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Abstract

A purely algebraic algorithm for constructing unitons is presented. It is shown that all
unitons can be constructed by using this algorithm.
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§1. Introduction

Harmonic maps from R2 (or its simply connected region Ω) to U(N) are considered
extensively. The conception of unitons are introduced by K. Uhlenbeck[7]. There are a
series of papers[2,8,9] devoted to the construction of unitons. In our paper[4] the Darboux
transformation has been used to construct harmonic maps and unitons via purely algebraic
algorithm. Here the purely algebraic algorithm contains operations in linear algebra only,
and no other operations such as differentiation and integral transformation are involved.

However, the formula for unitons in the previous paper[4] is too complicated, hence it
is not convenient for applications. Further, it has not been proved that the construction
exhausts all unitons. In the present paper we use a kind of renormalization procedure to get
a purely algebraic formula for unitons which is much easier to be worked out and it is proved
that all the unitons can be obtained by using this formula, starting with single unitons which
have been constructed explicitly in [7]. It is noted that we keep our notations in previous
papers[4−6]. There are differences in notations in comparison with [7] and related papers,
in particular, the order of multiplication of matrices in the Lax equations etc. is reversed.
For simplicity, we state the results for harmonic map from R2 instead of simply-connected
region Ω ⊆ R2, although they hold true for Ω as well as for R2.

In §2 a brief review of fundamental facts is given. In §3 we use Darboux transformation
to establish a purely algebraic formula for unitons. In §4 we prove that all unitons can be
obtained by using the formula successively.
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§2. Harmonic Maps to U(N) and Darboux Transformations

Let ζ, ζ̄ be complex coordinates of R2, i.e.

ζ =
1

2
(x+ iy), ζ̄ =

1

2
(x− iy) (2.1)

with

∂

∂ζ
=

∂

∂x
− i

∂

∂y
,

∂

∂ζ̄
=

∂

∂x
+ i

∂

∂y
. (2.2)

Consider a C∞-map ϕ : R2 → U(N). Define

A =
∂ϕ

∂ζ̄
ϕ−1 = ϕζ̄ϕ

−1, B = ϕζϕ
−1. (2.3)

Then A and B satisfy

Aζ −Bζ̄ + [A,B] = 0 (2.4)

A∗ +B = 0. (2.5)

Moreover, if A and B satisfy

Aζ +Bζ̄ = 0, (2.6)

then ϕ is called harmonic maps from R2 to U(N). Note that (2.4) is the integrability
condition of (2.3) which is considered as a linear system of equations for ϕ. (2.5) implies
ϕ ∈ U(N) if it holds at a fixed point, say ζ = ζ̄ = 0.

The Lax pair of harmonic maps from R2 to U(N) is

Φζ̄ =
1− µ

2
AΦ, Φζ =

1− µ−1

2
BΦ. (2.7)

The integrability conditions of (2.7) are (2.4) and (2.5). A solution Φ(µ) (µ ̸= 0) with
detΦ ̸= 0 is called extended harmonic map. In particular Φ(−1) = ϕ·constant matrix, and
ϕ is a harmonic map to U(N).

Darboux transformation is a constructive method for obtaining new extended harmonic
maps (and hence new harmonic maps) from a known extended harmonic map via purely
algebraic algorithm. We sketch it as follows.

Let Φ(µ) be an extended harmonic map and ϵ be a complex number (ϵ ̸= 0, |ϵ| ̸= 1), L1

and L2 be N × k and N × (N − k) constant matrices respectively such that

H = [Φ(ϵ)L1, Φ(ϵ̄−1)L2] (2.8)

is nondegenerated and

(Φ(ϵ̄−1)L2)
∗Φ(ϵ)L1 = 0. (2.9)

It is shown in [4] that if (2.8) and (2.9) hold at a point of R2, then they hold everywhere.

