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turns into a hyperbolic space form.
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¢1. Introduction

M. Obatal'l proved the following characteristic of a sphere: In order for a complete
Riemannian manifold M of dimension n to be a sphere of radius a~! > 0 it is necessary and
sufficient that M admits a C? real-valued function ® with D?® = —a?®g, where g is the
Riemannian metric on M and D?® the Hessian of ®. The similar result on the hyperbolic
space form is still not obtained by now!?!. In this paper, we obtain a theorem on the
hyperbolic space form, which is similar to the Obata’s characteristic on the sphere.

§2. The Theorem and the Proof of its Necessity

Theorem 2.1. Let M be a complete manifold of dimension n which is isomorphic to
hyperbolic space form H" (—c) iff M admits a C? real-valued function ® satisfying

D?® = *dyg (c #0), (2.1)

and such that ® takes at least extreme value on some point of M, in (2.1) g is also the
Riemannian metric of M.

Proof. The both sides of (2.1) are the bilinear symmetric form on T, (M),Vz € M. So
we can only consider the case ¢ = 1. The proof of the case ¢ # 1 is completely similar to
the case ¢ = 1. Here we take that the model of H" (—1) is a spacelike hypersurface in the
Lorentzian space L™!

H"(-1)= {(33073317 ...... L") € Ln,l‘(IO)Q _ i(mi)Q — 1,20 > 0}. (2.2)

The Riemannian metric g on H" (—1) is the restriction of the Lorentzian metric ds? =

ZE:l(d:zi)2 — (dz%)? of L™! . Now we use %, %, e ,% to denote the natural basis of
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L™, and set X = 2% — + Z x'—— the position vector of H" (—1), then (X, X) = —1

with respect to the Lorentman metrlc of L™!. On the other hand, from the defining equation
(2.2) of H™ (—1), we obtain

n
2%da® — Z zidet =0, (2.3)
hence the position vector X of H™ (—1) is orthogonal to H™ (—1) with respect to the
Lorentzian metric. We choose a local normal basis {e,};a =1, -+ ,n on M, and
- 0
A
€a = Zaa%7 A=0,1,---,n,
A=0
then we have
n
(eq,e8) = Za’aa}g — aga% = 0ap, (2.4)
i=1

(as X Za 2t —alz® =0. (2.5)

By covariant differentiation of (X, X) = > (xl)2 — (2°)2 = —1 with respect to {e,} we
i=1
obtain
Z zial — 2% = 0. (2.6)
i=1

By covariant differentiation of (2.6) we obtain

Zxﬂx —:c,Bx —|—Zx:z —x zgﬁ—() (2.7)

n .
Then from e, = 2:1 al, 6‘27‘, + aga—‘zo we obtain eq(z4) =a?, A=0,---,n. Since 20,21, |
iz
x™ are the coordinate functions, so a2 = 22, 1 < a <n; 0 < A <n. Then from (2.7) we
obtain
n
Zx’aﬁxz aﬁx = —0qa8- (2.8)
On the other hand,
aﬁ = epzd ZmAFaﬁ, A=0,---,n, (2.9)

where I') 5 are connection coefficients with respect to {e,}. By the definition,

Tls = (ers Vepea) = (ersepea) = 3 aheqnd, — alesal (2:10)
j=1

Substituting (2.10) into (2.9) we have

xgﬁ = egxﬁ - Z (Zx rlegrd — alesrlx A). (2.11)

T Jj=1
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Now we calculate

n n
fonx},ﬁ — x?x%ﬁ = fon(egx’ﬁ —T'gg25) — x?(egx% — gﬁxg)
i=1 i=1

n n
= Z xfneﬁmiﬁ — xﬂe@’z% — Z Fgﬁxix; + Fgﬁxgxg
i=1 i=1

n
= Zx’;eﬂxf@ - x?eﬂx% — IG5 =0, (2.12)

i=1

oo §rA

where the last equality follows from (2.11).(2.12) indicates that the vectors Y, = > x4 -2
A=0

are orthogonal to eg;1 < 8 < n with respect to Lorentzian metric ds?, i.e. (Ya,eg) =0 for
all 1 < o, < n. Thus Y, are all orthogonal to H" (—1), then Y, are all parallel to the
position vector X. So Y, = A\, X. By (2.8) we have (Y, X) = Ao (X, X) = —Aq = —1, and
s0 Ao = 1(1 < a < n). From Y,, = X, we obtain

