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Regularity and Compactness of Stationary
Map-Varifold Pairs*
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Abstract The authors introduce the conception of stationary map-varifold pairs and
prove a compactness result. As applications, they analyse the asymptotic structure of the
pseudo tangent map of stationary harmonic maps. For stationary pair, they also get a
strong convergence criterion about the map part and introduce the stratification of the
singular set.
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1 Introduction

The regularity for area minimizing rectifiable currents (see [1-2]) and the regularity for en-
ergy minimizing maps (see [6, 10, 13-14, 16-17]) have been studied intensively and successfully.
The results depend on the compactness theorem and the existence of tangent cones and the
existence of tangent maps.

However, the set of stationary harmonic maps is not compact (see [4, 8-9]), the energy
may concentrate on a blow-up set. If the target does not support any harmonic S?, Lin [9]
proved the compactness theorem for stationary harmonic maps, and consequently, he showed
the regularity theorem in this case. Li-Tian [8] showed that the “sum” of the blow-up set and
the weak limit is stationary. But, in general, every one may not be stationary (see [4]). Using
the blow-up formula derived in [8], they proved that tangent maps and tangent cones of a
stationary harmonic map at a singular point exist. A similar argument shows the existence of
pseudo tangent maps (see Section 2 for the definition). In general, the pseudo tangent map and
its corresponding detect measure are not conical. To investigate the asymptotic behavior of the
pseudo tangent map, motivated by Li-Tian’s blow-up formula, we introduce the conception of
stationary map-varifold pair (see Definition 2.2) and establish the compactness for a subclass

of such objects. A fundamental tool is Moser’s (see [11]) theory on stationary measures and
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the rectifiability of the detect measure (see [9, 11]). The advantage of stationary harmonic
maps is that they share the same small energy regularity with energy minimizing maps (see
[3, 5]), which yields that the (m — 2)-dimensional Hausdorff measure of the singular set of a
stationary harmonic map vanishes, where m = dim M. The small energy regularity is involved
in the choice of subclass £(gp) (see Definition 2.2) of stationary map-varifold pairs, such that
the compactness holds with rectifiability.

Theorem 1.1 For any sequence {y1; = (u;,V;)}$2, C E(eo) such that supT,;(K) < Cx <
400 for any compact subset K C M, there exists a subsequence converges as ZRadon measure to
a stationary map-varifold pair (u, V') € E(gp).

In this notes, we also adopt Simon’s idea (see [16-17]) to get the stratification S; (S; C Sj4+1)
for singular set of stationary map-varifold pairs for 0 < j < m — 2, with dimS; < j. In proving
dimS; < j, we use the compactness described above instead of the compactness theorem for
energy minimizing maps. It is interesting to know whether the Hausdorff codimension of the

singular set is at least 3, which was proved for energy minimizing maps by Schoen-Uhlenbeck

[13-14]. In other words, we hope to know whether S,,_2 = S,,,—3. We show that
Sm—2 =8Sn—3US_1,

where

S_1 ={x € S;,—2 | all tangent maps are constant}.

Applying the compactness of stationary map-varifold pairs and a strong convergence criterion
for the map part(see Corollary 2.4), we show that S_; = () for strongly stable stationary

harmonic map, which revisits Hong-Wang’s theorem (see [7]) in the following.

Corollary 1.1 Let M be a compact m-dimensional Riemannian manifold. Let N be a
compact Riemannian manifold. Let u be a strongly stable stationary harmonic map from M to

N. Then the Hausdorff codimension of the singular set of u is at least 3.
In 3-dimensional case, we can show the following corollary.

Corollary 1.2 Let M be a compact 3-dimensional Riemannian manifold. Let N be a com-
pact analytic manifold with an analytic metric. Let u be a strongly stable stationary harmonic

map from M to N. Then the singular set of u consists of at most finitely many points.

