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SOME NEW FAMILIES OF FILTRATION FOUR
IN THE STABLE HOMOTOPY OF SPHERES

LIN JINKUN*

Abstract

This paper proves the existence of 4 families of nontrivial homotopy elements in the stable
homotopy of spheres which are represented by as2by,c2kn, asgn and ashphy, in the Eg’*—
terms of the Adams spectral sequence respectively, where ag, by, kn, gn and hphy, are the
known generators in the E;’*—terms whose internal degree are 4(p — 1) + 1, 2p"t1(p — 1),
(4p™tt + 2p™)(p — 1),(2p" 1 + 4p™)(p — 1), (2p™ + 2p™)(p — 1) respectively and p > 5 is a
prime, m > n+ 2 > 4.
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§1. Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at an odd prime
p. To determine the stable homotopy groups of spheres 7,5 is one of the central problem in
homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS)
Ey' = Ext%"(Zp, Z,) = m_sS, where the Ej'-term is the cohomology of the Steenrod
algebra A. If a family of generators x; in Fy" converges nontrivially in the ASS, then we
get a family of homotopy elements f; in 7.5 and f; is represented by z; € E5™ and has
filtration s in the ASS. So far, not so many families of homotopy elements in 7S have been
detected. For example, a family (,,—1 € mpnq4¢—35, which has filtration 3 and is represented
by hob,_1 € Exti’pnqﬂ(Zp, Z,), was detected in [2], where ¢ = 2(p — 1). The main purpose
of this paper is to detect some new families of homotopy elements in 7, S of filtration 4 in
the ASS.

From [3], Exti’*(Zp,Zp) has Z,-base consisting of the generators as,a?, agh,(n > 0),
gn(n > 0), ky(n > 0),b,(n > 0) and hphy,(m > n+ 2,n > 0) whose internal degree are
2¢+1,2,p"q + 1,p" g+ 2p"q, 2p" g + p"q, p"Tq and p"q + p™q respectively. Our main
result is the following theorem.
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Theorem A. Letp > 5. Then the products
asgn 0 € ExtianﬁQ”nQHqH(Zp, Zy), n>2,
ogky, #0 € Extizpn+1q+pnq+2q+l(2p, Zy), mn>2,
by £0 € Exti?" 7z >,
aghphm #0 € Bxti? aelat2atlz 7y m>n+2,n>2,
and they all converge in the ASS so that the corresponding homotopy elements in m,S are
nontrivial and of order p.

From [4, p.513, Corollary 9.6 (b)], gn, kn(n > 2), hnhm(n > 2,m > n+2) € Exty*(Z,, Z,)
do not converge in the ASS. From [6], b, € Ext%” nﬂq(Zp, Z,) admits a nontrivial differential
dop—1(by) # 0, i.e. b, also do not converge in the ASS. So, the homotopy elements obtained
in Theorem A are indecomposable elements in 7, S. They have filtration 4 in the ASS and,
by degree reasons, they should have filtration 3 in the Adams-Novikov spectral sequence
(ANSS)

Ey' = Extys pp(BP., BP.) = m_,5.
Let M be the Moore spectrum modulo an odd prime p given by the cofibration
Sy 54 ML ¥s. (1.1)
Theorem A leads to the following conjecture.

Conjecture. (1) There are generators gn,kn,bn(n > 0),hph,(m > n+2 > 2) in
Extyy, pp (BP.,BP.M) so that their images under the Thom map ® : Extyp pp(BP.,
BP.M) — Exti’*(H*M, Z,) (see [4, p.511-512]) are

B(gy) = ix(gn) € Ext}*(H*M, Z,),
®(kp) = in(ky) € Ext3*(H*M,Z,),
®(b,) = in(bn) € Exty (H*M,Z,),

D (hphi) = ix(hnhm) € Exty*(H*M, Z,),

where i, : Exty*(Zp, Z,) — Ext3*(H*M, Z,) is a homomorphism induced by i : S —s M.