Let

ω1 =
1− ϵ

2
, ω2 =

1− ϵ̄−1

2
, (2.10)

Λ = diag(ω1, · · · , ω1;ω2, · · · , ω2) (with k ω1’s and N − k ω2’s), (2.11)

S = HΛ−1H−1. (2.12)

We proved that

Φ1(µ) =

(
I − 1− µ

2
S

)
Φ(µ) (2.13)
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is a new extended harmonic map. The transformation Φ(µ) → Φ1(µ) is called Darboux
transformation and D = I − 1−µ

2 S Darboux matrix. In [4] we defined

π = H

[
0 0
0 IN−k

]
H−1, π⊥ = I − π = H

[
Ik 0
0 0

]
H−1 (2.14)

and (2.13) can be written as

Φ1(µ) = (π + rπ⊥)Φ(µ)
(
1− 1− µ

1− ϵ̄−1

) (
r =

(ϵ̄− 1)(ϵ− µ)

(1− ϵ)(1− ϵ̄µ)

)
. (2.15)

We proved that

π2 = π, π∗ = π, (2.16)

πζ̄ = −ω1πA+ ω2Aπ + (ω1 − ω2)πAπ, πζ = ω̄1Bπ − ω̄2πB + (ω̄2 − ω̄1)πBπ. (2.17)

(2.17) appeared firstly in [7] and it is the differential equation for the Bäcklund trans-
formation for harmonic maps from R2 to U(N). In [4] it is proved that the Hermitian
projection π defined by (2.14) is an explicit solution to the equations (2.17).

Remark 2.1. It is easily seen that (2.17) is completely integrable and π is determined
by its value at a given point. Thus (2.14) exhausts all solutions of (2.17).

Remark 2.2. Let S′ = (ω−1
2 π⊥ + ω−1

1 π). we have

(I − λS′)(I − λS) = (1− λ(ω−1
1 + ω−1

2 ) + λ2ω−1
1 ω−1

2 )I, λ =
1− µ

2
.

Hence I − λS′ provides the inverse of the Darboux transformation (2.13) and π⊥, π can
be constructed from Φ1(µ) via the formulas similar to (2.14), Thus we conclude that the
inverse of a Darboux transformation (2.13) for harmonic maps from R2 to U(N) is a Darboux
transformation too.

An extended harmonic map Φ(µ) satisfying

(a) Φ(1) = I; (b) Φ(−1) = ϕ ∈ U(N);

(c) Φ(µ) =
r∑

a=0
Taµ

a; (d) Φ(µ)∗Φ(µ̄−1) = I
(2.18)

is called extended uniton and ϕ is called uniton (see [7]). It is known that a single extended
uniton has expression

Φ(µ) = π + µπ⊥. (2.19)

Here π is Hermitian projection to k planes of CN which constitute an antiholomophic section
of the trivial boundle Gk(N)×R2.

It is also known[7] that

Φ1(µ) = (π + µπ⊥)Φ(µ) (2.20)

is an extended uniton iff π satisfies

(2πζ̄ + πA)π⊥ = 0, π⊥Aπ = 0 (2.21)

provided that Φ(µ) is an extended uniton. (2.21) is the limit of (2.17) as ϵ → 0. The
transformation (2.20) Φ(µ) → Φ1(µ) is also called flag transformation[9].

§3. Algebraic Construction of Flag Transformations

Let Φ(µ) be an extended uniton. We construct its Darboux transformation (2.13). Instead
of (2.15) and (2.8) we use the notation

Φϵ(µ) = (πϵ + rϵπ
⊥
ϵ )Φ(µ)

(
1− 1− µ

1− ϵ̄−1

)
(3.1)

Hϵ = [Φ(ϵ)L1,Φ(ϵ̄
−1)L2]. (3.2)
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Here πϵ is defined by (2.14) with H = Hϵ. Without loss of generality we assume that
[L1, L2] ∈ U(N) and Ψ(ϵ)L1 is of rank k everywhere. We also have

L∗
2Φ(ϵ̄

−1)∗Φ(ϵ)L1 = 0. (3.3)

We can calculate H−1
ϵ explicitly

H−1
ϵ =

[
C1(ϵ)L

∗
1Φ(ϵ)

∗

C2(ϵ)L2Φ(ϵ̄
−1)∗

]
, (3.4)

where C1(ϵ) and C2(ϵ) are k × k and (N − k)× (N − k) matrices defined by

C1(ϵ)L
∗
1Φ(ϵ)

∗Φ(ϵ)L1 = Ik, C2(ϵ)L
∗
2Φ(ϵ̄

−1)∗Φ(ϵ̄−1)L2 = IN−k (3.5)

respectively. Then

πϵ = Hϵ

[
0 0
0 IN−k

]
H−1

ϵ = Φ(ϵ̄−1)L2C2(ϵ)L
∗
2Φ(ϵ̄

−1)∗,

π⊥
ϵ = Hϵ

[
Ik 0
0 0

]
H−1

ϵ = Φ(ϵ)L1C1(ϵ)L
∗
1Φ(ϵ)

∗. (3.6)