2 Stationary Pairs, Compactness and Stratification

Let M and N be two compact Reimannian manifolds. Let u(x) be a stationary harmonic
map from M to N. The regular set reg(u) of u is defined as the set of points 2 € M such that
u is smooth in some neighborhood of z. Tt is clear that reg(u) is open. The singular set sing(u)

of w is defined to be the complement of reg(u).
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We define the density function ©,, of u by

r—0

O, (z) = lim 7"2_’”/ |Vul*dvol.
B, (z)

The monotonicity inequality (see [12]) for u yields that the limit exists. And it is proved (see
[3, Theorem I.4]) that € reg(u) if and only if ©,(x) = 0.

The first author and Tian [8] proved the existence of tangent maps and tangent cones at a
singular point.

Let u be a stationary harmonic map from M to N. Assume that x € sing(u). We set
Uugr(y) = u(x + ry). Then for any sequence r;, there is a subsequence 7; — 0 such that
2dy — |V¢|?dy + 0(y)H™ 2., in the sense of
measure. It is proved in [8] that ¢p(Ay) = ¢(y) for all A > 0, y € R™, 8(\y) = 6(y) for all A > 0,

Uy,r; — ¢ weakly in HY2(R™, N) and |Vuy,,,

y € R™, and ¥, is a tangent cone, that is A\X, = X, for all A > 0.

We call ¢ a tangent map at z, (X,,60) a tangent cone at x.

Lemma 2.1 Suppose that x; — x € M, and that u; is a sequence of stationary harmonic
maps from M to N which satisfies that u; — u weakly in HV2(M,N), |Vu;[2dV — |Vu|?dV +

OH™2LY in the sense of measure with blow-up set X. Then

r—0

Oup(x) = lim TZ-’”(/B ( )|Vu|2dvol+/B ( )(mm-%z)

> lim sup O, (z;).

j—o0
Proof For any p > 0 and any ¢ > 0, by monotonicity inequality for stationary harmonic

maps, we have
Oy, () < pQ_m/ |Vu;|*dvol
By (z;)

< pQ_m/ |Vu;|?dvol
Bp+5(r)

for j sufficiently large. Letting j — oo, letting ¢ — 0, and then letting p — 0, we obtain the
lemma.

Generally, we can consider pseudo tangent map similar to tangent map.

Definition 2.1 Suppose that x € sing(u), and x; — x as j — 00. Let uy, »(y) = u(x; +ry).
Then for any sequence T; — 0 there is a subsequence which we also denote by r; such that
Uy, — ¢ weakly in HY2(R™,N) and |Vug, -, [*dy — |Vo|*dy + 0(y)H™ 25, in the sense

of measure. We call ¢ a pseudo tangent map at x and v = OH™ 2%, the detect measure.
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In general, pseudo tangent map may not be conical. But by Li-Tian blow-up formula, when

adding the detect measure together, there is still a monotonicity formula.

Lemma 2.2 Let x € sing(u), ¢ a tangent map or a pseudo tangent map at x, (X,,0) = the

corresponding detect measure. For any yo € R™, the function

pQ—m(/ eHm_QLEw'i_/ |v¢|2dy)
Eszﬁ('HO) Bp(yo)

15 increasing 1 p > 0.

Proof By [8, Theorem 2.1] we have,

/EI divs, (X)OH™ 25, + /Rm (|V¢|2div(X) - 2<d¢(VaX),d¢(%)>)dV -0 (21)

for any smooth vector field X with compact support in R™.

We choose X (y) = &(r)r2

5= where r = |y — yo| and

1

if r<t,
t —
&(r) = Dot <r<t,
t—t
0 if r>t.
Then we have
/ (Er+(m—=2))0H™ S, — | r|[VsirPOHT 25,
x Em

’ . 25 ’
[ rem-20vetay -2 [ ¢

Letting ¢ — t and integrating, we get

%‘Qdy =0.

pQ—m(/ eHm_QLEw'i_/ |v¢|2dy)
Exme(yO) BP(yO)
= oz_m(/ OH™ LY, +/
Esza(yo) Ba(y())
<.
N

=N (By(y0)\Bo (y0))

2
+2/ r“‘—m}%} dy.
B, (y0)\ B (o) or

(2.2)
This proves the lemma.

