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Harmonic Measures and Numerical Computation

of Cauchy Problems for Laplace Equations∗
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Abstract It is well known that the Cauchy problem for Laplace equations is an ill-posed
problem in Hadamard’s sense. Small deviations in Cauchy data may lead to large errors
in the solutions. It is observed that if a bound is imposed on the solution, there exists a
conditional stability estimate. This gives a reasonable way to construct stable algorithms.
However, it is impossible to have good results at all points in the domain. Although
numerical methods for Cauchy problems for Laplace equations have been widely studied
for quite a long time, there are still some unclear points, for example, how to evaluate the
numerical solutions, which means whether they can approximate the Cauchy data well and
keep the bound of the solution, and at which points the numerical results are reliable? In
this paper, the authors will prove the conditional stability estimate which is quantitatively
related to harmonic measures. The harmonic measure can be used as an indicate function
to pointwisely evaluate the numerical result, which further enables us to find a reliable
subdomain where the local convergence rate is higher than a certain order.

Keywords Conditional stability, Cauchy problem, Laplace equation, Indicate function
2000 MR Subject Classification 65N21, 35J05

1 Introduction

The Cauchy problem for the Laplace equation is a classical problem and has a long history

(e.g., [2]). The study of Cauchy problem is of fundamental significance both theoretically and

practically (see [22]). However, the numerical treatment is usually challenging, caused by the

well-known ill-posedness in Hadamard’s sense (see [10]). Small changes in Cauchy data may

lead to large deviations in the solution due to the instability of the problem.

The stability may be restored by introducing some conditions on the solutions. It is ob-

served that, if a bound is imposed on the solution, then we can prove a conditional stability

estimate assuming a priori boundness condition on solutions. This will give a reasonable way
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to construct a stable algorithm for solving the Cauchy problem for the Laplace equation by

Tikhonov regularization. The conditional stability estimates imply the convergence rate of the

regularized solution (see [7]). However, it is impossible to have reasonably accurate results

everywhere over the domain, even if we can approximate the Cauchy data well and keep the

bound of the solution. Then there raises the issue at which points the numerical results are

reliable, i.e., how to evaluate the numerical solutions. This is crucial for real applications such

as remote measurement problems and design problems. Theoretically, by a Carleman estimate,

usually a qualitative conditional stability can be obtained (e.g., [13]), whereas a classical quan-

titative estimate in the three-circle form needs to be adapted to general geometries. In some

works involving pointwise estimate, it is not direct to obtain the stability index function (e.g.,

[22]). In real applications, it would be very useful if a pointwise estimate like

|u(x)| ≤ Cετ(x)

is available, where ε is the observation error in a certain norm, and τ(x) is a function that is

convenient to evaluate, because one can evaluate where the reconstruction is reliable based on

the convergence rate τ(x).

Various numerical algorithms have been developed to deal with the Cauchy problems. For

example, the methods through Maz’ya iterative algorithm (see [17]) based on weak form (see

[14]) and regularized boundary element method (BEM for short) (e.g., [12, 24]), the moment

method (see [5]), the methods through solving optimal control problem based on finite element

method (see [3–4]), and a more common approach by Tikhonov regularization involving mod-

ifications of the operators of the problem (e.g., [19]). Besides the convergence and stability of

used methods, relatively less studied is the evaluation of the reconstructed solution.

In this paper, we will discuss the Cauchy problem for the Laplace equation and prove

the conditional stability estimate, in which the order function can be given in the form of

the harmonic measure. The explicit expression of the order function in stability estimate

can be used for estimation of discretized solutions to the Cauchy problem. In [21], general

treatments are described for such estimation for discretized Tikhonov regularized solutions,

and we discuss more details limited to the Cauchy problem. By such an indicate function,

when the reconstruction domain and the part of boundary with Cauchy data are given, we can

propose a trustable sub-domain, in which the numerical solutions can have order of convergence

rate greater than 1
2 for example.

