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Abstract On metrics of Eguchi-Hanson type II with negative constant Ricci curvatures,

the authors show that there is no nontrivial Killing spinor. On metrics of Eguchi-Hanson

type II with negative constant scalar curvature, they show that there is no nontrivial Lp

eigenspinor for 0 < p < 2 if the eigenvalue has nontrivial real part, and no nontrivial

L2 eigenspinor if either the eigenvalue has trivial real part or the eigenvalue is real, the

eigenspinor is isotropic and the parameter η in radial and angular equations for eigenspinors

is real. They also solve harmonic spinors and eigenspinors explicitly on metrics of Eguchi-

Hanson type II with certain special potentials.
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1 Introduction

Eguchi-Hanson metrics, referred as gravitational instantons, are Ricci flat, anti-self-dual

4-dimensional asymptotically local flat Riemannian metrics arisen in the Euclidean approach

of gravitational quantization (cf. [6–7]). The metrics of Eguchi-Hanson type with zero scalar

curvature were constructed by LeBrun using the method of algebraic geometry (cf. [14]) and

by the third author solving an ordinary differential equation (cf. [17]). These metrics provide

counter-examples of Hawking and Pope’s generalized positive action conjecture (cf. [11]). Fol-

lowing the idea of [17], the first and the third authors constructed metrics of Eguchi-Hanson

type II with negative constant scalar curvature (cf. [5]). They are asymptotically local hyper-

bolic (ALH for short) and also provide the positive action conjecture for negative cosmological

constant.

It is well-known that spinors and the Dirac operator play important roles in geometry (cf.

[1, 9, 13] and references therein). They are also used to describe spin- 12 particles in quantum
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field theory. In [4], Chandrasekhar observed that spinors can be separated variables to reduce

the Dirac equation into radical and angular ordinary differential equations. This results in

significant physical implication that Dirac particles must either disappear into the black hole

or escape to infinity (cf. [8, 16]).

It is therefore an interesting question to study the Dirac equation on metrics of Eguchi-

Hanson type. In [15], Sucu and Ünal solved the Dirac equation on Eguchi-Hanson and Bianchi

V II0 gravitational instanton metrics by separating variables and obtained the solutions in terms

of the product of two hypergeometric functions. In [3], Cai and the third author investigated

the parallel spinors and the harmonic spinors on metrics of Eguchi-Hanson type. They found

that the space of complex parallel spinors are complex 2-dimensional on Eguchi-Hanson metrics,

and the harmonic spinors can be solved explicitly by separating variables on metrics of Eguchi-

Hanson type with zero scalar curvature.

Let θ, φ, ψ be the Euler angles on the 3-sphere S3. The Cartan-Maurer one-forms for

SU(2) ∼= S3 are

σ1 =
1

2
(sinψdθ − sin θ cosψdφ), σ2 =

1

2
(− cosψdθ − sin θ sinψdφ),

σ3 =
1

2
(dψ + cos θdφ).

Metrics of Eguchi-Hanson type II are given by

g =
dr2

(1 +Br2)f2
+ r2(σ2

1 + σ2
2 + f2σ2

3) (1.1)

for constant B > 0 and function f > 0, lim
r→∞

f = 1. We refer f as the potential function.

Recall that in [5], the first and the third authors constructed the following metrics with

constant negative scalar curvature −12B,

g =
dr2

(1 +Br2)
(

1 +
√
1+Br2C
r4

+ A
r4

)
+ r2

(

σ2
1 + σ2

2 +
(

1 +

√
1 +Br2C

r4
+
A

r4

)

σ2
3

)

(1.2)

with the potential function

f =

√

1 +

√
1 +Br2C

r4
+
A

r4
, (1.3)

where constant C is chosen to satisfy

C ≤ d3 − 36d+ (d2 + 12)
√
d2 + 12

27B2

or

C >
(d4 − 4)(3d+

√
3d2 + 24)

18B2
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for certain given natural number d ≥ 2, and constant A is chosen as

A = −r40 −
√

1 +Br20C (1.4)

for the largest positive r0 > 0 of the equation

(r2)3 +
4− d2

4B
(r2)2 +

dC

4
r2 − BC2

16
= 0. (1.5)

If A = 0, the metrics

g =
dr2

(1 +Br2)
(

1 +
√
1+Br2C
r4

)
+ r2

(

σ2
1 + σ2

2 +
(

1 +

√
1 +Br2C

r4

)

σ2
3

)

(1.6)

have constant Ricci curvature −3B. The potential function is

f =

√

1 +

√
1 +Br2C

r4
. (1.7)

Metrics (1.2), (1.6) for

r ≥ r0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π

d

are geodesically complete and ALH. Topologically, the manifolds are

R≥0 × SU(2)/Zd ∼= R≥0 × S3/Zd.

