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Abstract

A new algorithm for the stabilization of (possibly turbulent, chaotic) distributed systems,
governed by linear or non linear systems of equations is presented.

The SPA (Stabilization Parallel Algorithm) is based on a systematic parallel decomposition
of the problem (related to arbitrarily overlapping decomposition of domains) and on a penalty

argument.
SPA is presented here for the case of linear parabolic equations, with distributed or boundary

control. It extends to practically all linear and non linear evolution equations, as it will be
presented in several other publications.
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§1. Introduction

Let us consider an evolution system whose state is given by the solution of a Partial

Differential Equation (PDE) which is written (formally for the time being) as

C ∂y
∂t

+A(y) = Bv, (1.1)

y
∣∣
t=0

= 0. (1.2)

In (1.1), (1.2), which may be a linear or a non linear PDE, y denotes the state, and v denotes

the control.

The operator A, which is linear or non linear, is a P.D. Operator, and the operator B maps

the “space of controls” into the “space of the states”. The operator C is linear, symmetric

positive definite.

Of course one should add to (1.1), (1.2) the boundary conditions. They are here implicit.

Of course this will be made precise in the examples.

Let yd be a given state (d =“desired”). We want to choose v such that

(i) y(t; v) = solution of (1.1), (1.2) remains as close as possible of yd and

(ii) the goal (i) is achieved at not too large a cost.

In more precise terms, we introduce

J(t; v) =
1

2
∥y(t; v)− yd∥2 +

c

2
∥v∥2, c > 0 given, (1.3)
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(where the norms are taken in the appropriate spaces; again this will be made precise in the

examples) and we look at any time t, for

inf
v
J(t; v). (1.4)

Remark 1.1. In (1.1), (1.2) the state y can be a vector function. For instance, (1.1),

(1.2) can be the Navier-Stokes equations. In such a case, it is not known in 3D if there is a

unique (weak) solution of (1.1), (1.2). Then in (1.4) the inf is taken for all possible solutions

of the state equation.

Remark 1.2. In (1.1) the control v can be distributed or a boundary control.

Remark 1.3. The formulation (1.4) is a little fuzzy. This will be made precise in Section

5 below.

Keeping with the (admitelly fuzzy) problem (1.4) our goal is to (try to) find a completely

general parallel method to solve (1.4) (hopefully in real time).

We introduce to this effect a decomposition method in Section 2 below. It is presented

in a completely general axiomatic way and illustrated by the example of multi-domain

decomposition.

Using this decomposition and a penalty argument, an approximation result is given in

Section 3. It becomes then possible to present a general parallel method for the solution of

(1.1), (1.2) (to find v). This is the object of Section 4.

Using the algorithm of Section 4, one can finally present the parallel algorithm SPA

(Stabilization Parallel Algorithm). SPA is presented here for the first time. It can be

applied in many other situations, briefly treated in Section 5 and that will be the object of

other publications.

Remark 1.4. Many other developments, including Numerical Computations, will be

presented in joint work with R. Glowinski, J. Périaux and O. Jironneau and others.

Other possible applications of the ideas presented here have been found by J. Périaux.

Remark 1.5. The Decomposition Method introduced here in Section 4 could also be

applied to non overlapping domains.

Remark 1.6. Decomposition methods are classically used in numerical analysis. General

and systematic extensions of the Schwarz alternating method have been given in P. L.

Lions[10,11,12]. Overlapping domain decomposition has also been studied in [5].

As far as we know, the “connections” between the various subdomains are made through

boundary conditions on the (many) interfaces[4].

This is not the case here, making life a lot simpler but at the price of introducing a

“penalty parameter”, which may be painful to handle numerically. We will return to that

in other publications.

Remark 1.7. If there is a huge amount of results and methods in Decomposition methods

(one can consult also the bibliography of the works indicated in Remark 1.6), much less is

known in the application of these methods to control problems. In these directions one

can quote the very interesting work of J. E. Lagnese and G. Leugering[6], following the

contributions of J. D. Benamou and B. Despres[2], J. D. Benamou[1].