This paper is organized as follows: We will formulate the problem and discuss the conditional

stability of the problem in Section 2. The numerical scheme and the related analysis are

presented in Section 3, and error estimates are proved for discretised regularization scheme

in Section 4. In Section 5, some examples are given to illustrate the numerical method. We

present some remarks and conclusions finally in Section 6.
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2 Conditional Stability

Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω. We consider the following

Cauchy problem,

∆u = 0 in Ω,

u = f on Γ ⊂ ∂Ω,

∂νu = g on Γ ⊂ ∂Ω,

where Γ ⊂ ∂Ω is an open subset of the boundary ∂Ω, ν denotes the outer normal vector to ∂Ω

and ∂νu := ∇u · ν. We usually assume that the mathematical models should well describe the

real problems, which implies the existence of solutions, but measurement errors may disturb

stable construction of approximatng solutions.

In general, the Cauchy problem is unstable and causes difficulties in numerical treatments.

For example, we consider the following example (see [11]),

Φn(x1, x2) =
1

n
(sinnx1) exp(nx2),

which is harmonic in x := (x1, x2) ∈ R2. When Γ = {x2 = b} with some b < 0, the Cauchy

data will be small but the solutions increase drastically as x2 increases. This illustrates that

small errors in data may probably be enlarged for the numerical solutions.

Then one turns to seek conditional stability results. If we can prove conditional stabil-

ity, then we can construct stable algorithms. The conditional stability estimates imply the

convergence rate of the regularized solution (see [7]). We understand conditional stability as

follows.

Definition 2.1 (Conditional stability [7]) Let K be a densely defined injective operator from

a Banach space X to a Banach space Y , and ω : {ξ ≥ 0} → {ξ ≥ 0} is a monotone increasing

continuous function satisfying ω(0) = 0. Moreover Z ⊂ X is assumed to be continuously

embedded in X and Q ⊂ Z. Then we say that in the operator equation Kf = g, the conditional

stability holds if, for any given M > 0, there exists a constant C = C(M) > 0 such that

‖f1 − f2‖X ≤ C(M)ω(‖K(f1)−K(f2)‖Y )

for all f1, f2 ∈ UM ∩Q. Here we set UM = {f ∈ Z; ‖f‖Z ≤ M}.

Here we call ω the modulus of the conditional stability under consideration.

The following harmonic measure will be used to specify stability moduli for the Cauchy

problem.
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Definition 2.2 (Harmonic measure [8]) Let U ⊂ C be a simply connected domain with

piecewise regular boundary, and ℓ be a nonempty open subset of ∂U . We call µ(ζ) the harmonic

measure for U and ℓ, if

∆µ(ζ) = 0, ζ ∈ U,

µ(ζ) = 0, ζ ∈ ∂U\ℓ,

µ(ζ) = 1, ζ ∈ ℓ.

For the details of harmonic measure, we refer to [8, 16] for example.

For a holomophic function w(z), z := x1 +
√
−1x2 ∈ C with x1, x2 ∈ R, the following is

known (e.g., [2, 6]).

Lemma 2.1 If w(z) is holomorphic in Ω and continuous on Ω, and

|w(z)| ≤ ε, ∀z ∈ Γ,

|w(z)| ≤ M1, ∀z ∈ Ω,

where ε ≤ M1, then

|w(z)| ≤ M1

( ε

M1

)τ(z)

,

where τ is the harmonic measure for Ω and Γ.

Proof For w, we can construct a subharmonic function F :

F (z) =
ln
( |w(z)|

M1

)

ln
(

ε
M1

) .

Then

F |Ω ≥ 0, F |Γ ≥ 1.

The harmonic measure τ(z) satisfies τ |Γ = 1, τ |∂Ω\Γ = 0 and τ(z) is harmonic in Ω. Then it

holds that

τ(z) ≤ F (z),

which leads to the conclusion that

|w(z)| ≤ M
1−τ(z)
1 ετ(z).

The following example illustrates that the estimate for w(z), z ∈ C is sharp.

