sy = Zk: (;HC‘J;M)Q.

To do computations involving J4p, we present the following well-known property of the

skew-symmetric matrix.

Proposition 2.1 Let A be a real skew-symmetric matriz. Then there exists an orthogonal

matriz C, such that C~1AC takes the following form

0 A
M\ 0

0 s

X3 0

0 s . (2.6)

We use a notation
P {i—i—l, 7 is odd,

1 — 1, 1iseven.

If a matrix (a;;) takes the form of (2.6), then a;; = 0 for all j # 1.
3 Preservation of Curvature Pinching

3.1 The case of g =1

For the mean curvature flow of hypersurfaces in CP", the evolution equations in Lemma

2.2 become

Oy|h|? = Alh)? — 2|VA|?> = 2n|h|? + 2|A%|h|? + 6]h)?

+12 > (hijhirJadje — hikhjeJa ), (3.1)
i,7,k,l
O|H? = A|H|? —2|VH|* + 2n|H|* 4+ 2|H|*|h|* + 6|H|*. (3.2)

We choose a orthonormal frame {e;} such that the matrix (J;;) takes the form of (2.6). Denote
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by 7 the largest even integer satisfying n < n. Then we have

Z (;Lijilkljilek - ;Likfobijilel)

ikl
= Z( hzkhkz‘] J (hsz ) )
i,k<n
-5 Z hszkk "’hmJ )
zk<n
So, we get
B h|? < A2 = 2|VA? 4+ 2h2(|h? — n + 3). (3.3)

For a real number ¢ € [0, 1], we define a function ¢, : [0, +00) — R by

e () = de + ccx — Vb2a? + 2abx + e, (3.4)

where a = 24/(n? — 4n + 3)b,b = min { =2, 4,n221n52} c.=Db n_i+€,d5:2—25+a,e:\/2.
We define ¢ = .

Let ¢c(x) = p<(r) — £. The following lemma will be proved in the Appendix.

Lemma 3.1 For sufficiently small €, the function @, satisfies

(1) 20! (@) + ¢L(e) < 2ol),

(i) @e(2)(pe(x) —n+3) — 2@l(x)(pe(z) +n+3) <2(n—1),

(if) ¢.(2) — 2L (2) > 1.

Suppose that My is an n-dimensional closed hypersurface in CP* satisfying |h|? < o(|H|?).
Let F : M"™ x [0,T) — CP*> > be a mean curvature flow with initial value My. We will show
that the pinching condition is preserved along the flow. For convenience, we denote ¢.(|H|?),

PLH?), GL(IHI?) by e, ¢L, ¢, respectively.

Theorem 3.1 If the initial value My satisfies |h|?> < ©(|H|?), then there exists a small
positive number e, such that for all t € [0,T), we have |h|* < ¢ —e|H|* —¢.

Proof Since M is compact, there exists a small positive number 1, such that M, satisfies
R[> < ey
From (3.2) and Lemma 3.1(i), we have

(0r — A)pe, = =2(&L, +2¢7 - |HIP)|VH> +2¢L - [H*(Ih|* +n+3)

4(n —1) 2 of 2 2
> -———2|VH 2 -|H|*(|h . .5
> g IVHP 28, HP (P 4 +3) (35)
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Let U = |h|? — 4., We obtain

2(n—1)
n(n + 2)
+ (R[> =+ 3) — &L, - [HI2(|h)? +n + 3).

1 .
5(@ — AU < —|Vh*+ |VH|?

By Lemma 2.1, we have

o 2(n—1

Thus, at the points where U = 0, we get
1 . .
50 =AU < =2(n = 1) + ¢, (pey —n+3) = L, - [H|*(pe, +1+3) <0.

Applying the maximum principle, we obtain U < 0 for all ¢ € [0,T).
Thus, we have |h|? < ¢, for all t € [0,T). By choosing ¢ small enough, we complete the

proof of Theorem 3.1.

Let
;Lz
fo = J1|_Ua
®

where o € (0,£?) is a positive constant. Then we have the following lemma.

Lemma 3.2 If My satisfies |h|? < o(|H|?), then there exists a small positive number ¢,
such that the following inequality holds along the mean curvature flow:

2fo

TAE VA + 20| f, — —fa

2 .
Ofo <Afs+ EIVfa||V<P|

Proof By a straightforward calculation, we have

0~ D)fo = fo |h|2<at A)hf = == (& - A)¢]
o 2
+o(1— o) VRN )fa||vf|”2| .
Using (3.3) and (3.5), we have
VA2 2(n—1) |VH|?
@ = M)fr <26 - S S )

of . H2
+2fa[|h|2—n+3—(1—0)%(|h|2+n+3)

2 .
+ =V flIVa.
P
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From Lemma 2.1 and Theorem 3.1, we have

VA2 2n—1) |VHP
A2 n(n+2) ¢
VA2 |VA|2=2(n—1)
< - +

R ¢
hl2— 3 . 2n —1
§||%P0w|VhP‘_ (nD )
H]Z+1 2(n—1
< | o| + |Vh|2 (no )
|h[? ¢
2 1
< - VAP (n—1)
|h[? 2

From Lemma 3.1(ii) and (iii), we have
of . f{2
|h|? —n+3—(1 —U)%(|h|2+n+3)
1-0
¢
1-0
¢
1-0

o

(¢ =& [HP)? = &' - [H(n+ 3)] = n + 3+ ol

(=@ [H)(¢ —elH =) = ¢" - [H]*(n + 3)] = n.+ 3 + |1

(¢ =& [HY)p — ¢ [H]*(n +3)] = n+ 3+ o|hf?

—%(@—@’-mﬁﬂm%n
< 1_0[(n—3)g5+2(n—1)] —n+3+4o0|h? - wumul)
<olh*+ M - %

This completes the proof of the lemma.

3.2 Thecaseof 2 < g<mn—4

At a fixed point p € M, we always choose the orthonormal frame {e,} for N,M such that
H = |H|enq1. Set
o =3 (he)?, pr= "R pp= Y[R
4,J a>n+1
then A2 = py + pa. Set
0y = [Pensa|’, O2= Y  |Peal,

a>n+1

then |P|? =61 + 65, 01 <1 and 0 < q— 1.

Lemma 3.3
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(i) Ri < [h|* = 2pal HI? + 2p1p2 + 513,
(ii) Ro = [HP(|h]* = p2),
(iii) S1 < 2S5 + 3|h|? + 8v/Bap1p2 + 4b2p>.

