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Abstract

The authors study the existence of periodic solutions with prescribed minimal period for su-
perquadratic and asymptotically linear autonomous second order Hamiltonian systems without
any convexity assumption. Using the variational methods, an estimate on the minimal period

of the corresponding nonconstant periodic solution of the above-mentioned system is obtained.

Keywords Minimal period solutions, Second order Hamiltonian systems, Iteration

inequality, Variational method

1991 MR Subject Classification 58E05, 58F05, 34C25

Chinese Library Classification O19, O175.12

§1. Introduction and Main Results

In this paper, we consider the minimal period problem for the following autonomous

second order Hamiltonian systems

ẍ+ V ′(x) = 0, ∀x ∈ RN , (1.1)

where N is a positive integer. V : RN → R and V ′ denotes its gradient. In the text of this

paper, we denote by a · b and |a| the usual inner product and norm in RN respectively, and

by Ls(RN ) the set of all N ×N real symmetric matrices. We also denote L+
s (RN ) = {h ∈

Ls(RN ) | h is semi-positive definite }.
More precisely, we make the following assumptions on V .

(V1) V ∈ C2(RN ,R) and there exists h0 ∈ L+
s (RN ) such that

V (x) =
1

2
h0x · x+ Ṽ (x), ∀x ∈ RN .

(V2) Ṽ (x) = o(|x|2) as |x| → 0 .

(V3) Ṽ (x) ≥ Ṽ (0) = 0, ∀x ∈ RN .

(V4) There exist constants µ > 2 and r0 > 0 such that

0 < µṼ (x) ≤ Ṽ ′(x) · x, ∀|x| ≥ r0.

In his pioneering work[18] of 1978, Rabinowitz proved that, under the conditions (V1)–

(V4) with h0 = 0, the system (1.1) possesses a nonconstant periodic solution with any
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prescribed period T > 0. Moreover, Rabinowitz conjectured that the system (1.1) possesses

a nonconstant periodic solution with any prescribed minimal period under his conditions.

Since then, there are many papers on this minimal period problem[1−7,9−12,17,20]. Among

these results, most of them deal with convex Hamiltonian systems[6,7].

In the recent paper[13], by using the natural Z2-symmetry possesses by the system (1.1),

Long extended some ideas of Ekeland and Hofer[6,7] to the second order Hamiltonian systems

without any convexity assumptions and proved that, under the conditions (V1)–(V4) with

h0 = 0, for every T > 0, the system (1.1) possesses a nonconstant T−periodic even solution

with minimal period not smaller than T/(N + 2). The same ideas had been developed in

[14, 15] to study the case that V is even.

The goal of this paper is to establish an estimate on the minimal period of the corre-

sponding nonconstant periodic solution of (1.1) in the case that h0 ̸= 0.

For any τ > 0 and h ∈ Ls(RN ), let

T0(h) = −h, Tm(h) = (2πm/τ)2IN − h for m ≥ 1, (1.2)

where IN is the identity matrix in Ls(RN ). We define the indices of h by

iτ (h) =
∞∑

m=0

M−(Tm(h)), ντ (h) =
∞∑

m=0

M0(Tm(h)), (1.3)

where M+(·),M−(·) and M0(·) denote the positive definite, negative definite and null sub-

space of the selfadjoint linear operator defining it, respectively.

Using the ideas in [13], we obtain an estimate of the minimal period in terms of the

indices of h0.

Theorem 1.1. Suppose V satisfies (V1)–(V4). Then for every T > 0, the system

(1.1) possesses a nonconstant T -periodic even solution with minimal period not smaller than

T/(iT (h0) + νT (h0) + 2).

Let w0 be the greatest eigenvalue of h0. By a straightforward computation (see Corollary

2.3), iT (h0) + νT (h0) = N for every T ∈ (0, 2π/
√
w0). So we have

Corollary 1.1. Suppose that V satisfies (V1)–(V4). Then for every T ∈ (0, 2π/
√
w0),

the system (1.1) possesses a nonconstant T -periodic even solution with minimal period not

smaller than T/(N + 2).

