ON THE CONVERGENCE OF THE PARABOLIC APPROXIMATION OF A CONSERVATION LAW IN SEVERAL SPACE DIMENSIONS

T. GALLOUËT* F. HUBERT*

Abstract

The authors give a proof of the convergence of the solution of the parabolic approximation $u_t^{\varepsilon} + \operatorname{div} f(x,t,u^{\varepsilon}) = \varepsilon \Delta u^{\varepsilon}$ towards the entropic solution of the scalar conservation law $u_t + \operatorname{div} f(x,t,u) = 0$ in several space dimensions. For any initial condition $u_0 \in L^{\infty}(\mathbb{R}^N)$ and for a large class of flux f, they also prove the strong converge in any L_{loc}^p space, using the notion of entropy process solution, which is a generalization of the measure-valued solutions of DiPerna.

Keywords Convergence, Parabolic approximation, Conservation law1991 MR Subject Classification 35A35, 35K30Chinese Library Classification 0175.21, 0175.26

§1. Introduction

We give a proof of the strong convergence in $L^p_{\rm loc}, p < \infty$ of the solution of the parabolic approximation

$$u_t^{\varepsilon} + \operatorname{div} f(x, t, u^{\varepsilon}) = \varepsilon \Delta u^{\varepsilon}, \ x \in \mathbb{R}^N, \ t > 0,$$

$$(1.1)$$

$$u^{\varepsilon}(x,0) = u_0^{\varepsilon}(x), \ x \in \mathbb{R}^N$$
(1.2)

towards the entropic solution to the scalar conservation law

$$u_t + \operatorname{div} f(x, t, u) = 0, \ x \in \mathbb{R}^N, \ t > 0,$$
 (1.3)

$$u(x,0) = u_0(x), \ x \in \mathbb{R}^N,$$
 (1.4)

where $u_0 \in L^{\infty}(\mathbb{R}^N)$, u_0^{ε} denotes some approximation of u_0 such that

$$\begin{cases} \|u_0^{\varepsilon}\|_{L^{\infty}} \le M, \\ u_0^{\varepsilon} \to u_0 \text{ strongly in } L^1_{\text{loc}}(\mathbb{R}^N); \end{cases}$$
(1.5)

and the flux f satisfies

$$\begin{cases} f \in \mathcal{C}^1(\mathbb{R}^N \times \mathbb{R}^+ \times \mathbb{R}), \\ \operatorname{div}_x f(x, t, s) = 0, \quad \forall (x, t, s) \in \mathbb{R}^N \times \mathbb{R}^+ \times \mathbb{R}, \\ \frac{\partial f}{\partial s} \in W^{1,\infty}_{\operatorname{loc}}(\mathbb{R}^N \times \mathbb{R}^+ \times \mathbb{R}). \end{cases}$$
(1.6)

The convergence of the approximate solutions (u^{ε}) of (1.1),(1.2) towards the entropic solution u of the hyperbolic equation with initial condition (1.3),(1.4) has been studied in several way. In 1970, Kruzkov^[6] gave a proof of the convergence using the L^{1}_{loc} -compactness of the approximate solutions (see also [9]). Our proof follows ideas of Tartar^[11] and DiPerna^[2].

Manuscript received June 25, 1998. Revised August 28, 1998.

^{*}Université de Provence, C. M. I., 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France.

E-mail: aline@gyptis.univ-mrs.fr

For any uniformly bounded initial data $u_0^{\varepsilon} \in L^{\infty}(\mathbb{R}^n)$ $(||u_0^{\varepsilon}||_{L^{\infty}(\mathbb{R}^N)} \leq M)$, it is classical to see that the parabolic approximation (1.1), (1.2) admits a smooth solution, at least $\mathcal{C}^2(\mathbb{R}^N \times (0, +\infty))$, which is uniformly bounded : $||u^{\varepsilon}||_{L^{\infty}(\mathbb{R}^N \times \mathbb{R}^+)} \leq M$ (see [8, 10]).

