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Abstract

In this paper, the author first gives a conjugacy-class version of Camina hypotheses and
then applys the Camina group theory to discussing two classes of finite groups.
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This paper is divided into four sections. In Section 1, we present a conjugacy-class version

of Camina Hypotheses . In Section 2, we give some basic facts about a Camina group G

with the kernel G′, which will be used in Sections 3 and 4. In Sections 3 and 4, we apply

the Camina group theory to discussing two classes of finite groups.

All groups considered are finite and all group characters are ordinary characters. The

letter G always denotes a group. The letters p and q denote two different prime numbers.

For a normal subset N of G, we denote by m(N) the number of the G-conjugacy classes

which are contained in N . A pair (H,K) denotes a Frobenius group with the Frobenius

kernel K and a Frobenius complement H. For x ∈ G, we denote by ClG(x) the conjugacy

class of x in G. Irr#(G) denotes the set of non-principle irreducible characters of G. For a

character χ of G, Irr(χ) denotes the set of irreducible constituents of χ. Some additional

notation will be introduced as we go along. The rest of our notation is standard and adapted

from [1].

§1. A Conjugacy-Class Version of Camina Hypotheses†

A. R. Camina presented two hypotheses and proved that the two hypotheses are equivalent

to each other[2,p.153−154,p.158−160]. In this section, we present a conjugacy-class version of

Camina’s hypotheses. Our version is suitable to character tables.

Throughout this section, let G be a non-Abelian group, and let C1 = {1}, C2, · · · , Cm,

Cm+1, · · · , Cn be all the conjugacy classes of G, where 2 ≤ m ≤ n− 1.

Hypothesis (H1). G has a character X such that

(a) X(C2) = · · · = X(Cm), (b) for every φ ∈ Irr(X), φ(Cm+1) = · · · = φ(Cn) = 0.
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Hypothesis (H2). CiCj = Cj for i = 1, · · · ,m and j = m+ 1, · · · , n.
If G satisfies (H1) or (H2), somtimes we say G satisfies (H1) or (H2) with respect to

C1, · · · , Cm.

Theorem 1.1. G satisfies (H1) if and only if G satisfies (H2).

Proof. Necessity. This part of the proof is provided in a series of steps. Suppose that G

satisfies (H1).

Step 1 Let h = X(C2) = · · · = X(Cm), where X is the character satisfying the conditions

(a) and (b) in (H1). Then h = −X(1)/(|C2|+ · · ·+ |Cm|).
Since 1G ̸∈ Irr(X), by the condition (b) in (H1) we have

0 = [1G, X] = [X(1) + h(|C2|+ · · ·+ |Cm|)]/|G|.

So, Step 1 is established.

Step 2
m∪
i=1

Ci =
∩
{kerϑ : ϑ ∈ Irr(G)− Irr(X)} (In particular,

m∪
i=1

Ci ▹ G).

Since 1G ̸∈ Irr(X), Irr(G)− Irr(X) ̸= ∅. For each ϑ ∈ Irr(G)− Irr(X), by (H1) we have

0 = [X,ϑ] = X(1)ϑ(1) + h
m∑
i=2

|Ci|ϑ(Ci),

where h = X(C2) = · · · = X(Cm). So, by Step 1 we get
m∑
i=2

|Ci|ϑ(Ci) = −X(1)ϑ(1)/h =
m∑
i=2

|Ci|ϑ(1).

Since |ϑ(Ci)| ≤ ϑ(1), from the above equality we obtain |ϑ(Ci)| = |ϑ(Ci)| = ϑ(1) for

i = 2, · · · ,m. Hence, by [1, (2.27)] we have ϑ(Ci) = ϵiϑ(1), where ϵi is a complex number

and |ϵi| = 1 for i = 2, · · · ,m. It follows that
m∑
i=2

|Ci|ϵi =
m∑
i=2

|Ci| and thus ϵ2 = · · · = ϵm = 1.

We therefore have ϑ(Ci) = ϵiϑ(1) = ϑ(1) for i = 2, · · · ,m. So, we get
m∪
i=1

Ci ⊆
∩

{kerϑ : ϑ ∈ Irr(G)− Irr(X)}.

Take Cj with j ∈ {m + 1, · · · , n} and suppose that Cj ⊆
∩
{kerϑ : ϑ ∈ Irr(G) − Irr(X)}.

Then, by the condition (b) in (H1) and a formula on the regular character ρG, we have

0 = ρG(Cj) =
∑

{ϑ(1)2 : ϑ ∈ Irr(G)− Irr(X)},

contradicting the fact that Irr(G) − Irr(X) ̸= ∅. Hence, for Cj with j = m + 1, · · · , n, we
have Cj ̸⊆

∩
{kerϑ : ϑ ∈ Irr(G)− Irr(X)} and thus( n∪

j=m+1

Cj

)∩(∩
{kerϑ : ϑ ∈ Irr(G)− Irr(X)}

)
= ∅.

This completes Step 2.

Step 3 G satisfies (H2).