If h0 = 0, we have w0 = 0 and iT (h0) + νT (h0) = N for any T > 0. We go back to the

results due to Long[13, Theorem 1.1]. See Remark 3.1 for further comparision.

Next we consider the asymptotically linear Hamiltonian systems, i.e., the potential func-

tion V satisfies

(V5) There exists h∞ ∈ L+
s (RN ) such that

G(x) = V (x)− 1

2
h∞x · x = o(|x|2) as |x| → ∞.

(V6) |G′(x)| is bounded and G(x) → +∞ as |x| → ∞.

Theorem 1.2. Suppose that V satisfies (V1), (V2), (V5), (V6) and the following

{x ∈ RN | V ′(x) = 0} = {0}. (1.4)

Then for every T > 0 satisfying

iT (h∞) + νT (h∞) /∈ [iT (h0), iT (h0) + νT (h0)], (1.5)
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the system (1.1) possesses a nonconstant T−periodic even solution with minimal period not

smaller than T/(iT (h∞) + νT (h∞) + 1).

Theorem 1.3. Suppose that V satisfies (V1)–(V3), (V5), (V6) and the following

(V7) h∞ − h0 ∈ L+
s (RN ) and h∞h0 = h0h∞.

Then for every T > 0 satisfying

iT (h∞) + νT (h∞) > iT (h0) + νT (h0), (1.6)

the conclusion of Theorem 1.1 holds.

Remark 1.1. (i) In Theorem 1.2 and Theorem 1.3, if νT (h∞) = 0, then the assumption

(V 6) can be dropped out.

(ii) The conditions (1.5) and (1.6) can be satisfied by many matrices. See Corollary 2.3,

Corollary 3.1 and Corollary 3.2.

§2. Computation of the Symmetric Morse Indices

For T > 0, let ST = R/(TZ) and ET = W 1,2(ST ,RN ). Recall that ET consists of those

z ∈ L2(ST ,RN ) whose Fourier series

z(t) = a0 +
∞∑
k=1

(
ak cos

(2π
T

kt
)
+ bk sin

(2π
T

kt
))

, (2.1)

where a0, ak, bk ∈ RN satisfies

∥z∥2 = T |a0|2 +
T

2

∞∑
k=1

(2π
T

k
)2

(|ak|2 + |bk|2) < ∞.

The inner product in ET is given by

⟨z, z′⟩ = Ta0 · a′0 +
T

2

∞∑
k=1

(2π
T

k
)2

(ak · a′k + bk · b′k). (2.2)

Notice that the norm ∥ · ∥ is equivalent to the usual W 1,2−norm.

We define the mentioned Z2-action on continuous functions with Z2 = {δ0, δ1} by

δ0x = x, δ1x(t) = x(−t), ∀x ∈ C(ST ,RN ). (2.3)

Define SET = {z ∈ ET | δ1z = z}. Then by easy computation we have

SET =
{
z(t) ∈ ET

∣∣∣ z(t) = a0 +
∞∑
k=1

ak cos
(2π
T

kt
)}

. (2.4)

For A(t) ∈ C(ST ,RN ) and A(t) being even about t = 0, we define an operator AT : SET →
SET by

⟨AT z, z
′⟩ = Ta0 · a′0 +

∫ T

0

(A(t)z · z′) dt, ∀z, z′ ∈ SET . (2.5)

Then AT is a linear compact selfadjoint operator on SET satisfying

dimM−(id−AT ) < +∞, dimM0(id−AT ) < +∞. (2.6)

Set

ϕT (y, z) =

∫ T

0

[ẏ · ż −A(t)y · z] dt, ∀y, z ∈ SET . (2.7)
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Then by (2.5) we have

ϕT (y, z) =
1

2
⟨(id−AT )y, z⟩, ∀y, z ∈ SET . (2.8)

Definition 2.1. Define

siT (A(t)) = dimM−(id−AT ), sνT (A(t)) = dimM0(id−AT ).

siT (A(t)) and sνT (A(t)) are called the symmetric Morse indices of A(t).