Thanks to this L^{∞} estimate, as in Tartar's work, one can construct a Young measure as the limit of a sequence of approximate solutions (u^{ε}) : for all $g \in \mathcal{C}^0(\mathbb{R}^N \times \mathbb{R}^+ \times \mathbb{R})$ and for all $\varphi : \mathbb{R}^N \times [0, \infty) \to \mathbb{R}$ compactly supported, $\varphi \in L^1(\mathbb{R}^N \times [0, \infty))$,

$$\int_{0}^{\infty} \int_{\mathbb{R}^{N}} g(x,t,u^{\varepsilon}(x,t)) \,\varphi(x,t) \, dx \to \int_{0}^{\infty} \int_{\mathbb{R}^{N}} \langle g(x,t,\lambda), \nu_{x,t}(\lambda) \rangle \,\varphi(x,t) \, dx. \tag{1.7}$$

This result is well-known for continuous functions on \mathbb{R} (g does not depend on $(x,t) \in \mathbb{R}^N \times \mathbb{R}^+$) and has been generalized to functions in $\mathcal{C}^0(\mathbb{R}^N \times \mathbb{R}^+ \times \mathbb{R})$ in the work of [1] by using "process functions", which were introduced by Eymard-Gallouët-Herbin in [3].

Theorem 1.1. Let $(u_n)_{n \in \mathbb{N}}$ be bounded in $L^{\infty}(\mathbb{R}^N \times \mathbb{R}^+)$, there exists a function $\mu \in L^{\infty}(\mathbb{R}^N \times \mathbb{R}^+ \times (0, 1))$ and a subsequence, still denoted by (u_n) , such that u_n converges towards μ in a "nonlinear weak- \star sense" as $n \to \infty$, that is for any $g \in C^0(\mathbb{R} \times \mathbb{R}^+ \times \mathbb{R}^N)$, and for any $\varphi \in L^1(\mathbb{R}^N \times \mathbb{R}^+)$ compactly supported

$$\int_{\mathbb{R}^+} \int_{\mathbb{R}^N} g(x, t, u_n(x, t)) \,\varphi(x, t) \, dx \, dt \to \int_{\mathbb{R}^+} \int_{\mathbb{R}^N} \int_0^1 g(x, t, \mu(x, t, \alpha)) \,\varphi(x, t) \, d\alpha \, dx \, dt.$$
(1.8)

We call the function μ "process function".

Remarks.

(i) To each "process function" μ can be associated a Young measure family $\nu_{x,t}$ which satisfies (1.7) and such that

$$\int_0^1 g(x, t, \mu(x, t, \alpha)) \ d\alpha = \langle \nu_{x,t}(\lambda), g(x, t, \lambda) \rangle \ \text{a.e.}(x, t).$$
(1.9)

(ii) Conversely, to each Young measure family $\nu_{x,t}$, associated to a bounded sequence (u_n) , we can associate a "process function" which verifies (1.9).

(iii) Let u be in $L^{\infty}(\mathbb{R}^N \times \mathbb{R}^+)$. We suppose that " $u_n \to \mu$ " and so that " $u_n \to \nu_{x,t}$ ", then u_n in $L^p_{\text{loc}} \Leftrightarrow \mu(x,t,\alpha) = u(x,t)$ a.e. $(x,t,\alpha) \Leftrightarrow \nu_{x,t} = \delta_{u(x,t)}$ a.e. (x,t).

Tartar^[11] shows, using compensated compactness, that in one space dimension, the Young measure $\nu_{x,t}$ is supported in an interval on which f is affine, if u_0^{ε} converges weakly to u_0 in L^1_{loc} .

In the next section, we prove that if u_0^{ε} converge strongly towards u_0 , then for all flux f satisfying (1.6), $\nu_{x,t}$ is a Dirac measure at the point u(x,t) for a.e. (x,t) and by the way the family u^{ε} converges towards u, the unique entropic solution of the hyperbolic problem (1.3), (1.4).

For that, we prove that a "process function" μ associated to the family (u^{ε}) is an "entropy process solution" of the hyperbolic problem (1.3), (1.4) (see [1, 3])

Definition 1.1. A function $\mu \in L^{\infty}(\mathbb{R}^N \times \mathbb{R}^+ \times (0,1),\mathbb{R})$ is called "entropy process solution" of the hyperbolic problem (1.3),(1.4) if, for all $\varphi \in C_c^1(\mathbb{R}^N \times \mathbb{R}^+, \mathbb{R}^+)$, and for all $\kappa \in \mathbb{R}$,

$$\begin{split} &\int_{\mathbb{R}^+} \int_{\mathbb{R}^N} \int_0^1 [\eta_{\kappa}(\mu(x,t,\alpha))\varphi_t(x,t) + q_{\kappa}(x,t,\mu(x,t,\alpha))\nabla\varphi(x,t)] \, d\alpha \, dx \, dt \\ &+ \int_{\mathbb{R}^N} \eta(u_0(x))\varphi(x,0) \, dx \ge 0, \end{split}$$

where

$$\eta_{\kappa}(\mu) = \mid \mu - \kappa \mid \quad and \quad q_{\kappa}(x, t, \mu) = (f(x, t, \mu \top \kappa) - f(x, t, \mu \bot \kappa)), \tag{1.10}$$

with $a \top b = \max(a, b)$ and $a \bot b = \min(a, b)$.

