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Abstract Most of current public key cryptosystems would be vulnerable to the attacks of
the future quantum computers. Post-quantum cryptography offers mathematical methods
to secure information and communications against such attacks, and therefore has been re-
ceiving a significant amount of attention in recent years. Lattice-based cryptography, built
on the mathematical hard problems in (high-dimensional) lattice theory, is a promising
post-quantum cryptography family due to its excellent efficiency, moderate size and strong
security. This survey aims to give a general overview on lattice-based cryptography. To
this end, the authors begin with the introduction of the underlying mathematical lattice
problems. Then they introduce the fundamental cryptanalytic algorithms and the design
theory of lattice-based cryptography.
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1 Introduction

The security of a public key cryptosystem relies on the intractability of its underlying math-

ematical hard problems. Nowadays most of deployed public key cryptosystems are based on

integer factorization and discrete logarithms over finite fields and elliptic curves. In his seminal

work (see [46]), Shor proposed a polynomial-time quantum algorithm solving these problems.

This implies that the current public key cryptosystem would be no longer secure once large-

scale quantum computers are built. To protect information systems against quantum attacks,

now there are two main approaches: Quantum key distribution (QKD for short) and post-

quantum cryptography (PQC for short). QKD is based on quantum physics; it achieves the

information-theoretic security but cannot offer the authentication function. In addition, QKD

relies on specialized devices and its wide applications seem to be impractical at the moment.

By contrast, PQC is based on the hardness of mathematical problems and able to provide the

computational security for both confidentiality and authentication. More importantly, PQC

is well compatible with the current computing architecture and has been practically efficient.

Therefore, PQC is believed to be a more economic and versatile solution than QKD.
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With the advent of quantum computers, post-quantum cryptography has been receiving a

great amount of attention from academia, industry and government in recent years. In 2016,

the US National Institute of Standards and Technology (NIST for short) initiated the PQC

standardization project calling for post-quantum public key encryption, key establishment and

digital signature algorithms. After three rounds of competition, the NIST announced the first

four PQC algorithms to be standardized in 2022. The Chinese Association for Cryptologic

Research also organized a national cryptographic algorithm design competition in 2019 and its

public key cryptography track focused on post-quantum cryptography.

There are now several main PQC families as per the different mathematical problems, includ-

ing lattice-based, code-based, multivariate-based, isogeny-based and symmetric cipher/hash-

based schemes. This paper focuses on lattice-based cryptography that is one of the most

promising PQC candidate, due to the following advantages:

Strong Security Gurantees. The security foundation of lattice-based cryptography is the

mathematical hard problems in lattice theory, particularly SVP (shortest vector problem) and

CVP (closest vector problem). It is worth noting that the underlying lattices of lattice-based

cryptosystems are generally of a high dimension, say several hundred, while a great amount

of researches in lattice theory mainly focuses on low-dimensional lattices, e.g. the E8 lattice

(see [50]) and the Leech lattice (see [9, 59]). From the computational complexity aspects, both

SVP and CVP are shown to be NP-hard (see [2, 49]) and lattice-based cryptosystems can be

provably secure under the worst-case hardness assumptions of these problems. This provides a

solid theoretical grounding.

Good Overall Performance. Lattice-based schemes have excellent speed comparable to,

even better than, the widely deployed public key algorithms. While lattice-based cryptography

are still of larger sizes than RSA and ECC cryptosystems, its bandwidth is moderate among

current post-quantum cryptosystems. The overall performance of lattice-based cryptography is

sufficient for most real-world applications.

Powerful Versatility. In contrast with other post-quantum families, lattice-based cryptogra-

phy can provide both practical public encryption, key encapsulation and digital signatures. In

addition, based on lattices, one can also construct powerful advanced cryptographic primitives,

e.g. fully homomorphic encryption (see [20]), attribute based encryption (see [23]), code obfus-

cation (see [19]) and much more. Therefore lattice-based cryptography can be made to support

various usecases.

