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(1.2) INVERSES OF OPERATORS
BETWEEN BANACH SPACES AND
LOCAL CONJUGACY THEOREM**
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Abstract

Let E and F be Banach spaces and f non-linear C1 map from E into F . The main result is
Theorem 2.2, in which a connection between local conjugacy problem of f at x0 ∈ E and a local

fine property of f ′(x) at x0(see the Definition 1.1 in this paper) are obtained. This theorem
includes as special cases the two known theorems: the finite rank theorem and Berger’s Theorem
for non-linear Fredholm operators. Moreover, the theorem gives rise the further results for some
non-linear semi-Fredholm maps and for all non-linear semi-Fredholm maps when E and F are

Hilbert spaces. Thus Theorem 2.2 not only just unifies the above known theorems but also
really generalizes them.
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§1. (1.2) Inverse and Local Fine
Property of a Family of Operators Tx

Let E and F be both Banach spaces, and B(E,F ) the set of all bounded linear operators

from E into F. An operator T+ ∈ B(F,E) is said to be a (1.2) inverse of T if TT+T = T

and T+TT+ = T+. If T+ satisfies only the first condition, then T+ is said to be an inner

inverse of T. For any T ∈ B(E,F ) with an inner inverse T+ ∈ B(F,E), we have

(i) T+T, TT+ are bounded projectors with the properties that R(TT+) = R(T ) and

R(IE − T+T ) = N(T ).

(ii) E and F have the direct sum decompositions as follows: E = N(T )+̇R(T+T ) and

F = R(T )+̇R(IF −TT+) respectively, where R(·) and N(·) denote the range and null space

of operator in the parenthesis and IF denotes identity in F (see, e.g. [1]).

Throughout the paper we suppose that X is a topological space and Tx : x → B(E,F ) is

continuous. Now we introduce an interesting conception for Tx as follows:

Definition 1.1. By saying that Tx is locally fine at x0 ∈ X, we mean that T0 = Tx0 has

a (1.2) inverse T+
0 ∈ B(F,E) and there exists a neighborhood U0 at x0 such that

R(Tx) ∩R(IF − T0T
+
0 ) = {0}, ∀x ∈ U0. (1.1)
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Example 1.1. Suppose that f : U ⊂ E → F is a non-linear C1 Fredholm map. If for

some x0 ∈ U , there is a neighborhood U0 at x0 such that either dim N(f ′(x)) or codim

R(f ′(x)) is constant in U0, then f ′(x) is locally fine at x0. Hereafter U is an open set in E.

Example 1.2. Suppose f : U ⊂ E → F is C1. If for some x0 ∈ U , there exists a

neighborhood U0 at x0 such that dim R(f ′(x)) =finite constant, ∀x ∈ U0, then f ′(x) is

locally fine at x0.

Example 1.3. Suppose that E and F are Hilbert spaces and, f : U ⊂ E → F is semi-

Fredholm map. If for some x0 ∈ U , there is a neighborhood U0 at x0 such that either dim

N(f ′(x)) or codim R(f ′(x)) is finite constant, ∀x ∈ U0, then f ′(x) is locally fine at x0.

Example 1.4. Suppose that f : U ⊂ E → F is C1 semi-Fredholm map. If for some

x0 ∈ U , f ′(x0) has a (1.2) inverse and, there is a neighborhood U0 at x0 such that either

dim N(f ′(x)) or codim R(f ′(x)) is finite constant, ∀x ∈ U0, then f ′(x) is locally fine at x0.

In order to show the examples above, we need Lemma 1.1 below, which extends Lemma

3 in [2] to Banach spaces. For short, in what follows, write N0, R0 for N(T0), R(T0), respec-

tively.

Lemma 1.1. Suppose that T0 ∈ B(E,F ) has an inner inverse T+
0 ∈ B(F,E) and,∧

: B(E,F ) → B(E,R0 ×N0) is defined by(∧
T
)
x = (T0T

+
0 Tx, (IE − T+

0 T0)x), ∀x ∈ E,

then we have

(i)
∧

is continuous,

(ii) there exists a neighborhood V0 at T0 such that

R(T0T
+
0 T ) = R0,

(∧
T
)
∈ B×(E,R0 ×N0), (1.2)

N(T0T
+
0 T ) =

(∧
T
)−1

(0, N0), ∀T ∈ V0, (1.3)

where B×(E,R0 ×N0) denotes the set of all invertible operators in B(E,R0 ×N0).