The questions which are studied here are (sort of) Stabilization problems, and we obtain

parallel algorithms.
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A Parallel algorithm for control problems (CPA) will be presented in other publications.

§2. Decomposition Method

Let us consider two real Hilbert spaces V and H

V ⊂ H, V dense in H. (2.1)

We identify H to its dual. Then if V ′ is the dual of V , we have

V ⊂ H ⊂ V ′. (2.2)

We consider the bilinear forms
y, ŷ → c(y, ŷ) which is symmetric, continuous in H ×H, and such that

c(y, y) ≥ γ∥y∥2H , γ > 0, ∀y ∈ H;
(2.3)

y, ŷ → a(y, ŷ) continuous on V × V, not necessarily symmetric and such that

a(y, y) ≥ α∥y∥2V , α > 0, ∀y ∈ V.
(2.4)

We then consider the evolution equation

c
(∂y
∂t

, ŷ
)
+ a(y, ŷ) = (v, ŷ), ∀ŷ ∈ V, y ∈ L2(0, T ;V ) (T > 0 arbitrary), (2.5)

y(0) = 0, (2.6)

where the control v is given, such that

v ∈ L2(0, T ;V ′). (2.7)

Example 2.1. Let Ω be an open set of RId (d = 1, 2, 3 in the applications). We take

H = L2(Ω), V = H1(Ω) (Sobolev space of order 1 on L2(Ω)),

c(y, ŷ) =

∫
Ω

yŷ dx, (2.8)

a(y, ŷ) =

∫
Ω

(∇y∇ŷ + yŷ) dx, ∇y =
{ ∂y

∂xi

}
, (2.9)

and let us consider v defined by

(v, ŷ) =

∫
Γ0

vŷ dΓ0, (2.10)

where v is given in L2(Γ0 × (0, T )), Γ0 ⊂ ∂Ω.

(One could take in (2.10) v ∈ L2(0, T ;H− 1
2 (Γ0))-but taking great care of the closure

of functions of compact support in Γ0 into H
1
2 (Γ0)-cf. for all that J. L. Lions and E.

Magenes[13]).

Then (2.5) is equivalent to

∂y

∂t
−∆y + y = 0 in Ω× (0, T ),

y(x, 0) = 0 in Ω,

∂y

∂n
= v on Γ0 × (0, T )

= 0 on Γ/Γ0 × (0, T ). (2.11)

Remark 2.1. Of course Example 2.1 is one of the simplest example one can think of

the (2.5)!
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Remark 2.2. Everything presented here can be extended to non linear problems-such

as the Navier-Stokes systems (see [2]).

We now introduce the decomposition method in an axiomatic way (followed by an exam-

ple!). We are given a family of N triple of Hilbert spaces

Vi ⊂ Hi ⊂ V ′
i , i = 1, · · · , N, (2.12)

and we are also given Hilbert spaces Hij , i, j = 1, · · · , N, such that

Hij = Hji, ∀i, j. (2.13)

We are given linear operators ri and rij such that

ri ∈ L(H;Hi), ri ∈ L(V ;Vi), rij ∈ L(Hj ;Hij). (2.14)

The two essential hypothesis are

rjiriφ = rijrjφ, ∀φ ∈ H, ∀i, j, (2.15)

and

if y1, · · · , yN are given in V1 × V2 × · · · × VN

(
resp.

N∏
i=1

Hi

)
such that

rijyj = rjiyi, ∀i, j,
then there exists y in V (resp.H) such that yi = riy, ∀i,
y is unique and depends continuously on {yi} in ΠVi (resp. ΠHi). (2.16)

No doubt an example is needed!

Example 2.2. Let Ω1, · · · ,ΩN (N is “large”) be a family of open sets such that Ωi ⊂
Ω ⊂ UΩi.