Roadmap This survey is expected to provide a preliminary overview of lattice-based cryp-

tography with an emphasize on the underlying mathematics. In the rest of the paper, we start

with an introduction to the hard problems of lattice-based cryptography in Section 2. Then we

recap the fundamental cryptanalytic tools for lattice-based cryptography in Section 3. Section

4 shows some classical design paradigms of lattice-based cryptosystems. We conclude in Section

5.

2 Lattices and Hard Problems

2.1 Notations

For a positive integer q, let Zq = {−⌊ q2⌋,−⌊
q
2⌋ + 1, · · · , q − ⌊ q2⌋ − 1}. We write x ← D to
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represent the sample x drawn from the distribution D. Given a finite set S, let U(S) be the

uniform distribution over S.

2.2 Lattices

Lattices were first introduced by Carl Friedrich Gauss for studying the sphere packing

problem. In general, a lattice Λ is a discrete subgroup of the Euclidean space R
m and is

generated by some matrix B = (b1,b2, · · · ,bn) ∈ R
m×n, i.e.,

Λ = Λ(B) = {Bz | z ∈ Z
n}.

When B has full column rank, B is called a basis of Λ(B) and n is called the dimension. Any

lattice of dimension ≥ 2 has infinitely many bases. Figure 1 shows an example of 2-dimensional

lattices. Given the lattice Λ(B), a matrix B′ ∈ R
m×n is a basis if and only if B′ = BU for

some unimodular U ∈ Z
n×n.

Figure 1 An example of a 2-dimensional lattice Λ. The matrices (b1,b2) and (g1,g2)

are two bases of Λ.

ForB = (b1, · · · ,bn), let πi denote the orthogonal projection to the span of (b1, · · · ,bi−1)
⊥.

Let b∗
i = πi(bi), B

∗ = (b∗
1, · · · ,b∗

n) be the Gram-Schmidt orthogonalization of B. Let B[i,j] =

(πi(bi), · · · , πi(bj)).

The volume of Λ(B) is defined as vol(Λ(B)) =
√

det(BtB) =
∏

i

‖b∗
i ‖. Such a volume is an

invariant of the lattice, as det(BtB) = det(B′tB′) for any given B′ = BU with a unimodular

U.

Another important invariant of lattices is successive minima. Given an n-dimensional lattice

Λ, the i-th (i ≤ n) successive minimum λi(Λ) is the smallest r > 0 such that there are at least i

linearly independent vectors of Λ of norm ≤ r. Minkowski’s theorem gives some upper bounds

of the successive minima.

Theorem 2.1 (Minkowski’s theorem) For any n-dimensional lattice Λ,

λ1(Λ) ≤
(

n
∏

i=1

λi(Λ)
)

1
n ≤
√
n · vol(Λ) 1

n .
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The distance from the target t to the lattice Λ is

dist(t,Λ) = min
v∈Λ
‖v− t‖.

In general, we consider the case t ∈ span(Λ).

2.3 SVP and CVP

While lattices have a simple geometric description, they come with many mathematical hard

problems. SVP (Shortest Vector Problem) and CVP (Closest Vector Problem) are two most

fundamental lattice hard problems.

Definition 2.1 (SVP) Given a lattice basis B, SVP asks to find v ∈ Λ(B) such that

‖v‖ = λ1(Λ(B)).

Definition 2.2 (CVP) Given a lattice basis B and a target t ∈ span(B), CVP asks to

find v ∈ Λ(B) such that

‖v − t‖ = dist(t,Λ(B)).

The exact SVP and CVP have been proved to be NP-hard (see [2, 49]). In lattice-based

cryptography, the exact SVP and CVP are rarely used as the security foundation directly. Most

of lattice-based schemes actually correspond to some variants of SVP and CVP. The first class

of SVP and CVP is their approximate versions defined as follows.