Proof The estimates of Ry and Ry are similar to that in [1]. We choose an orthonormal

frame {e;} for the tangent space, such that ;LZ-H = X;0ij. Then we have

2 1
Ri=pi+ =p1|H* + = |H|*
1=p1+ oo HI + 5| H]

2 Y (h) v X (- Ay

a>n+1 7 a>n+1
i#j
o o o o 2
S (Sigh) e X (Soai ki) 6o
a,f>n+1 ] a,f>n+1 k
0,

Using the Cauchy-Schwarz inequality, we get

(S hhe) + 300 — A < on SO(h)? + 2 300 + X2 (hy?

i+ i oy
<prY (hg) +2p1 ) (h)?
i i
< 2p1[h°2.

It follows from [19, Theorem 1] that

o o o ° 2 3
apB a 1.8 a 18 2
S (Sig) s X (Sl -isid) < 2a
a,Bf>n+1 i, a,B>n+1 k
0,

Thus we obtain

2 1 3
Ry <pi + =pi[H]> + S |H[* + 4p1p2 + S5
n n 2
2 1
= Bl = Zp2| H|? + 2p1p2 + 5 5.
n 2
Rs can be written as
Ry =Y ([H[WSH)? = [H*(|h[* = p2). (3.7)

,J
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Next, we have

S (Xhha)

ik o
1 o 2 o 2
- 5;(;1{ Jre) +§C(Za:hijjka)
=%y Z \Ph(es,e;)
SQ + |Ph?. (3.8)

Choose an orthonormal frame {e;} such that the matrix (.J;;) takes the form of (2.6). Thus

6 > (heshgyJudin — hhSiJudi) +8 Y h&hD Jasdi

a,i,j,k,l ,B,i,5,k
_ a o ﬁ
=6 (—h%h® Tz — (WS J7)%) +8 > hihl JagJ
i,k<n i<n
k,a,
=33 (W dy +haJ)? =4 [ (R Ty + WS T ZhlkJaﬂ}
ik<ﬁ i,k<n
4
< Z
SE ()
4
= 23 (e )P
ik
4 .
= g (|Jh(e“e/€)| |Ph(ei767€)|2)
i,k
4 o
g(IhI2 |Ph|?). (3.9)

For fixed «, 3, we choose an orthonormal frame {e;}, such that the n x n matrix (J;oJ;j3 —

JjaJip) takes the form of (2.6). Thus we get

Y Wi (TiaTis = Tiadis)

i,5,k

=Y hhL (Jiakiy — Fiodig)
1<n

< Zm BN Uia)? + (Ji0)?\[(Jig)? + (o)
z<n

< Z|h h2 ||Pea||Peg|
i<n
k

< [h|IhP||Peql|Peg.
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Then

> b bl (Tiadjs = Jiadis)
a,B,1,7,k
<Y |Pea|Peg|[h®| |17
B

= 2[Pen|[A"T] D |Peallh®[+ Y [Peal|Pegllh®(|h”]
a>n+1 a,f>n+1
a#fB

<oy Y (Peallit|+ (Y IPeallie)”

a>n+1 a>n+1
Using the Cauchy inequality, we have
° 2 °
S APealln?) < (X0 1Peal?) (DD 1A2) = 2o
a>n+1 a>n+1 a>n+1

So

Z ;l?kilfk(Jianﬁ — Jjadig) < 2+/02p1p2 + 2p2.

«,3,i,7,k
Thus we obtain S; < %Sg + 3|fDL|2 + 8v/02p1p2 + 402p5.

Let F: M™% [0,T) — CP*=* be a mean curvature flow. Note that n+ ¢ must be even. Let

2 < g < n—6. Suppose that the initial submanifold M satisfies the pinching condition

: 1 3
2 < k|HP? - 1=2-2
W) < klH?+1, k ) ! -

Since My is compact, there exists a small positive number ¢, such that M, satisfies |h|2 <
(k|H|? +1)(1 —e).
Now we prove that the pinching condition is preserved.

Theorem 3.2 If My satisfies |h|2 < (k|H|2 +1)(1 — ¢), then this condition holds for all
timet € [0,T).

Proof Let k. = k(1 —¢),1. = I(1 — ). We set U = |h|2 — k.|H|? — I.. From the evolution

equations we have

1
S0~ AU
= ke VH* = |VA]® = n(|hf* + k.| H?)
1 1
+ Ry — (ks + E)RQ + 51 — 3(]% + E)SQ

Now we show that (9, — A)U is nonpositive at all points where |h|? = k. |H|? + L.
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From Lemma 3.3, if |h|2 = k-|H|? + I., we get the following estimates
1
Ry~ (ke 4+~ ) Ro
n
) 1 1
< (B2 = ke HP)IB = (= = ko) [Hp2 + 20102 + 503
1
<L = (n = 2)k | H|p2 + 2p1p2 + 595

2
! 1
! 5
= (ko + E)ZE|H|2 2+ (0= Dleps — (0= Dprp2 — (n— 5 ) 3

and
1
Sy — 3(]% + —)SQ
n
< 3|h|* 4 8\/02p1p2 + 402p2
= 3k:|H|? + 3l. + 8v/0ap1p2 + 402p2.

Thus, at a point where U = 0, we get

1
50— AU
< ke|VH|> = |Vh|? — n(2k | H|* + 1)
1 5
(ke 2 )l HP 4+ 2 + (0 = 2)lepa = (n = 4)prpz — (n— 5 ) 3
+ 3k |H|? + 31 + 8v/0ap1p2 + 4020
. 1
= k|VH|? — |V + [(3 —2n)k. + (k + E)zg} \H?

5
+B=n+l)l+ (n—2)lps — (n - §)p§

— (n —4)p1p2 + 8/ 02p1p2 + 402p2. (3.10)

By Lemma 2.1, we get
|VA|?> = k. |VH|? > 86s.

