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Abstract

In this paper, the authors obtain a characteristic that a complete Riemannian manifold
turns into a hyperbolic space form.
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§1. Introduction

M. Obata[1] proved the following characteristic of a sphere: In order for a complete

Riemannian manifold M of dimension n to be a sphere of radius a−1 > 0 it is necessary and

sufficient that M admits a C2 real-valued function Φ with D2Φ = −a2Φg, where g is the

Riemannian metric on M and D2Φ the Hessian of Φ. The similar result on the hyperbolic

space form is still not obtained by now[2]. In this paper, we obtain a theorem on the

hyperbolic space form, which is similar to the Obata’s characteristic on the sphere.

§2. The Theorem and the Proof of its Necessity

Theorem 2.1. Let M be a complete manifold of dimension n which is isomorphic to

hyperbolic space form Hn (−c) iff M admits a C2 real-valued function Φ satisfying

D2Φ = c2Φg (c ̸= 0), (2.1)

and such that Φ takes at least extreme value on some point of M, in (2.1) g is also the

Riemannian metric of M.

Proof. The both sides of (2.1) are the bilinear symmetric form on Tx(M), ∀x ∈ M. So

we can only consider the case c = 1. The proof of the case c ̸= 1 is completely similar to

the case c = 1. Here we take that the model of Hn (−1) is a spacelike hypersurface in the

Lorentzian space Ln,1

Hn (−1) =
{
(x0, x1, · · · · · · , xn) ∈ Ln,1

∣∣∣(x0)2 −
n∑

i=1

(xi)2 = 1, x0 > 0
}
. (2.2)

The Riemannian metric g on Hn (−1) is the restriction of the Lorentzian metric ds2L =
n∑

i=1

(dxi)2 − (dx0)2 of Ln,1 . Now we use
∂

∂x0
,

∂

∂x1
, · · · , ∂

∂xn
to denote the natural basis of
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Ln,1, and set X = x0 ∂

∂x0
+

n∑
i=1

xi ∂

∂xi
, the position vector of Hn (−1), then ⟨X,X⟩ = −1

with respect to the Lorentzian metric of Ln,1. On the other hand, from the defining equation

(2.2) of Hn (−1), we obtain

x0dx0 −
n∑

i=1

xidxi = 0, (2.3)

hence the position vector X of Hn (−1) is orthogonal to Hn (−1) with respect to the

Lorentzian metric. We choose a local normal basis {eα};α = 1, · · · , n on M , and

eα =

n∑
A=0

aAα
∂

∂xi
, A = 0, 1, · · · , n,

then we have

⟨eα, eβ⟩ =
n∑

i=1

aiαa
i
β − a0αa

0
β = δαβ , (2.4)

⟨eα, X⟩ =
n∑

i=1

aiαx
i − a0αx

0 = 0. (2.5)

By covariant differentiation of ⟨X,X⟩ =
n∑

i=1

(
xi
)2 − (x0)2 = −1 with respect to {eα} we

obtain
n∑

i=1

xixi
α − x0x0

α = 0. (2.6)

By covariant differentiation of (2.6) we obtain

n∑
i=1

xi
βx

i
α − x0

βx
0
α +

n∑
i=1

xixi
αβ − x0x0

αβ = 0. (2.7)

Then from eα =
n∑

i=1

aiα
∂

∂xi + a0α
∂

∂x0 we obtain eα(x
A) = aAα , A = 0, · · · , n. Since x0, x1, · · · ,

xn are the coordinate functions, so aAα = xA
α , 1 ≤ α ≤ n; 0 ≤ A ≤ n. Then from (2.7) we

obtain
n∑

i=1

xi
αβx

i − x0
αβx

0 = −δαβ . (2.8)

On the other hand,

xA
αβ = eβx

A
α −

n∑
r

xA
r Γ

r
αβ , A = 0, · · · , n, (2.9)

where Γr
αβ are connection coefficients with respect to {eα}. By the definition,

Γr
αβ = ⟨er,▽eβeα⟩ = ⟨er, eβeα⟩ =

n∑
j=1

xi
reβx

j
α − x0

reβx
0
α. (2.10)

Substituting (2.10) into (2.9) we have

xA
αβ = eβx

A
β −

∑
r

( n∑
j=1

xA
r x

j
reβx

j
α − x0

reβx
0
αx

A
r

)
. (2.11)
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Now we calculate
n∑

i=1

xi
rx

i
ββ − x0

rx
0
ββ =

n∑
i=1

xi
r(eβx

i
β − Γα

ββx
i
α)− x0

r(eβx
0
β − Γα

ββx
0
α)