DQxA(ea,ea) = xAg(ea,ea), A=0,---,n (2.13)

for all coordinate functions . Since the equation (2.1) is the symmetric bilinear quadratic
form on every T,(H" (—1)),Vp € M, for all coordinate functions x4, 0 < A < n, the
equality (2.1) is satisfied by (eq,eqa),1 < o < n,ie. by all (eq,ep), furthermore by every
XY € T,(H" (1)) and Vp € H"(—1), especially z° is the coordinate function which
takes the minimum value at (1,0,---,0) € H" (—1). Hence we complete the proof of the
necessity of Theorem 2.1.

§3. Proof of the Sufficiency

Let M be a complete Riemannian manifold of dimension n and admit C? real-valued
function @ satisfying the equation (2.1), and ® takes the extreme value at some point
p € M. Now assume that vx is a geodesic which issues from the point p and in the direction
of unit vector X € T,M,7(0) = X. We denote its arc length parameter by p. When the
equation (2.1) restricts to yx, it reduces to an ordinary differential equation

d*®
— = ®(p). 3.1
s =) (3.1)
Thus & is given by
® = Acoshp+ Bsinhp. (3.2)

p is an extreme point of @, so that d®(p) = 0 = B. On the other hand, the solutions of
(2.1) admit up to a constant multiplied factor, without loss of generality, we can assume
A = ®(p) = 1, thus @[, ) = coshp. Now we define ®[ = coshp,0 < p < +o0 for
every unit vector X € T,M. Since M is complete for Vg € M, there exists a geodesic vx
which issues from p and p > 0 such that ¢ = yx(p) so that ®(q) = cosh p.

Now we prove that for every point ¢ € M — {p} there exists only one geodesic which
issues from p pass through the point ¢, e.g. for the point p, there is no conjugate point of
p for every geodesic yx which issues from p. Otherwise, we can assume on some geodesic
~vx from p, there exists ¢ = yx(b) which is the nearest conjugate point of p = yx(0) on vx,
now there exists a nontrivial proper Jacobi field Y (p) along vx([0,5]) such that Y L 4, and
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the index form I vanishes on (Y,Y)4 | where the index form is

b
100Y) = [1073) = RG A Y)Y Pldp (3.3)

. d
and Y = d—Y = D;Y, R(¥AY) is the radical curvature decided by ¥ A Y.
p

Now we choose sufficiently small 4, ; > 0 so that there is no conjugate point of vx (b—d1)
on vx((b—d1,b+ 4]). Since vx(b) is the conjugate point of p = yx(0), so we can choose a
nontrivial proper vector field Z(p) perpendicular to yx on yx ([0,b + 4]) and

bys
12.2)= [ 12.2)= R 2)|2Fldp < 0. (3.4)

and the choice of Z(p) can equal to Y in (3.3) on vx([0,b — d1]). Since Z(b+ §) = 0 and
DzZ(b+ 6) =0, we choose 0 < dz < 4 satisfying

(1) Zb+8) £0, (2) d%\ZF (b+55) <0,

b+62 .
3) / (Z.2) — RGy A Z)|ZP)dp + (D2Z.4)y,5, <. (3.5)

It is obvious that there exists o satisfying these conditions. At first, Z is not identically
vanishing on [b, b+ ¢], (2) is proved by Z(b+ 6) = 0, and (3) is obtained by the continuity
of integral in (3.4).