In this paper, we investigate Killing spinors and show that they are always trivial on metric

(1.6) with negative constant Ricci curvatures. We then study eigenspinors that can be separated

variables as follows

Ψ = ei(n+
1
2 )φ











ei
d
2 (m1+

1
2 )ψΦ1(r)J+(θ)

ei
d
2 (m2+

1
2 )ψΦ2(r)J−(θ)

ei
d
2 (m1+

1
2 )ψΦ3(r)J+(θ)

ei
d
2 (m2+

1
2 )ψΦ4(r)J−(θ)











(1.8)

on metric (1.2) with negative constant scalar curvature, where m1, m2 and n are integers,

and Φi(r) (i = 1, 2, 3, 4), J±(θ) are referred as radial and angular parts of the eigenspinors,

respectively. In particular, we refer them as isotropic eigenspinor if

Φ1 = Φ2, Φ3 = Φ4. (1.9)

We show that there is no nontrivial Lp eigenspinor for 0 < p < 2 if the eigenvalue has nontrivial

real part, and no nontrivial L2 eigenspinor if either the eigenvalue has trivial real part or
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the eigenvalue is real, the eigenspinor is isotropic and the parameter η in radial and angular

equations for eigenspinors is real.

We also solve harmonic spinors explicitly for the potential

f =

√

1− (d2 − 4)2

16B2r4
, d ≥ 3 (1.10)

and solve isotropic eigenspinors with

λ = ± i
√
B

2
, d = 3, m1 = 0, m2 = −1 (1.11)

in terms of hypergeometric functions for the potential

f =

√

1− 25

16B2r4
, r ≥

√

5

4B
. (1.12)

The paper is organized as follows. In Section 2, we introduce spin connections and prove the

nonexistence of the Killing equations on (1.6). In Section 3, we provide the Dirac equation by

separating variables and solve the angular equations. In Section 4, we prove the nonexistence of

Lp eigenspinor on (1.2). In Section 5, we explicitly solve harmonic spinors for potential (1.10)

and isotropic eigenspinors for potential (1.12). In Appendix A, we provide some results for

hypergeometric functions.

2 Spin Connection and Killing Equation

In this section, we introduce spin connections on metrics of Eguchi-Hanson type II and show

that there is no nontrivial Killing spinor on metrics (1.6). Denote the frame of (1.1),

e1 =
√

1 +Br2f∂r,

e2 =
2

r

(

sinψ∂θ −
cosψ

sin θ
∂φ +

cosψ cos θ

sin θ
∂ψ

)

,

e3 =
2

r

(

− cosψ∂θ −
sinψ

sin θ
∂φ +

sinψ cos θ

sin θ
∂ψ

)

,

e4 =
2

rf
∂ψ.
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The connection 1-form {ωij} of (1.1) are [5],

ω2
1 =

√
1 +Br2f

r
e2,

ω3
1 =

√
1 +Br2f

r
e3,

ω4
1 =

(

√
1 +Br2f

r
+
√

1 +Br2f ′
)

e4,

ω3
4 =

f

r
e2,

ω4
2 =

f

r
e3,

ω2
3 =

( 2

rf
− f

r

)

e4.

(2.1)

Note that the space of complex spinors is complex 4-dimensional. Let Ψ = (Ψ1,Ψ2,Ψ3,Ψ4)
t

be a complex spinor. The spin connections are given by

∇ekΨ = ekΨ+
1

4

4
∑

i,j=1

g(∇ekei, ej)ei · ej ·Ψ.

In terms of connection 1-forms (2.1), we obtain

∇e1Ψ = e1Ψ,

∇e2Ψ = e2Ψ+
1

2
ω2

1(e2)e1 · e2 ·Ψ+
1

2
ω4

3(e2)e3 · e4 ·Ψ,

∇e3Ψ = e3Ψ+
1

2
ω3

1(e3)e1 · e3 ·Ψ+
1

2
ω4

2(e3)e2 · e4 ·Ψ,

∇e4Ψ = e4Ψ+
1

2
ω4

1(e4)e1 · e4 ·Ψ+
1

2
ω3

2(e4)e2 · e3 ·Ψ.

(2.2)

Throughout the paper we fix the Clifford representation

e1 7→









1
1

−1
−1









, e2 7→









i
i

i
i









,

e3 7→









−1
1

−1
1









, e4 7→









i
−i

i
−i









.

(2.3)

It is well-known that the existence of imaginary Killing spinors implies that metrics have

negative constant Ricci curvature (cf. [9]). In order that metrics of Eguchi-Hanson type II have

negative constant Ricci curvature −3B, the Killing equations are

∇ekΨ = ± i
√
B

2
ek ·Ψ, k = 1, 2, 3, 4. (2.4)

Before we study the Killing equation (2.4), we prove the following proposition.
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Proposition 2.1 The root r0 of (1.5) is simple if d = 2 or A = 0.

Proof If d = 2, then (1.5) implies that C 6= 0. Denote

∆ =
B2C4

1024
+
C3

216
.

If ∆ > 0 or ∆ < 0, r0 must be single. If ∆ = 0, we have

r0 =
4

3
√
B
.

This shows that r0 is simple. In the case A = 0, (1.4) gives that

h(r) = r4 +
√

1 + Br2C = r4 −
√
1 +Br2

√

1 +Br20
r40 .

Since

h′(r0) = r20

(3 + 2Br20
1 +Br20

)

6= 0,

we know that r0 is simple.

