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Abstract The authors introduce the conception of stationary map-varifold pairs and

prove a compactness result. As applications, they analyse the asymptotic structure of the

pseudo tangent map of stationary harmonic maps. For stationary pair, they also get a

strong convergence criterion about the map part and introduce the stratification of the

singular set.
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1 Introduction

The regularity for area minimizing rectifiable currents (see [1–2]) and the regularity for en-

ergy minimizing maps (see [6, 10, 13–14, 16–17]) have been studied intensively and successfully.

The results depend on the compactness theorem and the existence of tangent cones and the

existence of tangent maps.

However, the set of stationary harmonic maps is not compact (see [4, 8–9]), the energy

may concentrate on a blow-up set. If the target does not support any harmonic S2, Lin [9]

proved the compactness theorem for stationary harmonic maps, and consequently, he showed

the regularity theorem in this case. Li-Tian [8] showed that the “sum” of the blow-up set and

the weak limit is stationary. But, in general, every one may not be stationary (see [4]). Using

the blow-up formula derived in [8], they proved that tangent maps and tangent cones of a

stationary harmonic map at a singular point exist. A similar argument shows the existence of

pseudo tangent maps (see Section 2 for the definition). In general, the pseudo tangent map and

its corresponding detect measure are not conical. To investigate the asymptotic behavior of the

pseudo tangent map, motivated by Li-Tian’s blow-up formula, we introduce the conception of

stationary map-varifold pair (see Definition 2.2) and establish the compactness for a subclass

of such objects. A fundamental tool is Moser’s (see [11]) theory on stationary measures and
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the rectifiability of the detect measure (see [9, 11]). The advantage of stationary harmonic

maps is that they share the same small energy regularity with energy minimizing maps (see

[3, 5]), which yields that the (m − 2)-dimensional Hausdorff measure of the singular set of a

stationary harmonic map vanishes, where m = dimM . The small energy regularity is involved

in the choice of subclass E(ε0) (see Definition 2.2) of stationary map-varifold pairs, such that

the compactness holds with rectifiability.

Theorem 1.1 For any sequence {µi = (ui, Vi)}∞i=1 ⊂ E(ε0) such that sup
i

µi(K) ≤ CK <

+∞ for any compact subset K ⊂ M , there exists a subsequence converges as Radon measure to

a stationary map-varifold pair (u, V ) ∈ E(ε0).

In this notes, we also adopt Simon’s idea (see [16–17]) to get the stratification Sj (Sj ⊂ Sj+1)

for singular set of stationary map-varifold pairs for 0 ≤ j ≤ m− 2, with dimSj ≤ j. In proving

dimSj ≤ j, we use the compactness described above instead of the compactness theorem for

energy minimizing maps. It is interesting to know whether the Hausdorff codimension of the

singular set is at least 3, which was proved for energy minimizing maps by Schoen-Uhlenbeck

[13–14]. In other words, we hope to know whether Sm−2 = Sm−3. We show that

Sm−2 = Sm−3 ∪ S−1,

where

S−1 = {x ∈ Sm−2 | all tangent maps are constant}.

Applying the compactness of stationary map-varifold pairs and a strong convergence criterion

for the map part(see Corollary 2.4), we show that S−1 = ∅ for strongly stable stationary

harmonic map, which revisits Hong-Wang’s theorem (see [7]) in the following.

Corollary 1.1 Let M be a compact m-dimensional Riemannian manifold. Let N be a

compact Riemannian manifold. Let u be a strongly stable stationary harmonic map from M to

N . Then the Hausdorff codimension of the singular set of u is at least 3.

In 3-dimensional case, we can show the following corollary.

Corollary 1.2 Let M be a compact 3-dimensional Riemannian manifold. Let N be a com-

pact analytic manifold with an analytic metric. Let u be a strongly stable stationary harmonic

map from M to N . Then the singular set of u consists of at most finitely many points.

2 Stationary Pairs, Compactness and Stratification

Let M and N be two compact Reimannian manifolds. Let u(x) be a stationary harmonic

map from M to N . The regular set reg(u) of u is defined as the set of points x ∈ M such that

u is smooth in some neighborhood of x. It is clear that reg(u) is open. The singular set sing(u)

of u is defined to be the complement of reg(u).
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We define the density function Θu of u by

Θu(x) = lim
r→0

r2−m

ˆ

Br(x)

|∇u|2dvol.

The monotonicity inequality (see [12]) for u yields that the limit exists. And it is proved (see

[3, Theorem I.4]) that x ∈ reg(u) if and only if Θu(x) = 0.

The first author and Tian [8] proved the existence of tangent maps and tangent cones at a

singular point.