(2) Let v1 be a known generator in Ext%(})*BP(BP*,BP*M), then the products vig,,
V3kn, V30, Vihphy, € Ext%;*BP(BP*,BP*M) are permanent cycles in the ANSS and the
homotopy elements obtained in Theorem A are represented in the ANSS by

e (03gn), Je(0ikn), Js(viby), Gi(vihahm) € Extyy pp(BP, BP,)
respectively, where
j t Exthp, pp(BPy, BP.M) — Exth}, pp(BP., BP,)

is the boundary homomorphism induced by j : M — XS.

(3) For some appropriate value of the integers r and n,m, the elements j.(vgn,),
G (VT k), 42 (0700), 7x (V] hyphuy) are nontrivial in Ext%’;*BP (BP., BP,) and they all converge
in the ANSS.

Theorem A will be proved by some technique on derivations of maps between M- module

spectra processing in the Adams resolution of certain spectra. The basic knowledge on this
technique is given in section 2 and the proof of Theorem A is given in Section 3.
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§2. Derivations of Maps between M-Module Spectra

In this section, we recall some basic knowledge on M-module spectra developed in [8].
Let M be the Moore spectrum modulo an odd prime p given by the cofibration (1.1).
M is a commutative ring spectrum with multiplication my; : M AN M — M such that
mpr(i A lpg) = 1y and there is My 0 XM — M A M such that (5 A 1y)may = 1y,
mayma = 0, mM(j A 1M) + (Z A 1M)mM = lyam, myT = —myy, Ty, = Ty, where
T:MANM — M A M is the switching map.

A spectrum X is called an M-module spectrum if the map p A lx : X — X is nulhomo-
topic, i.e. pAlx =0 € [X, X]. If X is an M-module spectrum, then the cofibration

X PP x MY A x A wx (2.1)
splits, i.e. there is a homotopy equivalence M A X = X V XX and there are maps mx :
MAX = X, mx : XX - M A X satisfying

mx(iAlx)=1x, (jAlx)mx =lx,
mxmx =0, mX(j/\lX>+(i/\1x)mX:1MAx.
The maps mx,mx are called the M-module actions of the M-module spectrum X.
Let X and X’ be M-module spectra. Then we define a homomorphism
d:[2°X, X] — 21X, X]
by d(f) = mx(1y A f)mx for f € [2°X’, X]. This operation d is called a derivation (of
maps between M-module spectra) which has the following properties.
Theorem 2.1.[8: p-210, Theorem 2.2} (4y g s derivative : d(fg) = fd(g)+ (—1)%89d(f)g for
feXX X], ge [XX" X', where X, X', X" are M -module spectra.
(ii) Let Y'Y be arbitrary finite spectra and h € [S"Y',Y]. Then d(h A f) = (—1)3€"h A
d(f) for f € [X* X', X].
(i) If X’ and X are associative M-module spectra, then

d>=0:[2X X]— [22X, X].

Consider the spectra V (k) given in [9] such that the Z,-cohomology
H*V(k) = E(Q07 Q17 e 7Qk);

the exterior algebra generated by Milnor basis elements Qo, Q1,- -+ , Q% in A. From [9] we
know that V(0) = M and V(1) exists for p > 3, being a ring spectrum for p > 5 and it is
the cofibre of the Adams map « : XM — M, where ¢ = 2(p — 1).

We briefly write V(1) as K which is the cofibre of « : 39M — M given by the cofibration

SIM % M KL sty (2.2)
Then, from [8, p.218 (3.7)], M and K are M-module spectra and d(«) = d(i') = d(j') = 0,
d(ij) = —1p.
§3. Proof of the Main Theorem

The main theorem A will follow easily from the following general Theorem 3.1.
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Theorem 3.1. Let p > 5 and x be the unique generator of Ex‘ci"t(Zp7 Zp) so that cox #
0e Exti”’tﬁqﬂ(Zp, Zy) and apzx # 0, hox # 0 are the unique generator of Extfl’tH(Zp,
Z,), Ext5 V92, Z,) respectively, where ag, ag, ho are the known generators in Ext%>+
(Zyp, Zp), Extzl(Zp,Zp), Exti{q(Zp, Z,) respectively.