By the definitions of k., ., we have
1
(3 - 2n)k. + (k + E)lf <0

By the AM-GM inequality, we have

166
—(n —4)p1p2 + 8/ b2p1p2 < n—24 (3.11)
and
(n—2)2%. (n—2)2
_ — < < . .
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Hence, we get

1 (n—2)21 5 9 166,
—(0y —AVWU < | —m—r~>— — - = 40 — 805.
Z(t ) *{4(71—3—1) (n 2)}p2+ 2p2+n—4 ’
. (n—2)21 5
Since n > ¢+ 6 > 8, we have In=3=D) — (n—i) < 0. Then we get
(n—2)% 5 9 166,
_— — = 40 — 86
{4(71—3—1) (” 2)}”‘”r 2p2 Ty o
4 5 1664

T2 4(n—3-0)

4(g—1 16
[ (= 1) + - 8] B2
n—

— 5  (n=2)%l n—4
2 4(n—3-1)
Aln —T7) 16
= [n_ rora e ]

2 4(n—3-0)

—60 + 76n — 16n% 4+ n?
= -8 6 < 0. 3.13
T D(—18 1+ 42n — 1902 1 2n3) 2 = (3:13)

Then the assertion follows from the maximum principle.

Let .
PR
UL

where o € (0,&2) is a positive constant. Then we have the following lemma.

Lemma 3.4 If My satisfies |h|? < (k|H|> 4+ 1)(1 — ¢), then the following inequality holds
along the mean curvature flow:

2k|\Vfo|IVIH?| _ 2f,

"7 |Vh|? + 2f,(c|h|? —¢).
K[H2 + 1 3|h|2| I” +2f5(alh]” —¢)

atfa S Afa +

Proof By a direct calculation, we have

(at_A)fU
1 0 1—0
:fa W(at_A”hP—m(at—A”HF}
(Vfo, VIH]?) [VIHP?
4201 — o) e VIHIT g gy VPR
ST

From Lemma 3.3, we get
(0 — A)|Af?
. . 2
< =2|Vh|* + 2[h*(|h]* = n +3) — ﬁp2|H|2
+4p1p2 + p§ + 16+/602p1 p2 + 802p2
. . 2
= =2VA]* + 2/h*([h]* = n+ 3+ (n = 2)ps) — —po|H[?

+ (55— 2n)p% —2(n —4)p1p2 + 16+/02p1p2 + 802p2. (3.14)
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Combining (3.11) and (3.13), we get

5 n — 2)21
—(n - 5)03 — (n—4)p1p2 + 8v/b2p1p2 + 402p2 < 805 — 4((71_73)_1)03
Thus we get
1 .
— (8, — A)|h|?
e (0 — AR
2 o
< W(—|Vh|2 +809) +2(|h)* —n + 3+ (n — 2)p2)
1 (n—2)2%
|h|2( palHI” + 2(n—3—l)p2)'
We also have
1—o0
- ——— (0, —A)H
|H? + &
2]VH|?  2(1 - )IHI 2
- h|==p2+n
< THET L i (|n]" = p2 +n)
2|VH|? 2l
<|I’I||27+|L_( —m)(|h|2—p2+n)+2a(|h|2+n)
k
2]VH|?2  2U(|h]?> = p2a+n
_ |h|r|2 e (|k||H|2+l L (B2 = pa + ) + 20(JhI2 + ).
k

It follows from |h|? < (k|H|? +1)(1 — ) that
21(|h[> = p2 +n) < 20(5|HI? = p2 +n)

20(1 — ).
REP 1 S mEper TAd-e)
Thus we get
l1—o0o
————— (0 — A)|H|?
0 S
21€|VH|2 20(L|H|? — p2 +n) ) )
2 20 — 2 - 2 — 2¢.
= ThE RIH + 1 + 21 — 2(|h|* — p2 + n) + 20]h| 5
Therefore,
1 i l1—0o 2|V fo||VIH|?|
Oy — A)fo < fo|l =—=(0r — AW — ———(0; — A)|H|?| + =2
(@~ A)fo < f [W(t AP = G @ = ) 2] oyl
2fs 2V fo|[VIHP

< 291 \Vh? + 80, + k|VH|?] +

+2f,[-2n+3+ (n—1)pg + 1+ alh* — €]
1 (n—2)% L(L[H|? = p2 +n)
2f, n
+ f[ |h|2( palHI* + 4(n—3—l)p2) KHP? +1 }
2V £, ||V |H|?
< Mo (9if2 4 8, + )+ 2 VIHT
|h)? [H|? +
+2f5[(n = 1)(p2 = 1) + alh[* — €]

2fo 1 9 (n—2)21 9 1 9
e HP? - T2 (S HP - .
+k|H|2+l[ P i Ty (n| = p2tn)]
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By Lemma 2.1 and the condition n > ¢ + 6 > 8, we have
o 1 o
—|Vh|? + 80, + k|VH|? < —§|Vh|2.

Using (3.12), we get

1 (n —2)2
| HIP o 2
np2| | 4n—-3-1)

1 1
< —=polH? = (3 =n+ Dl — (n—2)lps +z(5|ﬁr|2 —pa +n)

= (n = 1)1 = p2)(k[H[* +1).

1
p§+z(;|H|2 —pz—i—n)

Therefore, we complete the proof of this lemma.

3.3 Thecaseof g >n—4 > 2

873

We choose an orthonormal frame {e,} for the normal space such that H = |H|e, 1. Let

pr = |h"T2 py = 3 |h%)2. We have the following lemma.
a>n+1

Lemma 3.5

(i) Ry < |h|* — Zpo| H|? + 2|h|%p2 — 213,
(i) Ry = [H|*(|n[* — p2),

(iif) Sy < 2S5 + (2n + 3)|h[%.

Proof Using the same proof as Lemma 3.3, we obtain (i) and (ii).

Now we re-estimate Sy. From (3.8) and (3.9), we have

3 . .
1 <=8+ BAP+4 Y hGhD (Jiadip — JigJia)-
a,B,i,7,k

With a local orthonormal frame, let v be a vector given by vy = hf‘k Jia. We define two tensors

D and FE by

;l?k‘]ja + ;l?kjia 2045V L dikvj + 65kv;

Dijie = " Jpa + —— 2 By = —

n+mn (n+mn)n n

where n = v/n2 +n — 2. Then we have (D — E, E) = 0. This implies |D|?> > |E|?>. By the

definitions of D and E, we get

n—2 — 477 P ja g

IDP = =gy (e Thadis + 2hh5 g Tsa)
2(5n — 2 —4n) 5, ;

B> = Whmhfﬂw#ﬁ'

Thus we obtain

> bbb (Jiadis = JigJja) < g > (ZE%JMY < gliLIQ-

a,B,i,5,k 0,4,k
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Define a function ¢ : [0,+00) — R by

9 _3 3y/22 + 2(n —1)(n? = 3)z + 9(n — 1)?
T 4 _nln 2) z— \/ . . (3.15)
n>—3n—-3 n3—4n?2+3 n3 —4n? 43

Let ¢(z) = (z) — 2. From Lemma 7.3 in the Appendix, the function ¢ has the following

properties.