Let u be a stationary harmonic map from M to N . Assume that x ∈ sing(u). We set

ux,r(y) = u(x + ry). Then for any sequence ri′ , there is a subsequence ri → 0 such that

ux,ri → φ weakly in H1,2(Rm, N) and |∇ux,ri |
2dy → |∇φ|2dy + θ(y)Hm−2

xΣx in the sense of

measure. It is proved in [8] that φ(λy) = φ(y) for all λ > 0, y ∈ Rm, θ(λy) = θ(y) for all λ > 0,

y ∈ Rm, and Σx is a tangent cone, that is λΣx = Σx for all λ > 0.

We call φ a tangent map at x, (Σx, θ) a tangent cone at x.

Lemma 2.1 Suppose that xj → x ∈ M , and that uj is a sequence of stationary harmonic

maps from M to N which satisfies that uj → u weakly in H1,2(M,N), |∇uj |2dV → |∇u|2dV +

θHm−2
xΣ in the sense of measure with blow-up set Σ. Then

Θu,θ(x) = lim
r→0

r2−m
(

ˆ

Br(x)

|∇u|2dvol +

ˆ

Br(x)

θHm−2
xΣ

)

≥ lim sup
j→∞

Θuj
(xj).

Proof For any ρ > 0 and any ε > 0, by monotonicity inequality for stationary harmonic

maps, we have

Θuj
(xj) ≤ ρ2−m

ˆ

Bρ(xj)

|∇uj|
2dvol

≤ ρ2−m

ˆ

Bρ+ε(x)

|∇uj |
2dvol

for j sufficiently large. Letting j → ∞, letting ε → 0, and then letting ρ → 0, we obtain the

lemma.

Generally, we can consider pseudo tangent map similar to tangent map.

Definition 2.1 Suppose that x ∈ sing(u), and xj → x as j → ∞. Let uxj,r(y) = u(xj+ry).

Then for any sequence rj → 0 there is a subsequence which we also denote by rj such that

uxj,rj → φ weakly in H1,2(Rm, N) and |∇uxj,rj |
2dy → |∇φ|2dy + θ(y)Hm−2

xΣx in the sense

of measure. We call φ a pseudo tangent map at x and ν = θHm−2
xΣx the detect measure.
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In general, pseudo tangent map may not be conical. But by Li-Tian blow-up formula, when

adding the detect measure together, there is still a monotonicity formula.

Lemma 2.2 Let x ∈ sing(u), φ a tangent map or a pseudo tangent map at x, (Σx, θ) = the

corresponding detect measure. For any y0 ∈ Rm, the function

ρ2−m
(

ˆ

Σx∩Bρ(y0)

θHm−2
xΣx +

ˆ

Bρ(y0)

|∇φ|2dy
)

is increasing in ρ > 0.

Proof By [8, Theorem 2.1] we have,
ˆ

Σx

divΣx
(X)θHm−2

xΣx +

ˆ

Rm

(

|∇φ|2div(X)− 2
〈

dφ(∇αX), dφ
( ∂

∂xα

)〉)

dV = 0 (2.1)

for any smooth vector field X with compact support in Rm.

We choose X(y) = ξ(r)r ∂
∂r

where r = |y − y0| and

ξ(r) =















1 if r ≤ t′,

t− r

t− t′
if t′ < r < t,

0 if r ≥ t.

Then we have
ˆ

Σx

(ξ′r + (m− 2)ξ)θHm−2
xΣx −

ˆ

Σx

ξ′r|∇Σ⊥
x
r|2θHm−2

xΣx

+

ˆ

Rm

(ξ′r + (m− 2)ξ)|∇φ|2dy − 2

ˆ

Rm

ξ′r
∣

∣

∣

∂φ

∂r

∣

∣

∣

2

dy = 0.

Letting t′ → t and integrating, we get

ρ2−m
(

ˆ

Σx∩Bρ(y0)

θHm−2
xΣx +

ˆ

Bρ(y0)

|∇φ|2dy
)

= σ2−m
(

ˆ

Σx∩Bσ(y0)

θHm−2
xΣx +

ˆ

Bσ(y0)

|∇φ|2dy
)

+

ˆ

Σx∩(Bρ(y0)\Bσ(y0))

r2−m|∇Σ⊥
x
r|2θHm−2

xΣx

+ 2

ˆ

Bρ(y0)\Bσ(y0)

r2−m
∣

∣

∣

∂φ

∂r

∣

∣

∣

2

dy. (2.2)

This proves the lemma.