Vol*dy)

T2_m|vE%T|29Hm_2LEw

Corollary 2.1 Assume ¢ € HY(R™,N) and a (m — 2)-rectifiable varifold V. = v(X,0)
satisfying (2.1), then for any y € R™, the density

©9,6(y) = lim pz_’”(/ OH™ LY, +/
p—0 %.NB,(y) B

exists and is upper semi-continuous on R™.

Voldy)

ﬂ(y
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Proof Denote p = |Vo¢|?dy + 0H" 2.5, by Lemma 2.2, for any y € R™, O (y) =

lim £Ba(®)
pm

1 exists. Moreover, for any y; — y and p > 0,
p—

1(Bo(y) . B(Bo—jyi—y| (W) (p = lyi — y|\ ™2 lyi — yl\ ™2
P (p—lyi—yl)’”‘Q( p ) ZGG’Myi)(l_T) '

Letting ¢« — oo and then p — 0, we get

O0,6(y) > limsup Og,(y;)-
Yi—y

In the following, we analyse the asymptotic behavior of the pseudo tangent map. Let ¢ be

a pseudo tangent map and (3, ) the corresponding detect measure at x. It is clear that

p2—m( / OH™ 2, + / |v¢|2dy)
32NB,(0) B,(0)

P

—02_7”(/ GHm_ZLEw—i—/ |V¢|2dy)
3.NBs(0) B, (0)

= lim (pQ_m/ Vg, | *dy — 02_’”/ Vg, r, 2dy)
e B, (0) B, (0)
. 1 0up?
= lim ‘
i By (0N Bary o) T2 O

In the case x; = x, i.e., ¢ is a tangent map, we know the last term is zero by the absolutely
continuity of integral. But in general, we can not hope the last term to be zero, since r = |- —a;|
depends on i. It can be expected that this pair of pseudo tangent map and the varifold is
asymptotic to a cone at infinity. For this goal, we need to blow down this pair again. Motivated
by this and Li-Tian’s blow-up formula and the conception of stationary measure introduced by
Moser [11], we define the following stationary conception of map-varifold pair and proves a

compactness result.

Definition 2.2 Assume u € W22 (M™, N™) is a weak harmonic map and V = v(,0) is a

loc

rectifiable (m — 2)-varifold. If the TM ® T* M -valued measure
1 m—2 1
quu@du@dvol+§6‘H LY - pr.y
is stationary in the sense of Moser [11], i.e., satisfying the Li-Tian blow-up formula
/ (|Vu*div X — 2(Vu ® du, VX))dvol (x / divZ X0dH™ 2(x) =0
M

for any Lipschitz vector field X on M, then we call p =: (u,V) a stationary map-varifold pair.

The corresponding energy density measure is defined by

7 = trpu = |Vul*dvol () + 0(x)H™ 2L
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Moreover, we denote the class
E(g0) := {stationary pair p = (u, V) such that > €, X closed, and sing(u) C X},

where £q is the constant in the e-regularity theorem [B] of stationary harmonic maps and sing(u)

is the singular set of u.

Example 2.1 By the blow-up formula (see [8, 11]), for any stationary harmonic map se-
quence {u;} with bounded energy, there exists a subsequence such that Vu; ® du; converges as

TM ® T*M-valued measure to a stationary map-varifold pair (u, V') € £(eo).