Example 2.1 Suppose that Ω = {z; 1 ≤ |z| ≤ R} and Γ = {z; |z| = 1}. In Lemma 2.1, we

consider

w(z) = εzn, n ∈ N.
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It holds that ∣∣∣ω(z)
M

∣∣∣ =
( ε

M

)τ(z)

, M = |w(z)||z|=R,

which means that the conclusion of Lemma 2.1 is the best possible for these w(z).

Theorem 2.1 (Conditional stability) Let Ω be a simply connected domain in R2 and let Γ

be a non-empty open subset of ∂Ω. Suppose that u(x) satisfies

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

∂νu(x) = g(x), x ∈ Γ.

If ‖u‖C1(Ω) ≤ M with arbitrarily given constant M > 0, then we have

|u(x)| ≤ C(M,Ω)ετ(x) for x ∈ Ω, (2.1)

where

ε = ‖f‖W 1,∞(Γ) + ‖g‖L∞(Γ)

and τ(x) is the harmonic measure with respect to Γ and Ω.

Proof We define an analytic function w(z) as

w(z) =
∂u

∂z
=

1

2

( ∂u

∂x1
+ i

∂u

∂x2

)
,

which is holomorphic in Ω.

Since ‖u‖C1(Ω) ≤ M , one has ‖w‖L∞(Ω) ≤ CM . Since

‖w(z)‖L∞(Γ) ≤ Cε,

Lemma 2.1 yields

|w(z)| ≤ CM1−τ(z)ετ(z).

For x ∈ Ω, let L denote a path connecting x and x0 ∈ Γ. Then

|u(x)| =
∣∣∣u(x0) +

∫

L

∂u

∂s
(s)dℓs

∣∣∣

≤ |u(x0)|+
∫

L

|∇u|dℓs ≤ |u(x0)|+ C

∫

L

ετ(s)dℓs, x0 ∈ Γ.

We claim that there exists a path L from some x0 ∈ Γ to x along which τ monotonously

decreases. Otherwise, the point x must be enclosed by a closed contour on which ∇τ(x) = 0,

which implies that ∇τ(x) ≡ 0 in Ω, leading to a contradiction. Therefore, we have

|u(x)| ≤ |u(x0)|+ C

∫

L

ετ(x)dℓs ≤ Cετ(x),
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which leads to (2.1).

In real applications, we often measure the observation errors by L2(Ω)-based norms. In that

case, we can prove the following corollary.

Corollary 2.1 Let Ω be a simply connected domain in R2 with piecewise smooth boundary

and let Γ be an open subset of ∂Ω. Suppose that u(x) satisfies

∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

∂νu(x) = g(x), x ∈ Γ.

If ‖u‖H2(∂Ω) ≤ M , then

|u(x)| ≤ C(M,Ω,Γ)ε̃τ(x), x ∈ Ω,

where ε̃ = ετ0 , τ0 > 0, ε = ‖f‖H1(Γ) + ‖g‖L2(Γ) and τ(x) denotes the harmonic measure with

respect to Γ and Ω.

Proof Since ‖u‖H1(Γ) ≤ ε and ‖u‖H2(Γ) ≤ M , by Sobolev interpolation (e.g., [13]), we

obtain

‖u‖Hs(Γ) ≤ C(Γ)‖u‖θH1(Γ)‖u‖1−θ
H2(Γ) = C(Γ,M)εθ

with s = θ + 2(1− θ) > 3
2 when 0 < θ < 1

2 .

The Sobolev embedding (e.g., [1]) implies

‖u‖W 1,∞(Γ) ≤ C‖u‖Hs(Γ) ≤ C(M,Γ)ετ0 =: C(M,Γ)ε̃, 0 < τ0 <
1

2
.

Then, by applying Theorem 2.1 we have

|u(x)| ≤ C(Γ,Ω,M)ε̃τ(x), x ∈ Ω.

We remark that even if u(x) is less regular in Ω, one can also have similar estimate in a

subset of Ω whose regularity can be ensured due to the interior regularity of elliptic equations

(e.g., [9]), which is standard and will not be shown here.