=

n∑
i=1

xi
reβx

i
β − x0

reβx
0
β −

n∑
i=1

Γα
ββx

i
rx

i
α + Γα

ββx
0
αx

0
r

=
n∑

i=1

xi
reβx

i
β − x0

reβx
0
β − Γr

ββ = 0, (2.12)

where the last equality follows from (2.11).(2.12) indicates that the vectors Yα =
n∑

A=0

xA
αα

∂
∂xA

are orthogonal to eβ ; 1 ≤ β ≤ n with respect to Lorentzian metric ds2L, i.e. ⟨Yα, eβ⟩ = 0 for

all 1 ≤ α, β ≤ n. Thus Yα are all orthogonal to Hn (−1), then Yα are all parallel to the

position vector X. So Yα = λαX. By (2.8) we have ⟨Yα, X⟩ = λα⟨X,X⟩ = −λα = −1, and

so λα = 1(1 ≤ α ≤ n). From Yα = X, we obtain

D2xA(eα, eα) = xAg(eα, eα), A = 0, · · ·, n (2.13)

for all coordinate functions xA. Since the equation (2.1) is the symmetric bilinear quadratic

form on every Tp(H
n (−1)), ∀p ∈ M, for all coordinate functions xA, 0 ≤ A ≤ n, the

equality (2.1) is satisfied by (eα, eα), 1 ≤ α ≤ n, i.e. by all (eα, eβ), furthermore by every

X,Y ∈ Tp(H
n (−1)) and ∀p ∈ Hn (−1) , especially x0 is the coordinate function which

takes the minimum value at (1, 0, · · · , 0) ∈ Hn (−1) . Hence we complete the proof of the

necessity of Theorem 2.1.

§3. Proof of the Sufficiency

Let M be a complete Riemannian manifold of dimension n and admit C2 real-valued

function Φ satisfying the equation (2.1), and Φ takes the extreme value at some point

p ∈ M. Now assume that γX is a geodesic which issues from the point p and in the direction

of unit vector X ∈ TpM, γ̇(0) = X. We denote its arc length parameter by ρ. When the

equation (2.1) restricts to γX , it reduces to an ordinary differential equation

d2Φ

dρ2
= Φ(ρ). (3.1)

Thus Φ is given by

Φ = A cosh ρ+B sinh ρ. (3.2)

p is an extreme point of Φ, so that dΦ(p) = 0 = B. On the other hand, the solutions of

(2.1) admit up to a constant multiplied factor, without loss of generality, we can assume

A = Φ(p) = 1, thus Φ|γX(ρ) = cosh ρ. Now we define Φ|γX(ρ) = cosh ρ, 0 ≤ ρ ≤ +∞ for

every unit vector X ∈ TpM. Since M is complete for ∀q ∈ M , there exists a geodesic γX
which issues from p and ρ > 0 such that q = γX(ρ) so that Φ(q) = cosh ρ.

Now we prove that for every point q ∈ M − {p} there exists only one geodesic which

issues from p pass through the point q, e.g. for the point p, there is no conjugate point of

p for every geodesic γX which issues from p. Otherwise, we can assume on some geodesic

γX from p, there exists q = γX(b) which is the nearest conjugate point of p = γX(0) on γX ,

now there exists a nontrivial proper Jacobi field Y (ρ) along γX([0, b]) such that Y ⊥ γ̇, and
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the index form I vanishes on (Y, Y )[3,4] , where the index form is

I(Y, Y ) =

∫ b

0

[⟨Ẏ , Ẏ ⟩ −R(γ̇ ∧ Y )|Y |2]dρ (3.3)

and Ẏ =
d

dρ
Y = Dγ̇Y, R(γ̇ ∧ Y ) is the radical curvature decided by γ̇ ∧ Y .

Now we choose sufficiently small δ, δ1 > 0 so that there is no conjugate point of γX(b−δ1)

on γX((b− δ1, b + δ]). Since γX(b) is the conjugate point of p = γX(0), so we can choose a

nontrivial proper vector field Z(ρ) perpendicular to γX on γX([0, b+ δ]) and

I(Z,Z) =

∫ b+δ

0

[⟨Ż, Ż⟩ −R(γ̇ ∧ Z)|Z|2]dρ < 0, (3.4)

and the choice of Z(ρ) can equal to Y in (3.3) on γX([0, b − δ1]). Since Z(b + δ) = 0 and

DZZ(b+ δ) = 0, we choose 0 < δ2 < δ satisfying

(1) Z(b+ δ2) ̸= 0, (2)
d

dρ
|Z|2 (b+ δ2) < 0,

(3)

∫ b+δ2

0

[⟨Ż, Ż⟩ −R(γ̇ ∧ Z)|Z|2]dρ+ ⟨DZZ, γ̇⟩|b+δ2
< 0. (3.5)

It is obvious that there exists δ2 satisfying these conditions. At first, Z is not identically

vanishing on [b, b+ δ], (2) is proved by Z(b+ δ) = 0, and (3) is obtained by the continuity

of integral in (3.4).