Take Ci and Cj such that 1 ≤ i ≤ m and m + 1 ≤ j ≤ n. Let y ∈ Cj and x ∈ Ci. It

follows from Step 2 that xy ∈
n∪

r=m+1
Cr. So, by Step 2 and the condition (b) in (H1) we

have φ(xy) = φ(y) for every φ ∈ Irr(G). This implies that xy is conjugate to y in G, and so

G satisfies (H2).
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Sufficiency. Suppose that G satisfies (H2). Let X = ρG −
∑

{ϑ(1)ϑ : ϑ ∈ Irr(G) and
m∪
i=1

Ci ⊆ kerϑ}, where ρG is the regular character of G. Since m ≥ 2, by [1, (2.11) and

(2.21)] X ̸= 0 and thus X is a character of G. For i = 2, · · · ,m, we obviously have

X(Ci) = −
∑

{ϑ(1)2 : ϑ ∈ Irr(G) and
m∪
i=1

Ci ⊆ kerϑ}.

So, X satisfies the condition (a) in (H1).

For any conjugacy class Cr in G, put C̃r =
∑

{x : x ∈ Cr}. Since G satisfies (H2), by

[1,(2.4)] we have C̃iC̃j = |Ci|C̃j , for i = 1, · · · ,m and j = m+1, · · · , n. Let φ ∈ Irr(X).

By [1, p.36] we have

ωφ(C̃i)ωφ(C̃j) = |Ci|ωφ(C̃j), for i = 1, · · · ,m, j = m+ 1, · · · , n,

ωφ(C̃r) = φ(Cr)|Cr|/φ(1), for r = 1, · · · , n.

So, we have

0 = [φ(Ci)/φ(1)− 1]φ(Cj)/φ(1), for i = 1, · · · ,m, j = m+ 1, · · · , n. (∗)

Since φ ∈ Irr(X), by the choice of X we know that φ(Ci) ̸= φ(1) for some i with 1 ≤ i ≤ m.

Hence, from the equality (∗) above, it follows that φ(Cj) = 0 for j = m + 1, · · · , n. This

implies that X satisfies the condition (b) in (H1). So, G satisfies (H1). This completes the

proof.

Corollary 1.1. Suppose that G satisfies (H1) or (H2) with respect to C1 = {1}, C2, · · · ,
Cm. Let N =

m∪
i=1

Ci. Then

(1) N is a normal subgroup of G and xN ⊆ ClG(x) for every x ∈ G−N .

(2) All the conjugacy classes of the factor group G := G/N are C1, Cm+1, · · · , Cn, where

Cr denotes the image of Cr in G = G/N for r = 1,m+ 1,m+ 2, · · · , n.
(3) When G satisfies (H1), let X be the character satisfying the conditions (a) and (b) in

(H1), then

(a) N =
∩
{kerϑ : ϑ ∈ Irr(G) − Irr(X)} and Irr(G/N) = {ϑ ∈ Irr(G) − Irr(X)}. In

particular, χ vanishes on G−N for every χ ∈ Irr(G) such that N ̸≤ kerχ.

(b) (Up to a rational number)

X = ρG −
∑

{ϑ(1)ϑ : ϑ ∈ Irr(G), N ≤ kerϑ} = ρG −
∑

{ϑ(1)ϑ : ϑ ∈ Irr(G/N)}.

(c) |Irr(X)| = m− 1 = m(N)− 1.

(4) Let M be any normal subgroup of G. Then either N ≤ M or M < N .

(5) Z(G) ≤ N ≤ G′.

Proof. From Theorem 1.1 and its proof we know that (1), (2) and (3)(a) hold.

Now, let us show that (3)(b) and (3)(c)are true. Assume that G satisfies (H1). By (1)

we have N ▹ G. Let Y = ρG −
∑

{ϑ(1)ϑ : ϑ ∈ Irr(G/N)}. Clearly, Y has the constant

integer value −|G/N | on N − {1} =
m∪
i=2

Ci, and Y vanishes on G −N =
n∪

i=m+1

Ci because

Irr(Y ) = Irr(X) by 3(a) and X satisfies the condition (b) in (H1). By Step 1 in the proof

of Theorem 1.1 we know that X has a constant rantional value on N − {1}. On the other

hand, the values of X are algebraic integers. So, X has a constant integer value on N −{1}.
In addition, X vanishes on G −N . Hence, there exist integers a and b such that aX − bY
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vanishes on G − {1}. It follows that there exists an integer c such that aX − bY = cρG.

Note that Irr(aX − bY )
∩

Irr(G/N) = ∅ by (3)(a), while Irr(G/N) ⊆ Irr(ρG) = Irr(G).

Hence, c = 0 and thus aX = bY . This establishes (3)(b). For a group K, we denote by

Con(K) the set of conjugacy classes of K. Then by (2) and (3)(a) we have |Irr(X)| =

|Irr(G)| − |Irr(G/N)| = |Con(G)| − |Con(G/N)| = n − (n −m + 1) = m − 1 = m(N) − 1.

So, (3)(c) is true.

It is enough to show (4) under the assumption that G satisfies (H1) because of Theorem

1.1. Since a normal subgroup of G is the joint of the kernels of some irreducible characters

of G, it follows from (3)(a) that (4) is true.

By (H1) we have Z(G) ≤ N , and by (H2) we have N ≤ G′. So, by Theorem 1.1 it follows

that (5) holds. This completes the proof.