The Darboux matrix is

Dϵ = (πϵ + rϵπ
⊥
ϵ )

(
µ− ϵ̄−1

1− ϵ̄−1

)
(3.7)

with

rϵ =
(ϵ̄− 1)(µ− ϵ)

(1− ϵ)(ϵ̄µ− 1)
(→ µ as ϵ → 0). (3.8)

Consider the limit of π⊥
ϵ (resp. πϵ) as ϵ → 0. At first we see that the k columns of Φ(ϵ)L1

are invariant vectors of π⊥
ϵ . In fact

π⊥
ϵ Φ(ϵ)L1 = Φ(ϵ)L1C1(ϵ)L

∗
1Φ(ϵ)

∗Φ(ϵ)L1 = Φ(ϵ)L1. (3.9)

Denote the image of π⊥
ϵ which are spanned by the k columns of Φ(ϵ)L1 by Pk(ϵ).

The expansion of Φ(ϵ)L1 as a polynomial of ϵ is denoted by

Φ(ϵ)L1 = X0 = X0
0 +X0

1 ϵ+ · · ·+X0
nϵ

n, (3.10)

where X0
0 , · · · , X0

n are N × k matrices. Choose some columns of X0 to constitute a matrix

X̃1 = X̃1
0 + X̃1

1 ϵ+ · · ·+ X̃1
nϵ

n (3.11)

such that X̃1
0 consists of linearly independent columns of X0

0 and all other columns of X0
0

are linear combinations of them.
The other column of X0, after subtracting suitable linear combinations of the columns of

X̃1 from them, constitute a matrix of the form

ϵ ˜̃X
1

= ϵ( ˜̃X
1

0 +
˜̃X

1

1ϵ+ · · · ). (3.12)

Let

X1 = [X̃1, ˜̃X
1

]. (3.13)

X1 is of rank k and its columns span the plane Pk(ϵ) too. Using the same transformations
as X0 to X1 successively, we obtain a series of matrices

X2 = X2
0 +X2

1 ϵ+ · · ·+X2
nϵ

n, X3 = X3
0 +X3

1 ϵ+ · · ·+X3
nϵ

n, · · · .
Finally, we obtain a matrix

X = X0 +X1ϵ+ · · ·+Xnϵ
n (3.14)

such that X0 is of rank k and the columns of X span Pk(ϵ). Evidently, the columns of X0

span a plane Pk which is the limit of Pk(ϵ) as ϵ → 0. Consequently,

π⊥ = X0(X
∗
0X0)

−1X∗
0 (3.15)
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is the limit of π⊥
ϵ , hence π = I − π⊥ is the limit of πϵ and (2.21) is satisfied by π. We have

Theorem 3.1 The algebraic formula

π⊥ = X0(X
∗
0X0)

−1X∗
0 , π = I − π⊥ (3.16)

gives a solution to (2.21) and Φ1(µ) = (π + µπ⊥)Φ(µ) is an extended uniton.
Remark 3.1. The procedure to obtain π⊥ and π from Φ(ϵ)L1 (or Φ(ϵ̄−1)L2) is purely

algebraic. In order to obtain Φ1(µ) we use Φ(µ) only, i.e., in the algorithm, we do not need
A,B or the differential of Φ(µ).

Remark 3.2. As ϵ → 0, C1(ϵ)(or C2(ϵ)) may not have a regular limit, while the limit of
π⊥
ϵ (or πϵ) exists. The procedure to obtain X0 from Φ(ϵ)L1 is a kind of renormalization.
Remark 3.3. By using (3.14) we have π⊥

ϵ = X(X∗X)−1X∗. As ϵ → 0, X approaches
to X0 and X0 is of rank k. Hence π⊥

ϵζ̄
approaches to π⊥

ζ̄
.

§4. Construction of all Unitons

In this section we prove the following theorem
Theorem 4.1. All unitons can be constructed from single unitons via purely algebraic

algorithm.
We need following lemmas
Lemma 4.1. Let Φ(µ) be a polynomial of µ of degree n, valued in GL(N,C). If Φ(µ)

satisfies (i) Φ(1) = I, (ii) Φ(µ)∗Φ(µ̄−1) = I (µ ̸= 0), then

Φ(µ) = (π1 + µπ⊥
1 ) · · · (πn + µπ⊥

n ), (4.1)

where π1, · · · , πn are Hermitian projections and π⊥
1 , · · · , π⊥

n their complementary.
Proof. For n = 1, it is proved in [7]. For general n, it can be proved by induction

as follows. Suppose that Lemma 4.1 holds for n. Let Φ(µ) =
a=n+1∑
a=0

Taµ
a satisfy (i), (ii).