Theorem 2.1 The Killing equations (2.4) has no nontrivial solution on metrics (1.6) for

C 6= 0.

Proof Let Ψ be the solution of (2.4). The first equation of (2.2) gives

∂r

(

Ψ1

Ψ3

)

= ± i
√
B

2
√
1 +Br2f

(

0 1
−1 0

)(

Ψ1

Ψ3

)

,

∂r

(

Ψ2

Ψ4

)

= ± i
√
B

2
√
1 +Br2f

(

0 1
−1 0

)(

Ψ2

Ψ4

)

.

(2.5)

Then the general solution are
(

Ψ1

Ψ3

)

= Q1

(

e−L(r)

ie−L(r)

)

+Q3

(

eL(r)

−ieL(r)

)

,

(

Ψ2

Ψ4

)

= Q2

(

e−L(r)

ie−L(r)

)

+Q4

(

eL(r)

−ieL(r)

)

,

(2.6)

where Qi (i = 1, 2, 3, 4) are functions of θ, φ, ψ and

L(r) = ±
∫ r

r0

√
B

2
√

1 +Br2f
dr. (2.7)

As r0 is a simple root, L(r) is convergent at r = r0.

If

(

Ψ1

Ψ3

)

is nontrivial, then the fourth equation of (2.2) gives

∂ψQ1 =
irfG(r)

2
Q1 −

irfe2L
(

F (r) ∓ i
√
B
2

)

2
Q3,

∂ψQ3 = − irf
(

F (r) ± i
√
B
2

)

2e2L
Q1 +

irfG(r)

2
Q3,

(2.8)
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where

F (r) =

√
1 +Br2f

2r
+

√
1 +Br2f ′

2
, G(r) =

1

rf
− f

2r
.

Since the left hand sides of (2.8) do not depend on r, we must have

∂ψQi = 0, i = 1, 3.

Hence, (2.8) reduces to

G(r)

e2L
(

F (r) ∓ i
√
B
2

)

=
F (r) ± i

√
B
2

e2LG(r)
=
Q3(θ, φ)

Q1(θ, φ)
. (2.9)

Since the third term does not depend on r, the three terms in (2.9) must be nonzero constant.

Therefore,

0 = F (r)2 −G(r)2 − B

4
=
BC(4r2 − 2

√
1 +Br2) +BC2r2

16r4(C
√
1 +Br2 + r4)

.

So that C = 0 which gives contradiction. Similarly,

(

Ψ2

Ψ4

)

must also be trivial. Thus the proof

of the theorem is complete.

Killing spinors on standard hyperbolic metric are explicitly obtained for arbitrary dimension,

e.g. [1]. On metric (1.6) with C = 0, they can be solved as follows:

Ψ =









C1F+

C2F+

iC1F−
iC2F−









+ C3e
− iφ

2











e
iψ
2 sin θ

2F−
e−

iψ
2 cos θ2F−

ie
iψ
2 sin θ

2F+

ie−
iψ
2 cos θ2F+











+ C4e
iφ
2











e
iψ
2 cos θ2F−

−e−
iψ
2 sin θ

2F−
ie

iψ
2 cos θ2F+

−ie−
iψ
2 sin θ

2F+











,

where Ci (i = 1, 2, 3, 4) are complex constant and

F+ =

√

√

1 +Br2 ∓
√
Br +

√

√

1 +Br2 ±
√
Br,

F− =

√

√

1 +Br2 ∓
√
Br −

√

√

1 +Br2 ±
√
Br.

3 Dirac Equation

In this section, we study the Dirac equation

DΨ =

4
∑

k=1

ek · ∇ekΨ = λΨ (3.1)

on metrics (1.1). As the manifold is noncompact, λ is a complex number in general.
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For noncompact manifolds, there are point spectrum, essential spectrum, discrete spectrum

and continue spectrum. Denote ΣM the spinor fields on (1.1) and L2(ΣM) the square integrable

spinors. The point spectrum of D is define as

Specp(D) :=
{

λ ∈ C | L2(ΣM) ∩Ker(λ −D) 6= ∅
}

.

If there exists a sequence (ϕk) ⊂ L2(ΣM), which are orthonormal with canonical L2 inner

product, the essential spectrum of D is define as

Spece(D) :=
{

λ ∈ C | lim
k→∞

||(D − λ)ϕk||L2 = 0
}

.

The discrete spectrum of D is defined as

Specd(D) := Specp(D)
∖

Spece(D).

The continue spectrum of D is defined as

Specc(D) := Spece(D)
∖

Specp(D).

The spectrum of D is

Spec(D) = Spece(D) ∪ Specd(D) = Specp(D) ∪ Specc(D).

Spectrums of the Dirac operator are studied extensively, and we refer to [9] and references

therein for many interesting results. In particular, Specp(D) is empty on the real hyperbolic

space (cf. [2]), and either empty or {0} on Riemannian symmetric spaces of non-compact type

(cf. [10]).