Proof More precisely, assume Vu; ® du; — p = (u, V), then the blow-up formula means
1 is stationary and hence the monotonicity formula holds, which further implies the density

(Br(x))

O(p,z) = lim ez exists. If ©(p,x) < eo, then O(u;,z,r) < 1 < go for some fixed

r—0 Ym—

r >0 and ¢ > 1. Thus the e-regularity (see [3]) implies u; are smooth in B(z,r) with uniform

estimates, and hence u; converges to u smoothly near x and O(u, z) = 0. So, we know
Yi={xeM|O(ux)>0}={xrecM|O(ux)>co} is a closed subset.
By [8] or [11], X is (m — 2)-rectifiable and p X = $0H™ 2.5 - pF 5. This implies
p=pu X+ pu Y =Vu®du+ %@(,u, T)H™ ALY -piz,
where X is a closed set, 0 = ©O(u,x) > g¢ for x € ¥ and wu is smooth in M\X. This implies
(u, V) € E(eo).

The advantage of introducing the class £(g¢) is that it is a compact class and describes some

regularities.

Theorem 2.1 For any sequence {p; = (u;, V;)}52, C E(eo) such that supfi;(K) < Ckx <
i
400 for any compact subset K C M, there exists a subsequence such that it converges as Radon

measure to a stationary map-varifold pair (u, V) € E(eo).

Proof Since p; = (u;, V;) are stationary with locally uniformly bounded mass, by passing to
subsequence, we know p; converges to a TM @ T* M valued measure p such that u is stationary

in the following sense defined by Moser [11]:
/ div Xdp — 2(VX,du) =0, VX = Lipschitz vector field.
M
Moreover, by the monotonicity formula, we know

O(p, ) = lim B ()

r—0 wm_Qrm—Q
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exists for any x € M. If ©(u, x) < eg, then there exists r > 0 such that

1i(Br (7))

Wi —27"™ 2

O (i, x, 1) = <e1<ég

for some fixed r < 1 and Vi > 1. By the monotonicity formula, we know there exists r1 > 0
and 2 € (e1,e9), such that O(u;,y) < €2 < £0,Vy € B(x,71). By the definition of £(ep),
we know X; N B(x,r;) = 0 and hence p; = Vu; @ du; in B(z,r1) for some regular harmonic
maps u; : B(z,r1) — N with uniformly bounded energy and O(u;,y,r1) < g2 < €. So, by
Bethuel’s uniform estimate (see [3]), we know u; converges strongly to a smooth harmonic map

uw: B(x,m1) = N and hence = Vu ® du in B(z,71). As a result,
Y={reM|O(ux) >0} ={0O(uz) >co} = aclosed subset.

Again by [11, Theorem 1.1], we know X is (m — 2)-rectifiable and p ¥ = $0H™ 2.5 - pf 5,

where 0 > €g. So, we know p = (u, V) € E(gg).

With this compactness theorem. We can analyse the asymptotic behavior of a pseudo-
tangent object. Recall that the definition of blow down of a R™ ® R™* valued measure p is

defined by R% 1L — oo for a sequence R; — 0o, where
( ! )(E) L (RE), V¥ Borel set E C R™
— == T .
7H =3 MERE),

Corollary 2.2 Assumeu € H110C2(M N) is a stationary harmonic map, x € sing(u), x; — «
and r; — 0 and uy, », converges weakly to a stationary map-varifold pair p = (s, V') € E(ep).
Then, for any sequence R; — oo, there exists a subsequence (still denoted as R;) such that R%,u
converges to fico = (¢,0(2,0)) € E(¢) such that p s a cone in the following sense:

(1) ¢(A\y) = ¢(y) for all A >0,y € R™,

(2) 0(\y) =0(y) for all X >0, y € T,

(3) X, is conical with respect to 0 € R™, that is A\X, = X, for all A > 0.