Suppose that :

(1) a2z # 0 € Ext5>""2(Z,, Z,).

(2) Ext5T (7, Z,) = 0 forr =1,2,3.

(3) Ext (2, Z,) = 0 Ext’ V(2. 2,) = 0 or has unique generator a3z’ with

¢ € Ext (2, 2,) , Ext5"(Z,,Z,) = 0 or has unique generator apx’ with x' €
ExtS "2y, Z,) Then the product as - x € Extf4+2’t+2q+1(Zp,Zp) is a permanent

cycle in the ASS.
Before proving Theorem 3.1, we do some preliminaries. Let K’ be the cofibre of jj' :
Y 1K — ¥9t1S given by the cofibration in the following commutative diagram of 3 x 3
lemma in stable homotopy category (see [7, p.292-293])
sk L wetlg Py wetig

N g’ SF Nz e

Y K’ (3.1)
yar N\ o S N\
I V A

From the above diagram, we know that K’ also is the cofibre of i : 95 — M, i.e. we have

two cofibrations

98 2 M Uy K watlg, (3.2)
sl 2y petlg 2 gL ) (3.3)

Proposition 3.1. Let z : X918 — K’ and y : K — X918 be the maps in (3.1), then
the composition z-y = 1gs Ap: K' — K'.
Proof. Since y(z-y—1g Ap)=p-y—p-y=0,(z2-y—1g Ap) € v.[K',M] =0 by
the following exact sequence induced by (3.2)
O M) S K M) RS, M = 0,
where («i)* is monic since [M, M| has unique generator 1;;. The proof is finished.
The cofibre of 1x» Ap: K' — K’ is K/ A M and K’ A M also is the cofibre of aijj’ :

¥ ~1K — ¥ M, which can be seen by the following commutative diagram of 3 x 3 lemma in
stable homotopy category

KO k2 K
Ny Sz Nl Sy
zrtlg K'AM (3.4)

23 Neai 2 Nk A
>k sy % SK
That is, we have two cofibrations

Ay AN N VRESENE 3 ) (3.5)

UK Y s Y KA M 2 K. (3.6)
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Since d(i') = d(j') = 0 and d(ij) = —1a, d(aijj’) = 0 by Theorem 2.1(i). Hence, by [8,
p.211, Lemma 2.3], we have

Proposition 3.2. K’ A M is an M-module spectrum and d(y)) = 0 € [S>M,K' A M] ,
d(p) = 0 € XK' AM, K] , where d’s are derivations of maps between M -module spectra.

Now we proceed to prove Theorem 3.1. We first prove the following lemma.

Lemma 3.1. On the supposition of Theorem 3.1, we have

(1) There is unique generator hox € Extf’;‘*'l’H'QH(H*M7 Zy) so that its image under j :
Exts T (M, Z,) — BExti T2, Z,) s ju(hor) = hox and hox = (d).(z), where
(ai)s : Ext (2, Z,) — ExtS T (H* M, Z,) s the boundary homomorphism induced by
i X98 — M.

(2) Extf4+1,t+q+1(H*K/’ Zp) - 0.

Proof. (1) Consider the following exact sequence

Ext5 MY (7, 2,) 4 Bxt VY (HE M, 2,) 2 Bxt (7, 7,) 2
A by =P A » =P A by =P

induced by (1.1). From the supposition, the left group is zero and the right group has unique
generator hox. Since

p*(ho) =aphg =0 € ]i—JX'EIZL"q—"_l(Zp7 Zp)7

pe(hox) = 0 and so Ext% " (H* M, Z,) has unique generator higz so that j.(hox) = hoa.