Theorem 2.1. For any T > 0 and h ∈ Ls(RN ), there holds siT (h) = iT (h), sνT (h) =

νT (h).

Proof. Let AT be the operator defined by (2.5) on SET corresponding to h. By (2.2)

and (2.4), the operator AT has explicit expressions

AT z = a0 + ha0 +

∞∑
k=1

( T

2πk

)2

hak cos
(2π
T

kt
)
,

where z(t) ∈ SET . Thus

(id−AT )z = −ha0 +

∞∑
k=1

(
IN −

( T

2πk

)2

h
)
ak cos

(2π
T

kt
)
. (2.9)

By a straightforward computation, we have

dimM⋆(id−AT ) =
∞∑

m=0

dimM⋆(Tm(h)), ⋆ = −, 0. (2.10)

Combining this with (1.3) and Definition 2.1 yields the conclusions.

As a direct consequence, we have

Corollary 2.1. For any h ∈ Ls(RN ) and T, T ′ > 0, we have

siT ′(h) = siT ((T
′/T )2h), sνT ′(h) = sνT ((T

′/T )2h).
lim

T→0+
siT (h) = dimM+(h), lim

T→0+
sνT (h) = dimM0(h).

By (1.2), (1.3), and an elementary computation, we have

Corollary 2.2. (i) For h1, h2 ∈ Ls(RN ), if h1 − h2 ∈ L+
s (RN ), then

siT (h1) + sνT (h1) ≥ siT (h2) + sνT (h2), ∀T > 0.

(ii) If h ∈ L+
s (RN ), for any T ′ ≥ T > 0, we have

siT ′(h) + sνT ′(h) ≥ siT (h) + sνT (h) ≥ N.

Moreover, if h = 0, we have siT (h) + sνT (h) = N, ∀T > 0.

Corollary 2.3. Suppose h ∈ Ls(RN ) and w is the largest eigenvalue of h.

(i) If w ≤ 0, for T > 0, there holds siT (h) = 0, sνT (h) = dimM0(h).

(ii) If w > 0, for 0 < T < 2π/
√
w, there holds

siT (h) = dimM+(h), sνT (h) = dimM0(h).

(iii) If w > 0, for T ≥ 2π/
√
w, there holds

siT (h) + sνT (h) ≥ dimM+(h) + dimM0(h) + 1.

Moreover, for T > 2π/
√
w, there holds siT (h) ≥ dimM+(h) + 1.
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Proof. Let λ1 ≤ λ2 ≤ · · ·λN = w be the eigenvalues of h. By (1.3) and Theorem 2.1 it

is easy to show that

siT (h) = #
{
(k,m)

∣∣ (2π
T

k
)2

< λm, 1 ≤ m ≤ N, k = 0, 1, 2, · · ·
}
, (2.11)

sνT (h) = #
{
(k,m)

∣∣ (2π
T

k
)2

= λm, 1 ≤ m ≤ N, k = 0, 1, 2, · · ·
}
. (2.12)

By (2.11) and (2.12), we get (i). If T < 2π/
√
w, then λN = w < ( 2πT )2. By (2.11) and

(2.12) we obtain (ii). Similarly, (2.11) and (2.12) imply that the conclusion (iii) holds.

For every T−periodic solution x of (1.1) which is even about t = 0, let A(t) = V ′′(x(t)).

Then the symmetric Morse indices of x, denoted by siT (x) and sνT (x), are defined to be

symmetric Morse indices of A(t), i.e., siT (x) = siT (A(t)), sνT (x) = sνT (A(t)).

We also denote by O(x) the greatest positive integer k such that x is T/k-periodic. The

following theorem, which estimates O(x) in term of siT (x), is given by Long[13,Theorem 4.2].