We assume T0 ̸= 0, Tn+1 ̸= 0, otherwise, the conclusion follows immediately. We note that
detΦ(µ) ̸= 0 for µ ̸= 0. In fact, if detΦ(µ0) = 0 (µ0 ̸= 0), then Φ(µ0)

∗Φ(µ̄−1
0 ) = I is impos-

sible. Thus detΦ(µ) = 0 iff µ = 0. Hence detT0 = 0. Let P be the kernel of T0 and π⊥
N+1

be the Hermitian projection on P . Then T0π
⊥
n+1 = 0 and Φ̃(µ) = Φ(µ)(πn+1 + µ−1π⊥

n+1) is

a polynomial of degree n. Evidently, Φ̃(µ) satisfies (i), (ii) and Φ(µ) = Φ̃(µ)(πn+1 +µπ⊥
n+1).

Hence Φ(µ) admits a factorization with (n+1) factors, since the factorization of Φ̃(µ) holds
from the hypothesis of induction.

Remark 4.1. Lemma 4.1 is an algebraic proposition, since we do not assume that Φ(µ)
to be an extended uniton. For extended unitons, the factorization is established in [7].

Lemma 4.2. If Φ(µ) is an extended uniton of degree n, then there exists an Hermitian
projection π, such that

Φ1(µ) = (π + µπ⊥)Φ(µ) (4.2)

is an extended uniton whose degree is at most n.
Proof. By Lemma 4.1, we have

Φ(µ) = T0 + T1µ+ · · ·+ Tnµ
n = (π1 + µπ⊥

1 ) · · · (πn + µπ⊥
n ). (4.3)

Hence

T0 = π1 · · ·πn, Tn = π⊥
1 · · ·π⊥

n . (4.4)

Let rank T0 = k and take [L0, L1] ∈ U(N) such that rank(T0L1) = k. Hence rankΦ(0)L1 =
k. From the definition of C(ϵ), we see that lim

ϵ→0
C(ϵ) = C(0) is a regular matrix

C(0) = (L∗
1T

∗
0 T0L1)

−1 (4.5)
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and hence

π⊥ = T0L1C1(0)L
∗
1T

∗
0 . (4.6)

On the other hand,

π⊥Tn = T0L1C(0)L∗
1T

∗
0 Tn = T0L1C(0)L∗

1π
∗
n · · ·π∗

1π
⊥
1 · · ·π⊥

n = 0. (4.7)

The degree of Φ1(µ) cannot greater than n.
Lemma 4.3. If Φ(µ) is an extended uniton of degree n (n > 1), then there exists an

Hermitian projection σ such that

Φ(µ) = (σ + µσ⊥)Φ−1(µ) (4.8)

and Φ−1(µ) is an extended uniton of degree ≤ n− 1.
Proof.

Φ−1(µ) =
(
σ +

1

µ
σ⊥

)
Φ(µ). (4.9)

By calculations it is seen that Φ−1(µ) is an extended uniton iff σ satisfies

σ⊥Aσ − 2σ⊥σζ̄ = 0, σAσ⊥ = 0. (4.10)

It is easily verified that if π is a solution to (2.21), then σ = π⊥ (σ⊥ = π) is a solution
to (4.10). Hence Φ−1(µ) =

(
π⊥ + 1

µπ
)
Φ(µ) is an extended uniton. We take the Hermitian

projection π of Lemma 4.2, then

Φ1(µ) = (π + µπ⊥)Φ = (π + µπ⊥)(π⊥ + µπ)Φ−1(µ) = µΦ−1(µ).

Hence the degree of Φ−1(µ) is less than n.
Thus, by using the procedure of Lemma 4.3, any given extended uniton can be reduced to

an extended uniton of lower degree via purely algebraic algorithm. Continuing the algorithm
successively, we will reach a single uniton. From Remark 2.1 it can be seen that π⊥, π can
be constructed from Φ−1(µ) by the algebraic algorithm in Section 5. Hence starting from
single unitons we can obtain all unitons via purely algebraic algorithm. The proof of the
theorem 4.1 is completed.

The study of U(N) unitons has been generalized to compact symmetric spaces[1]. It is
interesting to find an algebraic algorithm for obtaining these unitons. The method of this
paper has been already extended to the study of unitons of the noncompact group U(p, q)
(see [3]).
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