Proof. (i) By the definition of
∧
, for each x in E,

(∧
(T − S)

)
x = (T0T

+
0 (T − S)x, 0)

for arbitrary T and S ∈ B(E,F ). Then, obviously,
∥∥∧(T − S)

∥∥ ≤ ∥T0T
+
0 ∥∥T − S∥, and so

(i) follows.

(ii) First to show
∧
T0 ∈ B×(E,R0×N0). To this end, we will prove that N(

∧
T0) = {0}

and
∧

T0 is surjective. We see that if

0 =
(∧

T0

)
x = (T0T

+
0 T0x, (IE − T+

0 T0)x) = (T0x, (IE − T+
0 T0)x),

then x ∈ N0 and (IE − T+
0 T0)x = 0, so that x = 0. This proves N(

∧
T0) = {0}.

For each (x, y) ∈ R0 ×N0, taking u = T+
0 x+ y, we see that(∧

T0

)
u = (T0T

+
0 T0(T

+
0 x+ y), (IE − T+

0 T0)y) = (T0T
+
0 x, y) = (x, y),

i.e.,
∧

T0 is surjective. Thus, we have
(∧

T0

)
∈ B×(E,R0 × N0) and (

∧
T0)

−1(x, y) =

T+
0 x+ y.

Next we show (ii). Let M0 = Max(1, ∥T+
0 ∥). Then it is evident that{

T :
∥∥T −

(∧
T0

)∥∥ < M−1
0

}
⊂ B×(E,R0 ×N0)



No.1 MA, J. P. (1.2) INVERSES OF OPERATORS BETWEEN BANACH SPACES 59

(note ||(
∧

T0)
−1|| ≤ M0). Set

V0 = {T ∈ B(E,F ) : ||T − T0|| < (M0||T0T
+
0 ||)−1}.

We will show that V0 is the required neighborhood in (ii). Because∥∥∧T −
∧

T0

∥∥ ≤ ||T0T
+
0 ||||T − T0|| < M−1

0

for any T ∈ V0, we conclude
∧
T ∈ B×(E,R0 × N0) for any T ∈ V0. Given T ∈ V0, by

taking u = (
∧
T )−1(x, 0) for each x ∈ R0, it yields that (

∧
T )u = (x, 0), and so R(T0T

+
0 T ) =

R0, ∀T ∈ V0. Given T ∈ V0 for each x ∈ (
∧
T )−1(0, N0), obviously,(∧

T
)
x = (T0T

+
0 Tx, (IE − T0T

+
0 )x) ∈ (0, N0).

Therefore x ∈ N(T0T
+
0 T ), ∀T ∈ V0, i.e., the right hand side of (1.3) contains the left one.

On the other hand, given T ∈ V0, for each x ∈ N(T0T
+
0 T ),(∧

T
)
x = (0, (IE − T0T

+
0 )x) ∈ (0, N0).

This shows the converse inclusion. Thus we obtain (1.3).

The proof of Lemma 1.1 is completed.

In what follows, for short, write Tx, Nx and Rx for f ′(x), N(f ′(x)) and R(f ′(x)), respec-

tively.

Now we return to show the examples above.

Proof of Example 1.1. By the assumption of this example, dim Nx and codim Rx are

both finite for all x ∈ U . Therefore, E and F have the following direct sum decompositions

E = Nx+̇N−
x and F = Rx+̇R−

x , ∀x ∈ U . Clearly, Tx|N−
x
: N−

x → Rx is onto and one-to-one,

which gives rise a (1.2) inverse T+
x of Tx as follows

T+
x h =

{
(Tx|N−

x )−1, h ∈ Rx,
0, h ∈ R−

x

(see [1] for details). Thus, by Lemma 1.1, there is a neighborhood at x0 contained in U0,

without loss of generality, still written as U0, in which (1.2) and (1.3) are satisfied.