Lemma 3.6 The function 111 satisfies

(1) 0 < ¥ (2) < 5y, 0 < (@) < 503,

(i) max(22¢)"(x) +'(2) < FG79,

(iii) 3¢ (z) + (h(z) — xz//(x))(z/}(x) +Z+n) <0, and the equality holds if and only if x = 0,
(iv) 0 < @/ (z) — i(z) < 2.

For convenience, we denote ¢ (|[H|?), ¢/(|[H[%), ¥"(|H|?) by 1, 9, 4", respectively. Let
F:M"x[0,T) — CP"*

(g > n—4 > 2) be a mean curvature flow whose initial value My
satisfies |h|? < 1 (|H|?). Since My is compact, there exists a small positive number ¢, such that

M satisfies |h|? < ¢ —e|H[> —&.

Theorem 3.3 If the initial value My satisfies |h|2 < - e|H|? — &, then this pinching
condition holds for all t € [0,T).

Proof From Lemma 3.5, we get

) o o 2
(0~ M) = ~2{VhP — 2mlh + 2R, — 2Ry 498, - gSQ

o o 2 ° °
< —2|Vh|* + 2|h}|h]* - Ep2|H|2 + 4|h|?pa + 2(n + 3)|h|?. (3.16)
We have the following evolution equation of w

(0, — A)p = =20 - [VH|?> — " - |[V|H|*[> + 2¢/ (n|H|? + Ry + 35,)
> —2(4)' + 20" - [H[?)|VH|> + 2 - [H]*(|h]* + 1 = p2). (3.17)

Let U = |2 — 1) + ¢|H|? + c. We obtain

(0 — AU < (0 —e+2¢" - |H?)|VH|* - |Vh[?

N | =

. . 1 . . 1

[ (Jhf? + | H? +n+3) = (0 = )| H[* (Jhf> + = | H* +n)
1 . .

+pa = HP? + 2R + (0 — )| H?).

By Lemmas 2.1 and 3.6(ii), the first line of the RHS of the formula above is nonpositive. From
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|h|2 = U + ) — e|H|? — &, we obtain
l(at _ A
< U(U+21/)+n+3 % + (— - )|H|2—|—2p2)
+w(¢+ ~|a? +n+3) = [HP (4 + %|H|2 +n)
+E[—n—3+£+zﬁ'-|H|2 — 29
+|H? ( H[? — 12—3—%“)}
+p2( - E|H|2+212}+1Z/|H|2 —(3H]? +2)). (3.18)
This together with Lemma 3.6 implies
%(at AW < U(U+2¢+n+3—2e+ (— g )|H|2—|—2p2). (3.19)
Then the assertion follows from the maximum principle.
Now we prove that the mean curvature flow has finite maximal existence time in this case.
Lemma 3.7 If the initial value My satisfies |h|2 <1, then T is finite.
Proof Let U = |h|> — ). Then U < 0 holds for all t € [0, 7). From (3.19), we have
(0, — AU < 2U(U+2zﬁ+n+3+ (% —12’)|H|2+2p2)
<2U(U + 2¢)
=2U(2/h]? - U) < —2U%.
From the maximum principle, U will blow up in finite time. Therefore, T' must be finite.
Let 3
AR

1j)l—cr ’

where o € (0,£?) is a positive constant. Then we have the following lemma.

fa':

Lemma 3.8 If My satisfies |h|2 < 1/3, then there exists a small positive constant €, such

that the following inequality holds along the mean curvature flow:

2fs

i VA2 + 20| f5 + 4nf,.

an<Aﬁ+%VMWm

Proof By a straightforward calculation, we have

(@—Amﬁq;ﬁ%@—AWW—l‘%a—Aw
(Vfo, Vi) Vol
+2(l—0)————0o(l—0)fo———.

(1 —o)== (=)t 2
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Using (3.16) and (3.17), we have

(Bt_A)fo'
V;l2 i 2| |2 i
ngg[_||;l|2| +(1—U)M|VH|2:|

+ 20, IR+ 43— (1- @%ﬁr'?qm? +n)]

|H|?
Lof, [— | o4 (1-0
Jop2 I ( )

HP 2 o
- — —l——oV o V.
]+ Vv

From Lemmas 2.1 and 3.6(ii), we have

§ 2l

- mp4«1—@ |VH|?

° (n—4)
Q2 (1-e)2k

< - 'El +(1- 0)#|VH|2

<_jvm2+ufﬁmvm2:_qvm{

|h|? |h|? |h|?
By Lemma 3.6(iv), we get
Y- [HJ?

mF+n+3—ﬂ—a%—E—%mF+m

R
§Q—U#LJ2J—LWF+n+3+ﬂM2

<n+3+alhf

By Lemma 3.6(i), we have
H|?

VOH2 L H]? 2 4 | H?
) m2+2+“_0ﬂ)$| L THEP 2P
n

(4

This completes the proof of the lemma.
4 An Estimate for Traceless Second Fundamental Form

Let F: M™ x [0,T) — CP"+* be a mean curvature flow. Suppose that the initial value My

satisfies
¢, q=1,
. H|? 3
W2 <W, W= —J—L—+2——, 2<qg<n—4, (4.1)
nin —1) n
Wb, qg=>n—42>2.
|H]|

2
From the definition of W, we have W < =Ty T By the conclusions of the previous section,

there exists a sufficiently small positive number e, such that for all ¢ € [0,T), the following
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pinching condition holds
h? < W —e|lH|? —c.

712
We investigate the auxiliary function f, = ml,}i‘,(, In this section, we will show that f,

decays exponentially.

Lemma 4.1 There exist positive constants € and Cy depending on My, such that

efo

201 . -
Orfo < Afy +——|Vfs||Vh| — ——|Vh
He < Ao SV IAIVA] = S
2(1 —x)efs o2 2 €
—%P 2 o —_ — o
T P2 Sl + (5mx— =)

where
0, g=1lor2<g<n-—4,
X 1, q>n—4>2.

Proof Combining the conclusions of Lemmas 3.2, 3.4 and 3.8, we have the following in-

equality with some suitable small ¢ :

2 2¢fo (w310 9 €
0<A o I17 o - S 2 o - o-
Oute < Ao IV LAIVW] = [ VHE + 20 fo b+ (S0x = ) f

From Lemma 2.1, we have [VA|2 > 2(1 — x)|P|2.
By the definition of W, there exists a constant B; such that [VW| < B1|V|H|?| and |H| <
B1VW. Letting Cy be a constant such that 2B2|VH| < C1|Vh|, we have

VW[ _ BiIVIHP| _ 2BY[VH| _ C1|Vh|

oS W STUW (4.2)

Thus we complete the proof of this lemma.
We need the following estimate for the Laplacian of |h[2.