Now let W(p) be a Jacobi vector field along yx ([b — d1,b + d2]), which is determined by
W(b — (51) = Z(b — (51) = Y(b — (51) and W(b + (52) = Z(b + (52) Set

A _ Y(p)v nggb_al,

Y()_{W(p), b8y <p<b+dy (36)
Y (p) is a Jacobi vector field along vx ([0, b+d2]). SoY is a geodesic variation vector field with
the base curve vx, and we denote this variation by F':[0,e] x [0,b+d2] — M, F(0,p) =

x(p),  F(s,p) = Cs(p)-
Now by Sygne formula, we get

D?p (Y (b+6,),Y (b+ b))

= [T - R ATV
b+3d2

b 61 . . . .
< [ 422 -RGADIZP+ [ ((2.2) - RG A2 ZP)dp <.
0 b—51 (3.7)

(3.7) is valid, since (DzZ,9)lyys, = —3 dp |Z|* > 0 and there is no conjugate points of
vx (b —d1) on vx (b — §1,b+ d2), therefore the index form I of yx([b— d1,b+ J2]) takes the
minimum value on Jacobi vector field among all vector fields which have the same values on
the two ends.
Now substitute (Y (b+ d2),Y (b+ 62)) into (2.1). The right-hand side of (2.1) is
D*®(Y (b +02),Y (b + 62))
dd d*®

= —D*p(Y(b+62),Y(b+62)) + i

0 ——dp®@dp(Y (b+ 82),Y (b+ 62))

b+d2 . .
— sinh(b+ 52)/ (V. V) — R A Y)Y [2ldp < 0,
0
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but the left-hand side of (2.1) is cosh(b + 62)[Y (b + d2)|> > 0, thus it is a contradiction.
So there is no conjugate point of p = vx(0) on 7x, i.e. we complete the proof that there
is only one geodesic which issues from p passing through ¢ for every ¢ € M — {p}. Thus
exp, : T, M — M is a diffeomorphism.

Now we choose an orthonormal basis eq, - ,e, on T,M. If X is a unit vector on M,
n . n .
then X = > a'e;, > (a’)2 = 1. So every point on T,M can be represented by p and
i=1 i=1
n )
a=(at,---,a"), Y (a*)? = 1, where p is the distance from this point to the origin, a is the
i=1

direction of this point, (p,a) is called the polar coordinate.

Now exp,, : T,M — M is a diffeomorphism, so the polar coordinate (p, a) on T, M can
be considered as the global coordinates on M, which is called geodesic polar coordinate of
M

Now let ¢ be a mapping

¢: M — H"(-1), exp, (pZaiei) +— (cosh p,a' sinhp,--- ,a™sinh p).
i=1

Since (coshp)? — ¥ (a’sinh p)2 = cosh? p — sinh® p 3 (a¥)? = 1, ¢ is a mapping from M
=1 i=1

to H™ (—1). Evidgntly p is injective, and the Surjegtion of ¢ requires that for any z =

(0,21, [ 2™) € H" (—1), there exist one p € R satisfying cosh p = 2° and (a',--- ,a") €
n .

S"~1(1) satisfying (a' : @ :---:a™) = (z' :2? -+ : 2™) such that p(expp Y. a'e;) = x.
i=1

Now we calculate the metric of M. For any unit vector X on T, M, vx(p) is the geodesic
which issues from p and §x(0) = X. For any ayx(p) € T, (M, since (yx(p),¥x(p)) =
(gradp, gradp) = 1, so (ax(p), a¥x(p)) = |a|? naturally. Now we calculate the length of the
tangent vector perpendicular to 4x (p). Let W be a unit vector, which is perpendicular to X
on T, M. A vector field on T}, M is obtained by parallelly displacing W to every point of T}, M.
We still use W to denote this vector field, and by I'x denote the ray in the direction X on
T,M. Now vx = exp,(I'x) is a geodesic which issues from p in M and pW is a vector field
along the ray I'x(p). We set V(p) := dexp,(pW), then V(p) is a Jacobi vector field along

av
~vx and V(0) = 0; ch(O) = W. By Gauss Lemma, this Jacobi field V(p) is perpendicular to

Yx(p), L.e.(V(p), ¥(p)) = 0,0 < p < 4o00.
Now substituting V'(p) into the equation (2.1) gives
2

%‘fdp ® dp(V(p), V(0)) + %‘iD?pW(p), V() = Bvx () (V(0), V(o).