We say that “j” (in the set 1, 2, · · · , N) is a neighhour of “i” iff

Ωj ∩ Ωi ̸= ∅. (2.17)

It is assumed that every “i” has at least one neighbour (and it can have several of them).

Then (actually weighted spaces are needed)

Hi = L2(Ωi), Vi = H1(Ωi), Hij = L2(Ωi ∩ Ωj),

ri = restriction to Ωi,

rij = restriction to Ωi ∩ Ωj (rij = rji).

Then (2.15), (2.16) hold true.

Remark 2.3. One has

rji = 0 if “j′′ is not a neighbour of “i′′. (2.18)

Then the matrix ∥rij∥ will be in general a spare matrix.

Remark 2.4. Many other examples will be presented elsewhere.

We now introduce bilinear forms ci, ai such that

ci(yi, ŷi) is continuous and symmetric on Hi ×Hi,

such that ci(yi, yi) ≥ γi∥yi∥2Hi
, γi > 0, (2.19)

ai(yi, ŷi) is continuous, not necessarily symmetric on Vi × Vi,

such that ai(yi, yi) ≥ αi∥yi∥2Hi
, αi > 0, (2.20)
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and such that

c(y, ŷ) =
N∑
i=1

ci(riy, riŷ), ∀y, ŷ ∈ H ×H,

a(y, ŷ) =

N∑
i=1

ai(riy, riŷ), ∀y, ŷ ∈ V × V. (2.21)

Example 2.3. Let ρi, i = 1, 2, · · · , N be a family of functions such that

ρi ∈ L∞(Ωi), ρi = 0 outside Γi, ρi ≥ ρ̄ ≥ 0 a.e., in Γi, (2.22)

N∑
i=1

ρi(x) = 1 in Ω.

(There are infinitely many such that sets of functions). Then, in the framework of Example

2.1, if one takes

ci(yi, ŷi) =

∫
Ωi

ρiyiŷi dx, ai(yi, ŷi) =

∫
Ωi

ρiyi(∇yi∇ŷi + yiŷi)dx, (2.23)

the conditions (2.21) are satisfied.

We have now all the tools needed to present the Penalty Approximation.

Remark 2.5. The systems considered here are “stable”. But the methods presented

here apply to unstable systems, or “turbulent” ones (see [8]).

§3. Penalty Approximation

We consider the set of PDE’s

ci

(∂yi
∂t

, ŷi

)
+ ai(yi, ŷi) +

1

ε

∑
j

(rjiyi − rijyj , rjiŷi)Hij = (vi, ŷi), ŷi ∈ Vi, i = 1, · · · , N,
(3.1)

yi(0) = 0, ∀i, (3.2)

where ε > 0 is “small” and where the vi’s satisfy

vi ∈ L2(0, T ;V ′
i ),

N∑
i=1

(vi, riŷ) = (v, ŷ), ∀ŷ ∈ V. (3.3)

Example 3.1. In the framework of Example 2.1, one introduces the subset E of

{1, 2, · · · , N} defined by

i ∈ E iff Γ0 ∩ ∂Ωi ̸= ∅. (3.4)

Then we introduce functions σi, i ∈ E, such that

σi has support in Γ0 ∩ ∂Ωi, σi ∈ L∞(Γ0 ∩ ∂Ωi),

and
∑
i∈E

σi = 1 on Γ0, and σi = 0 if i /∈ E. (3.5)

Then

(v, ŷ) =

∫
Γ0

vŷdΓ0 =
∑
i

∫
Γ0∩∂Ωi

(σiv)ŷ dΓ0, (3.6)

which gives one (of the infinitely many) decomposition satisfying (3.3).