It is well-known that an irreducible character χ of G has at least two non-zero values, that

is, χ does not vanish on at least two conjugacy classes of G. In [3], the extreme case where

G has an irreducible character vanishing on all but two conjugacy classes was investigated.

Note that if G has an irreducible character χ such that χ does not vanish on exactly two

conjugacy classes C1 = {1} and C2 of G, then G satisfies (H1) with X = χ with respect to

C1, C2.

Corollary 1.2. G has an irreducible character χ which does not vanish on exactly two

conjugacy classes {1} and D of G if and only if DC = C for every conjugacy class C of G

such that {1} ̸= C ̸= D.

Proof. Necessity. By hypothesis G satisfies (H1) with X = χ with respect to C1 =

{1}, C2 = D. So, by Theorem 1.1 we have DC = C for every conjugacy class of G such that

{1} ≠ C ̸= D.

Sufficiency. By hypothesis G satisfies (H2) with respect to C1 = {1}, C2 = D. So,

by Theorem 1.1 G satisfies (H1) with respect to C1 = {1}, C2 = D, and hence G has an

irreducible character χ not vanishing on exactly two conjugacy classes C1 = {1} and C2 = D

of G. This completes the proof.

Corollary 1.3. Suppose that G has an irreducible character χ such that χ has the same

value on C2, · · · , Cm and vanishes on Cm+1, · · · , Cn. Then the following statements hold:

(1) m = 2, that is, χ does not vanish on exactly two conjugacy classes C1 = {1} and C2

of G.

(2) N := C1

∪
C2 = {1}

∪
C2 is a unique minimal normal subgroup of G and is an

elementary Abelian p-group.

(3) χ is a unique faithful irreducible character of G.

(4) χ(C2) = −χ(1)/|C2| = −χ(1)/(|N | − 1). (5) χ(1)2 = |G|(|N | − 1)/|N |.
Proof. By hypothesis G satisfies (H1) with X = χ with respect to C1 = {1}, · · · , Cm.

So, in view of (3)(c) of Corollary 1.1 we have that m− 1 = |Irr(X)| = |Irr(χ)| = 1 and thus

m = 2, establishing (1). From (1), (4) and 3(a) of Corollary 1.1, it follows that (2) and (3)

are true. By (1) and Step 1 in the proof of Theorem 1.1 we get (4). From (2) and (3) it

follows that Irr(G/N) = Irr(G)− {χ}. So, we have

|G| =
∑

{φ(1)2 : φ ∈ Irr(G)} =
∑

{φ(1)2 : φ ∈ Irr(G/N)}+ χ(1)2 = |G/N |+ χ(1)2,

and thus χ(1)2 = |G|(|N | − 1)/|N |. This establishes (5), completing the proof.
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Theorem 1.2. Let χ ∈ Irr(G). Then the following statements hold:

(1) If χ does not vanish on exactly two conjugacy classes C1 = {1} and C2 of G and

χ(C2) = −χ(1), then G is a 2-group.

(2) If Z(G) ̸= 1 and χ does not vanish on exactly two conjugacy classes C1 = {1} and C2

of G, then G is a 2-group and χ(C2) = −χ(1).

(3) Suppose that G is nilpotent and χ does not vanish on exactly two conjugacy classes

C1 = {1} and C2 of G. Then G is a 2-group and χ(C2) = −χ(1).

(4) Suppose that G is a 2-group. Then χ does not vanish on exactly two conjugacy classes

of G if and only if |G| = 2χ(1)2.

Proof. Assume that χ does not vanish on exactly two conjugacy classes C1 = {1} and C2

of G, and that χ(C2) = −χ(1). Then, G satisfies (H1) with X = χ with respect to C1 = {1},
C2. Put N = {1}

∪
C2. By Corollary 1.3, N is a unique minimal normal subgroup of G

and |C2| = |N | − 1 = 1 because χ(C2) = −χ(1). Hence, N is central with order 2. On

the other hand, by Corollary 1.1(5) we have Z(G) ≤ N . We therefore have Z(G) = N

and |Z(G)| = 2. From this and [3, Theorem 2.5(b)] it follows that G has a normal Sylow

2-subgroup P . So, G = PK, where K is a 2-complement in G. Suppose K ̸= 1 and take a

2′-element g ∈ K −{1}. Then we have gN = gZ(G) ⊆ ClG(g) (Corollary 1.1(1)). It follows

that the elements in gN have the same order. Clearly, this is impossible. Therefore, K = 1

and G = P is a 2-group. This completes the proof of (1).

Next, let us show (2). Put N = C1

∪
C2 = {1}

∪
C2. Since Z(G) ̸= 1 by the assumption

of (2), by using the arguments in the above paragraph we get N = Z(G) and |N | = |Z(G)| =
2. Hence, by Corollary 1.3(4) we have χ(C2) = −χ(1). From this and (1) it follows that G

is a 2-group. This establishes (2).

Since a nilpotent group has a non-trivial center, from (2) we get (3).