Proof Since u,, ,, converges to (s, V'), we know that
Vg, r|°dr — T = |[Vuoo|*dz + 0, H™ LS

which implies

w vumiﬂ”i 2 y)dy
AB0) _ . Je) )

Wi —2T™™2 im0 Wiy —o7™ 2

Vu
< i S5y IVUl?(0)dy

T oo Wiy — 25m 2




936 J. Y. Li, J. Zhou and C. N. Zhu

= O(u,x,9).
Letting 6 — 0 and then r — oo, we get
O(u,0,7) < O(p,00) < O(u,z) < co.

So, for any compact set K C R™, there exists r = rg such that K C B,.(0) and hence for

i = R%u, there holds

ﬁ(BTRi)
R"?

7 (K) < < O(p, 00)w 2™ % < 00,

So, by the compactness Theorem 2.1, we know p; — poo = (¢, V = v(%,0)) € E(gp) such that

for any r > 0, there holds

T (B, (0
O(Hoo,0,7) = %

o F(B0)

i—00 Wy _oT™M 2

= 1 —’L
z—lglo wm_g(T‘Ri)m_2

= O(u, 00).

Thus by (2.2), we know Vg7 =0 and % = 0 for r = |y|, which implies ¢(Ay) = ¢(y) for

A > 0,y € R™. Similar to the proof of [15, Theorem 19.3], to show the varifold part is conical,
ie.,

AS, =%, and 00\y) =0(y), YA>0, y €S,

it is enough to prove that for any homogeneous function h € C*(R™\{0}) of degree zero, i.e.,

h(y) = h(3) =: h(w),
p_(m_Q)/ h(y)0(y)dH™ 2.5, = constant (independent of p).
B, (0)
For this, choose X}, = h(w)é(r)rZ = hX in (2.1). Note V17 =0, ¢ = 0 and 2% = 0. By

direct calculation, we get

divs, (X3) = (€'r + (m — 2)¢)h,
div(Xp) = (&'r + m&h

and

9 (6(Va X0, d0(5o5) ) ) = h(€'r + (m — 20 VP,
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which implies
[ €+ m = 2n(OH" 25 + Vo) = o

As before, letting ¢’ — ¢ and integrating, we know
p2_m/ h(AH™2LE, + |V¢|?dy) is independent of p.
B, (0)
Since h(y) = h(w) and ¢(y) = ¢(w), we know

o / HV2dy

Sm— 1
2 m/ / v 2¢| ( ) m_ldUJdT
Sm—1 T

—/ h(w@)| V5" B2 (w)dw
S*V?‘Lfl

is independent of p and hence so is p>~™ pr(o) hOH™ 2LY,. This completes the proof.

By the same argument, we can prove the tangent measure of a stationary pair (u, V') € £(&o)

is conical. For z € ¥ and r > 0, we denote
par(E) :=r*""u(rE 4+ z), VBorel set E C R™.

Corollary 2.3 Assume p = (u,V) € E(ep), x € X, d.e., O(u,z) > 0 and r — 0, then
Hzr — Py = (Um, Vz) S 8(50) and

2 (Bo(0))
o om—2

=0(uw,x), Vp>0.
Wm— 2/)

The measure p, = (uy, Va.) is called the tangent pair of p = (u, V).

Introducing the conception of map-varifold pair provides a simple strong convergence crite-

rion.

Corollary 2.4 Assume p; = (u;, Vi) € E(eo) such that u; — p € (u,V) € E(eo). If
V =u(%,0) such that H"=2(X) = 0, then u; converges to u strongly in W12

Proof V = (%, 0) is rectifiable (m —2) varifold and H™~2?(X) = 0 implies V = 0 and hence
u is a stationary weak harmonic map with sing(u) C ¥ and 7 = |Vu|?dz. Moreover, u; — i
implies 77; = |Vu;|?dz + 6; H" 2., converges as a Radon measure to the limit 7 = |Vu|?dz.
So, we know for any r > 0, there holds

lim sup / |V, |*da
Br(p)

1—00
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< lim 7;(B.(p))

i—00

:/ |Vul?dz.
Br(p)

On the other hand, the weak lower semi-continuity of Dirichlet energy implies u; converges

weakly to some limit v and

/ |Vol2de < liminf/ |V, |*da.
Br(p) oo Br(p)

Noting that the compactness theorem implies u; converges strongly to u out side the closed
subset ¥ with H"2(2) = 0. So, u(x) = v(z) on £¢, which implies v = u as a W12 maps and

hence

/ |Vu|2da:=/ Vo2dz = lim Vs 2d(z).
By (p) By (p) troo By (p)

So, we know [|u; — u|lw1.2(B, (p)) — 0,Vr > 0.