We now prove
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Theorem 3.1. We assume that (2.15), (2.16), (2.19)–(2.21) hold true. Problem (3.1),

(3.2) admits a unique solution

yεi ∈ L2(0, T ;Vi) ∩ L∞(0, T ;Hi), i = 1, · · · , N. (3.7)

As ε → 0, one has

yεi → yi in L2(0, T ;Vi) weakly, in L∞(0, T ;Hi) weak star, (3.8)

where

yi = riy, y = solution of (2.5), (2.6). (3.9)

Proof. Step 1. A Priori Estimates

We write for the moment yi instead of yεi . We choose ŷi = yi in (3.1). This procedure

can be justified, for instance by using a Galerkin method.

We obtain
1

2

d

dt
ci(yi) + ai(yi) +

1

ε
Xi = (vi, yi), (3.10)

where ci(yi) = ci(yi, yi), ai(yi) = ai(yi, yi) and where

Xi =
∑
j

(rjiyi − rijyj , rjiyi)Hij

=
1

2

∑
j

∥rjiyi − rijyj∥2Hij
+

1

2

∑
∥rjiyi∥2Hij

− 1

2

∑
j

∥rijyj∥2Hij
. (3.11)

But
∑
i

∑
j

∥rjiyi∥2Hij
=

∑
i,j

∥rijyj∥2Hji
(by exchanging i and j) so that

∑
i

Xi =
1

2

∑
i,j

∥rjiyi − rijyj∥2Hij
. (3.12)

Therefore, it follows from (3.10) that

1

2

d

dt

∑
i

ci(yi) +
∑
i

ai(yi) +
1

2ε

∑
i,j

∥rjiyi − rijyj∥2Hij

=
∑
i

(vi, yi) ≤
∑
i

∥vi∥V ′
i
∥yi∥Vi ≤

∑ 1

2
ai(yi) +

ci
2
∥vi∥2V ′

i
, (3.13)

where the ci’s are suitable constants. It follows that (by using (2.19) and (2.20))

yi = yεi is bounded (as → 0) in L2(0, T ;Vi) ∩ L∞(0, T ;Hi), (3.14)

1

ε
(rjiy

ε
i − rijy

ε
j ) is bounded (as ε → 0) in L2(0, T ;Hij). (3.15)

Step 2. It follows from (3.14) and (3.15) that one can extract a subsequence, still denoted

by yεi , such that (3.8) holds true and such that

rjiyi − rijyj = 0, ∀i, j. (3.16)

Therefore, by using (2.16), there exists y such that

yi = riy, i = 1, · · · , N. (3.17)

It remains to show that y is the solution of (2.5), (2.6).

Step 3. Let φ be a smooth function from [0, T ] → V , such that φ(T ) = 0.
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We choose in (3.1), for every t, ŷi = riφ(t). We obtain after integration on (0, T ) (and

integration by parts)

−
∫ T

0

ci

(
yεi ,

∂riφ

∂t

)
dt+

∫ T

0

ai(y
ε
i , riφ)dt+

1

ε
Yiε =

∫ T

0

(vi, riφ)dt, (3.18)

where

Yiε =

∫ T

0

∑
j

(rjiy
ε
i − rijy

ε
j , rjiriφ)Hijdt. (3.19)

Then ∑
i

Yiε =
∑
i,j

∫ T

0

(rjiy
ε
i , rjiriφ)Hijdt−

∑
i,j

∫ T

0

(rijy
ε
j , rjiriφ)Hijdt. (3.20)

After exchanging i and j in the second term in (3.20), it becomes∑
i,j

∫ T

0

(rjiy
ε
i , rijrjφ)Hijdt

and since by hypothesis, one has (2.15), it follows that∑
i

Yiε = 0. (3.21)

Therefore (3.18) gives

−
∑
i

∫ T

0

ci

(
yεi ,

∂riφ

∂t

)
dt+

∑
i

∫ T

0

ai(y
ε
i , riφ)dt =

∑
i

∫ T

0

(vi, riφ)dt =

∫ T

0

(v, φ)dt. (3.22)

Using (3.8) one can pass to the limit in (3.22). One obtains

−
∑
i

∫ T

0

ci

(
yi,

∂riφ

∂t

)
dt+

∑
i

∫ T

0

ai(yi, riφ)dt =

∫ T

0

(v, φ)dt. (3.23)

But by using (3.17) and (2.21), (3.22) is identical with

−
∫ T

0

ci

(
y,

∂φ

∂t

)
dt+

∫ T

0

a(y, φ)dt =

∫ T

0

(v, φ)dt. (3.24)

which is the standard weak formulation of problem (2.5), (2.6). The proof is completed.