Finally, let us prove (4). Assume that χ does not vanish on exactly two conjugacy classes

C1 = {1} and C2 of G. Then, since G is a 2-group by the assumption of (4), by (3) we have

χ(C2) = −χ(1). So, from (4) and (5) of Corollary 1.3 it follows that |G| = 2χ(1)2. Now, we

assume that |G| = 2χ(1)2. By [1, (2.27), (2.30)] we have χ(1)2 ≤ |G : Z(χ)| ≤ |G : Z(G)|.
So, we get Z(χ) = Z(G), χ(1)2 = |G : Z(χ)| and |Z(G)| = 2. Hence, by [1, (2.30)], we know

that χ does not vanish on exactly two conjugacy classes. This establishes (4), completing

the proof of the theorem.

From Corollary 1.3(1) and Theorem 1.2 we immediately get the following

Corollary 1.4. Let χ ∈ Irr(G). Then the following statements hold:

(1) Suppose that G is a nilpotent group and χ has exactly two non-zero values. Then

G/kerχ is a 2-group and the two non-zero values of χ are χ(1) and −χ(1).

(2) Suppose that G is a 2-group. Then χ has exactly two non-zero values if and only if

|G/kerχ| = 2χ(1)2.

(3) If χ has exactly two non-zero values and the two non-zero values are χ(1) and −χ(1),

then G/kerχ is a 2-group.

Definition 1.1. G is called a Camina group if G satisfies (H1) or (H2) with respect to

C1 = {1}, C2, · · · , Cm; N :=
m∪
i=1

Ci is called the kernel of the Camina group G.
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By Corollary 1.1(1) the kernel of a Camina group G is a non-trivial normal subgroup of

G.

Remark 1.1. If G has an irreducible character χ not vanishing on exactly two conjugacy

classes C1 = {1} and C2 of G, then G is a Camina group with the kernel N := {1}
∪
C2.

This is because in this case G satisfies (H1) with X = χ with respect to C1 = {1}, C2.

Conversely, if G is a Camina group with the kernel N and m(N) = 2, then by (H1) G has

an irreducible χ such that χ does not vanish on exactly two conjugacy classes of G.

By Theorem 1.1 and the definition of Camina groups, the following Corollary 1.5 is

obviously true.

Corollary 1.5. Let M < N be non-trivial normal subgroups of G. If G is a Camina

group with the kernel N , then G/M is a Camina group with the kernel N/M .

The following Corollary 1.6 is a combination of [4,Proposition 3.1] and [5, Lemma 6.1(iv)].

We give here a proof for it from our point of view.

Corollary 1.6. Let N be a non-trivial normal subgroup of G. Put N =
m∪
i=1

Ci. Then

the following conditions on (G,N) are equivalent.

(1) G is a Camina group with the kernel N . (2) If g ∈ G−N then gN ⊆ ClG(g).

(3) The conjugacy classes of G := G/N are C1 = {1}, Cm+1, · · · , Cn. In other words, if

xN and yN are conjugate in G/N and are nontrivial, then x and y are conjugate in G.

(4) If x ∈ G−N , then |CG(x)| = |CG/N (xN)|.
(5) If χ is an irreducible character of G with N ̸≤ kerχ, then χ vanishes on G−N .

(6) If χ and φ are irreducible characters of G such that φ ∈ Irr(G/N) and N ̸≤ kerχ,

then φχ = φ(1)χ.

Proof. Note that (2) and (3) are equivalent to (H2) with respect to C1 = {1}, C2, · · · , Cm.

So, (1), (2), and (3) are equivalent. Using the Second Orthogonality Relation twice, we get

the equivalence of (4) and (5). By Corollary 1.1 we know that (1) implies (5). If G sat-

isfies (5), then G satisfies (H1) with X = ρG −
∑

{ϑ(1)ϑ : ϑ ∈ Irr(G/N)} with respect to

C1 = {1}, · · · , Cm, that is, G satisfies (1). So, (1) and (5) are eqiuvalent. Simple calculations

for character values show that (5) and (6) are eqiuvalent. This completes the proof.

From Corollary 1.6(2) and Remark 1.1, we immediately get the following

Lemma 1.1. Let N be a non-trivial normal subgroup of G. Assume that G is a Camina

group with the kernel N . If m(N) = 3 and G has a normal subgroup M such that 1 <

M < N , then G is a Camina group with the kernel M . In particular, G has an irreducible

character χ which does not vanish on exactly two conjugacy classes of G.

Let G be a p-group, and N be a non-trivial normal subgroup of G. According to Remark

1.1 and the proof of Theorem 1.2, we know that if m(N) = 2 and G is a Camina group with

the kernel N , then p = 2, N = Z(G) and |N | = 2. Similarly, we have the following

Theorem 1.3. Let G be a p-group, and N be a non-trivial normal subgroup of G.

Assume that m(N) = 3 and G is a Camina group with the kernel N . Then p = 3, N =

Z(G)and |N | = 3.

Proof. By hypothesis and Corollary 1.1(5) we see that either 1 < Z(G) < N or Z(G) =

N . In order to complete the proof, it is enough to show that Z(G) = N .