Definition 2.3 (SVPγ) Given a lattice basis B, SVPγ asks to find v ∈ Λ(B) such that

‖v‖ ≤ γ · λ1(Λ(B)).

Definition 2.4 (SVPγ) Given a lattice basis B and a target t ∈ span(B), CVPγ asks to

find v ∈ Λ(B) such that

‖v − t‖ ≤ γ · dist(t,Λ(B)).

The second class is some relaxed variants in which some extra restrictions are added. Two

representative examples are the USVP (Unique Shortest Vector Problem) for SVP and the BDD

(Bounded Distance Decoding) problem for CVP.

Definition 2.5 (USVPγ) Given a lattice basis B such that
λ2(Λ(B))
λ1(Λ(B)) ≥ γ, USVPγ asks to

find v ∈ Λ(B) such that

‖v‖ = λ1(Λ(B)).

Definition 2.6 (BDDγ) Given a lattice basis B and a target t ∈ span(B) such that

dist(t,Λ(B)) ≤ λ1
(Λ(B))
(2·γ) , BDDγ asks to find v ∈ Λ(B) such that

‖v − t‖ = dist(t,Λ(B)).

While above SVP and CVP variants cannot be proved to be NP-hard for any γ = poly(n),

it is generally believed that no subexponential algorithm solves these variants for such a poly-

nomial γ. This is the security grounding of lattice-based cryptography.
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2.4 Hard problems for lattice-based cryptography

The SVP and CVP problems are not convenient for straightforward constructions of lattice-

based schemes. Some design-friendly hard problems, including SIS, LWE and NTRU, were later

introduced for lattice-based cryptography. These problems and their variants have been the

foundation of modern lattice-based cryptography. Next we give some preliminary descriptions

to these problems.

SIS (Short Integer Solution) problem The SIS problem was introduced and studied

in Ajtai’s breakthrough work (see [1]). Ajtai showed that the average-case SIS problem is at

least as hard as the worst-case approximate SVP problem. SIS is the first hard problem for

lattice-based cryptography of the worst-case/average-case reduction, which provides a strong

security guaranttee for lattice-based schemes. Since its introduction, SIS has been used as the

foundations of many lattice-based primitives, e.g. hash functions and digital signatures.

Definition 2.7 (SIS) For integers n,m, q > 0 and a real number B > 0,

– the SISn,m,q,B problem is as follows : Given uniformly random A ∈ Z
n×m
q , find some

non-zero x ∈ Z
m such that ‖x‖ ≤ B and Ax = 0 mod q.

– The SIS∞n,m,q,B problem is as follows : Given uniformly random A ∈ Z
n×m
q , find some

non-zero x ∈ Z
m such that ‖x‖∞ ≤ B and Ax = 0 mod q.

Remark 2.1 In general, B ∈ (
√
m ·q n

m , q) (resp. (q
n
m , q)) for SISn,m,q,B (resp. SIS∞

n,m,q,B).

This ensures the hardness of the SIS problem and the existence of the solution. For fixed

(n,m, q), the larger B is, the easier the SIS problem is.

LWE (Learning With Errors) problem Another cornerstone of lattice-based cryptog-

raphy is the introduction of the LWE problem by Oded Regev [41]. The average-case LWE can

also be shown to be at least as hard as some worst-case lattice problems. Different from the

SIS problem, LWE is able to be used to construct lattice-based public key encryption and much

more cryptosystems. This further enriches the lattice-based cryptography.

Definition 2.8 (LWE) For integers n,m, q > 0 and a distribution χ over Z, let As,χ for

given s ∈ Z
n be the distribution of (a, b = 〈a, s〉+ e mod q) where a← U(Zn

q ) and e← χ.

– The decision LWEn,m,q,χ problem is as follows : Given m samples drawn from As,χ where

s← U(Zn
q ) and m samples from U(Zn

q × Zq), distinguish them.