Lemma 4.2
A2 > 2(h, V2 H) + 2(e|h|> — 2n?)|h|> — 6|h||H|| P|?.
Proof We have the following identity
Alh|? = 2(h, V?H) + 2|Vh|? — 2Ry + 2R3 + 2n|h|> — 251 + %SQ + 695,

where Ry = HOh§h 15, S5 = h$; HP JioJ;5. From Lemma 3.5(iii) and S5 > —|h||H||P|2, we

get
Alh[? > 2(h, V2H) + 2(Rs — R1) — 2(n + 3)|h|* - 6|h||H|| P[>
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We choose a local orthonormal frame, such that H = |Hl|e,+1 and h!
An). Let py = [A"FH2 py = S0 |h?|2. Expanding Rs, we get
a>n+1

1 3p +p ° ° o H ° ° ° o
Ry = i+ P e S A+ ST (G A g

a,i a>n+1
1#]

By [27, Lemma 2.6] or [30, Proposition 1.6], we have

P Nl (I S )

( _1) a>n+1
i#]
n—2 1 °
Z—W(g(ﬂﬁ-w )|h] — \/_a;rl )
i
_ 3__
= n(n )(|h| S lilo - WZ+ )?).
i#]

We also have

DA — 202+ A (h$)? > =201 > (h

a>n+1 a>n+1 a>n+1
i#£] i#j i#j

Note that —2=2— > ¥2 if n. > 6, and 5. (h%)2 =0 if ¢ = 1. We get
Vnn=1) © 2 asnfLitj

n—2

vn(n—1)

1 3p1+p2 +pz : 1
Ry > —|H|*+ [~ (| (B = 51l p2).

From (4.3) and Lemma 3.3(i), we get

2ol : n—2)|H||h . (n—2)|H .
Ry — By > [hf? (S iy - 2R gy (2L )

n(n —1) 2y/n(n—1)
Since |h|2 < W —e|H|? and W < nlm 1y -+ n, we have
1 n—2)|H||h
_|H|2_|h|2_( )| || |
n(n—1)
1 |H? [H|?
> ZHP? - (2 e HP) — (- 2) (S
_n| | (n(n—1)+n el |) (n )(n(n—1)+n)

If g =1, then po = 0. If ¢ > 2 and n > 6, we have

2¢y/n(n—1) 2¢/n(n—1)

diag(As,

(4.3)
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Thus we obtain

o . 3 o 2n
Ry — By > [ (elhf? = n) = 2v/mpal ] + 5p3 > |hf? (elnf? = n* = ).

Hence we complete the proof of this lemma.

From (4.2) and Lemma 4.2, we have

Afy =

Alh? AW Vi, VW VI |2

o (T~ =01 55) 20 - TR ot B
o foAlR? - d AW 2C1 |V £,||VA]

R w 1A

2(h, V2H) 2 o ooy 6fo|H|P?
> 2L of, (el b - 2n%) - T

w! 1A

w .

Multiplying both sides of the above inequality by f2=1, we get

PA
2 fEhP < JE AL + (1 - o) 22
2fP~Uh, V2H) 20, fP~ LV, ||Vh 62| H||P|?
fo‘ <1v_ >+ 1f<7 |0 f || |+4n2fg+ fcr| 0|| | ) (44)
wi=e |h] |h]

Then integrate both sides of (4.4) over M;. By the divergence theorem, we have

P fodpy = —(p— 1) P2V fo P dp.
My My

From (4.2), we have

/ Iz AW dpg
Mt
- [, (5w

~ [ (M wn v+ e wE)an

w

C
< [ (v vy + L
AN gk

7 1Vh?) g
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We also have
f2-Y(h, V?H)
M, Wl—a

[ S

—(p_l) 5_20(1 (1_0)1)1 a pl e «
:/M i PA AL A Vi | v e dp

dut

Wl—a W2 o Wl o

(p—1)fo2 fp1 et
S/M _WIhHVﬁTIjL T —|R||VW| + T g”|Vh|}|VH|dut

- -1 p—1 C p—1 p—1 R R
</ @ VI G 7, 4+ S iy 4 J2 ] nlThldp,

M, L |h| Wl—o Wl o
r(p—1)fp—1 . Ci + P
< [ (=2 v+ C D ] .
m b R |h|?
Putting the above inequalities together, we get
f5|h|2dﬂt
M,
pfy ; 2 f21H]|P?
gcz/ IR AR ARy AL S A1 | P (4.5)
Mt{ |h A |h }

where Cs is a positive constant independent of ¢.

Combining Lemma 4.1 and (4.5), we obtain

d

— Pd
dt fo’ ot

—y 51 ey t—/ F2IHPduy

2C
< p/ 17 (8o + 24w 9 -
M, |h]

2(1 — v)efs €
WX e o g gy 2+ (smx - ) £,) dut—/ AR
e "

efo
n|h?

|Vh|?

<p [ p[-w- 1)|Vfa|2+(201+2002p)| IV IV
M,

- (% - 2002) e - v ]dut

— P2 2 HI||P|?
e
nlh? )

H 2
|H| } s,
p

Now we show that the LP-norm of f, decays exponentially.

+ 20C5 + dnyx — % — (4.6)

Lemma 4.3 There exist positive constants Cs,po, oo depending on My, such that for all

p>po and o < Z \/5, we have

1
( };dm) " < Cseet.
My
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Proof The expression in the first square bracket of the right hand side of (4.6) is a quadratic

polynomial. With py large enough and op small enough, its discriminant satisfies
(2C + 20Cap)* — 4(p — 1)(5 - 2002) <0.
n

Thus this quadratic polynomial is nonpositive.

Then we consider the expression in the second square bracket of the right hand side of (4.6).