Suppose that 1 < Z(G) < N . Then |Z(G)| = 2 and so G is a 2-group. Further, by Lemma
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1.1 and Theorem 1.2(4) we know that G has an irreducible character χ such that |G| =
2χ(1)2. Since G/Z(G) is a Camina group with the kernel N/Z(G) and mG/Z(G)(N/Z(G)) =

2, by Remark 1.1 and Theorem 1.2(4) we know that G/Z(G) has an irreducible character φ

such that |G/Z(G)| = 2φ(1)2. So, letting |G| = 2r, we get χ(1)2 = 2r−1 and φ(1)2 = 2r−2.

It follows that both r − 1 and r − 2 are even, a contradiction. So, we have Z(G) = N ,

completing the proof.

§2. Some Basic Facts about a Camina Groups G with the Kernel G′

For the reader’s convenience, we mention some basic facts about a Camina group G with

the kernel G′, which will be used in Sections 3 and 4.

Lemma 2.1.[6] Suppose that 1 < G′ < G and G is a Camina group with the kernel G′.

Then one of the following assertions is true:

(1) G = (C,G′), a Frobenius group with the Frobenius kernel G′ and a cyclic Frobenius

complement C.

(2) G is a p-group.

(3) G = RP , where P is a Sylow p-subgroup of G for some prime p and R is the normal

p-complement in G with R < G′. In addition, if P has class 2, then P = Q8, the quaternion

group of order 8, and G = (Q8, R), a Frobenius group with the Frobenius kernel R and a

Frobenius complement P = Q8.

We omit an easy proof of the following Lemma 2.2.

Lemma 2.2. Let G be a p-group. If G has class 2 and G is a Camina group with

the kernel G′, then G is semi-extraspecial. (See [7] for the definition of semi-extraspecial

p-groups.)

Lemma 2.3. Let G be a non-Abelian 2-group. If G is a Camina group with the kernel

G′, then G is semi-extraspecial.

Proof. By hypothesis and [8, Theorem 3.1], G has class 2. So, by Lemma 2.2, G is

semi-extraspecial. This completes the proof.

§3. Restricted V 3-Groups

Following [9], we introduce some additional notations. For a group G, Irr1(G) denotes

the set of all nonlinear irreducible characters of G. We write E(pn) and C(n) to denote an

elementary Abelian group of order pn and a cyclic group of order n, respectively.

For χ ∈ Irr1(G), put V (χ) = |{χ(x) : x ∈ G}|. A non-Abelian group G is said to be a

V 3-group if V (χ) = 3 for all χ ∈ Irr1(G). In this section we discuss a subclass of the class of

V 3-groups, called restricted V 3-groups. Applying the Camina group theory, we establish a

structure theorem on restricted V 3-groups. By using this structure theorem, the structure

theorem on V 3-groups[9,main Theorem] is easily obtained. It turns out that the subclass of

restricted V 3-groups is almost the class of V 3-groups with some exceptions in 2-groups.

Furthermore, it will be seen that for restricted V 3-groups we can get more information than

for V 3-groups.

A group G is said to be a restricted V 3-group if G is a V 3-group and satisfies the following

condition: kerχ < G′ for every χ ∈ Irr1(G). Let G be a V 3-group. If G is not a restricted
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V 3-group, then we say that the V 3-group G is non-restricted.

Before establishing our results in this section, we make some remarks. Let G be a V 3-

group. Then, according to [1, (3.15)], each χ ∈ Irr1(G) has exactly two non-zero values.

This fact allows us to apply Corollary 1.3 and other results on Camina groups to the study

of groups G/kerχ (see Remark 1.1), where χ ∈ Irr1(G). In particular, if G has a faithful

χ ∈ Irr1(G) or if G has only one minimal normal subgroup (in this case G has a faithful

χ ∈ Irr1(G)), we can apply Corollary 1.3 and other results on Camina groups to the study

of G.

Lemma 3.1.[9,p.21] The following two statements hold:

(1) Non-Abelian factor groups of V 3-groups are V 3-groups. (2) V 3-groups are solvable.

Lemma 3.2.[9,Lemma 3] The group G = (Q8, E(34)) has a faithful irreducible character.

Lemma 3.3. Let G be a V 3-group. If there exists a χ ∈ Irr1(G) such that χ does not

vanish on G−G′, then G is non-restricted and G/(G′ ∩ kerχ) is a 2-group.

Proof. Note that for an arbitrary φ ∈ Irr1(G), if φ(x) ̸= φ(1) for x ∈ G, then φ(x) is

either zero or a negative rational integer (Corollary 1.3(4)).

Take g ∈ G − G′ such that χ(g) ̸= 0, and take λ ∈ Irr(G/G′) such that λ(g) ̸= 1.

Considering χ and λχ, by virtue of the remark in the above paragraph it is easy to check

that λ(g) = −1, χ(g) = ±χ(1). It follows that G is non-restricted and the only non-zero

values of λχ are χ(1) and −χ(1) for every λ ∈ Irr(G/G′). By Corollary 1.4(3), G/kerλχ is

a 2-group for every λ ∈ Irr(G/G′). So, noticing that G′ ∩ kerχ =
∩
{kerλχ : λ ∈ Irr(G/G′)},

we see that G/(G′ ∩ kerχ) is a 2-group. The proof is complete.

Theorem 3.1. If G is a restricted V 3-group, then one of the following assertions holds:

(1) G is a semi-extraspecial 2-greoup.