So we have
sinh pD?p(V (p), V(p)) = cosh p (V(p), V(p)) -

By Sygne formula, the above equality turns out
L .
sinhp [ V(0 V() = RG AV)IVE)dt = cosh otV (0), V(o)) (3.8)
0
Since V' (t) is a Jacobi field, the above equality can turn out to be

sinh p(V (p), V(p)) = cosh p(V (0), V'(p),
log(V(p),V(p)) = L=he — dip log sinh p. Therefor, we have

sinh p
(V(p),V(p)) = Csinh? p, (3.9)

rol—
S~



56 CHIN. ANN. OF MATH. Vol.20 Ser.B

where ' is an undetermined coefficient. Since (V' (p), V(p)) = (dexp,(pW), dexp,(pW)), by
asymptotic expansion of length of this Jacobi field!®!

V(o). V(o)) = 57— SRG AV)P +0(p") as p 0.

But asymptotic expansion of sinh? p in the neighbour of p =0 is

1
sinh? p = p? + §p4 +0(p°). (3.10)
Comparing (3.9) with (3.10), we obtain C' = 1, so that
(V(p),V(p)) = sinh® p. (3.11)

Now if we use the polar coordinate to represent the metric on 7, M, it turns out ds? =
dp? + p*df?, where df? is the standard metric of S*~! (1). Now the length of the vector pW
which is perpendicular to the ray I'x(p) is p? , so that df?(pW, pW) = 1. If we choose the
geodesic polar coordinates on M, (3.11) is valid for all tangent vectors which are orthornal
to vx(p) at vx(p) and its length equals 1 with respect to standard metric df?, so we know
the metric of M with respect to geodesic polar coordinates is

ds® = dp® + sinh? pd6?. (3.12)
In fact, we have already proved that M is H™ (—1), since (3.12) is the metric under the
representation of geodesic polar coordinates hyperbolic space form of H™ (71)[6].

Now we use a few words to prove that ¢ : M — H" (—1) is isometric homeomorphism,
H" (—1) is a spacelike hypersurface in L™!. So i : H" (—1) < L™! is isometric, hence we
only need to prove (i o ¢)*ds? = ds?,.

(iog)*ds? = Z (da’sinh p + a’ cosh ,odp)2 — (sinh pdp)?

i=1
n

=sinh?p Z (dai)2 + Z (ai)2 cosh? pdp? + 2a'da’ sinh p cosh pdp — sinh? pdp?
i=1 i=1

= dp? + sinh? pd6?, (3.13)
the last equality of (3.13) is provided by > (ai)z =1, 2a'da’ = 0, and (dai)2 is the

i=1 i=1 i=1
n .

standard metric of S~ (1) under the restriction of a’)2 =1, so we complete the proof

i=1

of the theorem.
At last we shall mention that we have not found any example to elucidate the assumption
that the function ® taking the extreme value on M is necessary.

REFERENCES

[1] Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc.
Japan, 14:3(1965), 333-339.

[2] Zheng Yongfan, On isometry of a complete Riemannian manifold to a sphere, Tsukuba, J. Math.,
18:1(1994), 135-143.

[3] Richard, R. & Crittenden, R.,, Geometry of manifold, Academic Press, New York, 1964.

[4] Klingenberg, W., Riemannian geometry, Walter de Gruyter, Berlin, 1982.

[5] Cheeger, J. & Ebin, D., Comparison theorem in Riemannian geometry, North Holland Publish Co.,
Amsterdam, 1975.

[6] Green, R. E. & Wu, H., Functions theory on manifolds which possess a pole, Lecture notes in Math.,
699, Springer-Verlag, Berlin, 1979.