Corollary 2.1 Assume φ ∈ H1(Rm, N) and a (m − 2)-rectifiable varifold V = v(Σ, θ)

satisfying (2.1), then for any y ∈ Rm, the density

Θθ,φ(y) = lim
ρ→0

ρ2−m
(

ˆ

Σx∩Bρ(y)

θHm−2
xΣx +

ˆ

Bρ(y)

|∇φ|2dy
)

exists and is upper semi-continuous on R
m.
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Proof Denote µ = |∇φ|2dy + θHn−2
xΣ, by Lemma 2.2, for any y ∈ Rm, Θθ,φ(y) =

lim
ρ→0

µ(Bρ(y))
ρm−2 exists. Moreover, for any yi → y and ρ > 0,

µ(Bρ(y))

ρm−2
≥

µ(Bρ−|yi−y|(yi))

(ρ− |yi − y|)m−2

(ρ− |yi − y|

ρ

)m−2

≥ Θθ,φ(yi)
(

1−
|yi − y|

ρ

)m−2

.

Letting i → ∞ and then ρ → 0, we get

Θθ,φ(y) ≥ lim sup
yi→y

Θθ,φ(yi).

In the following, we analyse the asymptotic behavior of the pseudo tangent map. Let φ be

a pseudo tangent map and (Σx, θ) the corresponding detect measure at x. It is clear that

ρ2−m
(

ˆ

Σx∩Bρ(0)

θHm−2
xΣx +

ˆ

Bρ(0)

|∇φ|2dy
)

− σ2−m
(

ˆ

Σx∩Bσ(0)

θHm−2
xΣx +

ˆ

Bσ(0)

|∇φ|2dy
)

= lim
i→∞

(

ρ2−m

ˆ

Bρ(0)

|∇uxi,ri |
2dy − σ2−m

ˆ

Bσ(0)

|∇uxi,ri |
2dy

)

= lim
i→∞

ˆ

Bρri
(xi)\Bσri

(xi)

1

rm−2

∣

∣

∣

∂u

∂r

∣

∣

∣

2

.

In the case xi = x, i.e., φ is a tangent map, we know the last term is zero by the absolutely

continuity of integral. But in general, we can not hope the last term to be zero, since r = | ·−xi|

depends on i. It can be expected that this pair of pseudo tangent map and the varifold is

asymptotic to a cone at infinity. For this goal, we need to blow down this pair again. Motivated

by this and Li-Tian’s blow-up formula and the conception of stationary measure introduced by

Moser [11], we define the following stationary conception of map-varifold pair and proves a

compactness result.

Definition 2.2 Assume u ∈ W 1,2
loc (M

m, Nn) is a weak harmonic map and V = v(Σ, θ) is a

rectifiable (m− 2)-varifold. If the TM ⊗ T ∗M -valued measure

µ = ∇u⊗ du⊗ dvol +
1

2
θHm−2

xΣ · p⊥TxΣ

is stationary in the sense of Moser [11], i.e., satisfying the Li-Tian blow-up formula

ˆ

M

(|∇u|2divX − 2〈∇u⊗ du,∇X〉)dvol(x) +

ˆ

Σ

divΣXθdHm−2(x) = 0

for any Lipschitz vector field X on M , then we call µ =: (u, V ) a stationary map-varifold pair.

The corresponding energy density measure is defined by

µ = trµ = |∇u|2dvol(x) + θ(x)Hm−2
xΣ.
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Moreover, we denote the class

E(ε0) := {stationary pair µ = (u, V ) such that θ ≥ ε0,Σ closed, and sing(u) ⊂ Σ},

where ε0 is the constant in the ε-regularity theorem [B] of stationary harmonic maps and sing(u)

is the singular set of u.

Example 2.1 By the blow-up formula (see [8, 11]), for any stationary harmonic map se-

quence {ui} with bounded energy, there exists a subsequence such that ∇ui⊗ dui converges as

TM ⊗ T ∗M -valued measure to a stationary map-varifold pair (u, V ) ∈ E(ε0).

Proof More precisely, assume ∇ui ⊗ dui → µ = (u, V ), then the blow-up formula means

µ is stationary and hence the monotonicity formula holds, which further implies the density

Θ(µ, x) = lim
r→0

µ(Br(x))
ωm−2rm−2 exists. If Θ(µ, x) < ε0, then Θ(ui, x, r) ≤ ε1 < ε0 for some fixed

r > 0 and i ≫ 1. Thus the ε-regularity (see [3]) implies ui are smooth in B(x, r) with uniform

estimates, and hence ui converges to u smoothly near x and Θ(µ, x) = 0. So, we know

Σ := {x ∈ M | Θ(µ, x) > 0} = {x ∈ M | Θ(µ, x) ≥ ε0} is a closed subset.

By [8] or [11], Σ is (m− 2)-rectifiable and µxΣ = 1
2θH

m−2
xΣ · p⊥TxΣ

. This implies

µ = µxΣc + µxΣ = ∇u ⊗ du+
1

2
Θ(µ, x)Hm−2

xΣ · p⊥TxΣ,

where Σ is a closed set, θ = Θ(µ, x) ≥ ε0 for x ∈ Σ and u is smooth in M\Σ. This implies

(u, V ) ∈ E(ε0).