Theorem 2.2. Suppose V ∈ C2(RN ,R). For T > 0 and every non-constant even (about

t = 0) C2(ST ,RN )-solution x of (1.1), there holds O(x) ≤ siT (x) + 1.

§3. Minimal Period Problem for Hamiltonian Systems

In this section, we study the minimal period problem for the system (1.1). For T > 0,

let Z2 = {δ0, δ1}, ET = W 1,2(ST ,RN ) and SET be defined as in Section 2. For z ∈ ET , we

define

f(z) =

∫ T

0

[1
2
|ż|2 − V (z)

]
dt. (3.1)

Then f is Z2-invariant, i.e., f(δ1z) = f(z), ∀z ∈ ET . In [13], Long proved the following

proposition.

Proposition 3.1.[13] Suppose V ∈ C2(RN ,R). Then for every T > 0, we have

(1) f ∈ C2(SET ,R), and there hold

⟨f ′(x), y⟩ =
∫ T

0

[ẋ · ẏ − V ′(x) · y] dt, ∀x, y ∈ SET , (3.2)

⟨f ′′(x)y, z⟩ =
∫ T

0

[ẏ · ż − V ′′(x)y · z] dt, ∀x, y, z ∈ SET . (3.3)

(2) If x ∈ SET is a critical point of f on SET , then x is a C2(ST ,RN )-solution of (1.1),

and is even about t = 0.

(3) Conversely, if x ∈ C2(ST ,RN ) is a solution of (1.1), and is even about t = 0, then

x ∈ SET and x is a critical point of f on SET .

In order to find T−periodic even solution of (1.1), we need the following saddle point

theorem which was proved in [5, 8, 16, 19, 21].

Theorem 3.1. Let E be the Hilbert space with orthogonal decomposition E = X ⊕ Y ,

where dimX < ∞. Suppose that f ∈ C2(E,R) satisfies the (PS) condition and the following

conditions:

(F1) There exist ρ and α > 0 such that f(w) ≥ α, ∀w ∈ ∂Bρ(0) ∩ Y .

(F2) There exist e ∈ ∂B1(0) ∩ Y and r1 > ρ such that f(w) ≤ 0, ∀w ∈ ∂Q, where

Q = (Br1(0) ∩X)⊕ {re | 0 ≤ r ≤ r1}.
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Then

(1) f possesses a critical value c ≥ α, which is given by c = inf
h∈Γ

max
w∈Q

f(h(w)), where

Γ = {h ∈ C(Q,E) | h = id on ∂Q}.
(2) There exists an element w0 ∈ Kc ≡ {w ∈ E | f ′(w) = 0, f(w) = c} such that the

negative Morse index i(w0) of f at w0 satisfies i(w0) ≤ dimX + 1.

Proof of Theorem 1.1. For T > 0, let A0 be the operator defined by (2.5) on SET

corresponding to h0. By (V1), (2.8) and (3.1) we have

f(z) =
1

2
⟨(id−A0)z, z⟩ −

∫ T

0

Ṽ (z) dt, ∀z ∈ SET . (3.4)

We carry out the proof in several steps.

Step 1 Let X = M−(id−A0)⊕M0(id−A0), Y = M+(id−A0). Since h0 ∈ L+
s (RN ),

by (2.9) we have 1
T

∫ T

0
y(t) dt = 0, ∀y ∈ Y. Thus Sobolev inequality implies that

∥y∥∞ = max
t∈[0,T ]

|y(t)| ≤
( T

12

) 1
2 ∥y∥, ∀y ∈ Y. (3.5)

Combining this with (V3) yields that, for y ∈ Y ,

f(y) =
1

2
⟨(id−A0)y, y⟩+ o(∥y∥2) as y → 0.