3 Numerical Method

The solution u(x) to a Laplace equation in the domain Ω can be represented by Green’s

function as

u(x) =

∫

∂Ω

∂G(x, ξ)

∂ν
b(ξ)dsξ,

where b(x) = u(x)|∂Ω is the boundary value function. The Green function G satisfies

∆xG(x, y) = δ(x − y), x, y ∈ Ω, G(x, y) = 0, x ∈ ∂Ω, y ∈ Ω.
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Let H(x, y) = ∂νG(x, y) denote the Poisson kernel. Then

∫

∂Ω

H(x, ξ)b(ξ)dsξ = f(x), x ∈ Γ,

∫

∂Ω

νΓ · ∇H(x, ξ)b(ξ)dsξ = g(x), x ∈ Γ.

Thus, in solving the Cauchy problem, u|Ω can be determined once the boundary value function

u|∂Ω = b(x) is recovered from the integral functions.

For technical reasons, in computation we will reconstruct the harmonic function on a slightly

larger domain than Ω by Runge’s approximation, in order to meet the regularity requirements

in Theorem 2.1. We take Ω̃ such that Ω ⊂ Ω̃. By Runge’s approximation (see [20]), one can

approximate the harmonic function u(x) on Ω by a harmonic function ũ(x) in Ω̃, which will be

illustrated in the following section. Let G̃(x, y) be the Green function corresponding to Ω̃, and

denote H̃(x, y) = ∂ν̃G̃(x, y), where ν̃ is the outer normal vector to ∂Ω̃. Correspondingly, we

denote

f̃(x) := ũ|Γ =

∫

∂Ω̃

H̃(x, ξ)̃b(ξ)ds(ξ), x ∈ Γ,

g̃(x) := ∂νΓ ũ|Γ =

∫

∂Ω̃

νΓ · ∇H̃(x, ξ)̃b(ξ)ds(ξ), x ∈ Γ.

Then we solve b̃ from the measurements f ε, gε with noises, and reconstruct ũ(x)|Ω.
Due to the ill-posedness of the problem, the Tikhonov regularization is introduced to weaken

the instability induced by the observation error. According to the conditional stability discussed

in Section 2, the regularized cost functional is defined as

J (̃b) := ‖f̃ (̃b)− f ε‖2L2(Γ) + ‖g̃(̃b)− gε‖2L2(Γ) + α‖b̃‖2
L2(∂Ω̃)

.

Then we obtain the solution which minimizes the cost functional.

To discretize the problem, suppose that b̃(x) can be approximated by

b̃n(x) =

n∑

i=1

biϕi(x),

where, for i = 1, · · · , n, ϕi(x) are basis functions defined on ∂Ω̃, and bi are the corresponding

components. The test space Vn = span{ϕj}nj=1 is chosen such that
∞⋃

j=n+1

Vj is dense in L2(∂Ω̃).

Let

wi =

∫

∂Ω̃

∂G̃

∂ν
ϕidS, i = 1, · · · , n

satisfy {
∆wi = 0, x ∈ Ω̃,
wi|∂Ω̃ = ϕi.
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Then the harmonic function in Ω̃ can be approximated by

ũn(x) =

n∑

i=1

biwi(x).

In particular, let

wi =

∫

γi

∂G

∂ν
ds,

⋃

i

γi = ∂Ω̃, γi
⋂

i6=j

γj = ∅.

The solution can be expressed by

ũn(x) =

n∑

i=1

bi

∫

γi

∂G̃

∂ν
(x, s)ds =:

n∑

i=1

biwi(x),

then wi satisfies
{
∆wi(x) = 0, x ∈ Ω̃,

wi = χ(Γi), x ∈ ∂Ω̃.
(3.1)

Notice that for i = 1, · · · , n, the base solution wi involves the singular integral and one can

approximate it by solving (3.1) numerically, which are denoted by wh
i (x). Here we use h to

mark the discrete precision in calculating wi(x). In this work, we choose the finite difference

method (FDM for short) to numerically compute wh
i (x) with the grid length h. The 2nd order

center difference discretization will be adopted.