(2) G = (Q8, E(32)), a Frobenius group with the Frobenius kernel E(32) and a Frobenius

complement Q8.

(3) G = (C(pn − 1), G′), a Frobenius group with the Frobenius kernel G′ and a Frobenius

complement C(pn − 1), and G′ ∈ Sylp(G). In addition, if G′ is Abelian or if p ̸= 2, then G′

is elementary Abelian and for each χ ∈ Irr1(G), G/kerχ ∼= (C(pn − 1), E(pn)).

(Note: It is easy to see that groups (1) and (2) are restricted V 3-groups.)

Proof. Since G is restricted, by Lemma 3.3 and Corollary 1.6(5) G is a Camina group

with the kernel G′ (we have 1 < G′ < G by Lemma 3.1(2)). So, noticing that |G| must be

even, by Lemma 2.1 we need to distinguish the following three cases.

(a) G is a 2-group.

In this case, by Lemma 2.3 we see that G is a semi-extraspecial 2-group, the type (1) in

the statement of the theorem.

(b) G = RP , where P ∈ Sylp(G), R is the normal p-complement in G and 1 < R < G′.

Note that P ∼= G/R is a Camina group with the kernel P
∩

G′ ∼= G′/R and thus P ′ =

P
∩
G′ ̸= 1 (Corollary 1.5 and Corollary 1.1(5)). Hence, P ∼= G/R is also a restricted V 3-

group, and so P is a semi-extraspecial 2-group. Then by Lemma 2.1 we get P = Q8 and

G = (Q8, R). In particular, R is Abelian and every normal subgroup of G either contains R

or is contained in R.

By induction on |G| we shall verify that G is the type (2) in the statement of the theorem.
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Suppose that G has two different minimal normal subgroup, say B and H. Then we

have BH ≤ R. By induction we see that both G/B and G/H are the type (2). It follows

that |B| = |H| = 32 and R = H × B. So, G = (Q8, E(34)) and hence G has a faithful

χ ∈ Irr1(G) by Lemma 3.1, contradicting Corollary 1.3. Hence, G has only one minimal

normal subgroup, say H, and thus R is a q-group for some prime q ̸= 2. Then, since R is

Abelian, by virtue of Corollary 1.6(4) ( or [3, Theorem 2.5(b)]) we get R = H and hence

R is the unique minimal normal subgroup of G. So, by Corollary 1.3(2) we conclude that

R = E(32) and G is the type (2).

(c) G = (C,G′), a Frobenius group with the Frobenius kernel G′ and a cyclic Frobenius

complement C.

By induction on |G| we shall verify that G is the type (3) in the statement of the theorem.

Since G′ is nilpotent, G′ is a p-group by induction. Let us show that |C| = pn − 1 for

some positive integer n. For this, we may assume, without loss of generality, that G′ is a

minimal normal subgroup of G. So, G′ is a unique minimal normal subgroup of G and thus

by Corollary 1.3(2) we get |C| = pn − 1.

Now we assume that G′ is Abelian. If χ ∈ Irr1(G), then by virtue of Corollary 1.6(4) (or

[3, Theorem 2.5(b)]) and Corollary 1.3(2) we have G/kerχ ∼= (C(pn − 1)), E(pn)). Then,

since the intersection of the kernels of all non-linear irreducible characters of G is equal to

1, we conclude that G′ is elementary Abelian. Note that if p ̸= 2, then G′ is Abelian. So,

we have proved that G is of the type (3). This completes the proof.

Lemma 3.4 If G is a non-restricted V 3-group, then G is a (non-Abelian) 2-group.

Proof. Since G is a non-restricted V 3-group, there exists a χ ∈ Irr1(G) such that

kerχ ̸≤ G′. So, by Lemma 3.3 G/(G′ ∩ kerχ) is a non-Abelian 2-group. If G′ ∩ kerχ = 1,

then we are done. So we assume that G′∩kerχ ̸= 1. Let R ≤ G′∩kerχ be a minimal normal

subgroup of G. Clearly, G/R is a non-restricted V 3-group and hence G/R is a (non-Abelian)

2-group by induction. Note that R is a p-group. Set |R| = pn. If p = 2, we are done. So,

we assume that p ̸= 2. Suppose that R is a unique minimal normal subgroup of G. Then G

is a doubly transitive Frobenius group with the Frobenius kernel R (Remark 1.1, Corollary

1.3 and [2, Proposition 1, p.156]). It follows that pn − 1 is a power of 2, and thus pn = 32

and G ∼= (Q8, E(32)). This implies that G is a restricted V 3-group, a contradiction. Hence,

R can not be a unique minimal normal subgroup of G. Let R1 ̸= R be a minimal normal

subgroup of G. Then |R1| = 2. Clearly, G/R1 is not Abelian. If G/R1 is non-restricted,

then by induction we are done. So, we assume that G/R1 is restricted. Further, we can

assume that G/R1 is not a 2-group. Then, since a Sylow 2-subgroup of G/R1 is not cyclic,

by Theorem 3.1 we have G/R1
∼= (Q8, E(32)). It follows that R1 = Z(G) and R and R1 are

the only minimal normal subgroups of G. Hence, the sum of squares of degrees of all faithful

irreducible characters of G is greater than |G| − |G : R| − |G : R1|(> 0). This implies that

G has a faithful irreducible character, and hence G has only one minimal normal subgroup

(Corollary 1.3), a contradiction. This completes the proof.