Remark 3.1. The previous type of proof applies in very many other situations for

parabolic equations, linear or non linear. Cf. in particular the case of the Navier-Stokes

equations in [8].

§4. Parallel Algorithm

We introduce now a time-discretization of the penalty approximation (3.1).

With standard notations of numerical analysis, yni denotes the (hopefully) approximation

of yi at time n∆t. We define yni by

ci

(yni − yn−1
i

∆t
, ŷi

)
+ ai(y

n
i , ŷi) +

1

ε

∑
j

(rjiy
n
i − rijy

n−1
j , rjiŷi)Hij

= (vni , ŷi), ∀ŷi ∈ Vi, n = 1, 2, · · · , (4.1)

y0i = 0. (4.2)
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Remark 4.1. The bilinear form 1
∆tci(yi, ŷi)+ai(yi, ŷi)+

1
ε

∑
j

(rjiyi, rjiŷi)Hij is continuous

and coercive on Vi × Vi. Therefore, given yn−1
i and vni = approximation of vi at time n∆t

(for instance average around n∆t), (4.1) uniquely defines yni .

Remark 4.2. The algorithm (4.1) is parallel.

Moreover, in (4.1), only are used the yn−1
j such that “j” is a “neighbour” of “i”.

We now prove

Theorem 4.1. Under the hypothesis of Theorem 3.1, algorithm (4.1) is stable.

Proof. We choose ŷi = yni in (4.1). We obtain

1

2∆t
(ci(y

n
i − yn−1

i ) + ci(y
n
i )− ci(y

n−1
i )) + ai(y

n
i ) +

1

ε
Zn
i = (vni , y

n
i ), (4.3)

where

Zn
i =

∑
j

(rjiy
n
i − rijy

n−1
j , rjiy

n
i )Hij . (4.4)

We write

Zn
i =

1

2

∑
j

∥rjiyni − rijy
n−1
j ∥2Hij

+
1

2

∑
j

∥rjiyni ∥2Hij
− 1

2

∑
j

∥rjiyn−1
i ∥2Hij

. (4.5)

Let us define

ξn =
∑
i

∑
j

∥rjiyni ∥2Hij
. (4.6)

We observe that∑
i,j

∥rijyn−1
i ∥2Hij

= (after exchange of i and j)
∑
i,j

∥rjiyn−1
j ∥2Hij

= ξn−1,

so that ∑
i

Zn
i =

1

2

∑
∥rjiynj − rijy

n−1
j ∥2Hij

+
1

2
ξn − 1

2
ξn−1. (4.7)

Using (4.3), (4.7), we obtain, after summation in n

1

2∆t

∑
i

ci(y
n
i ) +

1

2∆t

∑
i

n∑
k=1

ci(y
k
i − yk−1

i ) +
∑
i

n∑
k=1

ai(y
k
i )

+
1

2ε

∑
i,j

n∑
k=1

∥rjiyki − rijy
k−1
j ∥2Hij

+
1

2ε
ξn =

∑
i

n∑
k=1

(vki , y
k
i ).

Stability immediately follows.

Remark 4.3. Of course other time-discretization schemes can be used in (4.1), with a

similar result.

Remark 4.4. The next step is to prove convergence (in a suitable sense) of the step

functions yki in ((k− 1)∆t, k∆t), towards yi as ∆t → 0, where yi = yεi , ε fixed. This will be

presented elsewhere.