Let Fn,h(Ω̃) = span
1≤i≤n

wh
i (x) be the space spanned by the base solutions. Then our problem

is to find

u∗ = argmin
ũh
n∈Fn,h(Ω̃)

{‖f̃h
n − f δ‖2H1(Γ) + ‖g̃hn − gδ‖2L2(Γ) + α‖ũh

n‖2H2(∂Ω)}, (3.2)

or alternatively,

b̃∗n = argmin
b̃n∈Vn

{‖f̃h
n (̃bn)− f δ‖2H1(Γ) + ‖g̃hn(̃bn)− gδ‖2L2(Γ) + α‖Hb̃n‖2H2(∂Ω)}, (3.3)

where f̃h
n = ũh

n|Γ, and g̃hn = νΓ · ∇hũ
h
n|Γ, ∇h being the numerical gradient.

Then, Hb̃n =
∫
∂Ω̃

H̃(x, ξ)̃bn(ξ)ds. According to the a priori choice strategy of the regular-

ization parameter (see [7]), α is taken as α ∼ δ2.

We assume that the measurements are taken at xj ∈ Γ, j = 1, · · · ,m and let

Aji := f̃h
i (xj) = wh

i (xj), Bji := g̃hi (xj) = ∂νw
h
i (xj), Ck := ‖wh

k (x)‖H2(∂Ω).

Then we reach the fully discrete form of the regularization cost functional:

Ĵ(b) :=
m∑

j=1

( n∑

i=1

Aijbi − f ε
j

)
σj +

m∑

j=1

( n∑

i=1

Bijbi − gεj

)
σj + α2

N∑

k=1

(Ckbk)
2,

where σj denotes the jth curve length element on Γ and b = (b1, · · · , bn) ∈ Rn. The minimiza-

tion is a standard linear algebra problem.
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4 Error Analysis

In the following, we assume that the exact solution u has enough regularity in Ω. Otherwise

one can utilize the interior regularity and pay attention to the reconstruction on any subset

whose closure is contained in Ω. The main result on pointwise evaluation of the reconstructed

solution is as follows.

Theorem 4.1 (Evaluation on Ω) Suppose that Ω ⊂ Ω̃ and u0 is harmonic in Ω, and

‖u0‖H2(∂Ω) ≤ M . Denote f0 = u0|Γ and g0 = ∂νu0|Γ. Let available data f ε, gε satisfy

‖f ε − f0‖H1(Γ) + ‖gε − g0‖L2(Γ) ≤ ε.

Following the scheme presented in Section 3, let u∗ be the following minimizer:

u∗ = argmin
ũh
n∈Fh

n(Ω̃)

{‖f̃h
n − f ε‖2H1(Γ) + ‖g̃hn − gε‖2L2(Γ) + α‖ũh

n‖2H2(∂Ω)}. (4.1)

Then we have the estimate for the Cauchy problem:

|u∗(x)− u0(x)| ≤ C(M,Ω,Γ)ετ(x), x ∈ Ω, (4.2)

provided that α ∼ ε2, n are sufficiently large and h is sufficiently small. Here τ(x) is the

harmonic measure with characteristic boundary Γ.

Lemma 4.1 Suppose that ũh
n is the FDM approximations of a harmonic function ũ in Ω̃

with the scheme given in Section 3. We set f̃ = ũ|Γ, g̃ = ∂ν ũ|Γ, f̃h
n = ũh

n|Γ, g̃hn = ν · ∇hũ
h
n|Γ

where ∇h is the gradient approximated by the 1st order difference. Then

‖f̃h
n − f̃‖H1(Γ) ≤ C1δ(n) + C2h,

‖g̃hn − g̃‖L2(Γ) ≤ C3δ(n) + C4h,

where δ(n) → 0 as n → ∞ and C1, C2, C3, C4 are constants depending on Γ, Ω̃ and ũ.

