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SINGLE BIRTH PROCESSES**

CHEN Mufa*

Abstract

The single birth process is a Markov chain, either time-continuous or time-discrete, valued

in the non-negative integers: the system jumps with positive rate from k to k + 1 but not to
k+ j for all j ≥ 2 (this explains the meaning of “single birth”). However, there is no restriction
for the jumps from k to k− j (1 ≤ j ≤ k). This note mainly deals with the uniqueness problem
for the time-continuous processes with an extension: the jumps from k to k + 1 may also be

forbidden for at most finite number of k. In both cases (time-continuous or -discrete), the
hitting probability and the first moment of the hitting time are also studied
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§1. Introduction

Let us start from the time-continuous case. Then, the Q-matrix of a single birth process

is as follows: qi,i+1 > 0, qi,i+j = 0 for all i ≥ 0 and j ≥ 2. Throughout the note, we

consider only totally stable and conservative Q-matrix: qi := −qii =
∑
j ̸=i

qij < ∞ for all

i ≥ 0. Due to the fact that the boundary of such Q-matrix is at most single exit, the

single birth processes consist of one of the most general class of Markov chains for which

the three classical problems (the uniqueness, the recurrence and the positive recurrence)

are all have computable criteria (see [5], or [1, Theorem 3.2.10 and Theorem 12.1.30] or [2,

Theorem 3.16 and Theorem 4.54]). Thus, the single birth processes are on the one hand

typical and fundamental and on the other hand, they are often used as a tool to study more

complex processes[1, 2, 5].

The three problems for single birth processes mentioned above were solved first in [6] by

using a probabilistic approach and then in [5] by using an analytic approach. In the latter

paper, an intention was made to include the uniqueness criterion for the processes with an

absorbing state (that is, q01 = 0). Unfortunately, the conclusion given in [5, Theorem 3 (ii)]

(also [1, Corollary 3.2.18]) is incorrect. A correction is given in [3].

In what follows, let qij = 0 for all j ≥ i+ 2 and suppose that N := max{i+ 1 : qi,i+1 =

0} < ∞. Note that for the single birth process, qi,i+1 > 0 for all i ≥ 0 and so N = max ∅ = 0

by convention. The main results of this note are the following
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Theorem 1.1. The Q-process is unique iff
∞∑

n=N

mn = ∞, where

mn = q−1
n,n+1

(
1 +

N−1∑
j=0

qnj +

n−1∑
k=N

mk

k∑
j=0

qnj

)
for n ≥ N . By convention,

∑
∅

= 0.

Theorem 1.2. Let N ≥ 1. Choose arbitrarily a positive sequence (bi : i ≤ N−1). Define

q̄i,i+1 = bi and q̄i = qi + bi if qi,i+1 = 0 and q̄ij = qij for other j ̸= i. Then the (qij)-process

is unique iff so is the (q̄ij)-process. In other words, the case of N ≥ 1 can be reduced to the

one of N = 0.

From the author’s knowledge, the presentation of Theorem 1.1 is still new. When N = 0,

Theorem 1.1 simplifies the previous result [5, Theorem 3 (i)] (or [1, Theorem 3.2.10] or [2,

Theorem 3.16]), where an extra sequence
(
F

(j)
k

)
was used (see also (2.1) below. The last

sequence is needed for the study of recurrence of the process). When N ≥ 1, Theorem 1.1

simplifies much more the main result of [3] in which four different sequences are employed.

Theorem 1.2 presents an alternative criterion for the uniqueness in the case of N ≥ 1.

The proofs of the theorems are given in the next section. Note that when N ≥ 1, the

recurrence and positive recurrence problems become trivial. Instead, we will study in Section

3 the hitting probability of τN (= the first time of the process hits the set {0, 1, · · · , N − 1})
and its first moment.

The study on the time-discrete analogs of the last two problems about the hitting time

as well as the recurrence and positive recurrence in the irreducible case is delayed to Section

4. Thus, in the next two sections, we restrict ourselves to the time-continuous case only

without further mentioning.