Now let W (ρ) be a Jacobi vector field along γX([b− δ1, b+ δ2]), which is determined by

W (b− δ1) = Z(b− δ1) = Y (b− δ1) and W (b+ δ2) = Z(b+ δ2). Set

Y (ρ) =

{
Y (ρ), 0 ≤ ρ ≤ b− δ1,
W (ρ), b− δ1 ≤ ρ ≤ b+ δ2.

(3.6)

Y (ρ) is a Jacobi vector field along γX([0, b+δ2]). So Y is a geodesic variation vector field with

the base curve γX , and we denote this variation by F : [0, ε]× [0, b+ δ2] −→ M, F (0, ρ) =

γX(ρ), F (s, ρ) = Cs(ρ).

Now by Sygne formula, we get

D2ρ
(
Y (b+ δ2), Y (b+ δ2)

)
=

∫ b+δ2

0

[⟨Y , Y ⟩ −R(γ̇ ∧ Y )|Y |2]dρ

≤
∫ b−δ1

0

[⟨Ż, Ż⟩ −R(γ̇ ∧ Z)|Z|2]dρ+
∫ b+δ2

b−δ1

[⟨Ż, Ż⟩ −R(γ̇ ∧ Z)|Z|2]dρ < 0.
(3.7)

(3.7) is valid, since (DZZ, γ̇)|b+δ2
= −1

2
d
dρ |Z|2 > 0 and there is no conjugate points of

γX(b− δ1) on γX(b− δ1, b+ δ2), therefore the index form I of γX([b− δ1, b+ δ2]) takes the

minimum value on Jacobi vector field among all vector fields which have the same values on

the two ends.

Now substitute
(
Y (b+ δ2), Y (b+ δ2)

)
into (2.1). The right-hand side of (2.1) is

D2Φ(Y (b+ δ2), Y (b+ δ2))

=
dΦ

dρ
D2ρ(Y (b+ δ2), Y (b+ δ2)) +

d2Φ

dρ2
dρ⊗ dρ(Y (b+ δ2), Y (b+ δ2))

= sinh(b+ δ2)

∫ b+δ2

0

[⟨Ẏ , Ẏ ⟩ −R(γ̇ ∧ Y )|Y |2]dρ < 0,
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but the left-hand side of (2.1) is cosh(b + δ2)|Y (b + δ2)|2 > 0, thus it is a contradiction.

So there is no conjugate point of p = γX(0) on γX , i.e. we complete the proof that there

is only one geodesic which issues from p passing through q for every q ∈ M − {p}. Thus
expp : TpM −→ M is a diffeomorphism.

Now we choose an orthonormal basis e1, · · · , en on TpM. If X is a unit vector on M ,

then X =
n∑

i=1

aiei,
n∑

i=1

(
ai
)2

= 1. So every point on TpM can be represented by ρ and

a = (a1, · · · , an),
n∑

i=1

(ai)2 = 1, where ρ is the distance from this point to the origin, a is the

direction of this point, (ρ, a) is called the polar coordinate.

Now expp : TpM −→ M is a diffeomorphism, so the polar coordinate (ρ, a) on TpM can

be considered as the global coordinates on M , which is called geodesic polar coordinate of

M .

Now let φ be a mapping

φ : M −→ Hn(−1), expp

(
ρ

n∑
i=1

aiei

)
7−→ (cosh ρ, a1 sinh ρ, · · · , an sinh ρ).

Since (cosh ρ)2 −
n∑

i=1

(
ai sinh ρ

)2
= cosh2 ρ − sinh2 ρ

n∑
i=1

(ai)2 = 1, φ is a mapping from M

to Hn (−1). Evidently φ is injective, and the surjection of φ requires that for any x =

(x0, x1, · · · , xn) ∈ Hn (−1) , there exist one ρ ∈ R satisfying cosh ρ = x0 and (a1, · · · , an) ∈
Sn−1(1) satisfying (a1 : a2 : · · · : an) = (x1 : x2 : · · · : xn) such that φ

(
exp ρ

n∑
i=1

aiei
)
= x.

Now we calculate the metric of M. For any unit vector X on TpM , γX(ρ) is the geodesic

which issues from p and γ̇X(0) = X. For any aγ̇X(ρ) ∈ TγX(ρ)M, since ⟨γ̇X(ρ), γ̇X(ρ)⟩ =

⟨gradρ, gradρ⟩ = 1, so ⟨aγ̇X(ρ), aγ̇X(ρ)⟩ = |a|2 naturally. Now we calculate the length of the

tangent vector perpendicular to γ̇X(ρ). Let W be a unit vector, which is perpendicular to X

on TpM. A vector field on TpM is obtained by parallelly displacing W to every point of TpM .