We can check that the Young measure associated to an "entropy process solution" is a "measure valued solution" of the hyperbolic equation (1.3) in the sense of DiPerna^[2] which satisfies the initial condition in the sense:

$$\lim_{\tau \to 0} \int_0^\tau \int_K \langle \nu_{x,t}(\lambda), |\lambda - u_0(x)| \rangle dx dt = 0, \quad \text{for all compact } K \subset \mathbb{R}^N.$$
(1.11)

To conclude, we use a generalization of the theorem of uniqueness of measure valued solutions of DiPerna.

Theorem 1.2. If μ is an "entropy process solution" of the hyperbolic equation with initial condition (1.3), (1.4), then $\mu(x, t, \alpha) = u(x, t)$ for almost every $(x, t, \alpha) \in \mathbb{R}^N \times \mathbb{R}^+ \times (0, 1)$, where u denotes the unique entropic solution of (1.3), (1.4).

This result, first proved in [3] and then extended in [1,4,5], enables us to deduce that the parabolic approximation (1.1), (1.2) converges towards the entropic solution of (1.3), (1.4). This convergence is, moreover, strong in each L^p_{loc} -space for $p < \infty$.

§2. Convergence of the Parabolic Approximation towards the Entropic Solution of the Conservation Law

2.1. Convergence towards the "Entropy Process Solution"

Theorem 2.1. Under Assumptions (1.5), (1.6), the solution u^{ε} of the parabolic approximation (1.1), (1.2) converges in the "nonlinear weak- \star sense" towards an "entropy process solution" of the hyperbolic problem (1.3), (1.4).

Sketch of Proof. Under Assumptions (1.5), (1.6), the problem (1.1), (1.2) has a smooth bounded solution $u^{\varepsilon} \in L^{\infty}(\mathbb{R}^N \times (0, +\infty)) \cap \mathcal{C}^2(\mathbb{R}^N \times (0, +\infty))$ such that $\|u^{\varepsilon}\|_{\infty} \leq M$. Moreover, we can derive an energy estimate : for any compact set K of $\mathbb{R}^N \times [0, +\infty)$,

$$\varepsilon \int_{K} |\nabla u^{\varepsilon}|^2 dx \, dt \le C,\tag{2.1}$$

where C only depends on K and on M.

We can then easily check that for any function $\varphi \in \mathcal{C}^1_c(\mathbb{R}^N \times [0, +\infty), \mathbb{R}^+)$ and for any constant $\kappa \in \mathbb{R}$,

$$\int_{0}^{\infty} \int_{\mathbb{R}^{N}} \eta_{\kappa}(u^{\varepsilon}) \varphi_{t} + q_{\kappa}(x, t, u^{\varepsilon}) \nabla \varphi \, dx \, dt + \int_{\mathbb{R}^{N}} \eta_{\kappa}(u_{0}^{\varepsilon}(x)) \varphi(x, 0) \, dx \ge \xi(\varepsilon), \tag{2.2}$$

where η_{κ} and q_{κ} are defined by (1.10) and

$$\xi(\varepsilon) = \varepsilon \int_0^\infty \int_{\mathbb{R}^N} \operatorname{sgn} (u^\varepsilon - \kappa) \nabla u' dt \to 0 \text{ as } \varepsilon \to 0.$$

Therefore

$$|\xi(\varepsilon)| \le \sqrt{\varepsilon} \quad \|\nabla \varphi\|_{\infty} \left[\varepsilon \int_{K} |\nabla u^{\varepsilon}|^{2} dx \, dt \right]^{\frac{1}{2}} \operatorname{mes}(K)^{\frac{1}{2}},$$

where K denotes the support of φ .

If (u_{ε}) converges (as $\varepsilon \to 0$) in the "nonlinear weak- \star sense" towards μ , we then deduce, passing to the limit in Equation (2.2) and using the fact that u_0^{ε} converges strongly in

 $L^1_{\text{loc}}(\mathbb{R}^N)$ towards u_0 , that for any function $\varphi \in L^1(\mathbb{R}^N \times \mathbb{R}^+)$ and any $\kappa \in \mathbb{R}$,

$$\int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{N}} \int_{0}^{1} \left[\eta_{\kappa}(\mu(x,t,\alpha)) \varphi_{t}(x,t) + q_{\kappa}(x,t,\mu(x,t,\alpha)) \nabla \varphi(x,t) \right] d\alpha \, dx \, dt \\ + \int_{\mathbb{R}^{N}} \eta_{\kappa}(u^{0}(x)) \varphi(x,0) \, dx \ge 0.$$
(2.3)

Hence, u^{ε} converges in the "nonlinear weak- \star sense" towards an "entropy process solution" of the hyperbolic problem (1.3), (1.4).