§2. Proof of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. The proof is simpler than but similar to the original one for

the case of N = 0. Here, we need only to sketch the main steps.

(a) It suffices to show that the maximal solution (u∗
i ) to the equation

ui =
∑
j ̸=i

qijuj/(λ+ qi), 0 ≤ ui ≤ 1, i ≥ 0

equals zero identically for some fixed λ > 0. When N ≥ 1, the set {0, 1, · · · , N − 1} consists

a closed subclass of the chain and so u∗
i = 0 for all i ≤ N − 1.

(b) Define q
(i)
k =

i∑
j=0

qkj (i < k, k ≥ 1) and
F

(k)
k = 1, k ≥ N,

F
(i)
k =

k−1∑
j=i

q
(j)
k F

(i)
j

/
qk,k+1, k > i ≥ N.

(2.1)

Then mn = q−1
n,n+1

(
1 + q

(N−1)
n +

n−1∑
k=N

q
(k)
n mk

)
, n ≥ N . By induction, we have

F (N)
n ≤ qN,N+1mn, n ≥ N. (2.2)



No.1 CHEN, M. F. SINGLE BIRTH PROCESSES 79

(c) Let (ui) be a solution to the equation

(1 + qi)ui =
∑
j ̸=i

qijuj , i ≥ 0 with uk = 0 for all k ≤ N − 1 and uN = 1. (2.3)

In view of (a) with λ = 1, we need to prove that (ui) is unbounded iff
∞∑

n=N

mn = ∞. From

(2.3), it follows that

un+1 − un = q−1
n,n+1

[ n−1∑
k=0

q(k)n (uk+1 − uk) + un

]
, n ≥ 0, (2.4)

and hence ui ↑ as i ↑. The key of the proof is to show that

mk ≤ uk+1 − uk ≤ (uN+1 − uN )F
(N)
k + ukmk, k ≥ N. (2.5)

To check (2.5), we use induction. Note that mN = q−1
N,N+1

[
1 + q

(N−1)
N

]
= uN+1 − uN and

by (2.4) we have

un+1 − un = q−1
n,n+1

[
q(N−1)
n +

n−1∑
k=N

q(k)n (uk+1 − uk) + un

]
, n ≥ N.

Suppose that (2.5) holds for all k: N ≤ k ≤ n− 1 and we now consider the case that k = n.

Then

un+1 − un ≥ q−1
n,n+1

[
q(N−1)
n +

n−1∑
k=N

q(k)n mk + un

]
≥ mn, n ≥ N + 1,

un+1 − un ≤ q−1
n,n+1

[
(uN+1 − uN )

n−1∑
k=N

q(k)n F
(N)
k + q(N−1)

n +
n−1∑
k=N

q(k)n mkuk + un

]
≤ (uN+1 − uN )F (N)

n + un

[
1 + q(N−1)

n +
n−1∑
k=N

q(k)n mk

]
/qn,n+1

= (uN+1 − uN )F (N)
n + unmn, n ≥ N + 1.

(d) Having (2.2) and (2.5) in mind, we can easily complete the proof. Refer to [1] or the

proof of (c) of either [1, Theorem 3.2.10] or [2, Theorem 3.16] for details.

Proof of Theorem 1.2. We adopt a probabilistic approach which goes back to [4].

Denote by (Xt) and
(
Xt

)
the minimal processes determined by (qij) and (q̄ij) respectively.

We need to show that (Xt) has at most finite number of jumps in every finite time-interval

iff so does
(
Xt

)
. Let

(
X̃t

)
denote the minimal process determined by the Q-matrix (q̃ij):

q̃i = 0 for all i ≤ N − 1 and q̃ij = qij for all i ≥ N . Then (Xt) has more jumps than (X̃t).