– The search LWEn,m,q,χ problem is as follows : Given m samples drawn from As,χ where

s← U(Zn
q ), find s.

Remark 2.2 The terms s and e are called the LWE secret and error respectively. The size

of the LWE error, measured by the standard deviation of χ, is usually greatly smaller than the

modulus q. For fixed (n,m, q), the smaller the error size is, the easier the LWE problem is. In

many cryptographic applications, the LWE secret needs to be small, typically drawn from χ.

This modification does not affect the hardness of the LWE problem as shown in [4].

NTRU problem NTRU is also one of the most important and widely used hard problem
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for lattice-based cryptography. Unlike SIS and LWE, the researches on NTRU originated from

practical designs (see [24–25]) rather than theoretical reductions. NTRU-based schemes are

the first practical lattice-based cryptosystems, and particularly the NTRU-based encryption

are still one of the most competitive post-quantum candidates until now. In addition, NTRU

is also the first lattice-based cryptography problem using the polynomial ring structure. After

more than 10 years since its proposal, some theoretical hardness results for NTRU have been

successively proved in [15, 38, 47, 56].

Definition 2.9 (NTRU) For integer q > 0, R = Z[X ]/(φ(X)) with φ(X) ∈ Z[X ] and

a distribution χ over R, let Dχ be the distribution of h = f · g−1 mod q where f, g ← χ and

Rq = R

qR
.

– The decision NTRUR,q,χ problem is defined as follows : Given samples from Dχ and from

U(Rq), distinguish them.

– The search NTRUR,q,χ problem is defined as follows : Given h ← Dχ, find short (f, g)

such that h = f · g−1 mod q.

Remark 2.3 In general, h serves as the public key of the NTRU-based cryptosystems and

(f, g) as the secret key. The underlying equation of NTRU is 0 = hg − f mod q, therefore

NTRU may be seen as a special case of LWE (over polynomial rings) with b = 0 by identifying

(f, g) as the LWE secret and error. Similar to the case of LWE, (f, g) has a size o(
√
nq) and

the shorter (f, g) implies easier NTRU instances. However, NTRU has many short solutions,

e.g. (xif, xig), which is different from LWE.

Algebraic SIS and LWE Inspired by NTRU, SIS and LWE can be instantiated over some

polynomial rings to achieve smaller sizes and better efficiency. This yields the algebraic SIS and

LWE, e.g. Ring-SIS/LWE and Module-SIS/LWE (see [27, 33, 48]). These algebraic variants

can be reduced to the worst-case lattice problems over ideal lattices and module lattices. The

SVPγ problem over ideal lattices has been shown to be not as hard as the standard SVPγ

for some super-polynomial γ (see [10, 37]). Nevertheless, the algebraic versions of SVPγ with

polynomial γ are believed to be essentially as hard as the standard SVPγ .

3 Cryptanalysis of Lattice-Based Cryptography

Cryptanalysis aims to provide a reliable analysis of the security of cryptosystems and is

crucial to concrete security estimates, parameter selections and avoiding weak designs. This

boils down to solving the underlying hard problems of the cryptosystem under given adversary

models. Figure 2 shows a general procedure of the cryptanalysis of a lattice-based cryptosystem.

At the core of the cryptanlaysis of lattice-based cryptography are two kinds of SVP algorithms:

– Approximate SVP algorithms: Lattice reduction, e.g. LLL and BKZ.

– Exact SVP algorithms: Enumeration and sieving.

These two kinds of SVP algorithms are usually used together. Next we briefly introduce these

cryptanalytic algorithms.
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⋯

Figure 2 A general flowchart of cryptanalysis of some lattice-based scheme.