For metrics (1.2), with respect to Clifford representation (2.3), the Dirac equation (3.1) are

(

√

1 +Br2f∂r − i
2

rf
∂ψ −G−(r)

)

Ψ1 −
2

r
eiψ
(

∂θ −
i

sin θ
∂φ + i cot θ∂ψ

)

Ψ2 = −λΨ3,

(

√

1 +Br2f∂r + i
2

rf
∂ψ −G−(r)

)

Ψ2 +
2

r
e−iψ

(

∂θ +
i

sin θ
∂φ − i cot θ∂ψ

)

Ψ1 = −λΨ4,

(
√

1 +Br2f∂r + i
2

rf
∂ψ +G+(r)

)

Ψ3 +
2

r
eiψ
(

∂θ −
i

sin θ
∂φ + i cot θ∂ψ

)

Ψ4 = λΨ1,

(
√

1 +Br2f∂r − i
2

rf
∂ψ +G+(r)

)

Ψ4 −
2

r
e−iψ

(

∂θ +
i

sin θ
∂φ − i cot θ∂ψ

)

Ψ3 = λΨ2,

(3.2)

where

G±(r) =
1

rf
+

f

2r
±
(3

√
1 +Br2f

2r
+

√
1 + Br2f ′

2

)

.
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Let

Φi(r) =
1

r
√

(1 +
√
1 +Br2)f

Xi(r), i = 1, 2, 3, 4. (3.3)

Substituting (1.8) into (3.2) and absorbing functions involving r to the left hand side and

involving θ, φ, ψ to the right hand side, we find that both sides must be equal to certain

complex number η in order that the equality holds. It yields the radial equations

(
√

1 +Br2f
d

dr
+
d
(

m1 +
1
2

)

− 1

rf

)

X1 +
2η

r
X2 + λX3 = 0,

(

√

1 +Br2f
d

dr
− d

(

m2 +
1
2

)

+ 1

rf

)

X2 +
2η

r
X1 + λX4 = 0,

(

√

1 +Br2f
d

dr
− d

(

m1 +
1
2

)

− 1

rf
+
f

r

)

X3 −
2η

r
X4 + λX1 = 0,

(
√

1 +Br2f
d

dr
+
d
(

m2 +
1
2

)

+ 1

rf
+
f

r

)

X4 −
2η

r
X3 + λX2 = 0,

(3.4)

and the angular equations

1

J−(θ)

(

∂θ −
(

n+
1

2

)

csc θ +
d

2

(

m1 +
1

2

)

cot θ
)

J+(θ) = ηei
(

d
2 (m2−m1)+1

)

ψ ,

1

J+(θ)

(

− ∂θ −
(

n+
1

2

)

csc θ +
d

2

(

m2 +
1

2

)

cot θ
)

J−(θ) = ηe−i
(

d
2 (m2−m1)+1

)

ψ .

(3.5)

Moreover, as the right hand sides of (3.5) do not depend on θ, it must be a constant. Therefore,

it is either

η = 0, m1, m2 arbitary

or

η arbitary,
d

2
(m2 −m1) + 1 = 0 ⇐⇒ d = 2, m1 = m2 + 1. (3.6)

Thus the angular equations reduce to, for d ≥ 2,

(

∂θ −
(

n+
1

2

)

csc θ +
d

2

(

m1 +
1

2

)

cot θ
)

J+(θ) = 0,

(

− ∂θ −
(

n+
1

2

)

csc θ +
d

2

(

m2 +
1

2

)

cot θ
)

J−(θ) = 0,

(3.7)

or, for d = 2,

(

∂θ −
(

n+
1

2

)

csc θ +
(

m+
1

2

)

cot θ
)

J+ = ηJ−,
(

− ∂θ −
(

n+
1

2

)

csc θ +
(

m− 1

2

)

cot θ
)

J− = ηJ+.

(3.8)
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Proposition 3.1 The solutions of (3.7) are

J+ =
(

sin
θ

2

)n+ 1
2− d

2 (m1+
1
2 )
(

cos
θ

2

)−n− 1
2− d

2 (m1+
1
2 )

,

J− =
(

sin
θ

2

)−n− 1
2+

d
2 (m2+

1
2 )
(

cos
θ

2

)n+ 1
2+

d
2 (m2+

1
2 )

,

(3.9)

which are regular if

m1 ≤ −2

d

∣

∣

∣
n+

1

2

∣

∣

∣
− 1

2
, m2 ≥ 2

d

∣

∣

∣
n+

1

2

∣

∣

∣
− 1

2
. (3.10)

Proof Note that (3.7) reduces to

∂θJ+ =
((

n+
1

2

)

csc θ − d

2

(

m1 +
1

2

)

cot θ
)

J+,

∂θJ− =
(

−
(

n+
1

2

)

csc θ +
d

2

(

m2 +
1

2

)

cot θ
)

J−.

Solving them we obtain (3.9). The regularity follows if the power indices of sin θ
2 and cos θ2 are

nonnegative.

The solutions of (3.8) are solved by Sucu and Ünal [15] in terms of hypergeometric function.

4 Nonexistence of Eigenspinor

In this section, we investigate nonexistence of eigenspinor Ψ on Lp spaces implicated by

radial equations (3.4).