Note that for each i ≤ N − 1,
(
Xt

)
stays at i with the exponential law having parameter q̄i

and then jumps to other states. This is the only way
(
Xt

)
yields more jumps than

(
X̃t

)
.

Due to the conditional independence and the fact N < ∞, such jumps can be happened at

most finite times in a finite time-interval. Thus,
(
Xt

)
has at most finite number of jumps

more than
(
X̃t

)
in every finite time-interval. The same comparison holds for (Xt) and

(
X̃t

)
.

We have thus proved the required assertion.

§3. Hitting Probability and the First Moment

Theorem 3.1. Let N ≥ 1. Assume that for each i0 ≥ N , there exist some i1, · · · , im
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such that im ≤ N −1 and qi0i1qi1i2 · · · qim−1im > 0. Set τN = inf{t ≥ 0 : Xt ≤ N −1}. Then

Pi[τN < ∞] = 1 for every i ≥ N iff
∞∑

n=N

F
(N)
n = ∞, where

(
F

(k)
n

)
is defined by (2.1).

Theorem 3.2. Under the hypothesis of Theorem 3.1, EiτN < ∞ for every i ≥ N iff

sup
k≥N

k∑
s=N

ds

/ k∑
s=N

F (N)
s < ∞,

where dN = 0, dn =
(
1 +

n−1∑
s=N

ds
s∑

j=0

qnj
)
/qn,n+1, n > N .

Proof of Theorem 3.1 and Theorem 3.2. (a) Without loss of generality, one may

regard the set {0, · · · , N − 1} as a single point 0. The resulting Markov chain is a single

birth process with absorbing state 0. We have thus reduced the general case of N ≥ 2 to

the one of N = 1.

(b) Given an irreducible Markov chain, define a new Markov chain
(
X̃t

)
by setting the

origin as an absorbing state and set τ̃0 = inf
{
t ≥ 0 : X̃t = 0

}
. Then it is known (see [2,

Proposition 4.21 (1), Theorem 4.30 (1) and Lemma 4.19]) that the original chain is recurrent

(resp. positively recurrent) iff Pi[τ̃0 < ∞] = 1 (resp. Eiτ̃0 < ∞). We have thus reduced the

case of N = 1 to the one of N = 0. Now, the assertions follow from the recurrence (positive

recurrence) criteria for the single birth process, refer to [5], or [1, Theorem 12.1.30] or [2,

Theorem 4.54]).

Next, we introduce a simple sufficient condition for EiτN < ∞ for all i ≥ N .

Corollary 3.1. The condition of Theorem 3.2 holds if there exist constants c1 ≥ c2 ≥ 0

such that

Mn := c1

N∑
j=0

qnj + c2

[ n−1∑
k=N+1

k∑
j=0

qnj − qn,n+1

]
≥ 1, n ≥ N + 1. (3.1)

Proof. Define Gn = c1F
(N)
n − c2, n ≥ N . From (2.1) and the definition of (dn) given in

Theorem 3.2, it follows that
Gn = Mn/qn,n+1 +

n−1∑
j=N+1

q
(j)
n Gj

/
qn,n+1,

dn = 1/qn,n+1 +
n−1∑

j=N+1

q
(j)
n dj

/
qn,n+1, n ≥ N + 1.

(3.2)

Because GN = c1 − c2 ≥ 0 = dN and by (3.1),

GN+1 = MN+1/qN+1,N+2 ≥ 1/qN+1,N+2 = dN+1.

By using (3.1) and (3.2) again and induction, it follows that

dn ≤ Gn = c1F
(N)
n − c2 ≤ c1F

(N)
n for all n ≥ N

and hence

sup
n≥N

n∑
k=N

dk
/ n∑

k=N

F
(N)
k ≤ sup

n≥N
dn/F

(N)
n ≤ c1 < ∞.

§4. Time-Discrete Case

We now study the time-discrete analog of the processes discussed above. That is, Pij = 0
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for all j ≥ i+ 2 and N := max{i+ 1 : Pi,i+1 = 0} < ∞. When N = 0, the process is called

the time-discrete single birth process. In that case, the assertion that Pi[τN < ∞] = 1 (resp.