If dim Nx = dimN0 < ∞, ∀x ∈ U0, then it follows from (1.3) and N(T0T
+
0 Tx) ⊃ Nx

that N(T0T
+
0 Tx) = Nx. Note that N(T0T

+
0 Tx) = Nx + {u ∈ E : T̄x[u] ∈ R−

0 }, where
[u] ∈ E/Nx, T̄x[u] = Txu and R−

0 = R(IF − T0T
+
0 ), we conclude Rx ∩R−

0 = {0}.
If codim Rx = codimR0 < ∞, ∀x ∈ U0, then, since R(T0T

+
0 Tx) = R0, we see that

F = R0+̇R−
0 = Rx +R−

0 = Rx+̇R,

where R satisfies R−
0 = R+̇(Rx ∩ R−

o ). If R−
0 ∩ Rx ̸⊇ {0}, it could lead to the conclusion

that codim Rx = dimR < dimR−
o = codimRo, a contradition. Hence R−

0 ∩ Rx = {0} and

this shows Example 1.1.

Proof of Example 1.2. Suppose dim Rx = dim R0 < ∞, ∀x ∈ U0. It is easy to

see that in this case, both of codim Nx and dim Rx are finite. Therefore E and F can be

decomposed into the next direct sums E = Nx+̇N−
x and F = Rx+̇R−

x .

Thus, by virtue of the proof of Example 1.1, there is a neighborhood at x0, still written

as U0 in which (1.2) holds. So we have F = R0+̇R−
0 = Rx + R−

0 = R+̇R−
0 , where Rx =

R+̇(Rx ∩R−
o ). It yields that Rx ∩R−

0 = {0}. Thus Example 1.2 is proved.

Proof of Example 1.3. In view of the fact that each of semi-Fredholm operators in

Hilbert space possesses M. P. generalized inverse, which is also a (1.2) inverse, we can follow
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Example 1.1 to complete the proof.

Proof of Example 1.4. Since the existence of T+
0 is assumed there, the proof is entirely

similar to that in Example 1.3.

§2. Local Linearzation Theorem

We first prove the next Lemma 2.1 and Theorem 2.1, which will be needed in the sequel.

Lemma 2.1. If Tx satisfies that Rx = R0, ∀x ∈ X and T0 = Tx0 possesses an inner

inverse T+
0 ∈ B(F,E), then there exists a neighborhood U0 at x0 and a family of bounded

projectors Px with R(Px) = Nx, ∀x ∈ U0, such that lim
x→x0

Px = (IE − T+
0 T0).

Proof. Let U0 = {x ∈ X : ∥Tx − T0∥ < ∥T+
0 ∥−1}. Obviously, U0 is an open set in

X by the continuity of Tx. Noting that T0T
+
0 Tx = Tx in the case Rx = R0, we see that

Tx = T0(IE − T+
0 (T0 − Tx)), ∀x ∈ U0. Thus we get

Nx = (IE − T+
0 (T0 − Tx))

−1N0, ∀x ∈ U0. (2.1)

Put Sx = (IE − T+
0 (T0 − Tx))

−1(IE − T+
0 T0), Ŝx = (IE − T+

0 T0)(IE − T+
0 (T0 − Tx)).

Clearly, Sx and Ŝx are both in B(E) and depend continuously on x. It is also clear that

Px = SxŜx is projector in B(E) and depends continuously on x. It follows from (2.1) that

R(SxŜx) = Nx. So Px is the required. The proof is completed.

Theorem 2.1. If Tx is locally fine at x0 ∈ X, then there exist a neighborhood U0 at x0

and a family of bounded projectors Px with R(Px) = Nx such that lim
x→x0

Px = IE − T+
0 T0.

Proof. The local fine property of Tx at x0 implies that T0 has an inner inverse T+
0 ∈

B(F,E). Thus,by Lemma 1.1, there is a neighborhood U0 at x0 such that R(T0T
+
0 Tx) =

R0, ∀x ∈ U0. Let Sx = T0T
+
0 Tx. Obviously, Sx0 = T0 and Sx depend continuously on x. By

Lemma 2.1, in order to complete our proof, we only need to show N(Sx) = Nx. For this,

let us observe that N(Sx) = Nx + {u ∈ E : T̃x[u] ∈ R−
0 }, where T̃x and [u] are the same

as in the proof of Example 1.1. Since Rx ∩R−
0 = {0}, we then conclude that N(Sx) = Nx.