The advantage of introducing the class E(ε0) is that it is a compact class and describes some

regularities.

Theorem 2.1 For any sequence {µi = (ui, Vi)}∞i=1 ⊂ E(ε0) such that sup
i

µi(K) ≤ CK <

+∞ for any compact subset K ⊂ M , there exists a subsequence such that it converges as Radon

measure to a stationary map-varifold pair (u, V ) ∈ E(ε0).

Proof Since µi = (ui, Vi) are stationary with locally uniformly bounded mass, by passing to

subsequence, we know µi converges to a TM⊗T ∗M valued measure µ such that µ is stationary

in the following sense defined by Moser [11]:
ˆ

M

divXdµ− 2〈∇X, dµ〉 = 0, ∀X = Lipschitz vector field.

Moreover, by the monotonicity formula, we know

Θ(µ, x) = lim
r→0

µ(Br(x))

ωm−2rm−2
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exists for any x ∈ M . If Θ(µ, x) < ε0, then there exists r > 0 such that

Θ(µi, x, r) =
µi(Br(x))

ωm−2rm−2
≤ ε1 < ε0

for some fixed r ≪ 1 and ∀i ≫ 1. By the monotonicity formula, we know there exists r1 > 0

and ε2 ∈ (ε1, ε0), such that Θ(µi, y) ≤ ε2 < ε0, ∀y ∈ B(x, r1). By the definition of E(ε0),

we know Σi ∩ B(x, r1) = ∅ and hence µi = ∇ui ⊗ dui in B(x, r1) for some regular harmonic

maps ui : B(x, r1) → N with uniformly bounded energy and Θ(ui, y, r1) ≤ ε2 < ε0. So, by

Bethuel’s uniform estimate (see [3]), we know ui converges strongly to a smooth harmonic map

u : B(x, r1) → N and hence µ = ∇u ⊗ du in B(x, r1). As a result,

Σ = {x ∈ M | Θ(µ, x) > 0} = {Θ(µ, x) ≥ ε0} = a closed subset.

Again by [11, Theorem 1.1], we know Σ is (m − 2)-rectifiable and µxΣ = 1
2θH

m−2
xΣ · p⊥TxΣ

,

where θ ≥ ε0. So, we know µ = (u, V ) ∈ E(ε0).

With this compactness theorem. We can analyse the asymptotic behavior of a pseudo-

tangent object. Recall that the definition of blow down of a R
n ⊗ R

n∗ valued measure µ is

defined by 1
Ri

µ → µ∞ for a sequence Ri → ∞, where

( 1

R
µ
)

(E) :=
1

Rm−2
µ(RE), ∀ Borel set E ⊂ R

m.

Corollary 2.2 Assume u ∈ H1,2
loc (M,N) is a stationary harmonic map, x ∈ sing(u), xi → x

and ri → 0 and uxi,ri converges weakly to a stationary map-varifold pair µ = (u∞, V ) ∈ E(ε0).

Then, for any sequence Ri → ∞, there exists a subsequence (still denoted as Ri) such that 1
Ri

µ

converges to µ∞ = (φ, v(Σ, θ)) ∈ E(ε0) such that µ∞ is a cone in the following sense:

(1) φ(λy) = φ(y) for all λ > 0, y ∈ Rm,

(2) θ(λy) = θ(y) for all λ > 0, y ∈ Σx,

(3) Σx is conical with respect to 0 ∈ R
m, that is λΣx = Σx for all λ > 0.

Proof Since uxi,ri converges to (u∞, V ), we know that

|∇uxi,ri |
2dx → µ = |∇u∞|2dx+ θµH

m−2
xΣ,

which implies

µ(Br(0))

ωm−2rm−2
= lim

i→∞

´

Br(0)
|∇uxi,ri |

2(y)dy

ωm−2rm−2

≤ lim
i→∞

´

Bδ(xi)
|∇u|2(y)dy

ωm−2δm−2
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= Θ(u, x, δ).

Letting δ → 0 and then r → ∞, we get

Θ(µ, 0, r) ≤ Θ(µ,∞) ≤ Θ(u, x) < ∞.

So, for any compact set K ⊂ R
m, there exists r = rK such that K ⊂ Br(0) and hence for

µi =
1
Ri

µ, there holds

µi(K) ≤
µ(BrRi

)

Rm−2
i

≤ Θ(µ,∞)ωm−2r
m−2 < +∞.

So, by the compactness Theorem 2.1, we know µi → µ∞ = (φ, V = v(Σ, θ)) ∈ E(ε0) such that

for any r > 0, there holds

Θ(µ∞, 0, r) =
µ∞(Br(0))

ωm−2rm−2

= lim
i→∞

µi(Br(0))

ωm−2rm−2

= lim
i→∞

µ(BrRi
(0))

ωm−2(rRi)m−2

= Θ(µ,∞).