3.1 Approximate SVP algorithms – lattice reduction

For almost all practical lattice schemes, a standard method to solve the underlying SIS, LWE

and NTRU problems is converting these problems into certain approximate SVP instances. The

most efficient and widely used approximate SVP algorithms are lattice reduction. The goal of

lattice reduction is to transform a basis into a high-quality one, i.e., a basis consisting of short

and nearly orthogonal vectors. For a basis of sufficiently high quality, its vector would be

the solution of the approximate SVP instances. Additionally, a high-quality basis allows to

solve SVP and CVP with a relatively low cost. For this, lattice reduction also serves as the

preprocessing of exact SVP algorithms.

LLL The LLL algorithm, invented by Lenstra, Lenstra, and Lovász in 1982 (see [28]), is a

pioneering lattice reduction algorithm. It outputs an LLL-reduced basis defined as follows.

Definition 3.1 A basis B is δ-LLL-reduced with δ ∈
(

1
2 , 1

)

, if :

(1) |µi,j | ≤ 1
2 for 1 ≤ j < i ≤ n, where µi,j = 〈bi,b

∗
j 〉/〈b∗

j ,b
∗
j 〉;

(2) δ‖b∗
i ‖ ≤ ‖b∗

i+1 + µi+1,ib
∗
i ‖ for 1 ≤ i < n.

LLL can be viewed as a high-dimensional generalization of the Euclidean algorithm. It proceeds

by successively reducing the projected lattice B[i,i+1] until the basis is LLL-reduced. Algorithm

1 gives a description of the LLL algorithm. It is shown that the LLL algorithm terminates in

polynomial time and the output basis satisfies

‖b1‖ ≤ vol(Λ)
1
n ·

( 4

4δ − 1

)

n−1
4

.
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Algorithm 1: The LLL Algorithm

Input: a basis B = (b1, · · · ,bn) and δ ∈ (12 , 1)
Output: a δ-LLL-reduced basis of Λ(B)
1: compute (b∗

1, · · · ,b∗
n)

2: for i = 2 to n do
3: for j = i− 1 to 1 do
4: bi ← bi − ci,jbj where ci,j = ⌊〈bi,b

∗
j 〉/〈b∗

j ,b
∗
j 〉⌉

5: if ∃i such that δ‖b∗
i ‖ > ‖b∗

i+1 + µi+1,ib
∗
i ‖ then

6: swap (bi,bi+1)
7: go to Step 1
8: else
9: return (b1, · · · ,bn)

10: end if
11: end for
12: end for

BKZ The BKZ algorithm (see [43]) and its practical variants (see [8]) are the most efficient

lattice reduction algorithms and widely used in the concrete security estimates of lattice-based

cryptography. BKZ is a generalization of LLL. Instead of reducing the 2-dimensional block

B[i,i+1], BKZ performs lattice reduction and SVP algorithm on the β-dimensional block B[i,i+β]

where β is called the blocksize. BKZ is much more expensive than LLL. Its cost is estimated as

poly(n) · CostSVP(β) where CostSVP(β) denotes the cost of the β-dimensional SVP algorithm.

For the best known SVP algorithm, CostSVP(β) = 2O(β) and this dominates the cost of BKZ

for some large β. However, compared to LLL, BKZ is able to output a shorter basis with

‖b1‖ ≈ vol(Λ)
1
n · δnβ and δβ ≈

((πβ)
1
β β

2πe

)
1

2(β−1)

when n≫ β > 50.

3.2 Exact SVP algorithms – enumeration and sieving

BKZ requires to call some exact SVP algorithm on each local block. The cost of the used

SVP algorithm determines the cost of the whole BKZ. Enumeration and sieving are two main

exact SVP algorithms.

Enumeration Typically, enumeration algorithms run in super-exponential time and with

polynomial space. The high-level idea of enumeration is to compute short vectors by searching

all possible integer coefficient combinations of a given lattice basis, based on a simple fact that

‖πi(v)‖ ≤ ‖v‖. In the early works, Pohst gave a first enumeration algorithm of complexity

2O(n2) (see [39]) and Kannan proposed to apply lattice reduction as the preprocess to reduce

the enumeration cost down to 2O(n logn) (see [26]). Later, by using the pruning strategies

(see [18, 43–44]) and improved representations of short vectors (see [11, 52, 58]), the practical

performance of enumeration has been greatly improved but the overall complexity is still of

complexity shape 2O(n logn).