Remark 2.1 In the setting of the above corollary, we also know that

lim H"%(%;) = 0.

i—00
But we are not able to show that H"~2(%;) = 0. So, we do not know whether wu; is stationary.

The tangent map-varifold pair and the blow down of the pseudo tangent map-varifold pair
are both conical, i.e., symmetric in the radical direction. In the following, Simon’s idea (see [16—
17]) is used to describe the full symmetry of map-varifold pair satisfying volume cone condition,
see also [11]. The only difference we want to show is that both the map part and the varifold

part admit symmetries although both of them may not be stationary.

Definition 2.3 Assume (¢,V) is a stationary map-varifold pair from R™ to N, where

V=u(%,0). If

2 ( / OH™ 2 4 / Vo2dy) = ©9,6(0), ¥p >0, (2:3)
$NB,(0) B, (0)

we say (¢, V) satisfies volume cone condition respect to 0.

Lemma 2.3 Assume (¢, V) is a stationary map-varifold pair from R™ to N satisfying the

volume cone condition. Then, for any Y € R™, we have
©0.6(Y) < 09,4(0).

The equality holds if and only if
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(i) ¢(Y + AX) = ¢(Y + X) for all A >0, X € R™,
(i) OY + AX) = 0(Y + X) for all A >0, X € R™,

(i) X, is a also tangent cone at Y.

Proof Let r =|X —Y|. By (2.2), we have

p2—m( / OH™ S, + / |V¢|2dy) —©g.4(Y)
5.5, (V) B,(Y)

2—m 2 m—2 2—m a(b 2
= r* Ve r|TOH™ TS, 4+ 2 r ‘—
£.N(B,(Y)) i By(Y) or
Note that B,(Y) C B,4|y|(0), we have
2—m m—2 2
p (/ oH L2I+/ IV dy)
$.NB,(Y) B,(Y)
< / OH™ LS, + / [Vol*dy)
E.NB,y)y(0) Bty (0)
Y/[\m—2 _m —
= (1 BN ([ otk [ Vo)
p Z2NB,1v|(0) Boyiv((0)

= (1 n %)m_2®9,¢(0) by (2.3).

Letting p — oo we obtain

2
©0.6(0) — Og.4(Y) z/ rQ—m|vEM|29Hm—2LEI+2/ rQ—m‘@‘ dy.
S x R2 (97“
So we have

©9,6(0) > B 4 (Y).

The equality holds if and only if Vg7 =0 on X, and % = 0. So (i) holds. Similar to the proof

;=

of Corollary 2.2, choosing X,y = h(wy )X (r) for wy = % and applying (2.1), we know
pQ_m/ h(wy)0dH™ 2., = constant independent of p,
By(Y)
which implies (ii) and (iii). This proves the lemma.