We have
2(1 - 200, H||P|? 1
_ ( DX)E|P|2 o 2|D ||P| +2UCQ+5TLX—£——|H|2
n|h|2 A nop
92y — 1 202|plA
< (XD )£|P|2+pa o2| | —1-20024—511)(—E
n|h|? |h|? n
2 |P|? €
< (E(X —1)e+ npa%)’%)W +5ny — (ﬁ - 2002)
2..1PP e
< X5
2xe
—— +5nx — —
~ )2 +onx 2n

Thus, if g=1o0r 2 < g <n — 4, we have
d pe
— Pdpu, < —— Py
dt/]wtfg Mt = m Mtfa' ot

So, we get

/ fgdutﬁe_g_i‘t/ fEdpo.
M; Mo

If g>n—4>2, we have

d 2e
—— p < ~o _ p .
T /M fodpu _p/m (|h|2 +5Tl)fgd,ut

Since W > e, we have

2pe D _ 2pe p—1 p—1 D
Wfd_ Wl_g o Szpfo §2+2(p_1)f0

Then we obtain

d
G [ rdu <2volat) + 2o -2+ 5mp) [ frams
dt M, M,

< 2Vol(My) + 6np fPdp.
M,

Hence,

Vol(Mo)) ~ Vol(My)

Frdue < et ( [ prdug +
Mo 3np 3np

M
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Noting that 7T is finite if ¢ > n — 4 > 2, we obtain the conclusion.

Let g» = f,e2. By the Sobolev inequality on submanifolds (see [12]) and a Stampacchia
iteration procedure, we obtain that g, is uniformly bounded for all ¢ (see [13] or [17] for the

details). Then we obtain the following theorem.

Theorem 4.1 If My salisfies the condition (4.1), then there exist positive constants €, o

and Cy depending only on My, such that for allt € [0,T) we have
h)? < Co(|HP + 1) 77" 7.
5 A Gradient Estimate

In the following, we derive an estimate for [V H|? along the mean curvature flow.

Firstly, with the same method as in [2], we get the following evolution equation for |V H|?.

H|VH|> = AIVH|? = 2|V2H|> + hx h x Vh x Vh
+R*VH*VH+R+h+xh«VH+VR*HxVH. (5.1)

Here we use Hamilton’s * notation. For tensors T and S, T % .S means any linear combination

of tensors formed by contraction on 7" and S by g. Then we obtain the following lemma.

Lemma 5.1 There exists a constant Cg > 1 depending only on n, such that
O|VH|* < AIVH|? + Cs[(|H|* + 1)|VR* + |n|*|VH]].
Secondly, we need the following estimates.

Lemma 5.2 Along the mean curvature flow, we have

(i) 0 |H|* > AlH|* = 12n[H[*|VR[* + J|H|°,

(i) Dulhf? < A[BI2 = L[VA[2 + Cr(|H? + DIA[2,

(iii) O (|H2h[2) < A(HP|RI) = §|H?| VA2 + Co| VA + Cs (| H|* + 1)%h],

where C7,Cs, Cy are sufficiently large constants.

Proof (i) From Lemma 2.2(ii) we derive that
O |H|* = A|H|* — 4|H>IVH|*> — 2|V |H|?|> + 4|H|*(Ry + 3S2) + 4n|H|*.

From Lemma 3.5, we get Ry + 353 > Ry > %|H |*. Then using the Cauchy-Schwarz inequality,
we have 4|H|?|VH|? + 2|V|H|?|? < 12|H|?|VH|? < 12n|H|*|Vh|?.
(ii) We have

. . . . 2 6
o|h|*> = Alh|? — 2|Vh|> — 2n|h|* + 2R, — CRa o+ 251 — 552.
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From Lemma 2.1, we get 2|VfDL|2 > £|Vh|?. Then applying Lemma 3.5, we obtain inequality
(ii).
(iii) It follows from the evolution equations that

c o R 35
Ou([HR[?) = A(HP|h?) + 2| H? (R = =2 + S1 = 22 ) + 2|hf* (Rz + 352)
— 2{HP|Vh? = 2hP|VH]* = 2(V|H*, V|h]).

From Lemma 2.1, we get —2|H|2|Vh|? < —3[H[?|Vh[2

From Lemma 3.5 and the pinching condition |h|2 < W, we have
2|H|? (R - @ T8 - 3—52) 4 2/h2(Ry + 352) < Cs(|H|? + 1)2[h[2.
Using Theorem 4.1, we have
~2(V|H|?,V|h|?) < 8|H||VH||h||Vh| < 8ny/ColH|(|H|? + 1) =" |Vh|%.

By Young’s inequality, there exists a positive constant Cy, such that

. 1
—2(VIH]?, V|h) < (Co + S[HP)I VAP,

Now we prove a gradient estimate for the mean curvature.

1
Theorem 5.1 If M satisfies the condition (4.1), then for all n € (O, %), there exists a

positive number ¥ depending on n and My, such that

o2

IVH|* < [(n|H|)* + ¥*)e”
Proof Define a scalar
f=|VHPeT + (B + Bo|HP)|hPe ™ — (n|H]|)*,

where By, By are two positive constants.

From Lemmas 5.1-5.2, we obtain

0y = A)f
gt B et
{Cge 5 — %6512 + 12nn }|H|2|Vh|2

£t B et
+ {C’(aeF - (?1 — 3209)65172} [Vh|?
o€ s
+ e [BLC(H I + 1) + BoCa( | H* + 1) + 2= (B + Bl HY) | |h?

+ B»C;
gt 4
+ (Coln? |V H| + < |VH]? ¥ — %|H|G.
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We choose the constants By and Bs, such that % > Cs + 1 and % — B3C9 > Cg + 1. Thus

we get

(0, — A)f < —eTF [VA? + Bse T2 (|H|? + 1)2]h)?
et 4 4
+ (Coln?|VH| + = |VH? )e¥ — 1|,
where Bj is a positive constant depending on By and Bsy. Then we have

ot 1
Ce|h|?|[VH|eT < |h|4 -4 %|VH|2eW
nC’G

5e

e~ 4 |Vh|2e® — %WHPe%. (5.2)

\ /\

By (5.2) and Theorem 4.1, we get

nC’6

4
(0 — A)f < e~ 7 | ByCo(|H[? + 1)%7 + 25 | — Z |H 5] (5.3)

Using the pinching condition |h|? < W + ‘H‘ , we derive that the expression in the bracket of
(5.3) has a upper bound ¥5. Then we have (8t —A)f < Wge 2. It follows from the maximum
principle that f is bounded. This completes the proof of Theorem 5.1.

6 Convergence

We will follow Hamilton’s idea in [11] to use the Myers theorem.

Theorem 6.1 (Myers) Let I' be a geodesic of length | on M. If the Ricci curvature
satisfies Ric(X) > (n — 1)’;—;, for each unit vector X € T, M, at any point x € I', then I' has

conjugate points.