Theorem 4.1 On metrics (1.2) with constant negative scalar curvature, there is no non-

trivial Lp eigenspinor taking the form (1.8) with eigenvalue ℜ(λ) 6= 0, where 0 < p ≤ 6
3+ε ,

ε > 2|ℜ(λ)|√
B

.

Proof Denote

X = (X1, X2, X3, X4)
t.

From (3.4), we obtain

d

dr
|X |2 = − 2(η + η)

r
√
1 +Br2f

(X1X2 +X1X2 −X3X4 −X3X4)

− 2

r
√
1 +Br2

(|X3|2 + |X4|2)

− 2d(m1 +
1
2 )− 2

r
√
1 +Br2f2

(|X1|2 − |X3|2)

+
2d(m2 +

1
2 ) + 2

r
√
1 +Br2f2

(|X2|2 − |X4|2)

− (λ + λ)√
1 +Br2f

(X1X2 +X1X2 −X3X4 −X3X4). (4.1)
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Therefore there exists a large r1 > r0 with |X |(r1) 6= 0, and for r ≥ r1, ε >
2|ℜ(λ)|√

B
,

d

dr
|X |2 ≥ −ε

r
|X |2.

Integrating it from r1 to r, we obtain

|X |(r) > C1r
− ε

2 , r > r1 (4.2)

for some positive constant C1. Denote by dµ the volume element of (1.1) and

D =
{

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π

d

}

.

Integrating (4.2) , we obtain
∫

D

∫

{r≥r1}
|Ψ|pdµ

=

∫

D
σ1σ2σ3

∫

{r≥r1}

r3|Ψ|p√
1 +Br2

dr

≥C′ 2π
2

d

∫

{r≥r1}

r2|X |p
(

r
√

(1 +
√
1 +Br2)f

)p
dr

>C′′
∫

{r≥r1}
r2−
(

3
2+

ε
2

)

pdr >∞

for 0 < p ≤ 6
3+ε . Thus the proof of the theorem is complete.

Theorem 4.2 On metrics (1.2) with constant negative scalar curvature, there is no non-

trivial L2 eigenspinor taking the form (1.8) with eigenvalue ℜ(λ) = 0.

Proof By (4.1), there exists a large r1 > r0 with |X |(r1) 6= 0, and for r ≥ r1,

d

dr
|X |2 ≥ −2C1

r2
|X |2 (4.3)

with some positive constant C1. Integrating it from r1 to r, we obtain

|X | > C2e
C1
r > C2, r > r1.

Therefore

∫

D

∫

{r≥r1}
|Ψ|2dµ > C′

∫

{r≥r1}

1

r
dr >∞.

The proof of the theorem is complete.

Theorem 4.3 On metrics (1.1) with constant negative scalar curvature, there is no non-

trivial L2 isotropic eigenspinor taking the form (1.8) satisfying (1.9), and with real eigenvalue

λ, real η.
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Proof For isotropic eigenspinors, we can assume

X1 = X2 = X+, X3 = X4 = X−.

Then (3.4) gives that

d

dr
X+ = − 2η

r
√
1 +Br2f

X+ − λ√
1 +Br2f

X−,

d

dr
X− =

λ√
1 +Br2f

X+ +
( 2η

r
√
1 +Br2f

− 1√
1 +Br2

)

X−.

(4.4)

With η, λ real numbers, we obtain

d

dr
(X+X− −X+X−) = − 1

r
√
1 +Br2

(X+X− −X+X−).

This implies that either

X+X− −X+X− ≡ 0 or X+X− −X+X− 6= 0, r ≥ r0.

In the first case (4.1) gives that there exists a large r1 such that, for r ≥ r1,

d

dr
|X |2 ≥ −2C1

r2
|X |2 (4.5)

for some positive constant C1. In the second case

(X+X− −X+X−)(r) = (X+X− −X+X−)(r0)
(1 +

√
1 +Br2)r0

(

1 +
√

1 +Br20
)

r
.

This gives that

|X+X− −X+X−| ≥ |X+X− −X+X−|(r0)
r0
√
B

(

1 +
√

1 +Br20
) > 0.

Therefore

|X+|2 + |X−|2 ≥ |X+X− −X+X−| > C2 > 0. (4.6)

Similar to the proof of Theorem 4.2, we know that Ψ is not L2.