From Theorem 3.1, Lemma 3.4 and Corollary 1.4(2) we immediately get the following

Corollary 3.1. It is [9, Main Theorem], but the mistake in the statement (c) of [9, Main

Theorem] has been corrected.
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Corollary 3.1.[9,Main Theorem] If G is a V 3-group, then one of the following assertions

holds:

(1)G is a 2-group such that |G/kerχ| = 2χ(1)2 for all χ ∈ Irr1(G). (2)G = (Q8, E(32)),

a Frobenius group with the kernel E(32) and a Frobenius complement Q8. (3) G = (C(pn−
1), G′), a Frobenius group with the Frobenius kernel G′ and a Frobenius complement C(pn−
1), and G′ ∈ Sylp(G). In addition, if G′ is Abelian or if p ̸= 2, then G′ is elementary

Abelian.

§4. D-Groups

A nonAbelian group G is called a D-group if G satisfies the following condition D.

D: If 1 < N ≤ G′, N is normal in G, and λ ∈ Irr#(N), then the degrees of the irreducible

constituents of the induced character λG are distinct.

A non-Abelian group G is called a D group if G satisfies the following condition D.

D: If N > 1 is any normal subgroup of G and λ ∈ Irr#(N), then the degrees of the

non-linear irreducible constituents of the induced character λG are distinct.

In [10, Main Theorem], the solvable D-groups were classified. In this section, applying

the Camina group theory, we not only give a simple proof for [10, Main Theorem] but also

weaken the condition in the theorem. More precisely, the condition that G is solvable in

[10, Main Theorem] is replaced by the condition that G′ < G. Also, we shall see that [10,

Theorem 9] is just an immediate consequence of the following Theorem 4.1.

Lemma 4.1. Let G = (H,R), a Frobenius group with the Frobenius kernel R and a

Frobenius complement H. Assume that R is Abelian and R ≤ G′. If G is a D-group, then

R is a minimal normal subgroup of G, that is, R is an elementary Abelian p-group and is

an irreducible H-module over the prime field Fp.

Proof. Let M ≤ R be a minimal normal subgroup of G. Take λ ∈ Irr#(M). Since R

is Abelian, there exists a φ ∈ Irr(R) such that φM = λ. By [1, (6.17)] we have Irr(λR) =

{βφ : β ∈ Irr(R/M)}. By [1, (6.34)], (βφ)G ∈ Irr(G). Note that βφ ∈ Irr#(R) for every

β ∈ Irr(R/M) and R ≤ G′ by hypothesis. Then, since (βφ)G(1) = |G : R| and G is a

D-group, we see that (βφ)G = φG for every β ∈ Irr(R/M), and so λG = |R/M |χ, where
χ = φG ∈ Irr(G). Hence, χ vanishes on G−M and G is a Camina group with the kernel M

(Corollary 1.6(5)). So, if R ̸= M , then for x ∈ R −M we have |CG/M (xM)| = |CG(x)| =
|CR(x)| = |R| (Corollary 1.6(4)). This is impossible. Therefore, R = M and R is a minimal

normal subgroup of G. This completes the proof.

Theorem 4.1. Let G be a non-Abelian group, and assume that G′ < G. If G is a

D-group, then one of the following assertions holds:

(1) G is an extra-special p-group.

(2) G = (Q8, E(pn)), a Frobenius group with the Frobenius kernel E(pn) and a Frobenius

complement Q8, and Q8 acts on E(pn) irreducibly.

(3) G = (C(s), E(pn)), a Frobenius group with the Frobenius kernel E(pn) and a cyclic

Frobenius complement C(s), and C(s) acts on E(pn) irreducibly.

Proof. At first we show that G is a Camina group with the kernel G′. Let λ ∈ Irr#(G′),

and ϑ ∈ Irr(G/G′). Since G is a D-group, degrees of all the irreducible constituents of λG
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are distinct. On the other hand, we have ϑλG = (ϑG′λ)G = λG. So, we conclude that for

every irreducible constituent χ of λG, ϑχ = χ. Note that for any χ ∈ Irr1(G) , there exists

a λ ∈ Irr#(G′) such that χ ∈ Irr(λG). So, for any χ ∈ Irr1(G) and any ϑ ∈ Irr(G/G′), we

have ϑχ = χ, and thus G is a Camina group with the kernel G′ (Corollary 1.6(6)). Hence,

in view of Lemma 2.1 we have to consider the following possibilities for G.

(a) G is a p-group.

Let x ∈ Z(G) be an element of order p, and λ ∈ Irr#(⟨x⟩). Put Irr(λG) = {χ1, · · · , χs}.
Note that χi’s are non-linear as ⟨x⟩ ≤ Z(G) ≤ G′ (Corollary 1.1(5)) and λ ̸= 1⟨x⟩. We

have χi
⟨x⟩ = χi(1)λ, and so λG = χ1(1)χ1 + · · · + χs(1)χs. Set |G| = pn and χi(1) = pri

for i = 1, · · · , s. Then we have pn−1 = λG(1) = p2r1 + · · · + p2rs . By noticing that ri’s are

distinct (because G is a D-group), from the above eqaulity it follows that s = 1 and thus

λG = χ1(1)χ1.