Proof Define ũn(x) =
∫
∂Ω̃

∂νG̃(x, s)̃bn(s)ds for x ∈ Ω. Then

|ũ(x)− ũh
n(x)| ≤ |ũ(x) − ũn(x)|+ |ũn(x)− ũh

n(x)|.

According to the interior regularity of the Laplace equation, since the above ũn and ũ =
∫
∂Ω̃

∂νG̃(x, s)̃b(s)ds are both harmonic in Ω̃, we see

|ũ(x)− ũn(x)| ≤ ‖ũ− ũn‖C(Ω) ≤ C(Ω, Ω̃)‖b̃− b̃n‖L2(∂Ω̃).

Due to the density of the space of test functions, we have |ũ(x) − ũn(x)| ≤ Cδ(n). For the

second part, a standard error estimate for the second order central difference method (e.g., [18])

implies

|ũn(x) − ũh
n(x)| ≤ C‖ũn‖C4(Ω)h

2 ≤ C(Ω, Ω̃)‖ũn‖L2(Ω̃)h
2 ≤ C(Ω, Ω̃, ũn)h

2
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for x ∈ Ω. Combining the precision of the 1st order difference for the gradient, the estimate for

f̃h
n and g̃hn can be obtained.

The above estimate means that the error can be decomposed by the boundary discrete part

and the FDM discrete part, and converges as n → ∞ and h → 0.

Lemma 4.2 Under the assumption of Theorem 4.1, by the scheme presented in Section 3,

let u∗ be constructed as the minimizer:

u∗ = argmin
ũh
n∈Fh

n(Ω̃)

{‖f̃h
n − f ε‖2H1(Γ) + ‖g̃hn − gε‖2L2(Γ) + α‖ũh

n‖2H2(∂Ω)}, (4.3)

where α is taken as α ∼ ε2 + δ(n)2 + h2. Then we have

‖f∗ − f0‖H1(Γ) + ‖g∗ − g0‖L2(Γ) ≤ C(M,Ω, Ω̃)(ε+ δ(n) + h),

where f∗ = u∗|Γ and g∗ = ∂νu
∗|Γ.

Proof First, by Runge’s approximation (e.g., [20, 23]), there exists a harmonic function ũ

in Ω̃ such that

‖u0 − ũ‖H2(Ω) ≤ ε.

Then

‖ũ‖H2(Ω) ≤ CM, (4.4)

and by the trace theorem (see [1]),

‖f̃0 − f0‖H1(Γ) + ‖g̃0 − g0‖L2(Γ) ≤ ε, (4.5)

where f̃0 = ũ|Γ and g̃0 = ∂ν ũ|Γ.
The definition of the minimizer yields

‖f∗ − f ε‖2H1(Γ) + ‖g∗ − gε‖2L2(Γ) + α‖u∗‖2H2(∂Ω)

≤ ‖f̃h
0,n − f ε‖2H1(Γ) + ‖g̃h0,n − gε‖2L2(Γ) + α‖ũh

0,n‖2H2(∂Ω), (4.6)

where f̃h
0,n = ũh

0,n|Γ and g̃h0,n = ∂ν ũ
h
0,n|Γ. Therefore,

α‖u∗‖2H2(∂Ω) ≤ ‖f̃h
0,n − f ε‖2H1(Γ) + ‖g̃h0,n − gε‖2L2(Γ) + α‖ũh

0,n‖2H2(∂Ω).

We can estimate the first term on the right-hand side as

‖f̃h
0,n − f ε‖H1(Γ) ≤ ‖f̃h

0,n − f̃0‖H1(Γ) + ‖f̃0 − f0‖H1(Γ) + ‖f0 − f ε‖H1(Γ).