5 Exact Solution

In this section, we study exact solutions of the harmonic spinors and eigenspinors for certain

special potentials.
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Theorem 5.1 On metrics (1.1) with constant negative scalar curvature where the potential

f is given by (1.10), harmonic spinors Ψ taking form (1.8) can be solved explicitly for d ≥ 3 as

follows

Φ1 =
e

(

d
(

m1+
1
2

)

−1
)

H1 +H

(

−d
(

m1+
1
2

)

+1
)

2
√

1 +
√
1 +Br2

(

r4 − (d2−4)2

16B2

)
1
4

,

Φ2 =
e

(

−d
(

m2− 1
2

)

−1
)

H1 +H

(

d
(

m2+
1
2

)

+1
)

2
√

1 +
√
1 +Br2

(

r4 − (d2−4)2

16B2

)
1
4

,

Φ3 =

√

1 +
√
1 +Br2

(

e

(

−d
(

m1+
1
2

)

+1
)

H1 +H

(

d

(

m1+
1
2

)

−1
)

2

)

r
(

r4 − (d2−4)2

16B2

)
1
4

,

Φ4 =

√

1 +
√
1 +Br2

(

e

(

d
(

m2− 1
2

)

+1
)

H1 +H
(−d
(

m2− 1
2

)

−1
)

2

)

r
(

r4 − (d2−4)2

16B2

)
1
4

,

(5.1)

where

H1(r) =
arcsin

(

√
d2−8√

4Br2+d2−4

)

4
√
d2 − 8

,

H2(r) =
(2

√
1 +Br2 − d

2
√
1 +Br2 + 2

)
1
2d

and J± are given by (3.9). Moreover, the spinors Ψ are singular at r0 =
√

d2−4
4B .

Proof Since d ≥ 3, we have η = 0. Thus the radial equations (3.4) with λ = 0 reduces to

( d

dr
+
d
(

m1 +
1
2

)

− 1

r
√
1 +Br2f2

)

X1 = 0,

( d

dr
− d

(

m2 +
1
2

)

+ 1

r
√
1 +Br2f2

)

X2 = 0,

( d

dr
− d

(

m1 +
1
2

)

− 1

r
√
1 +Br2f2

+
1

r
√
1 +Br2

)

X3 = 0,

( d

dr
+
d
(

m2 +
1
2

)

+ 1

r
√
1 +Br2f2

+
1

r
√
1 +Br2

)

X4 = 0.

(5.2)

Solving these ODEs, we obtain (5.1).

In the following we assume the potential function f of metric (1.1) is given by (1.12). We

will solve the isotropic eigenspinors under condition (1.11). Let

X± =
((

√
1 +Br2 + 3

2√
1 +Br2 − 3

2

)
1
12

e−
1
2 arctan(2

√
1+Br2)

)

U±. (5.3)
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Then the radial equations (3.4) become

d

dr

(

U+

U−

)

=
1

r
√
1 +Br2f

(

0 ∓ i
√
Br
2

± i
√
Br
2

1−f2

f

)

(

U+

U−

)

. (5.4)

Let

x =
√

1 +Br2, x ≥ 3

2
, (5.5)

then

0 < arctan
1

2x
≤ arctan

1

3
.

Throughout the section, we fix branches of the following complex logarithmic functions in

terms of integers k1, k2 and k3,

ln(2x+ i) = ln
√

4x2 + 1 + i arctan
1

2x
+ 2ik1π,

ln(2x− i) = ln
√

4x2 + 1− i arctan
1

2x
+ 2ik2π,

ln x = ln |x|+ 2ik3π.

(5.6)

Then the following functions of complex exponentiation appeared in the section are given as

(2x+ i)a+bi = ea ln
√
4x2+1−b arctan 1

2x−2bk1πei
(

b ln
√
4x2+1+a arctan 1

2x+2ak1π
)

,

(2x− i)a+bi = ea ln
√
4x2+1+b arctan 1

2x−2bk2πei
(

b ln
√
4x2+1−a arctan 1

2x+2ak2π
)

,

(2x− i)−
1
3− i

4 (2x+ i)
1
6+

i
4 = (4x2 + 1)−

1
6 e

(k2−k1)π

2 ei
(

1
2 arctan 1

2x+
k1π
3 − 2k2π

3

)

,

x
1
3+

i
2 = 3

√
xe−k3πei

(

1
2 ln |x|+ 2k3π

3

)

,

where a, b are real numbers.

Using (5.5), we can reduce (5.4) to the following equation

U ′′
+(x) +

48x4 + 16x3 − 80x2 − 16x+ 7

(x+ 1)(2x− 3)(2x+ 3)(4x2 + 1)
U ′
+(x) −

4(x2 − 1)

(4x2 + 1)(4x2 − 9)
U+(x) = 0. (5.7)

Theorem 5.2 On metrics (1.1) with constant negative scalar curvature where the potential

f is given by (1.12), isotropic eigenspinors Ψ taking the form (1.8) satisfying (1.9) and (1.11)
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can be solved explicitly as follows

Φ+ =
(

(

x− 3
2

)
1
3x

1
3+

i
2 e−

1
2 arctan 2x

√
1 + x

(

x+ 3
2

)
1
6 (2x+ i)

1
4 (2x− i)

3
4+

i
2

)(

F
(

− 1

6
− i

4
,
1

3
− i

4
;
2

3
;
4x2 − 9

40x2

)

+
( 1

16
− 3i

16

)(

1 +
3

2x

)

F
(5

6
− i

4
,
1

3
− i

4
;
5

3
;
4x2 − 9

40x2

))

,

Φ− = h1h2F
(

− 1

6
− i

4
,
1

3
− i

4
;
2

3
;
4x2 − 9

40x2

)

+
(( 1

16
− 3i

16

)(

1 +
3

2x

)

h1h2 +
(

x− 3

2

)
5
6

h2h3

)