Assume (¢, V) is a stationary map-varifold pair from R™ to N satisfying the volume cone

condition. We set
5(,0) = {Y € R™ [ ©4,4(0) = Og,4(Y)}-

Lemma 2.4 Assume (¢,V) is a stationary map-varifold pair from R™ to N satisfying
the volume cone condition. Then, S(¢,0) is a linear subspace of R™, ¢(X +Y) = ¢(X),
O(X +Y)=0(X), forall X € R™, Y € S(¢,0), and X, = S(¢,0) x S+ for some cone ¥+ in
S+(9,0).
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Proof Since for any X € R™, any A > 0, ¢(Y +AX) = ¢(Y + X), (Y +AX) = (Y + X),
A, —Y) =%, —Y and ¢(AX) = ¢(X), O(AX) = (X), AZ, = %,, we have
P(X) = p(AX) = ¢(Y + (AX —Y)) = ¢(Y + A7*(AX —Y))
=AY +A2(AX —Y))) = (X + (A = A7HY),
0(X)=0AX) =0 +(AX —Y)) =0(Y + \2(A\X —Y))

=AY + 220X -Y) =0(X + (A= 2"HY)
and

Y =AY, = A, —Y)FAY = AN, YY) + Y

=AY =2, - (AP

So, for any p € R, X € R"™, Y € S(¢,6), we have (X + puY) = ¢(X), (X 4+ pY) = 0(X) and
S, = 8, — uY. Tt is clear that, if Y, Z € S(¢,0), then ¢(X +Y + Z) = ¢(X +Y) = ¢(X),
OX+Y+2)=0(X+Y)=0(X)forall X € R" and S, — (Y +2Z) =X -Y —Z=%—Z =%.
So, for Y, Z € S(¢,0) and p € R, we have

Op,4 (1Y)

— lim g2 / (V6P (y)dy + 0()dH™ 2 S, (y))
By (1Y)

p—0

— Jim g2 /B o (VOPE)E + 020, (2)

p—0

=0¢,6(0)

and, for the same reason,

O0,6(Y + Z) = 0(6,0)(0),

which implies S(¢, 6) is a linear space of R™. Since Oy 4(Y) = O 4(0) > 0 for all Y € S(¢, ),
we have S(¢,0) C X,. For any X € X,, there is a unique orthogonal decomposition X =
XT+ X+ € S(p,0) ®S(¢,0). Denote X = {X+ | X € ¥}. Then X, C S(4,0) x . On
the other hand, for any Y + X+ € S(6,¢) x XX, by XT —Y € S(¢,6), we know

V4 Xt =X-(X"T-Y)ex, - (X" -Y)=13%,.
So we know X, = S(¢,0) x ¥+ and hence ¥ is a cone in S+ (¢, ). This proves the lemma.

With the compactness theorem for map-varifold pairs and the description of the symmetry,

as the arguments for energy minimizing maps (see [17]), we can also introduce the stratification
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of sing(u) = X for p = (u,V) € E(gp). For each j =0,1,---,m, we define
S; ={x € X |dimS(¢,0) < j for all tangent pair (¢,v(X 6)) of p at z}.

It is clear that

SoCS1C--C S

By Lemma 2.4, we have

Sm—2 = Sm—l = Sm =2

Proposition 2.1 For each j =1,2,--- ,m —2, the Hausdorff dimension of S;, dimS; < j.

For each o > 0, So N {x | O(u,x) = o} is a discrete set.

Proof The proof can be followed line by line from [17, pages 200-203], applying the
compactness Theorem 2.1 for stationary map-varifold pairs instead of that for energy minimizing

maps.

Set

S_1 ={x € S;—2 \ Sim—3 | all tangent maps are constant}.

We have the following decomposition of the singular set.

Theorem 2.2 Let M be a compact m-dimensional Riemannian manifold. Let N be a
Riemannian manifold. Let p = (u, V) be a stationary map-varifold pair from M to N. We

have

sing(p) = Sp—3 US_1.