Now we show that the mean curvature flow converges to a point or a totally geodesic

submanifold.

Theorem 6.2 If My satisfies condition (4.1) and T is finite, then F} converges to a round

point ast — T

Proof If T is finite, we have n]%/z[mx|h|2 —ooast —T. Let |H|min = H]\14in|H|, |H | max =
t t

max |H|. From the preserved pinching condition, we get |H|max — 00 as t — T.
t

1
By Theorem 5.1, for any n € (0, £=), there exists a positive number ¥ > 1, such that
|[VH| < (n|H|)?> + ¥. Since |H|max — 00 as t — T, there exists a time 7 depending on 7, such
that for t > 7, we have |H |2 > \I’ . Then we get |VH| < 2n?|H|% ...

From [36, Lemma 4.1], the sectlonal curvature K of M, satisfies

1 1
K> -(2+——|H|* —|h?). 1
> 5 (24— IH[* - |nP?) (6.1)
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Using the pinching condition |h| < W — ¢|H|?, we get K > $(e|H|? —n).
Let x be a point on M; where |H| achieves its maximum. Consider all the geodesics of
length [ = (477|H|max) starting from z. Since |V|H || < 4n?|H|3 .., we have |[H|? > |H|?, —

4n?|H |3 )| H|2 ., along such a geodesic. Then we get K > $(e(1—n)|H|2,, —n) >

l’ndX ( max

SHZ . > 122 on such a geodesic. From Myers’ theorem, these geodesics can reach any point
of M. Therefore, we obtain |H|?, > (1 —n)|H|?,, and diam M; < 2l. Hence, we have

diam M; — 0 and I‘gl‘mm —last—T.

min

Now we dilate the metric of the ambient space such that the submanifold maintains its
volume along the flow. Using the same method as in [22], we can prove that the rescaled mean

curvature flow converges to a round sphere as the reparameterized time tends to infinity.

Theorem 6.3 If My satisfies condition (4.1) and T' = oo, then F} converges to a totally
geodesic submanifold CP3 as t — oco.

€

Proof Firstly, we prove |H|? < Ce~12 by contradiction. We assume that |H|?, el

et

|

becomes unbounded as ¢ — oo. By Theorem 5.1, for any small positive number 7, there
exists a positive number ¥, such that |[VH| < [(n|H|)? + ¥]e 2. Let 7 be a time such that
|H|2,.(7) - e > % Then we have |VH| < 2n?|H|?,, on M,. From (6.1) and Theorem 4.1,
we derive that if 7 is large enough, the sectional curvature of M, satisfies K > 5~ L |H|?.

Using Myers’ theorem as in the proof of the previous theorem, we obtam |H2,,(7) >
(1-— 17)|H|max(7). This together with |H |2, (T)eT> > n% and Theorem 5.1 yields [VH|? <
(n|H)* + CE=H |H|%. (7) for all t > 7. From the evolution equation of |H|?, we have

2 1
(0, — A)|H|? > —2|VH|* + E|H|4 > E|H|4 |H|mm(7-) for t > 7.

Using the maximum principle, we see that |H|? blows up in finite time. This contradicts the

et

infinity of 7. Therefore, we obtain |H|?> < Ce™1z.
From Theorem 4.1, we have |h|2 = |h|2 + LIH]? < Ce™ 2. Since |h| — 0 as t — oo, M,
converges to a totally geodesic submanifold M., as t — oc.
In the case of ¢ > n — 4, since |h|? < (| H|?) is preserved, thus the flow can not converge to
a totally geodesic submanifold. So the dimension and codimension of M, satisfies ¢ < n — 4.

From the fact that the totally geodesic submanifolds of CP™ are totally real submanifolds RP™
and Kihler submanifolds CP% (see [6]), we see that M., must be CP3 .

Combining the results of Theorems 6.2—6.3, we complete the proof of Theorems 1.1-1.3.
At last, we prove the classification theorem for submanifolds in CP™ under the weakly

pinching condition |h|2 < W.

Proof of Theorem 1.4 Let M evolve along the mean curvature flow. Using the strong
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maximum principle, we obtain either [k|2 < W for some ¢ > 0, or |h|> = W holds for all ¢.

If |h|2 < W for some ¢t > 0, then M; converges to a round point or a totally geodesic
submanifold CP3 .

If |h|2 = W holds for all ¢, then (8; — A)(|h|2 — W) = 0. So W must be ¢ and

(0~ M)A ~ W) = (4 ~ P+ n+3) ~ | HP (9 + L HP +n) =0.

N | =

From Lemma 3.6(iii), we get |H| = 0. Thus |h|?> = ¢(0) = 0. Therefore, M, is a totally geodesic

submanifold for each t.
7 Appendix

For an odd integer n > 3, and a real number ¢ € [0, 1], we define a function ¢, : [0, +00) — R
by

e () :==de + ccx — V/b2a? 4 2abx + e,

where
. n—3 2n —5
a = 2v/(n?—4n+ 3)b, b:mln{4n—4’n2+n—2}’
1
05:b+m, d5=2—25—|—a, 62\/5.
We set ¢ = ¢g.

Lemma 7.1 The function ¢ satisfies

() 753 +2<w(e) < 35+,
(ii) ¢(x) > v/2(n —3).

Proof If n = 3, then a = b = 0. We have p(x) = 2+ -%5. It is easy to verify the inequalities

above.

If n > 5, by direct computations, we get

3 -
2

a2+ 22)

Since (p(z) — = )” =¢"(z) > 0and lim ¢'(z) = —L5, we have ¢/(z) < —15. Hence we get

T—00 n—1’
x
n—1

2= lim ((p(x) - L) < p(x) —

Z—00 n—1

< (0) =do < n.

If n > 5, we figure out that

. . aco _aN _ A 4 o 49
glzuow)(x)_@(b o b) do— 7 tyva—b*
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If n = 5, we have m>i]8 olx) = 42— 2. If n > 7, we have

1§1>1101<p( )—2+21/27;__35(\/5n—8—\/n—|—2) > \/2(n — 3).

Letting . (7) = @:(z) — £, we have the following lemma.

Lemma 7.2 There exists a positive constant €1 depending on n, such that for alle € (0,e1)
the function p. satisfies the following inequalities :

(1) 2087 (2) + ¢ (2) < 22D

(i) @e(2)(pe(z) —n+3) —xpl(x)(pe(z) + 1 +3) <2(n —1),
(ii) ¢e(x) — 2pe(e) > 1.