Sieving In contrast with enumeration, sieving algorithms run in 2O(n) time and with 2O(n)

space. The geometric intuition behind sieving is that given sufficiently many vectors on a
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sphere, by reducing them pair-wise, one can always find a shorter vector. The early sieving

algorithm only had an asymptotic complexity analysis (see [3]). Nguyen and Vidick presented

the first heuristic sieving algorithm of time 20.415n+o(n) and space 20.2075n+o(n) (see [36]). Wang

et al. proposed to use partially pairwise checking to achieve better time-space tradeoff : Time

20.3836n+o(n) and space 20.2557n+o(n) (see [51]). Inspired by this work, the complexity of sieving

gets further improved and the best known result (see [5])

Time: 20.292n+o(n), Space: 20.292n+o(n)

have become the primary cost model for the current security estimates of lattice-based cryp-

tography.

4 Practical Designs of Lattice-Based Cryptography

A large number of lattice-based schemes of practical performance have been proposed in

the past decade, making lattice-based cryptography a desirable post-quantum alternative to

the current public key cryptosystems. Most of these schemes are constructed using several

generic design paradigms along with individual tweaks. In this section, we recall the main de-

sign paradigms of lattice-based encryption/KEM (key encapsulation mechanism) and signature

schemes.

4.1 Lattice-based encryption and KEM schemes

The design modes for most practical lattice-based encryption schemes can be classified into

two types : The LWE encryption and the NTRU encryption. As for lattice-based KEMs, the

standard design is to apply the Fujisaki-Okamoto transformation (see [17]) or its variants to

convert a weakly secure lattice-based encryption scheme to a lattice-based KEM of stronger

security. For this, we only introduce the design paradigms of lattice-based encryption.

LWE encryption The first LWE encryption was proposed by Oded Regev in [41], but

it is inefficient in practice. Currently, the widely used LWE encryption framework is due to

Lindner and Peikert [29]. We now describe the Lindner-Peikert LWE encryption in a simplistic

manner. Let χ be the used LWE error distribution.

– Key Generation Generate (A, s, e) ← U(Zm×n
q ) × χn × χm and compute b = As +

e mod q. Return the public key (A,b) and the secret key s.

– Encryption. Given message m ∈ {0, 1}, sample (u, e1, e2) ← χm × χn × χ, compute

(c1, c2) = (Atu+ e1,b
tu+ e2 + ⌊ q2⌉m) ∈ Z

n
q × Zq. Return the ciphertext c = (c1, c2).

– Decryption Given ciphertext c = (c1, c2), compute M = c2 − 〈c1, s〉 mod q. Return the

message m = ⌊ 2
q
·M⌉.

It is easy to check that

M =
⌊q

2

⌉

m+ (e2 + etu− ste1) :=
⌊ q

2

⌉

m+ E.
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In the Lindner-Peikert encryption, (s, e,u, e1, e2) are drawn from χ and thus are small. By

selecting proper parameters, |E| < q
4 with overwhelming probability, which ensures the correct

decryption. In fact, this decryption can be seen as an error (i.e., E) correction procedure.

Therefore, the message encoding (⌊ q2⌉m) can be implemented with other codes. Under the

LWE assumption, the public key (A,b) and the ciphertext (c1, c2) are indistinguishable from

uniform samples, then the security follows. Using various LWE variants and message encoding,

the LWE encryption can achieve different tradeoff among efficiency, security and simplicity.

The representative algorithms include

– Kyber. Kyber (see [45]) is based on Module-LWE and uses a simple and modular designs.