Thus by (2.2), we know ∇Σ⊥
x
r = 0 and ∂φ

∂r
= 0 for r = |y|, which implies φ(λy) = φ(y) for

λ > 0, y ∈ R
m. Similar to the proof of [15, Theorem 19.3], to show the varifold part is conical,

i.e.,

λΣx = Σx and θ(λy) = θ(y), ∀λ > 0, y ∈ Σx,

it is enough to prove that for any homogeneous function h ∈ C1(Rm\{0}) of degree zero, i.e.,

h(y) = h
(

y
|y|

)

=: h(ω),

ρ−(m−2)

ˆ

Bρ(0)

h(y)θ(y)dHm−2
xΣx = constant (independent of ρ).

For this, choose Xh = h(ω)ξ(r)r ∂
∂r

= hX in (2.1). Note ∇Σ⊥
x
r = 0, ∂φ

∂r
= 0 and ∂h

∂r
= 0. By

direct calculation, we get

divΣx
(Xh) = (ξ′r + (m− 2)ξ)h,

div(Xh) = (ξ′r +mξ)h

and

gαβ
〈

dφ
(

∇αXh, dφ
( ∂

∂xβ

))〉

= h(ξ′r + (m− 2)ξ)|∇φ|2,
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which implies
ˆ

Rm

(ξ′r + (m− 2)ξ)h(θHm−2
xΣx + |∇φ|2dy) = 0.

As before, letting t′ → t and integrating, we know

ρ2−m

ˆ

Bρ(0)

h(θHm−2
xΣx + |∇φ|2dy) is independent of ρ.

Since h(y) = h(ω) and φ(y) = φ(ω), we know

ρ2−m

ˆ

Bρ(0)

h|∇φ|2dy

=ρ2−m

ˆ ρ

0

ˆ

Sm−1

h(ω)
|∇Sm−1

φ|2(ω)

r2
rm−1dωdr

=

ˆ

Sm−1

h(ω)|∇Sm−1

φ|2(ω)dω

is independent of ρ and hence so is ρ2−m
´

Bρ(0)
hθHm−2

xΣx. This completes the proof.

By the same argument, we can prove the tangent measure of a stationary pair (u, V ) ∈ E(ε0)

is conical. For x ∈ Σ and r > 0, we denote

µx,r(E) := r2−mµ(rE + x), ∀Borel set E ⊂ R
m.

Corollary 2.3 Assume µ = (u, V ) ∈ E(ε0), x ∈ Σ, i.e., Θ(µ, x) > 0 and r → 0, then

µx,r → µx = (ux, Vx) ∈ E(ε0) and

µx(Bρ(0))

ωm−2ρm−2
≡ Θ(µ, x), ∀ρ > 0.

The measure µx = (ux, Vx) is called the tangent pair of µ = (u, V ).

Introducing the conception of map-varifold pair provides a simple strong convergence crite-

rion.

Corollary 2.4 Assume µi = (ui, Vi) ∈ E(ε0) such that µi → µ ∈ (u, V ) ∈ E(ε0). If

V = v(Σ, θ) such that Hn−2(Σ) = 0, then ui converges to u strongly in W 1,2.

Proof V = v(Σ, θ) is rectifiable (m−2) varifold and Hm−2(Σ) = 0 implies V = 0 and hence

u is a stationary weak harmonic map with sing(u) ⊂ Σ and µ = |∇u|2dx. Moreover, µi → µ

implies µi = |∇ui|2dx + θiHn−2
xΣi converges as a Radon measure to the limit µ = |∇u|2dx.

So, we know for any r > 0, there holds

lim sup
i→∞

ˆ

Br(p)

|∇ui|
2dx
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≤ lim
i→∞

µi(Br(p))

=

ˆ

Br(p)

|∇u|2dx.

On the other hand, the weak lower semi-continuity of Dirichlet energy implies ui converges

weakly to some limit v and

ˆ

Br(p)

|∇v|2dx ≤ lim inf
i→∞

ˆ

Br(p)

|∇ui|
2dx.

Noting that the compactness theorem implies ui converges strongly to u out side the closed

subset Σ with Hn−2(Σ) = 0. So, u(x) = v(x) on Σc, which implies v = u as a W 1,2 maps and

hence

ˆ

Br(p)

|∇u|2dx =

ˆ

Br(p)

|∇v|2dx = lim
i→∞

ˆ

Br(p)

|∇ui|
2d(x).

So, we know ‖ui − u‖W 1,2(Br(p)) → 0, ∀r > 0.

Remark 2.1 In the setting of the above corollary, we also know that

lim
i→∞

Hn−2(Σi) = 0.

But we are not able to show that Hn−2(Σi) = 0. So, we do not know whether ui is stationary.