This implies that there exist ρ, α > 0 such that

f(y) ≥ α, ∀y ∈ ∂Bρ(0) ∩ Y. (3.6)

Let e ∈ ∂B1(0) ∩ Y and set Q = {re | 0 ≤ r ≤ r1} ⊕ {Br1(0) ∩X}, where r1 is free for

the moment. By (V4) we have

Ṽ (x) ≥ c1|x|µ − c2, ∀x ∈ RN , (3.7)

where c1, c2 > 0. For z ∈ z− + z0 ∈ X, by (3.4), (3.7) and (2.6) we have

f(re+ z) =
1

2
⟨(id−A0)z−, z−⟩+

1

2
r2⟨(id−A0)e, e⟩ −

∫ T

0

Ṽ (z + re) dt

≤ 1

2
r2∥id−A0∥ −

1

2
∥(id−A0)

#∥−1∥z−∥2 − c1

∫ T

0

|z + re|µ dt+ c2T

≤ c3r
2 − c4∥z−∥2 − c5(∥z0∥µ + rµ) + c6.

Then there exists r1 > 0 such that

f(z) ≤ 0, ∀z ∈ ∂Q. (3.8)

Step 2 f satisfies the (PS) condition on SET , i.e. any sequence {uk} ⊂ SET satisfying

|f(uk)| ≤ M and

f ′(uk) → 0 as k → ∞ (3.9)

possesses a subsequence convergent in SET .

In fact, for large k and u = uk, by (V4), (3.4) and (3.7) we have

M + ∥u∥ ≥ f(u)− 1

2
⟨f ′(u), u⟩ =

∫ T

0

[1
2
Ṽ ′(u) · u− Ṽ (u)

]
dt

≥
(1
2
− 1

µ

)
µ

∫ T

0

Ṽ (u) dt−M1 ≥ M2∥u∥µL2 −M3 ≥ M4|u0|µ −M3,
(3.10)
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where u0 = 1
T

∫ T

0
u dt. This implies

|u0| ≤ M5(1 + ∥u∥)
1
µ , ∥u∥L2 ≤ M6(1 + ∥u∥)

1
µ . (3.11)

Now by (2.4), (2.5), (3.4), (3.9)-(3.11), we have

∥u∥2 = 2f(u) + ⟨A0u, u⟩+ 2

∫ T

0

Ṽ (u) dt

≤ 2M + T |u0|2 + ∥h0∥∥u∥2L2 + 2

∫ T

0

Ṽ (u) dt

≤ M7 +M8(1 + ∥u∥)2/µ +M9∥u∥.

This implies that {uk} is bounded. A standard argument shows that f satisfies (PS) condi-

tion.

Step 3 Now by Theorem 3.2 there exists a critical point x ∈ SET of f with f(x) = c ≥
α > 0 and the Morse index m−(x) of f at x on SET satisfies

m−(x) ≤ dimM−(id−A0) + dimM0(id−A0) + 1. (3.12)

By (V2) and Proposition 3.1, x is a non-constant C2(ST ,RN )- solution of (1.1) and is even

about t = 0. Thus by Definition 2.1, Theorem 2.1, Theorem 2.2 and (3.12) we have

O(x) ≤ siT (x) + 1 = m−(x) + 1 ≤ iT (h0) + νT (h0) + 2.

This means that the minimal period of x is not smaller than T/(iT (h0) + νT (h0) + 2). The

proof is complete.

Remark 3.1. (i) Corollary 1.1 is a direct consequenc of Theorem 1.1 and Corollary 2.3.

We omit the proof.

(ii) In [13, Theorem 1.2], Long got a similar result as our Corollary 1.1. But he required

that 0 < T < 1/
√
w0. So Corollary 1.1 extends Theorem 1.2 in [13].

In order to prove Theorem 1.2, we need the following the definition and the theorem

introduced and proved in [8], respectively.

Definition 3.1.[8] Let E be a C2-Riemannian manifold, D is a closed subset of E. A

family F(α) is said to be a homological family of dimension q with boundary D if for some

nontrivial class α ∈ Hq(E,D) the family F(α) is defined by

F(α) = {G ⊂ E : α is in the image of i∗ : Hq(G,D) → Hq(E,D)},

where i∗ is the homomorphism induced by the immersion i : G → E.