It has been selected by NIST for the PQC standardization.

– SCloud. SCloud (see [57]) is based on the standard LWE assumption, avoiding the po-

tential weakness of algebraic structures. SCloud uses some error correction code technique to

obtain better performance than Frodo (see [34]) that is the standard LWE-based encryption in

the NIST third round.

NTRU encryption The NTRU encryption was the first practical lattice-based scheme

proposed by Hoffstein, Pipher and Silverman [25]. A typical NTRU encryption scheme is

specified by the ring R, the modulus q and the masking modulus p. The following is an

example for R = Z[x]/(xn + 1) with n = 2k, q being a prime and p = 3. Let χ be the NTRU

secret key distribution.

– Key Generation Generate (f, g) ← χ2 and compute g′ = pg + 1 and h = pf
g′

mod q.

Return the public key h and the secret key g′.

– Encryption Given message m ∈ Rp, sample r ← χ, return the ciphertext c = hr +

m mod q.

– Decryption Given ciphertext c, compute M = cg′ mod q. Return the message m =

M mod p.

The correctness of the NTRU encryption follows from the fact that

cg′ = pfr + g′m = pfr + pgm+m mod q

and that M = pfr + pgm+m when (f, g, p, r,m) are short polynomials. The public key h is

indistinguishable from uniform under the NTRU assumption, and the ciphertext c along with

h can be seen as a Ring-LWE sample with secret r and error m. This gives the security of the

NTRU encryption scheme. The representative NTRU-based encryption algorithms include

– NTRU. NTRU (see [7]) is one of four finalists in the NIST third round. It is built on the

prime cyclotomic rings following the classic NTRU design.

– NTRUPrime. NTRUPrime (see [6]) is an alternate candidates. To reduce the security

risk, NTRUPrime uses Z[x]/(xp − x− 1) to replace widely used cyclotomic rings.

– BAT. Different from other NTRU schemes, BAT (see [16]) uses a full basis as the secret

key and works with a modified decryption allowing the masking modulus p = 1. For this, BAT
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has the smallest size among known lattice-based schemes and good efficiency comparable to

Kyber.

4.2 Lattice-based signature schemes

Practical lattice-based signature schemes have two main families: The hash-and-sign family

and the Fiat-Shamir one. Two families come with very distinct design paradigms, and both

have pratical instantiations based on various lattice hard problem assumptions, which is different

from the case of lattice-based encryption.

Hash-and-sign The hash-and-sign family dates back to the earliest lattice-based signature

proposals GGH (see [22]) and NTRUSign (see [24]). The hash-and-sign lattice-based signatures

use a lattice trapdoor, i.e., a high-quality basis, as the secret key. With a lattice trapdoor,

one can efficiently solve the approximate CVP on the lattice. This actually corresponds to the

signing procedure: One first derives a random target in the ambient space via computing the

hash value of the message, and then computes the signature that is a lattice point close to the

target by using the trapdoor. A hash-and-sign scheme can be described at a very high level as

follows.

– Key Generation Generate a lattice Λ ⊆ Z
n with a trapdoor T and a public represen-

tation P of Λ. Return the public key P and the secret key T.

– Signing Given message m, compute c = hash(m) ∈ Z
n. Compute v ∈ Λ close to c using

T. Return the signature s = v − c.

– Verification Given message m and its signature s, compute c = hash(m). Accept if s is

short and s+ c ∈ Λ, otherwise reject.

Without the knowledge of the trapdoor, one cannot solve the approximate CVP instance regard-

ing to (Λ, c). This gives the security against forgery attacks. In early hash-and-sign schemes,

the signatures leaked some information of the trapdoor, which was exploited to mount statis-

tical attacks (see [13, 35, 53]). The modern designs follow the provably secure framework by

Gentry, Peikert and Vaikutanathan [21], in which the signature distribution is some discrete

Gaussian independent of the trapdoor. The GPV hash-and-sign signatures can be classified into

two families: NTRU trapdoor based and gadget trapdoor based. The representative algorithms

are as follows:

– Falcon. Falcon (see [40]) is one of three signature algorithms to be standardized by NIST.