So, pn−1 = |G/⟨x⟩| = λG(1) = (χ1(1))2 and thus n is odd. If G/⟨x⟩ is not Abelian, then

by the conclusion just obtained we see that n − 1 is odd, a contradiction. Hence we have

G′ ≤ ⟨x⟩ ≤ Z(G), and so G′ = Z(G) and |Z(G)| = p. This means that G is of the type (1)

in the statement of the theorem.

(b) G = RP , where P ∈ Sylp(G), R is the normal p-complement in G and 1 < R < G′.

Since P ∼= G/R is also a D-group, by (a) P is an extraspecial p-group. So, by Lemma

2.1 we get P ∼= Q8 and G = (Q8, R). In particular, R is Abelian, and so by Lemma 4.1 G

is of the type (2) in the statement of the theorem.

(c) G = (C,G′), a Frobenius group with the Frobenius kernel G′ and a cyclic Frobenius

complement C. In particular, G′ is nilpotent.

Applying induction on |G| we shall verify that G is of the type (3) in the statement of

the theorem.

Suppose that G′ is not of prime-power order. Then by induction we conclude that G′

is Abelian and so G′ is of prime-power by Lemma 4.1, a contradiction. G′ is therefore a

p-group.

Suppose thatG′ is not Abelian, and letM be any normal subgroup ofG with 1 < M < G′.

By induction, G′/M is a minimal normal subgroup of G/M . It follows from this that

G′′ = Φ(G′) = Z(G′) and G′′ is a unique minimal normal subgroup of G. Hence, both G′′

and G′/G′′ are faithful irreducible C-modules over the prime field Fp , and thus by [11, Satz

3.10, p.165] we have |G′′| = |G′/G′′| = pm, where m is the least positive integer such that

pm ≡ 1 (mod |C|).
Take any λ ∈ Irr#(G′′). Suppose that λG = e1χ

1 + · · ·+ esχ
s, Irr(λG) = {χ1, · · · , χs}.

Note that χ1(1), · · · , χs(1) are distinct because G is a D-group. Let χi
G′′ = ei(λ1+ · · ·+λn)

be the Clifford’s decomposition, λ1 = λ. Then χi(1) = einλ(1) = ein. Since the semidirect

product G′′ >▹C is a Frobenius group and G′′ = Z(G′), we have IG(λ) = G′. It follows that

χi(1) = ein = ei|G : IG(λ)| = ei|G : G′| = ei|C| for i = 1, · · · , s. Then, since all the χi(1)’s

are distinct, all the ei’s are distinct. On the other hand, we have

|C||G′/G′′| = λG(1) = e1χ
1(1) + · · ·+ esχ

s(1) = |C|(e21 + · · ·+ e2s),

|G′/G′′| = e21 + · · ·+ e2s. (∗)

Note that |G′/G′′| is a power of p, and that ei’s are also powers of p because ei’s are degrees
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of irreducible projective representations of the p-group IG(λ)/G
′′ = G′/G′′. Then, since all

the ei’s are distinct, from the above equality (∗) we get s = 1 and so λG = e1χ
1. From this

and Corollary 1.6(5) it follows that G is a Camina group with the kernel G′′, and thus for

x ∈ G′ −G′′ by Corollary 1.6(4) we have

|CG(x)| = |CG/G′′(xG′′)| = |G′/G′′| = pm = |G′′| = |Z(G′)| < |CG(x)|,

a contradiction. Hence, G′ is Abelian. Then by Lemma 4.1 G′ is a faithful irreducible

C-module over the prime field Fp. So, by [11, Satz 3.10, p.165] we have |G′| = pm, where m

is the order of p (mod |C|). Therefore G is the type (3). This completes the proof.

Corollary 4.1. If G is a non-solvable D-group, then G′ = G.

A D-group is obviously a D-group. So, we immediately obtain the following

Corollary 4.2.[10,Theorem 9] If G is a non-solvable D-group, then G′ = G.

Corollary 4.3.[12,Theorem] Let G be a non-Abelian group. Suppose that the degrees of

the non-linear irreducible characters of G are distinct. Then one of the following assertions

holds:

(1) G is an extraspecial 2-group. (2) G ∼= (Q8, E(32)). (3) G ∼= (C(pn − 1), E(pn)).

Proof. It is easy to show that G′ < G (see [12, Lemma 1(3)]). Also, G is clearly a

D-group of even order. Hence, by Theorem 4.1 we have

(a) G is an extraspecial 2-group.

(b) G ∼= (Q8, E(pn)), a Frobenius group with the Frobenius kernel E(pn).

In this case, by [1, (6.32) and (6.34)] we get (pn − 1)/8 = 1, pn = 9, G ∼= (Q8, E(32)).

(c) G ∼= (C(s), E(pn)), a Frobenius group with the Frobenius kernel E(pn).

In this case, by [1, (6.32) and (6.34)] we get (pn − 1)/s = 1, s = pn − 1, G ∼= (C(pn −
1), E(pn)). The proof is complete.
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