The second term ‖g̃h0,n − gε‖2
L2(Γ) can be dealt with similarly. Based on Lemma 4.1, we obtain

‖f̃h
0,n − f̃0‖H1(Γ) + ‖g̃h0,n − g̃0‖L2(Γ) ≤ C1δ(n) + C2h,
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where C1, C2 depend on Γ, Ω̃,M . By (4.5) and the assumption that ‖f ε − f0‖H1(Γ) + ‖gε −
g0‖L2(Γ) ≤ ε, we see

‖f̃h
0,n − f ε‖H1(Γ) + ‖g̃h0,n − gε‖L2(Γ) ≤ C3δ(n) + C4h+ C5ε,

where the constants C3, C4, C5 depend on M,Γ, Ω̃. Meanwhile,

‖ũh
0,n‖H2(∂Ω) ≤ ‖ũh

0,h − ũ0‖H2(∂Ω) + ‖ũ0 − u0‖H2(∂Ω) + ‖u0‖H2(∂Ω) ≤ C6M.

Consequently,

‖u∗‖2H2(∂Ω) ≤ C7(Γ, Ω̃,M)
δ2(n) + h2 + ε2

α
+ C6(Γ, Ω̃)M

2.

With the choice of α, one reaches

‖u∗‖H2(∂Ω) ≤ C′(Γ, Ω̃,M). (4.7)

For the residual part, in view of (4.6) and the above estimate we have

‖f∗ − f ε‖2H1(Γ) + ‖g∗ − gε‖2L2(Γ)

≤ ‖f̃h
0,n − f ε‖2H1(Γ) + ‖g̃h0,n − gε‖2L2(Γ) + α‖ũh

0,n‖2H2(Ω)

≤ C7(δ
2(n) + h2 + ε2) + αC6M

2.

Therefore, with the choice of α, we have

‖f∗ − f ε‖H1(Γ) + ‖g∗ − gε‖L2(Γ)

≤ C′′(Γ, Ω̃,M)(ε+ δ(n) + h).

Finally, by combining the boundness of u∗ and the estimate on the space of test functions,

we have

‖f∗ − f0‖H1(Γ) + ‖g∗ − g0‖L2(Γ) ≤ ‖f∗ − f ε‖H1(Γ) + ‖f ε − f0‖H1(Γ)

+ ‖g∗ − gε‖L2(Γ) + ‖gε − g0‖L2(Γ)

≤ C(Γ, Ω̃,M)(ε+ δ(n) + h),

which is the conclusion of the lemma.

Lemma 4.3 Denote b
∗ = (b∗1, · · · , b∗n) as the vector corresponds to u∗ =

n∑
i=1

b∗iw
h
i (x) where

u∗ is the minimizer in Lemma 4.2, and u∗
n =

n∑
i=1

b∗iwi(x), where, for i = 1, · · · , n, wi(x) are

the base functions defined in Section 3 and wh
i (x) the numerical approximations. Under the

assumption of Lemma 4.2, we have

‖u∗
n − u0‖C1(Ω) ≤ C(Γ, Ω̃,M),

provided that n is sufficiently large.



924 Y. Chen, J. Cheng, S. Lu and M. Yamamoto

Proof First,

‖u∗
n‖H2(∂Ω) ≤ ‖u∗

n − u∗‖H2(∂Ω) + ‖u∗‖H2(∂Ω).

By means of the boundness (4.7) and the convergence of the FDM, we see

‖u∗
n‖H2(∂Ω) ≤ CM.

The assumption of u0 and the Sobolev embedding (see [1]) yield

‖u∗
n − u0‖C1(Ω) ≤ ‖u∗

n − u0‖H2(∂Ω) ≤ ‖u∗
n‖H2(∂Ω) + ‖u0‖H2(∂Ω) ≤ C(Γ, Ω̃,M).

After having got the estimate on Γ and the boundness on Ω, we can further have the

reconstruction error on Ω.

Proof of Theorem 4.1 We note that u∗
n − ũ is harmonic and is bounded due to Lemma

4.3. By Lemma 4.2 we can obtain

‖f∗
n − f0‖H1(Γ) + ‖g∗n − g0‖H1(Γ) ≤ C(Γ, Ω̃,M)(ε+ h+ δ(n)),

where we have used that

‖f∗
n − f0‖H1(Γ) ≤ ‖f∗

n − f∗‖H1(Γ)+ ‖f∗− f0‖H1(Γ) ≤ C1(Γ, Ω̃,M)h+C2(Γ, Ω̃,M)(ε+h+ δ(n)).