It uses the compact NTRU trapdoor (see [12]) along with a ring-efficient lattice Gaussian

sampler, which offers competitive efficiency in both size and speed. More recently, a Falcon

variant, named Mitaka (see [14]), was proposed to overcome the complicated implementation

while maintaining the good performance.

– HuFu. HuFu (see [54]) makes use of the compact gadget techniques (see [55]) and is based

on the standard LWE assumptions to avoid potential security risk caused by algebraic struc-

tures. Very recently, HuFu gets in the first round for additional NIST PQC signatures.

Fiat-Shamir The Fiat-Shamir signature paradigm was invented by Lyubashevsky [30–31].
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Its signing procedure is a non-interactive zero-knowledge proof that the signer knows the secret

short vector. At a high-level, Fiat-Shamir signatures is similar to the Schnorr signature (see

[42]) based on the discrete logarithm problem. However, the key technical point is that in the

context of lattices, Fiat-Shamir signatures need to use some rejection sampling to ensure the

signature distribution leaking nothing about the secret. We present a simplistic description of

Fiat-Shamir signatures. Let χ be some distribution of small elements.

– Key Generation Generate A ← U(Zn×m
q ) and S ∈ Z

m×k of small coefficients. Return

the public key (A,T = AS) and the secret key S.

– Signing Given messagem, sample y← χm, compute d = (Ay mod q) and c = hash(d,m)

where the hash domain is a set of short vectors. Return (z = Sc+y, c) with certain probability,

otherwise restart.

– Verification Given message m and its signature (z, c), compute d = (Az −Tc mod q).

Accept if c = hash(d,m) and z is short, otherwise reject.

In the Fiat-Shamir signatures, the used hash function is modeled as a random oracle and the

distribution of z is independent of the secret due to the rejection sampling. Therefore one can

simulate the signing procedure and derive the solution to the SIS problem from a successful

forgery, which gives the security proof. The representative algorithms include

–Dilithium. As the signature run-mate of Kyber,Dilithium (see [32]) is also based on Module-

LWE and follows a modular and easy-to-implement designs. Compared to Falcon, Dilithium has

larger key and signature sizes but much simpler implementation. For this, Dilithium is selected

as the primary signature algorithm for NIST PQC standardization.

5 Conclusion

This survey gives a preliminary introduction to the mathematical hard problems, the main

cryptanalytic algorithms and the classical design paradigms of lattice-based cryptography. We

hope it to be informative to the readers interested in the mathematics of lattice-based cryptog-

raphy.

Lattice-based cryptography is the primary family of post-quantum cryptography: Three

of four NIST to-be-standardized algorithms are lattice-based schemes. These lattice-based

schemes are based on algebraic lattices and have highly mature and sophisticated designs,

achieving balanced security and efficiency for most applications. However, it is a pity that the

schemes based on standard lattice hard problems have not been selected for standardization.

Indeed the schemes based on standard lattice hard problems can offer more convincing security

in spite of some efficiency loss, which can be of interest for the cases where stronger provable

security is needed.

With the post-quantum standardization and migration underway, lattice-based cryptogra-

phy will receive continuous and widespread attention in the next decade. More efficient designs

and more thorough cryptanalysis of lattice-based cryptography remain challenging scientific

problems, requiring more new insights and tools from different mathematical fields. Addition-
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ally, lattices can be used to implement various privacy-preserving techniques, in particular fully

homomorphic encryption (FHE for short) (see [20]). FHE has wide application perspective given

the increasing importance of data security and privacy, but the current FHE algorithms are

still impractical for most usecases. Optimizing the performance of FHE would be a promising

research direction.
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