Hence, Theorem 2.1 is proved.

Now we shall give our local linearization theorem. First recall the following

Definition 2.1.[3] Suppose that f : U ⊂ E → F is C1. By saying that f can be locally

linearizated at x0 or f is locally conjugate to f
′
(x0) near x0, we mean that there exist two

neighborhoods U0 at x0 and V0 at 0, with two maps u and v, such that

(i) u : U0 → u(U0) and v : V0 → v(V0) with v(0) = f(x0) are both diffeomorphisms.

(ii) f(x) = (v ◦ f ′(x0) ◦ u)(x),∀x ∈ U0.

Theorem 2.2. Suppose that f : U ⊂ E → F is C1. If Tx = f ′(x) is locally fine at

x0 ∈ U , then f can be locally linearized at x0.

Proof. By Theorem 2.1, there are a neighborhood U0 at x0 and a family of bounded

projectors Px with R(Px) = Nx for any x ∈ U0, such that

lim
x→x0

Px = IE − T+
0 T0, (2.2)

where T0 = f ′(x0).

Let u(x) = T+
0 (f(x)−f(x0))+(IE−T+

0 T0)(x−x0). Obviously, u(x0) = 0 and u′(x0) = IE .

Moreover, we shall show the following results:
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(i) There exists an open disk DE
r (0) such that

u : u−1(DE
r (0)) → DE

r (0) is a diffeomorphism, (2.3)

Ny = (u′(y))−1N0, ∀y ∈ u−1(DE
r (0)). (2.4)

(ii) There exists an open disk DE
ρ (x0) in u−1(DE

r (0)) such that

T+
0 (f(x)− f(x0)) ∈ DE

r (0), ∀x ∈ DE
ρ (x0), (2.5)

u : DE
ρ (x0) → u(DE

ρ (x0)) is a diffeomorphism, (2.6)

(f ◦ u−1)(T+
0 (f(x)− f(x0)) + (IE − T+

0 T0)(x− x0))

= (f ◦ u−1)(T+
0 (f(x)− f(x0))), ∀x ∈ DE

ρ (x0). (2.7)

(iii) There exists an open disk DF
l (0) such that

T+
0 x ∈ u(DE

ρ (x0)), ∀x ∈ DF
l (0). (2.8)

In fact, by the inverse map theorem, (2.3) is direct. Since DE
ρ (x0) ⊂ u−1(DE

r (0)), (2.6)

is a direct result of (2.3).

Now we show (2.4). By differentation,

u′(y) = T+
0 f ′(y) + (IE − T+

0 T0) = T+
0 Ty + (IE − T+

0 T0),

which induces u′(y)Ny = (IE−T+
0 T0)Ny, ∀y ∈ u−1(DE

r (0)). Further, (2.2) bears a neighbor-

hood at x0 contained in u−1(DE
r (0)), without loss of generality, still written as u−1(DE

r (0)),

such that ∥Py − (IE − T+
0 T0)∥ < 1 for each y ∈ u−1(DE

r (0)). Hence, by [4, Section 4.6],

the range of (IE − T+
0 T0)Py is N0 (note R(IE − T+

0 T0) = N0), and so u′(y)Ny = N0, which

gives (2.4).

According to the continuity of T+
0 (f(x)− f(x0)) at x0, (2.5) is immediate.

Since T+
0 0 = 0 ∈ u(DE

ρ (x0)) and T+
0 ∈ B(F,E), (2.8) is obvious.

Next we show (2.7). Let y1 = T+
0 (f(x) − f(x0)) and y2 = y1 + (IE − T+

0 T )(x − x0)

(so y2 = u(x)). From (2.5) and (2.6) (note DE
ρ (x0) ⊂ u−1(DE

r (0)), we see that for any

x ∈ DE
ρ (x0), both of y1 and y2 belong to DE

r (0), so that

ty1 + (1− t)y2 = y1 + (1− t)(IE − T+
0 T0)(x− x0) ∈ DE

r (0)

for any x ∈ DE
ρ (x0) and each t ∈ [0, 1].

Consider Φ(t) = (f ◦ u−1)(y1 + (1− t)(IE − T+
0 T0)(x− x0)) : [0, 1] → F.