Moreover, joi : $971S — S induces zero homomorphism in Z,-cohomology and it is
a map represented by hg € Extllq’q(Zp,Zp) in the ASS, then jai : X971S — S induces a
boundary homomorphism (jai), : Ext%'(Z,, Z,) — Ext%™""(Z,, Z,) which is a multipli-
cation by hg € Ext}%(Z,, Z,). Then j.(hox) = hox = (jai).(z) = j.(ai).(x) and we have
hox = (ai).(x) since Ext% ™" (7, 72,) = 0.

(2) Consider the following exact sequence
CO ot P (M, Z,) 2 ExtT VY (K Z,) 2 Bxt (2, Z,)

induced by (3.2). The left group has unique generator hoz = (i)« (), then imv, = 0. From
the supposition (3), the right group is zero, so the result follows.
Let
S22y y-2p, By-lp Y9 B =8
PRI
Y 2KG, YIKG, KGy=KZ,
be the minimal Adams resolution of S satisfying
(1) Es LIN KG, Loy Eoy LN Y. E, are cofibrations for all s > 0 which induce short
exact sequences 0 = H*E c—*> H*KG, b—:> H*E; — 0 in Z,-cohomology.
(2) KG; is a wedge sum of suspensions of Eilenberg-Maclane spectra of type K Z,,.
(3) m KGy are the Ef’t—terms, (bsCs_1)x : T KGy_1 — 1 KG are the dffl’t— differentials
of the ASS and K G = Ext%'(Z,, Z,). Then
LY s E A Y Y e A Y Y Y
ll_)g Aly J,Bl A ly ll_)o Aly
Y 2KGy NY YIKGLAY KGoAY
is an Adams resolution of arbitrary finite spectrum Y.



98 CHIN. ANN. OF MATH. Vol.20 Ser.B

Proof of Theorem 3.1. By Lemma 3.1(1) and the following exact sequence induced by
(L.1)

0 = Ext’ 2 (5o M, Z,) 5 Bxt® U (M, HE M) D Bxtt P (B M, Z,) D
we know that Ext%™" """ (H*M, H*M) has a unique generator hor so that i*(hoz) =
hox € Ext% ™" (H* M, Z,,), where the left group is zero by supposition (2) and p* (h,z)
= p*(ai).(z) = (ai)wp™(2) = uiups(z) = 0.

Recall that
T VNV A oy N A
JZ_)Q/\lM ll_)l/\].M J,BO/\]'M
Y 2KGy A M YIIKGLAM KGonM
is an Adams resolution of M, then there is a d;-cycle hox € Ti4q+1HK Gs1 A M which repre-
sents hox € Extf4+1’t+q+1(H*M, Zp). Since KGsy1 A M is an M-module spectrum, there is
a di-cycle hAo—J/c € X9t M, KG4y 1 A M] which represents E&/c € Extf4+1’t+q+1(H*M, H*M)
and satisfies ES:E - i = hgz. Moreover,

d(hoz) € [SHT2M, KGyypy A M] =0

by the following exact sequence induced by (1.1)

0= Toprqis(KGor1 A M) 2o SN K Gy A M)~ msqia(KGapr AM) =0,
where both side of groups are zero since w44, KGyr1 = Ext "9 (Z,.2,) = 0 for
r =1,2,3 by supposition (2).

Now we first prove that (€511 A1k an) (i, AY)(hox) = 0 € [S1T9F2S, E o AK'AM],
where ¢ : M — K’ A M is the map in (3.6). That is to say, we will prove that 1, (hor) €
Extf4+1’t+q+2 (H*K' NM, Z,) is a permanent cycle in the ASS.