Then we apply the conditional stability result in Theorem 2.1 to reach

|u∗
n(x)− u0(x)| ≤ C3(Γ, Ω̃,M)(ε+ h+ δ(n))τ(x).

Finally, for the approximation error by the FDM for u∗
n, we have

|u∗(x)− u0(x)| ≤ |u∗(x)− u∗
n(x)|+ |u∗

n(x) − u0(x)|

≤ C4h+ C3(Γ, Ω̃,M)(ε+ h+ δ(n))τ(x) ≤ C(Γ, Ω̃,M)ετ(x)

for x ∈ Ω, provided that δ(n) and h are sufficiently small.

5 Numerical Examples

Numerical example We have applied the above numerical methods to various cases. We

will demonstrate the performances including the reconstruction evaluations.

We consider the domain Ω = (0, 1)×(0, 1) and the measurement boundary Γ = {(x1, 0); 0 <

x1 < 1}. The exact solution is selected as u(x1, x2) = e4x1 cos 4(x2 + 0.2). The result with
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noise level 1% is displayed in Figure 1, where we adopt the method in Section 3. We choose

ϕi(x1, x2), i = 1, · · · , n as linear interpolation bases along the boundary of the FEM grids. We

discussed the case n = 264 and h = 1
64 in the FDM calculation. The measurement points

coincide with the FDM grids.

Figure 1 Reconstruction with one measurement boundary.

For the error in the reconstruction domain, it is expected that the error in Ω will be amplified

significantly when getting far from the measurement boundary, due to the Hölder-type stability

index indicated in Section 2. Since the estimate is sharp, even though the error is small

somewhere far from the bottom side, the result is not reliable.

Figure 2 gives the case with an additional measurement boundary on the upper side. The

result near the upper boundary is greatly improved comparing with the single measurement

case. On the lateral sides, there is no measurement and the result there is not reliable, although

the error level is not large in some places. This will be further illustrated in the following.

Figure 2 Reconstruction with two measurement boundaries.
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Indicate function and reliable reconstruction domain The error estimate implies

that the reconstruction error will no longer be improved by increasing the discrete accuracy

once the observation error becomes dominant. Meanwhile, even if the observation error is

small, the error far from the measurement area may be enlarged significantly, that is, the

reconstruction there is not reliable. These phenomena are caused by the ill-posedness of the

problem. Now that the reconstruction accuracy on the whole reconstruction domain are not

ensured, one hopes to know where the reconstruction error has an acceptable convergence

rate with observation noises and discrete errors in real applications. The reliable domain can

be determined by the pointwise error estimate in Theorem 4.1. Since the error growth rate

depends on τ(x1, x2), it further depends on the shape of the reconstruction domain. Figure 3

indicates profiles of the harmonic measure corresponding to the present case with a rectangle

computational area. The area bounded by the black curve and the measurement boundary

corresponds to τ(x1, x2) > 0.5, which may be regarded as confidence area in practice. This

is consistent with the error distributions in the examples (see Figures 1–2). The area with

convergence rate higher than 0.5 is enlarged significantly by adding measurement boundaries.

Figure 3 Indicate function τ (x) with various characteristic boundaries. The black curve is the

contour of τ (x) = 0.5.
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6 Concluding Remarks

The Cauchy problem of the Laplace equation often appears in real applications, and provides

ways to infer global information from local measurement, which is also an ill-posed problem.

The conditional stability estimates are proved, by which we can design stable numerical algo-

rithms and estimate errors. The numerical treatment and the corresponding error estimate are

presented. The estimate is featured by an indicate function constructed by the harmonic mea-

sure. This facilitates the evaluation of the numerical results, based on which how to improve

the numerical results are proposed. Although we treat only the Laplace equation in this work,

similar results can be proved for more general elliptic equations. The Cauchy problem is closely

related to the unique continuation problem, and for the latter, conditional stability results and

the numerical treatments are presented (e.g., [6, 15]).
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