We still use W to denote this vector field, and by ΓX denote the ray in the direction X on

TpM . Now γX = expp(ΓX) is a geodesic which issues from p in M and ρW is a vector field

along the ray ΓX(ρ). We set V (ρ) := d expp(ρW ), then V (ρ) is a Jacobi vector field along

γX and V (0) = 0;
dV

dρ
(0) = W. By Gauss Lemma, this Jacobi field V (ρ) is perpendicular to

γX(ρ), i.e.⟨V (ρ), γ̇(ρ)⟩ ≡ 0, 0 ≤ ρ < +∞.

Now substituting V (ρ) into the equation (2.1) gives

∂2Φ

∂ρ2
dρ⊗ dρ(V (ρ), V (ρ)) +

∂Φ

∂ρ
D2ρ(V (ρ), V (ρ)) = Φ(γX(ρ))⟨V (ρ), V (ρ)⟩.

So we have

sinh ρD2ρ(V (ρ), V (ρ)) = cosh ρ ⟨V (ρ), V (ρ)⟩ .
By Sygne formula, the above equality turns out

sinh ρ

∫ ρ

0

[⟨V̇ (t), V̇ (t)⟩ −R(γ̇ ∧ V )|V |2]dt = cosh ρ⟨V (ρ), V (ρ)⟩. (3.8)

Since V (t) is a Jacobi field, the above equality can turn out to be

sinh ρ⟨V (ρ), V̇ (ρ)⟩ = cosh ρ⟨V (ρ), V (ρ)⟩,
i.e. 1

2
d
dρ log⟨V (ρ), V (ρ)⟩ = cosh ρ

sinh ρ = d
dρ log sinh ρ. Therefor, we have

⟨V (ρ), V (ρ)⟩ = C sinh2 ρ, (3.9)
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where C is an undetermined coefficient. Since ⟨V (ρ), V (ρ)⟩ = ⟨d expp(ρW ), d expp(ρW )⟩, by
asymptotic expansion of length of this Jacobi field[5]

⟨V (ρ), V (ρ)⟩ = ρ2 − 1

3
R(γ̇ ∧ V )ρ4 + o(ρ5) as ρ → 0.

But asymptotic expansion of sinh2 ρ in the neighbour of ρ = 0 is

sinh2 ρ = ρ2 +
1

3
ρ4 + o(ρ5). (3.10)

Comparing (3.9) with (3.10), we obtain C ≡ 1, so that

⟨V (ρ), V (ρ)⟩ = sinh2 ρ. (3.11)

Now if we use the polar coordinate to represent the metric on TpM , it turns out ds2 =

dρ2+ρ2dθ2, where dθ2 is the standard metric of Sn−1 (1). Now the length of the vector ρW

which is perpendicular to the ray ΓX(ρ) is ρ2 , so that dθ2(ρW, ρW ) = 1. If we choose the

geodesic polar coordinates on M , (3.11) is valid for all tangent vectors which are orthornal

to γX(ρ) at γX(ρ) and its length equals 1 with respect to standard metric dθ2, so we know

the metric of M with respect to geodesic polar coordinates is

ds2 = dρ2 + sinh2 ρdθ2. (3.12)

In fact, we have already proved that M is Hn (−1), since (3.12) is the metric under the

representation of geodesic polar coordinates hyperbolic space form of Hn (−1)
[6]
.

Now we use a few words to prove that φ : M −→ Hn (−1) is isometric homeomorphism,

Hn (−1) is a spacelike hypersurface in Ln,1. So i : Hn (−1) ↪→ Ln,1 is isometric, hence we

only need to prove (i ◦ φ)∗ds2L = ds2M .

(i ◦ φ)∗ds2L =
n∑

i=1

(
dai sinh ρ+ ai cosh ρdρ

)2 − (sinh ρdρ)2

= sinh2 ρ

n∑
i=1

(
dai

)2
+

n∑
i=1

(
ai
)2

cosh2 ρdρ2 + 2aidai sinh ρ cosh ρdρ− sinh2 ρdρ2

= dρ2 + sinh2 ρdθ2, (3.13)

the last equality of (3.13) is provided by
n∑

i=1

(
ai
)2

= 1,
n∑

i=1

2aidai = 0, and
n∑

i=1

(
dai

)2
is the

standard metric of Sn−1 (1) under the restriction of
n∑

i=1

(
ai
)2

= 1, so we complete the proof

of the theorem.

At last we shall mention that we have not found any example to elucidate the assumption

that the function Φ taking the extreme value on M is necessary.
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