EiτN < ∞) is equivalent to the recurrence (resp. positive recurrence) of the process.

Our goal of the study is reducing the present case to the time-continuous one by using

the following Q-matrix

qij = Pij , j ̸= i; qi = 1− Pii, i ∈ E. (4.1)

Denote by (Xn) the Markov chain with transition probability (Pij) and redefine

τN = inf{n ≥ 0 : Xn ≤ N − 1}.

Theorem 4.1. The conclusions of Theorem 3.1, Theorem 3.2 and Corollary 3.1 for the

new τN all hold when the Q-matrix is specified by (4.1).

The following example was presented by Ya. G. Sinai in the author’s talk in his seminar

at Moscow State University (June, 1997). The question he asked and some physicists are

also interested in, as he mentioned, is the existence of an invariant measure for this Markov

chain.

Example. Let Pi,i+1 = 1/2, Pij = 1/(2i) for all i ≥ 1 and j ≤ i− 1. Then the chain is

ergodic and hence it has an invariant probability measure.

Proof. We have N = 0 and

qn0 = Pn0 =
1

2n
,

n−1∑
k=1

k∑
j=0

qnj −
1

2
=

n−1∑
k=1

k + 1

2n
− 1

2
=

n

2
− 1

n
, n ≥ 1.

Thus, condition (3.1) is satisfied with c1 = 8 and c2 = 1 and so the assertion follows from

Theorem 4.1 and Corollary 3.1. Actually, this chain is geometrically ergodic by using [2,

Theorem 4.31 (2)] with yj ≡ j.

To prove Theorem 4.1, we need a simple observation.

Lemma 4.1. Given a general, irreducible Markov chain with transition probability matrix

(Pij). The chain is recurrent (resp. positively recurrent) iff so is the process with Q-matrix

specified by (4.1).

Proof. (a) Recurrence. Fix an arbitrary point, say 0 ∈ E. Then we have

The chain (Pij) is recurrent

⇐⇒ The minimal solution to the equation xi =
∑
j ̸=0

Pijxj + Pi0, i ∈ E equals one

identically (by [2, Proposition 4.21 and (4.6)])

⇐⇒ The equation xi =
∑
j ̸=0

Pijxj , 0 ≤ xi ≤ 1, i ∈ E has only trivial solution zero

(by [2, Theorem 2.21])

⇐⇒ The equation xi =
∑
j ̸=0,i

Pij

1− Pii
xj , 0 ≤ xi ≤ 1, i ∈ E has only trivial solution zero

⇐⇒ The process with Q-matrix (3.1) is recurrent (by [2, Lemma 4.53]).

(b) Positive recurrence. By [2, Theorem 4.31 (1)], the chain (Pij) is positively recurrent
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iff for an arbitrarily fixed finite H ⊂ E, the equation
∑
j

Pijyj ≤ yi − 1, i /∈ H,∑
i∈H

∑
j

Pijyj < ∞
(4.2)

has a finite non-negative solution. On the other hand, by [2, Theorem 4.45 (1)], a (qij)-

process is positively recurrent iff for an arbitrarily fixed finite H ⊂ E, the equation
∑
j

qijyj ≤ −1, i /∈ H,∑
i∈H

∑
j ̸=i

qijyj < ∞
(4.3)

has a finite non-negative solution. Now, for the Q-matrix given by (4.1), the equations (4.2)

and (4.3) are equivalent.

Proof of Theorem 4.1. (a) When N = 0, the theorem follows from Lemma 4.1.

(b) When N ≥ 1, the proof of Theorem 3.1 and Theorem 3.2 given in the last section

enables us to return to the case of N = 0.

Remark. Theorem 4.1 can also be used to study some multi-dimensional Markov chains.

See for instance [2, Theorem 4.58] for an analog of the time-continuous result.
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