Remark 4.5. Of course one can also introduce space approximations, which can differ

in different spaces Vi. This will also be presented elsewhere.

Remark 4.6. Because of the necessary cancellations in the terms 1
ε (ξ

k−ξk−1), the same

ε has to be taken during the computation in the interval (0, T ). This (negative) aspect of

the parallel algorithm (4.1) is not harmful in the method SPA which is presented now.
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§5. Method SPA

We present now the Stabilization Parallel Algorithm (SPA). At step n, the approximation

of the state y(n∆t) is provided by the various {yni }, given by (4.1). They depend on the vni .

We want to minimize

J(n∆t, v) =
1

2
∥y(n∆t); v)− yd∥2H +

c

2
∥v(n∆t)∥2H . (5.1)

We replace (5.1) by

J (n∆t, vn) =
N∑
i=1

Ji(n∆t, vni ), vn = {vni }, (5.2)

where

Ji(n∆t, vni ) =
1

2
∥yni − riyd∥2Hi

+
c

2
∥vni ∥2Hi

. (5.3)

We are looking for {vni } such that it achieves

inf
{vn

i }
J (n∆t, vn). (5.4)

But this is equivalent to computing

inf
vn
i

Ji(n∆t, vni ), (5.5)

since

inf
{vn

i }
J (n∆t, vn) =

N∑
i=1

inf
vn
i

Ji(n∆t, vni ). (5.6)

Then SPA is as follows:

(1) yni is defined by (4.1). It depends on vni . It uses the previous computation of yn−1
j , j ∈

neighborhood of i.

(2) Compute vni by solving (5.5), and proceed.

Several remarks are in order.

Remark 5.1. In the decomposition, there will be in general a large number of “i”, such

that

(vi, ŷi) = 0, ∀ŷi ∈ Vi, (5.7)

say when i ∈ F ⊂ [1, 2, · · · , N ].

Then (4.1) reduces to the equation

ci

(yni − yn−1
i

∆t
, ŷi

)
+ ai(y

n
i , ŷ

n
i ) +

1

ε

∑
j

(rjiy
n
i − rijy

n−1
i , rjiŷi)Hij = 0 (5.8)

and there is no step 2 in SPA when i ∈ F.

The role of the control v, which is now {vni }, is propagated by the “neighbours” (sum-

mation in j in (4.1))-starting from the computations of step 2) of SPA for those i’s which

do not belong to F , i.e. (vi, ŷi) ≡/0, ∀ŷi ∈ Vi.

Remark 5.2. All possible minimization algorithms can be used in step 2.

Remark 5.3. In (5.8) the same ε has to be chosen for each fixed time but ε may depend

on n.

Remark 5.4. One can use (if convenient) a local feedback for the solution of (5.5).
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Remark 5.5. The avove method is completely general. Cf. for instance J. L. Lions[8]

for the control of Navier-Stokes equations.

Remark 5.6. Error estimates with respect to the solution of the continuous problem

(1.4) are not yet obtained (of course one needs to make (1.4) more precise). We hope to

return on this (non trivial) task.

§6. Further Remarks

Remark 6.1. As we have already said, SPA can be applied to non-linear problems.

Remark 6.2. All the techniques introduced here can be used, after suitable adaptation,

for second-order in time evolution equations: hyperbolic equations, well set PDE in the

sense of Petrowsky. This is presented in [9].

Remark 6.3. For each t we may have to deal with a multicriteria problem, and we may

want to solve a min-max problem, or find a Nash or a Pareto equilibrium (see [3] for the

formulation of such problems). The SPA can be adapted to such situations.

Remark 6.4. The techniques presented here can be used for control problems. The

Control Parallel Algorithms method (CPA) will be presented elsewhere.

Remark 6.5. SPA also extends to the case of systems where the state equation is a

Variational Inequality.
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