F
(5

6
− i

4
,
1

3
− i

4
;
5

3
;
4x2 − 9

40x2

)

+
(

− 57

5120
− 81i

5120

)( 1

x3
+

3

2x4

)(

x− 3

2

)
5
6

h2F
(11

6
− i

4
,
4

3
− i

4
;
8

3
;
4x2 − 9

40x2

)

,

(5.8)

where F is hypergeometric function (cf. Appendix A), x is given by (5.5) satisfying (5.6),

h1 =
2

3

(

x− 3

2

)− 1
6

+
(

− 2

3
− i

2

)

(

x− 3
2

)
5
6

2x− i
+
(1

3
+

i

2

)

(

x− 3
2

)
5
6

2x+ i
,

h2 = ± i
(

x+ 3
2

)
1
3 (2x+ i)

1
4x

1
3+

i
2 e−

1
2 arctan 2x

√
Br

√
1 + x(2x− i)

1
4+

i
2

,

h3 =
−3+9i

8 x2 + 9+33i
96 x+ 5+15i

64

(4x2 + 1)x2

and

J+ =
(

sin
θ

2

)n− 1
4
(

cos
θ

2

)−n− 5
4

, J− =
(

sin
θ

2

)−n− 5
4
(

cos
θ

2

)n− 1
4

. (5.9)

Moreover, the eigenspinors Ψ are singular at r =
√

5
4B , x1x2−plane and x3x4−plane.

Proof Using the homotopic transformation of dependent variable

U+ =
(

x− 3

2

)
2
3

(2x− i)−
1
3− i

4 (2x+ i)
1
6+

i
4 u (5.10)

and the transformation of independent variable

y =
40x2

9(4x2 + 1)
, y ≥ 1,

we reduce (5.7) to

u′′(y) +
I1
I
u′(y) +

I2
24(10− 9y)I

u(y) = 0, (5.11)
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where

I = 6y(y − 1)(10− 9y)(3
√
y + 2

√

10− 9y),

I1 = (60 + 180i)
√
y − 60

√

10− 9y + (263 + 27i)
√

10− 9yy + (−180− 27i)
√

10− 9yy2

+ (237− 342i)
√

10− 9yy
3
2 + (−270 + 162i)y

5
2 ,

I2 = 300(64− 57i)
√
y + 100(59− 27i)

√

10− 9y + 90(−91 + 3i)
√

10− 9yy

+ 1350(−25 + 21i)y
3
2 + 648(4 + 3i)

√

10− 9yy2 + 243(61− 48i)y
5
2 .

Now we seek the solutions of (5.11) which have the following form

u = w1 + s(y)w2 (5.12)

with

w1 = y−αF
(

α, 1 + α− γ; 1 + α+ β − γ; 1− 1

y

)

and

w2 = y−(α+1)F
(

α+ 1, 1 + α− γ; 2 + α+ β − γ; 1− 1

y

)

,

where α, β and γ are complex number to be determined in the following.

By (A.3), we know that w1 satisfies

w′′
1 +

(α+ β + 1)y − γ

y(y − 1)
w′

1 +
αβ

y(y − 1)
w1 = 0, (5.13)

and w2 satisfies

w′′
2 +

((α + β + 3)− (γ + 1)

y(y − 1)

)

w′
2 +

(α+ β + αβ + 1

y(y − 1)

)

w2 = 0. (5.14)

By (A.4), we get

d

dy
w1 = − αβ

1 + α+ β − γ
w2. (5.15)

Substituting (5.15) into (5.13), we obtain

w1 =
y(y − 1)

1 + α+ β − γ

d

dy
w2 +

(α+ β + 1)y − γ

1 + α+ β − γ
w2. (5.16)

Substituting (5.12) into (5.11), and using (5.15) and (5.16), we obtain

w′′
2 +

1

s

(

2s′ + ps− αβ

1 + α+ β − γ
+

y(y − 1)q

1 + α+ β − γ

)

w′
2

+
1

s

(

s′′ + p
(

s′ − αβ

1 + α+ β − γ

)

+ q
(

s+
(α+ β + 1)y − γ

1 + α+ β − γ

))

w2 = 0. (5.17)
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Since w2 satisfies (5.14) and (5.17), we obtain

2s′ +
(

p− (α+ β + 3)− (γ + 1)

y(y − 1)

)

s− αβ

1 + α+ β − γ
+

y(y − 1)q

1 + α+ β − γ
= 0 (5.18)

and

s′′ + ps′ +
(

q − α+ β + αβ + 1

y(y − 1)

)

s+
(α+ β + 1)y − γ

1 + α+ β − γ
q − αβ

1 + α+ β − γ
p = 0. (5.19)

Therefore, we obtain

s(y) =
1

1 + α+ β − γ

M1

M2
, (5.20)

where

M1 =
2
(

αβI1
I

− ((α+β+1)y−γ)I2
24(10−9y)I

)

+ d
dy

(

y(y−1)I2
24(10−9y)I

)

I1
I
+ (α+β+3)y−(γ+1)

y(y−1)

+
1

2

( y(y − 1)I2
24(10− 9y)I

− αβ
)

,

M2 =
2
(

I2
24(10−9y)I − αβ+α+β+1

y(y−1)

)

− d
dy

(

I1
I
− (α+β+3)y−(γ+1)

y(y−1)

)

I1
I
+ (α+β+3)y−(γ+1)

y(y−1)

− I1
2I

+
(α+ β + 3)y − (γ + 1)

2y(y − 1)
.