By differentiation,

d

dt
Φ(t) = (f ′ ◦ u−1)(ty1 + (1− t)y2) · ((u′)−1 ◦ u−1)(ty1 + (1− t)y2) · (T+

0 T0 − IE).

Noting that R(T+
0 T0 − IE) = N0 and (2.4), we obtain dΦ(t)

dt = 0 ∀t ∈ [0, 1]. Then (2.7)

follows.

We now proceed to construct v required by Definition 1.1.

Because of (2.8) and (2.6), we can define v(x) = (f ◦u−1 ◦T+
0 )(x)+ (IF −T0T

+
0 )x, ∀x ∈

DF
l (0). Obviously, v(0) = f(x0) and

v′(0) = T0 · (u−1)′(0) · T+
0 + (IF − T0T

+
0 ) = T0T

+
0 + (IF − T0T

+
0 ) = IF0 .

By the inverse map theorem we assert: there is an open disk DF
m(0) with 0 < m < l, such

that

v : DF
m(0) → v(DF

m(0)) is a diffeomorphism. (2.9)
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Because of the boundedness of T0, there is an open disk DE
q (x0) ⊂ DE

ρ (x0) such that

T0x ∈ DF
m(0), ∀x ∈ u(DE

q (x0)). (2.10)

Noting that (2.6) and (2.7) keep valid in DE
q (x0) since DE

q (x0) ⊂ DE
ρ (x0), we have

f(x) = (f ◦ u−1 ◦ u)(x) = (f ◦ u−1)(T+
0 (f(x)− f(x0)) + (IE − T+

0 T0)(x− x0))

= (f ◦ u−1)(T+
0 (f(x)− f(x0)), ∀x ∈ DE

q (x0).

Since (2.10), (2.9) and DF
m(0) ⊂ DF

l (0), (v ◦ T0 ◦ u)(x) is determined for each x ∈ DE
q (x0).

Thus we have

(v ◦ T0 ◦ u)(x) = (v ◦ T0)(T
+
0 (f(x)− f(x0)) + (IE − T+

0 T0)(x− x0))

= v(T0T
+
0 (f(x)− f(x0)))

= (f ◦ u−1)(T+
0 T0T

+
0 (f(x)− f(x0))) + (IF − T0T

+
0 )(T0T

+
0 (f(x)− f(x0)))

= (f ◦ u−1)(T+
0 (f(x)− f(x0))

for any x ∈ DE
q (x0). Combining the two results above, we see that

f(x) = (v ◦ f ′(x0) ◦ u)(x), ∀x ∈ DE
q (x0).

By (2.9) and (2.6), u : DE
q → u(DE

q (x0)) and ν : DF
m(0) → v(DF

m(0) are both diffeomor-

phisms. The proof is finished.

Because of Examples 1.1–1.4, the following are direct results of Theorem 2.2.

Theorem (Finite Rank).[3] Suppose that f : U ⊂ E → F is C1. If there is a

neighborhood U0 at x0 ∈ U such that dim R(f ′(x)) = finite constant, ∀x ∈ U0, then f can

be locally linearized at x0.

Corollary 2.1. Suppose that f : U ⊂ E → F is C1 Fredholm map. If there is a

neighborhood U0 at x0 ∈ U such that either dim N(f ′(x)) or codim R(f ′(x)) is finite constant

for any x ∈ U0, then f can be locally linearized at x0.

Corollary 2.2. Suppose that f : U ⊂ E → F is C1 semi–Fredholm map. If f ′(x0) has

a (1.2) inverse T+
0 ∈ B(F,E) and, there is a neighborhood U0 at x0 ∈ U such that either

dim N(f ′(x)) or codim R(f ′(x)) is finite constant for any x ∈ U0, then f can be locally

linearized at x0.

Corollary 2.3. Suppose that f : U ⊂ H1 → H2 is C1 semi-Fredholm map, where H1 and

H2 are Hilbert space. If there is a neighborhood U0 at x0 ∈ U such that either dim N(f ′(x))

or codim R(f ′(x)) is finite constant, then f can be locally linearized at x0.

Remark. In [5], when f : U ⊂ H → H is C1 and f ′(x) has close range, where H is a

Hilbert space, we gave a theorem on local linearizations for f .
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