Proof Since sing(p) = S;—2 it suffices to show that S,—2 \ S—3 = S—1. Suppose
that © € Sp—2 \ S;m—s. Then there is a tangent map ¢ and a tangent cone (X,,60) at x
such that dim S(¢,6) = m — 2. By Lemma 2.4, we know that § = constant on S(¢, ) and
Y. = S(¢,0) x - for some cone X3 in the 2-dimensional subspace S(¢,6)*. But we know
¥, has finite H™~2 measure in local. So, ¥t is discrete and must be {0} since it is a cone.
Thus v(3;,0) is stationary, combining with the stationary property of i, we can see that ¢ is
stationary. It is clear that O4(y) = ©4(0) for any y € S(¢,0) by Lemma 2.4. If ¢ # constant,
we have 0 € sing(¢), hence S(¢,0) C sing(¢). However, by Bethuel’s theorem [3] (also see [5])
we know that H™~2(sing(¢))) = 0. So ¢ = constant.

This proves the theorem.
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Remark 2.2 Moser [11] has proved that the top-dimensional part of the singular set for
stationary measures consists of points whose tangent measure are all constant times of a plane ,
i.e., the map part vanishes. Besides the such constant theorem for the top-dimensional stratum,

the above theorem also tells that the singular set is of dimension (m — 3) out of S_;.

3 Stability

For Hong-Wang’s stability condition (see [7]), we can similarly consider strongly stable map-
varifold pair. However, we observe that such stability condition (3.1) on the map-varifold pair
implies the vanishing of the varifold part, and hence under the stability condition the conception

of stationary map-varifold pair reduced to the classical stationary harmonic map.

Definition 3.1 Assume p = (u,V) is a stationary map-varifold pair, we call p A-strongly
stable if the map part uw of p is strongly stable as defined in 7], i.e., there exists A > 0 such

that for any smooth function ¢ on M with compact support, there holds

/ |Vé|>dz 2A/ H*df. (3.1)
M M

Remark 3.1 Assume p; € E(gg) is a sequence of A-strongly stable stationary map-varifold
pair, and p; converges to u € E(gp). Then p is also A-strongly stable since fi; converges to It

as Radon measures.

Proposition 3.1 Assume pu = (u,V) € E(eg) is an A-strongly stable stationary map-
varifold pair and V = v(%,0). Then H™ () = 0, u is stationary and ¥ = sing(u).

Proof Using the same argument as the case without varifold part in [7], we know Cap,(X) =
0 and hence H™ 2(¥) = 0. This implies V is stationary and hence u is stationary. Thus
by Bethuel’s small energy regularity theorem, we know for any x € 3\ sing (u), there holds
©.(z) = 0 and hence O(p, x) = 0, i.e., z ¢ X. This implies X\ sing(u) = ) and hence

sing(u) = X.

Corollary 3.1 Let M be a compact m-dimensional Riemannian manifold. Let N be a

Riemannian manifold. If u is a strongly stable stationary harmonic map from M to N, then
sing(u) = Spm—3.
Proof If S_; # (), then there exits zg € S—1 C sing(u) and r; — 0 such that

Ugg,r; =7 b= (d)a V),
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where V' = v(X,0). Since z9 € S_1, we have ¢ =constant. The stability of ug, ,, implies pu is
strongly stable. By Proposition 3.1, we know H™%(X) = 0. So, Corollary 2.4 implies wuz, ,,

converges to ¢ = constant strongly in W2, which further implies

O(u,z0) < lim lim O(ug,,r;,0,7) = 0.

r—0i—00

This contradicts to zp € sing(u). So, we conclude S_; = () and sing(u) = S,,—3 follows from

Theorem 2.2.

Corollary 3.2 Let M be a compact 3-dimensional Riemannian manifold. Let N be a
compact analytic manifold with a analytic metric of positive sectional curvature. Let u be a
stable stationary harmonic map from M to N. Then the singular set of u consists of at most

finitely many points.

Proof By Corollary 3.1, we know that sing(u) = Sy, by Proposition 2.1, we know that
SoN{z | ©,(x) = a} is a discrete set. Note that O,(x) = E(¢), where ¢ is a harmonic map
from S? to N. Because N is an analytic manifold with analytic metric, E(¢) takes discrete

values. So, we know that Sy is a discrete set. This proves the corollary.
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