Substituting (5.20) into (5.18), with the help of Mathematica, we find that

α = −1

6
− i

4
, β =

1

3
+

i

4
, γ =

1

2
. (5.21)

Substituting (5.21) into (5.20), we obtain

s(y) =
1− 3i

16
(
√
y
√

10− 9y + y). (5.22)

Thus, we obtain, for r ≥
√

5
4B or x ≥ 3

2 ,

U+ =
((

x− 3

2

)
2
3

(2x− i)−
1
2− i

2 x
1
3+

i
2

)(

F
(

− 1

6
− i

4
,
1

3
− i

4
;
2

3
;
4x2 − 9

40x2

)

+
( 1

16
− 3i

16

)(

1 +
3

2x

)

F
(5

6
− i

4
,
1

3
− i

4
;
5

3
;
4x2 − 9

40x2

))

(5.23)

and

U− = ±
2i
√

B2r4 − 25
16√

Br

dU+

dx
.

Finally, we obtain

Φ± =

√
2Be−

1
2 arctan 2x

√
1 + x

(

x− 3
2

)
1
3
(

x+ 3
2

)
1
6 (4x2 + 1)

1
4

U±.
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(5.9) for J±(θ) can be derived from (3.9).

Since h1 is singular at r =
√

5
4B , we find that Φ− is singular at r =

√

5
4B . On the other

hand, the polar coordinate {r, θ, φ, ψ} could be transfer to Cartesian coordinate {x1, x2, x3, x4}

by, cf. [17],

x1 = r cos
θ

2
cos

ψ + φ

2
, x2 = r cos

θ

2
sin

ψ + φ

2
,

x3 = r sin
θ

2
cos

ψ − φ

2
, x4 = r sin

θ

2
sin

ψ − φ

2
.

It is straightforward that

cos
θ

2
= 0 ⇐⇒ x1 = x2 = 0, sin

θ

2
= 0 ⇐⇒ x3 = x4 = 0.

So J±(θ) are singular at x1x2−plane and x3x4−plane. Thus the proof of the theorem is com-

plete. Q.E.D.

A Hypergeometric Function

In this appendix, we provide a short introduction to hypergeometric function (cf. [12] for

details). The hypergeometric function is defined as

F (α, β; γ; z) =

∞
∑

n=0

(α, n)(β, n)

(γ, n)

zn

n!
, |z| < 1, (A.1)

where α, β, γ are arbitrary complex number and γ is neither zero nor a negative integer, ( , )

is the Pochhammer symbol. Such a series in (A.1) are absolutely convergent if

ℜ(γ − α− β) > 0

and F satisfies the following hypergeometric equation

u′′(z) +
(α + β + 1)z − γ

z(z − 1)
u′(z) +

αβ

z(z − 1)
u(z) = 0. (A.2)

There are 24 different hypergeometric functions solving (A.2) with different domain of con-

vergence respectively. For example, if γ − α− β is not integer, (A.2) has a solution

u = z−αF
(

α, 1 + α− γ; 1 + α+ β − γ; 1− 1

z

)

, ℜ(z) ≥ 1

2
. (A.3)

The following proposition is not found in some references, and we provide the proof here.
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Proposition A.1 Denote w = z−αF
(

α, β; γ; 1− 1
z

)

. Then w satisfies

d

dz
w = −α(γ − β)

γ
z−(α+1)F

(

α+ 1, β; γ + 1; 1− 1

z

)

. (A.4)

Proof Since [12],

d

dz
F (α, β; γ; z) =

αβ

γ
F (α+ 1, β + 1; γ + 1; z),

β

z
F
(

α+ 1, β + 1; γ + 1; 1− 1

z

)

=
γ

z − 1
F
(

α+ 1, β; γ; 1− 1

z

)

− γ

z − 1
F
(

α, β; γ; 1− 1

z

)

,

(γ − β)(z − 1)

γ
F
(

α+ 1, β; γ + 1; 1− 1

z

)

= zF
(

α, β; γ; 1− 1

z

)

− F
(

α+ 1, β; γ; 1− 1

z

)

,

we obtain

d

dz
w = − α

γzα+1

(

γF
(

α, β; γ; 1− 1

z

)

− β

z
F
(

α+ 1, β + 1; γ + 1; 1− 1

z

))

= − α

(z − 1)zα+1

(

zF
(

α, β; γ; 1− 1

z

)

− F
(

α+ 1, β; γ; 1− 1

z

))

= −α(γ − β)

γ
z−(α+1)F

(

α+ 1, β; γ + 1; 1− 1

z

)

.

Thus the proof of the proposition is complete.
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