The tangent map-varifold pair and the blow down of the pseudo tangent map-varifold pair

are both conical, i.e., symmetric in the radical direction. In the following, Simon’s idea (see [16–

17]) is used to describe the full symmetry of map-varifold pair satisfying volume cone condition,

see also [11]. The only difference we want to show is that both the map part and the varifold

part admit symmetries although both of them may not be stationary.

Definition 2.3 Assume (φ, V ) is a stationary map-varifold pair from R
m to N , where

V = v(Σ, θ). If

ρ2−m
(

ˆ

Σ∩Bρ(0)

θHm−2
xΣ+

ˆ

Bρ(0)

|∇φ|2dy
)

≡ Θθ,φ(0), ∀ ρ > 0, (2.3)

we say (φ, V ) satisfies volume cone condition respect to 0.

Lemma 2.3 Assume (φ, V ) is a stationary map-varifold pair from R
m to N satisfying the

volume cone condition. Then, for any Y ∈ Rm, we have

Θθ,φ(Y ) ≤ Θθ,φ(0).

The equality holds if and only if
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(i) φ(Y + λX) = φ(Y +X) for all λ > 0, X ∈ Rm,

(ii) θ(Y + λX) = θ(Y +X) for all λ > 0, X ∈ Rm,

(iii) Σx is a also tangent cone at Y .

Proof Let r = |X − Y |. By (2.2), we have

ρ2−m
(

ˆ

Σx∩Bρ(Y )

θHm−2
xΣx +

ˆ

Bρ(Y )

|∇φ|2dy
)

−Θθ,φ(Y )

=

ˆ

Σx∩(Bρ(Y ))

r2−m|∇Σ⊥
x
r|2θHm−2

xΣx + 2

ˆ

Bρ(Y )

r2−m
∣

∣

∣

∂φ

∂r

∣

∣

∣

2

dy.

Note that Bρ(Y ) ⊂ Bρ+|Y |(0), we have

ρ2−m
(

ˆ

Σx∩Bρ(Y )

θHm−2
xΣx +

ˆ

Bρ(Y )

|∇φ|2dy
)

≤ ρ2−m
(

ˆ

Σx∩Bρ+|Y |(0)

θHm−2
xΣx +

ˆ

Bρ+|Y |(0)

|∇φ|2dy
)

=
(

1 +
|Y |

ρ

)m−2

(ρ+ |Y |)2−m
(

ˆ

Σx∩Bρ+|Y |(0)

θHm−2
xΣx +

ˆ

Bρ+|Y |(0)

|∇φ|2dy
)

≡
(

1 +
|Y |

ρ

)m−2

Θθ,φ(0) by (2.3).

Letting ρ → ∞ we obtain

Θθ,φ(0)−Θθ,φ(Y ) ≥

ˆ

Σx

r2−m|∇Σ⊥
x
r|2θHm−2

xΣx + 2

ˆ

R2

r2−m
∣

∣

∣

∂φ

∂r

∣

∣

∣

2

dy.

So we have

Θθ,φ(0) ≥ Θθ,φ(Y ).

The equality holds if and only if ∇Σ⊥
x
r = 0 on Σx and ∂φ

∂r
= 0. So (i) holds. Similar to the proof

of Corollary 2.2, choosing Xh,Y = h(ωY )X(r) for ωY = y−Y
|y−Y | and applying (2.1), we know

ρ2−m

ˆ

Bρ(Y )

h(ωY )θdH
m−2

xΣx = constant independent of ρ,

which implies (ii) and (iii). This proves the lemma.

Assume (φ, V ) is a stationary map-varifold pair from R
m to N satisfying the volume cone

condition. We set

S(φ, θ) = {Y ∈ Rm | Θθ,φ(0) = Θθ,φ(Y )}.

Lemma 2.4 Assume (φ, V ) is a stationary map-varifold pair from R
m to N satisfying

the volume cone condition. Then, S(φ, θ) is a linear subspace of Rm, φ(X + Y ) = φ(X),

θ(X + Y ) = θ(X), for all X ∈ Rm, Y ∈ S(φ, θ), and Σx = S(φ, θ) × Σ⊥
x for some cone Σ⊥

x in

S⊥(φ, θ).
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Proof Since for any X ∈ Rm, any λ > 0, φ(Y +λX) = φ(Y +X), θ(Y +λX) = θ(Y +X),

λ(Σx − Y ) = Σx − Y and φ(λX) = φ(X), θ(λX) = θ(X), λΣx = Σx, we have

φ(X) = φ(λX) = φ(Y + (λX − Y )) = φ(Y + λ−2(λX − Y ))

= φ(λ(Y + λ−2(λX − Y ))) = φ(X + (λ− λ−1)Y ),

θ(X) = θ(λX) = θ(Y + (λX − Y )) = θ(Y + λ−2(λX − Y ))

= θ(λ(Y + λ−2(λX − Y ))) = θ(X + (λ− λ−1)Y )

and

Σx = λΣx = λ(Σx − Y ) + λY = λ−1(Σx − Y ) + λY

= λ−1Σx − (λ−1 − λ)Y = Σx − (λ−1 − λ)Y.