Theorem 3.2.[8] As in the Definition 3.1, for given E, D and α, let F(α) be a homo-

logical family of dimension q with boundary D. Suppose that f ∈ C2(E,R) satisfies (PS)

condition. Define

c ≡ c(f,F(α)) = inf
G∈F(α)

sup
w∈G

f(w). (3.13)

Suppose that sup
w∈D

f(w) < c and f ′ is Fredholm on

Kc = {x ∈ E : f ′(x) = 0, f(x) = c}. (3.14)

Then there exists x ∈ Kc such that the Morse indices m−(x) and m0(x) of the functional f

at x satisfy q −m0(x) ≤ m−(x) ≤ q.
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Proof of Theorem 1.2. For T > 0 satisfying (1.5), let f be defined by (3.1) and A∞

be the operator defined by (2.5) on SET corresponding to h∞. Set X = M−(id − A∞) ⊕
M0(id−A∞), Y = M+(id−A∞). For z ∈ Y , by (V5) and (V6), we have

f(z) =
1

2
⟨(id−A∞)z, z⟩ −

∫ T

0

G(z) dt ≥ 1

2
∥(id−A∞)#∥−1∥z∥2 − c1∥z∥

≥ δ = −1

2
∥(id−A∞)#∥c21. (3.15)

For z = z− + z0 ∈ X, by (V5) and (V6), we have

f(z) =
1

2
⟨(id−A∞)z−, z−⟩ −

∫ T

0

G(z) dt

≤ −1

2
∥(id−A∞)#∥−1∥z−∥2 + c1∥z−∥ −

∫ T

0

G(z0) dt. (3.16)

By (V6) and (2.6) we have ∫ T

0

G(z0) dt → +∞ as ∥z0∥ → ∞. (3.17)

Combining this with (3.16) yields that there exist r1 > 0 and β < δ such that

f(z) ≤ β, ∀z ∈ ∂Q, (3.18)

where Q = {z ∈ X | ∥z∥ ≤ r1}. It is well known that, under the conditions (V 5) and (V 6),

f satisfies (PS) condition (see [5, 22]).

Let S = Y , then ∂Q and S are homologically link[5,8]. Let D = ∂Q and α = [Q] ∈
Hk(SET , D), where k = dimX. Then α is nontrivial and F(α) defined by Definition 3.1 is

a homological family of dimension k with boundary D (see [5, 8]). It is well known that f ′

is Fredholm on Kc defined by (3.13) and (3.14). By (3.15) and (3.18) we obtain

sup
z∈D

f(z) ≤ β < δ ≤ c = c(f,F(α))

(see [5]). Thus by Theorem 3.2, there exists x ∈ Kc such that the Morse indices m−(x)

and m0(x) of f at x satisfies dimX − m0(x) ≤ m−(x) ≤ dimX. Combining this with

Proposition 3.1, (1.4), (1.5) and Theorem 2.1 yields that x is a nonconstant even ( about

t = 0 ) C2(ST ,RN )- solution of (1.1) which satisfies siT (x) ≤ iT (h∞) + νT (h∞). Thus by

Theorem 2.2 we get the conclusion.

In the following, we denote by w0 and w∞ the greatest eigenvalue of h0 and h∞ respec-

tively.

Corollary 3.1. Suppose the assumptions in Theorem 1.2 hold. Moreover we assume h0

is positive definite and w0 > w∞ ≥ 0. Then for every T ∈ (2π/
√
w0, 2π/

√
w∞), the system

(1.1) possesses a nonconstant T−periodic even solution with minimal period not smaller

than T/(N + 1).

Proof. For T ∈ (2π/
√
w0, 2π/

√
w∞), by Theorem 2.1 and Corollary 2.3 we have

iT (h0) ≥ N + 1 > N = iT (h∞) + νT (h∞).