2.2. Convergence to the Entropic Solution

Theorem 2.2. Let $u_0 \in L^{\infty}(\mathbb{R}^N)$, and assume (1.5), (1.6). The solution u^{ε} of the parabolic approximation (1.1), (1.2) converges strongly in $L^p_{\text{loc}}(\mathbb{R}^N \times \mathbb{R}^+)$ for all $p < \infty$ towards the entropic solution of the problem (1.3), (1.4).

Proof of Theorem 2.2. The uniqueness of the "entropy process solution" proved in [1,3] ensures the convergence in the "nonlinear weak-* sense" of u^{ε} towards an "entropy process solution" μ of the hyperbolic problem (1.3),(1.4) and this entropy process solution is given by the entropic solution u ($\mu(x, t, \alpha) = u(x, t)$ a.e.) of the hyperbolic problem (1.3), (1.4). The strong convergence remains to be proved. So, if K denotes any compact set of $\mathbb{R}^N \times \mathbb{R}^+$, using the nonlinear weak-* convergence of u^{ε} towards μ for $g(s) = s^2$, we check that $u^{\varepsilon} \to u$ weakly in $L^2(K)$ and $||u^{\varepsilon}||_{L^2(K)} \to ||u||_{L^2(K)}$.

We immediately conclude that u^{ε} strongly converges towards u in $L^{2}(K)$ for any compact set K of $\mathbb{R}^{N} \times \mathbb{R}^{+}$. As the family (u^{ε}) is bounded in $L^{\infty}(K)$ (for any K), we deduce that the convergence is strong in all L^{p}_{loc} , $p < \infty$.

Remarks. (i) For an initial condition $u_0 \in BV(\mathbb{R}^N)$, and $u_0^{\varepsilon} = u_0 \ a.e.$, Kuznetsov^[7] got some estimate of the error $u^{\varepsilon} - u$ in the space $L^{\infty}(0,T; L^1(\mathbb{R}^N))$,

$$\|u^{\varepsilon} - u(.,t)\|_{L^1(\mathbb{R}^N)} \le C(\|u_0\|_{BV(\mathbb{R}^N)})\sqrt{t\varepsilon}$$

(ii) For an initial data $u_0 \in L^{\infty}(\mathbb{R}^N)$, we can also obtain an estimate in the space $L^{\infty}(0,T; L^1_{loc}(\mathbb{R}^N))$, see the proof of [4,5].

References

- Chainais-Hillairet, C., Finite volumes schemes for a nonlinear hyperbolic equation, convergence towards thr entropy solution and error estimates, M2AN, (1999) (to appear).
- [2] DiPerna, R., Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal., 88(1985), 223-270.
- [3] Eymard, R., Gallouët, T. & Herbin, R., Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation, *Chin. Ann. of Math.*, **16B**:1(1995), 1–14.
- [4] Eymard, R., Gallouët, T., Ghilani, M. & Herbin, R., Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes, preprint 97-7 LATP (Université de Marseille, France, accepted for publication in IMAJNA).
- [5] Eymard, R., Gallouët, T. & Herbin, R., The finite volume method, Handbook of Numerical Analysis, North-Holland, P.G. Ciarlet et J.L. Lions Eds, 1998 (to appear).
- [6] Kruskov, S. N., First order quasilinear equations in several indepedant variables, Math. USSR Sbornik, 10:2(1970), 1489–1502.
- [7] Kuznetsov, N. N., Accuracy of some approximate methods for computing the weak solutions of a firstorder quasi-linear equation, Zh. νν̄ chisl. Mat. mat. Fiz., 16:6(1976), 1489–1502.
- [8] Ladyzenskaya, O. A., Solonnikov, V. A. & Ural'ceva, N. N., Linear and quasilinear equations of parabolic type, 23 of Transaction of Mathematical Monograph.
- [9] Malek, J., Necas, J., Rokyta, M. & Ruzicka, M., Weak and measure-valued solutions to evolutionary PDEs, Chapman & Hall, London, 1996.
- [10] Protter, M. H. & Weinberger, H. F., Maximum principles in differential equations, Prentice-Hall, INC., 1967.
- [11] Tartar, L., Compensated compactness, Herriot Watt Symposium, 4, Pitman, 1978.