So, for any µ ∈ R, X ∈ Rm, Y ∈ S(φ, θ), we have φ(X + µY ) = φ(X), θ(X + µY ) = θ(X) and

Σx = Σx − µY . It is clear that, if Y, Z ∈ S(φ, θ), then φ(X + Y + Z) = φ(X + Y ) = φ(X),

θ(X+Y +Z) = θ(X+Y ) = θ(X) for all X ∈ Rm and Σx− (Y +Z) = Σ−Y −Z = Σ−Z = Σ.

So, for Y, Z ∈ S(φ, θ) and µ ∈ R, we have

Θθ,φ(µY )

= lim
ρ→0

ρ2−m

ˆ

Bρ(µY )

(|∇φ|2(y)dy + θ(y)dHm−2
xΣx(y))

= lim
ρ→0

ρ2−m

ˆ

Bρ(0)

(|∇φ|2(z)dz + θ(z)dHm−2
xΣx(z))

=Θθ,φ(0)

and, for the same reason,

Θθ,φ(Y + Z) = Θ(φ, θ)(0),

which implies S(φ, θ) is a linear space of Rm. Since Θθ,φ(Y ) = Θθ,φ(0) > 0 for all Y ∈ S(φ, θ),

we have S(φ, θ) ⊂ Σx. For any X ∈ Σx, there is a unique orthogonal decomposition X =

X⊤ +X⊥ ∈ S(φ, θ) ⊕ S⊥(φ, θ). Denote Σ⊥
x = {X⊥ | X ∈ Σ}. Then Σx ⊂ S(φ, θ) × Σ⊥

x . On

the other hand, for any Y +X⊥ ∈ S(θ, φ)× Σ⊥
x , by X⊤ − Y ∈ S(φ, θ), we know

Y +X⊥ = X − (X⊤ − Y ) ∈ Σx − (X⊤ − Y ) = Σx.

So we know Σx = S(φ, θ) × Σ⊥
x and hence Σ⊥

x is a cone in S⊥(φ, θ). This proves the lemma.

With the compactness theorem for map-varifold pairs and the description of the symmetry,

as the arguments for energy minimizing maps (see [17]), we can also introduce the stratification
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of sing(µ) = Σ for µ = (u, V ) ∈ E(ε0). For each j = 0, 1, · · · ,m, we define

Sj = {x ∈ Σ | dimS(φ, θ) ≤ j for all tangent pair (φ, v(Σ,θ)) of µ at x}.

It is clear that

S0 ⊂ S1 ⊂ · · · ⊂ Sm.

By Lemma 2.4, we have

Sm−2 = Sm−1 = Sm = Σ.

Proposition 2.1 For each j = 1, 2, · · · ,m− 2, the Hausdorff dimension of Sj, dimSj ≤ j.

For each α > 0, S0 ∩ {x | Θ(µ, x) = α} is a discrete set.

Proof The proof can be followed line by line from [17, pages 200–203], applying the

compactness Theorem 2.1 for stationary map-varifold pairs instead of that for energy minimizing

maps.

Set

S−1 = {x ∈ Sm−2 \ Sm−3 | all tangent maps are constant}.

We have the following decomposition of the singular set.

Theorem 2.2 Let M be a compact m-dimensional Riemannian manifold. Let N be a

Riemannian manifold. Let µ = (u, V ) be a stationary map-varifold pair from M to N . We

have

sing(µ) = Sm−3 ∪ S−1.

Proof Since sing(µ) = Sm−2 it suffices to show that Sm−2 \ Sm−3 = S−1. Suppose

that x ∈ Sm−2 \ Sm−3. Then there is a tangent map φ and a tangent cone (Σx, θ) at x

such that dimS(φ, θ) = m − 2. By Lemma 2.4, we know that θ ≡ constant on S(φ, θ) and

Σx = S(φ, θ) × Σ⊥
x for some cone Σ⊥

x in the 2-dimensional subspace S(φ, θ)⊥. But we know

Σx has finite Hm−2 measure in local. So, Σ⊥
x is discrete and must be {0} since it is a cone.

Thus v(Σx, θ) is stationary, combining with the stationary property of µ, we can see that φ is

stationary. It is clear that Θφ(y) = Θφ(0) for any y ∈ S(φ, θ) by Lemma 2.4. If φ 6≡ constant,

we have 0 ∈ sing(φ), hence S(φ, θ) ⊂ sing(φ). However, by Bethuel’s theorem [3] (also see [5])

we know that Hm−2(sing(φ)) = 0. So φ ≡ constant.