Thus Corollary 3.1 follows from Theorem 1.2.

Proof of Theorem 1.3. For T > 0, let f be defined by (3.4). Let X = M−(id −
A0)⊕M0(id−A0), Y = M+(id−A0). Using the same arguments as Step 1 in the proof of
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Theorem 1.1, we get (3.6). Let A∞ be the operator defined by (2.5) on SET corresponding

to h∞. By (1.6), Definition 2.1 and Theorem 2.1 we have

Z = (M−(id−A∞)⊕M0(id−A∞)) ∩M+(id−A0) ̸= {0}.

Let e ∈ ∂B1(0) ∩ Z and set Q = {re : 0 ≤ r ≤ r1} ⊕ {Br1(0) ∩X}. By (V7) we have that

A∞ −A0 is semi-positive definite and

(id−A∞)(id−A0) = (id−A0)(id−A∞).

This implies that

(id−A∞)(M+(id−A0)) ⊂ M+(id−A0).

Especially, we have (id−A∞)e ∈ M+(id−A0). Hence for any z ∈ X, we have

⟨(A∞ −A0)e, z⟩ = −⟨(id−A∞)e, z⟩+ ⟨(id−A0)e, z⟩ = 0. (3.19)

Thus for any z = re+ z− + z0 ∈ Q, by (V5), (V6) and (3.19) we obtain

f(z) =
1

2
⟨(id−A∞)z, z⟩ −

∫ T

0

G(z) dt

=
1

2
r2⟨(id−A∞)e, e⟩+ 1

2
⟨(id−A0)z−, z−⟩

− 1

2
⟨(A∞ −A0)(z− + z0), z− + z0⟩ −

∫ T

0

G(z) dt

≤ −1

2
∥(id−A0)

#∥−1∥z−∥2 +M∥z−∥ −
∫ T

0

G(z0 + re) dt. (3.20)

Let X ′ = M0(id−A0)⊕ span{e}. By (2.6) we know that dimX ′ < +∞. Therefore by (V6)

we have ∫ T

0

G(z0 + re) dt → +∞ as ∥z0 + re∥ → +∞. (3.21)

So there exist M1,M2 ≥ 0 such that

−1

2
∥(id−A0)

#∥−1∥z−∥2 +M∥z−∥ ≤ M1, ∀z− ∈ M−(id−A0),∫ T

0

G(z0 + re) dt ≥ −M2, ∀z0 + re ∈ X ′.

By (3.21) there exists r2 > 0 such that

M1 −
∫ T

0

G(z0 + re) dt ≤ 0, if ∥z0 + re∥ ≥ r2. (3.22)

There also exists r3 > 0 such that

−1

2
∥(id−A0)

#∥−1∥z−∥2 +M∥z−∥+M2 ≤ 0, if ∥z−∥ ≥ r3. (3.23)

If r = 0, i.e., z = z− + z0 ∈ Q, by (V3) we have

f(z) =
1

2
⟨(id−A0)z, z⟩ −

∫ T

0

Ṽ (z) dt ≤ 0. (3.24)

Now let r1 = r2 + r3. By (3.20)–(3.24) we know that (3.8) holds. By a standard argument,

(V5) and (V6) imply that f satisfies (PS) condition[5,17,22]. Using the same arguments as

Step 3 in the proof of Theorem 1.1, we get the conclusion. The proof is complete.
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Corollary 3.2. Suppose that V satisfies (V1)–(V3), (V5)–(V7) and w∞ > w0 ≥ 0. Then

for every T ∈ [2π/
√
w∞, 2π/

√
w0), the system (1.1) possesses a nonconstant T−periodic

even solution with minimal period not smaller than T/(N + 2).

Proof. For any T ∈ [2π/
√
w∞, 2π/

√
w0), by Theorem 2.1, Corollary 2.2 and Corollary

2.3, we have

iT (h∞) + νT (h∞) > N = iT (h0) + νT (h0).

The conclusion follows from Theorem 1.3.
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