Proof If n = 3, then a = b = 0. We have ¢.() = 2 — 2¢ + 57 — v/e. It is easy to verify

these inequalities.

If n > 5, by direct computations, we get

°'(x)—c—l— b2x + ab
Ve “ n Vb222 1 2abx t e

Pl (x) = tle —c)
: (b222 + 2abz 4 €)3
S () = — 3b3(a? — e)(bx + a)'
: (b222 4 2abx + €)3

Then we have

224 (x) + PL(2)
1 b3x2(bx + 3a) + eb(3bx + a)

:ca 3
n (0222 + 2abx + €)2
1 1
<Ce——<c¢p— —
n n
2(n—1)
n(n+2)

This proves inequality (i).

Setting f(2) = ¢=(2)(p= () —n + 3) — 2 (2)(p:(2) + 1 + 3), we get

f(@)=e+d-(de +3—n)+ (2+ab+ c.(d: —2n))z
_ blace +b(d- — 2n))z? + (3ab(de + 1 —n) + cce)x + e(2de + 3 —n)
V0222 + 2abz + € '

Noticing that 2 + ab + c.(d. — 2n) = ac. + b(d. — 2n), we figure out

€ 5_2 2 26
b(ac. + b(d n)) _ac + a(d. — 2n).

lim 2+ab+ c.(d; —2n))x —
[( =(de ) V0222 + 2abx + e b

T—r+00
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Hence we obtain

Jm S

2

a®ce Ce

—i—a(dg—2n)—3a(d€+1—n)+e(1—3)
)+vef1-5)

=d.(d:+3—n)+
44 2

:2(n—1)+25(n—9+25+7
n—1+e¢

<2(n—1).
Calculating the derivative of f(z), we get
F(x) =2+ ab+ c.(d. — 2n) — (b22® + 2abx +¢)~ 2
x [(3a%b*(de +1 —n) — 3be(b — ac. + bn))x
+ b*(ac. + b(d. — 2n))z? (b + 3a)
+ cce? + abe(d. — 2n)].

Thus we have

lim f'(x) =2+ ab+ c.(d: — 2n) — ace — b(de — 2n) = 0.

r— 400

Furthermore, we get

3b%(a? —e)
=.

17 _ _ 2 _ _ _
f"(@) = [b(2b + bde — acc)a® + (ab(l —n+d.) — cce)x ("+1)€](b2x2+2abx+e)‘f

From b < =2 we obtain

2¢/(n? —4n + 3)b

2b+ bd. — ac. = (4 — 2e)b — S iy

<0

and
l-n+d.=3-n+2y/(n?>—4n+3)b— 2 < 0.

So, we get f”(z) < 0. Then we have f’(z) > 0. From this we deduce that

flz) < lim f(z) <2(n-—1).

T ——+00
Thus, inequality (ii) is proved.
We have

e () — 2 (x)

o abx + e
° Vb222 + 2abz + e
- d abx e
Va2 e

=22 — /e
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This implies inequality (iii).

For each integer n > 6, we define the function 1 : [0, +00) — R by

V(x) = v+ ke — /N222 + 2 \px + 12,

-3 _ = 3 ,-__9
where £ = A + —L- A A3 M=Vt oV = s

Lemma 7.3 The function Y satisfies the following inequalities :

(i) L <o'(z) < =45, £ <4p(2) < =Z;, and the equalities hold if and only if x =0,

ii) max(sz/J”( )+ (@) < 35

889

(
(iii) 3 ( ) =S4+ (W(x) — 29’ (2))(p(x) +n) <0, and the equality holds if and only if x = 0,
(

1V)O<xd)() P(z) < 2.

Proof Taking derivatives, we get

V(3) = r— A2z + Ap
V222 4 2 + 02
w//(x) _ AQ(‘LLQ - V2)

(A222 + 2 \px + 12)3
) — B )0+ )
(A\222 4 2\ux + v2)3

(i) We have ¢/(0) = & — 2 = L and ll}l_il_l ¢'(z) = k — A = L. Since ¢ (z) > 0, we get

v

L <y/(z) < =5 for 2 > 0. Thus we obtain £ < ¢(z) < -Z; for z > 0.
(ii) Letting g(x) = 2a¢)" (x) + ¢'(z), we have
M3 + 3N3pua? + 3\2v%x + Au?

T)=kK—
9(z) (A222 4 2 px + 12)2
and
9'(z) = 229" (z) + 39" (2)
BA2(i2 — v?) (12 — M)
(A222 + 2\px + 12)3
Thus we get
v
maxa(z) = (3)
IR 2v
w+v
n(n —3) = 3,/ =3
N n3 —4n2 + 3
3

n+8’
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(iii) We have

B(r) — S+ (W) — 2! (@) () + )

3
= U(?’L+3+2V)+()\M+3I€+/€V——)5L‘}
n

~ Alkp 32+ Av)a? + (kv? + Au(n + 6 + 3v))z + v2(n + 3+ 2v)
VA222 + 2w + 12

Set

h(z) = [V(n +3+2v)+ (/\u + 3Kk + kv — %)x} 2(/\2302 + 2 px + v?)
— M(mp 43X+ 2)z? + (k2 + Mu(n + 6 4+ 3v))z + 2 (n 4+ 3 + 2v)]2.
Now we need to prove h(z) < 0. Since k = A + ﬁ, w=v+ %, we have
A+ 3k + Ky — % = rp+ 32+ .
Putting A = ku+ 3\ + A, B=n+3+2v,C = kv® + Au(n + 6 + 3v), we get
h(z) = (vB + Az)*(\?2? + 2 px + 1) — (Mz? + Cz +v°B)?
= 2\A(uA + \vB — C)z*
+ [V*(A — AB)? + 4\ AB — C?]a?
+ 202 B(vA + AuB — C)z.
By the definitions of k, A, u, v, we have

A+ B =vA+\uB=C

and
81(n3 — 12n + 9)?

>(A—AB)? + A\uwwAB — C? = —
VA= AB) 4 4w n?(n —1)2(n? — 3n — 3)*

< 0.

Thus, inequality (iii) is proved.
(iv) It follows from inequalities (i) and (iii) that ¢ (z) — 29’ (x) < 0. By direct computations,

we get
ay(z) — ¥ (@)
e Az + v?
V222 + 2w + 12
- n Apx n v?
— -
N V222 V2
=p<2.
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