This proves the theorem.
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Remark 2.2 Moser [11] has proved that the top-dimensional part of the singular set for

stationary measures consists of points whose tangent measure are all constant times of a plane ,

i.e., the map part vanishes. Besides the such constant theorem for the top-dimensional stratum,

the above theorem also tells that the singular set is of dimension (m− 3) out of S−1.

3 Stability

For Hong-Wang’s stability condition (see [7]), we can similarly consider strongly stable map-

varifold pair. However, we observe that such stability condition (3.1) on the map-varifold pair

implies the vanishing of the varifold part, and hence under the stability condition the conception

of stationary map-varifold pair reduced to the classical stationary harmonic map.

Definition 3.1 Assume µ = (u, V ) is a stationary map-varifold pair, we call µ A-strongly

stable if the map part u of µ is strongly stable as defined in [7], i.e., there exists A > 0 such

that for any smooth function φ on M with compact support, there holds

ˆ

M

|∇φ|2dx ≥ A

ˆ

M

φ2dµ. (3.1)

Remark 3.1 Assume µi ∈ E(ε0) is a sequence of A-strongly stable stationary map-varifold

pair, and µi converges to µ ∈ E(ε0). Then µ is also A-strongly stable since µi converges to µ

as Radon measures.

Proposition 3.1 Assume µ = (u, V ) ∈ E(ε0) is an A-strongly stable stationary map-

varifold pair and V = v(Σ, θ). Then Hm−2(Σ) = 0, u is stationary and Σ = sing(u).

Proof Using the same argument as the case without varifold part in [7], we know Cap2(Σ) =

0 and hence Hm−2(Σ) = 0. This implies V is stationary and hence u is stationary. Thus

by Bethuel’s small energy regularity theorem, we know for any x ∈ Σ \ sing (u), there holds

Θu(x) = 0 and hence Θ(µ, x) = 0, i.e., x /∈ Σ. This implies Σ \ sing(u) = ∅ and hence

sing(u) = Σ.

Corollary 3.1 Let M be a compact m-dimensional Riemannian manifold. Let N be a

Riemannian manifold. If u is a strongly stable stationary harmonic map from M to N , then

sing(u) = Sm−3.

Proof If S−1 6= ∅, then there exits x0 ∈ S−1 ⊂ sing(u) and ri → 0 such that

ux0,ri → µ = (φ, V ),
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where V = v(Σ, θ). Since x0 ∈ S−1, we have φ =constant. The stability of ux0,ri implies µ is

strongly stable. By Proposition 3.1, we know Hm−2(Σ) = 0. So, Corollary 2.4 implies ux0,ri

converges to φ = constant strongly in W 1,2, which further implies

Θ(u, x0) ≤ lim
r→0

lim
i→∞

Θ(ux0,ri , 0, r) = 0.

This contradicts to x0 ∈ sing(u). So, we conclude S−1 = ∅ and sing(u) = Sm−3 follows from

Theorem 2.2.

Corollary 3.2 Let M be a compact 3-dimensional Riemannian manifold. Let N be a

compact analytic manifold with a analytic metric of positive sectional curvature. Let u be a

stable stationary harmonic map from M to N . Then the singular set of u consists of at most

finitely many points.

Proof By Corollary 3.1, we know that sing(u) = S0, by Proposition 2.1, we know that

S0 ∩ {x | Θu(x) = α} is a discrete set. Note that Θu(x) = E(φ), where φ is a harmonic map

from S2 to N . Because N is an analytic manifold with analytic metric, E(φ) takes discrete

values. So, we know that S0 is a discrete set. This proves the corollary.
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[10] Luckhaus, S., Partial Hölder continuity for minima of certain energies among maps into a Riemannian
manifold, Indiana Univ. Math. J., 37(2), 1988, 349–367.

[11] Moser, R., Stationary measures and rectifiability, Calc. Var. Partial Differential Equations, 17(4), 2003,
357–368.



944 J. Y. Li, J. Zhou and C. N. Zhu

[12] Price, P., A monotonicity formula for Yang-Mills fields, Manuscripta Math, 43(2–3), 1983, 131–166.

[13] Schoen, R. and Uhlenbeck, K., A regularity theory for harmonic maps, J. Differential Geometry, 17(2),
1982, 307–335.

[14] Schoen, R. and Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps, J.

Differential Geometry, 18(2), 1983, 253–268.

[15] Simon, L., Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ., 3,
Australian National University, Centre for Mathematical Analysis, Canberra, 1983, vii+272 pp.

[16] Simon, L., Rectifiability of the singular set of energy minimizing maps, Calc. Var. Partial Differential

Equations, 3(1), 1995, 1–65.

[17] Simon, L., Singularities of Geometric Variational Problems, IAS/Park City Math. Ser., 2, American Math-
ematical Society, Providence, RI, 1996, 185–223.