Recall that v : M — K’ is the injection map in (3.2), then (1xq,,, A v)(hoz) - i €
Tirqr1KGei1 A K’ is a dy-cycle which represents an element in Ext%™ "™ (H*K’ 7).
However, this group is zero by Lemma (3.1)(2), i.e. (1xq.,, /\U)U/L(;}) 1 € g1 KGep1 ANK'
is a dy-boundary, so (1xg,,, A v)(ﬁ(\;v) i = (bsy1Cs A 1+ )g’ for some g’ € Tirqr1 KGs NK'
and we have

(o1 Ak (1K, AV)(hot) - ij = 0. (3.7)
Recall from (3.4) that there is a factorization v = (1x Aj)Y : TM Uy KIAM ES YK,
then from (3.7) and (3.5) we have
(Corr A Licrann) Lk, A0)(how)ig = (g, A lir AD)f

for some f € [SPTITIM, Eg o A K'). Hence (@541 Algian)(1g,,, Alx Ad)f = 0 and so by
(3.5) we have

(ast1 A1) f = (1g,, ANlgs Ap)fo for some fy € [ETIM, Egyq A K]

Thus f = (Cs11 A 1g+)g for some g € [T M, KG4y1 A K'] and we have
(Cor1 A Liran) 1k, A W) (how)ig = (Eayr Alioant) (kG ALir Ad)g. (3.8)

It follows that (bs+263+1 N 1K’/\M)(1KG'3+1 ANlgr A i)g = 0, and (b3+255+1 AN 1K’)g =
(1kG.o N1k Ap)ge = 0 (with go € [EFIHM KGyyo A K']) since 1ga, ., Al Ap

s+2
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= 0. That is, g € [SF9H M, KG,.1 A K'] is a dj-cycle which represents an element in
Extffl’HqH(H*K’, H*M). We claim that this group has a unique generator v, (hox), this
can be proved as follows.

Consider the following exact sequence induced by (3.2)
Ext’ (Zy, H*M) “% Ext® O (M, H* M)
2 Bxt TN H K B M) 2 ExtSH (2, H M),

where Extf4+1’t+q+1(H*M, H*M) has a unique generator l;(;:. So, it suffices to prove Extjt
(Zp, H*M) = 0 = Ext’""(Z,, H*M). This follows from the following exact sequences
P ExtSTVN(Z,, 2,) L Bxtt T (2, H M) s Bxt Y (Z,, Z,),
Ext Y (Z,, Z,) 2 Bxt’ (Zy, H* M) —— Ext’ (2, Z,) 2
induced by (1.1), where the upper right group is zero by supposition (3) and the upper left
group has a unique generator apx = p*(x) so that im j* = 0, the lower left group is zero or
has a unique generator apz’ = p*(z’) by the supposition (3) so that im j* = 0 , the lower
right group has unique generator x satisfying p*x = apx # 0 € Exti1+1’t+1(Zp, Zp) so that
im¢* = 0. This proves the claim.
Then g = A+ (1ka,,, Av)(hozr) modulo a d;- boundary with A € Z, and (3.8) becomes
(Csr1 ANoanm)(Akaoyy AY)(hox)ij
= (ES+1 A\ 1K’/\]\/I)(1KG5+1 ANlgr A i)(lKG5+1 A ’U)(ho.’l,')7 (39)
where we omitted the scalar A € Z,, which is inessential in the argument below.

Now we will use some technique on derivations of maps between M-module spectra. The
spectra Fgio A K' AN M, KGgy1 AN K' ANM and KGgy1 A M are M-module spectra with
M-module structure determined by the right M | then the derivations d(¢s41 A lgian) =
Cs+1Nd(1granr) =0, d(1ka, , AY) = 1ka,,, Ad()) = 0 (see Theorem 2.1(ii) and Proposition
3.2). So, by Theorem 2.1(i), the derivation of the left-hand side of (3.9) equals to —(Cs+1 A
Lgran)(Ixa, A1) (hox) since d(hoz) = 0 and d(ij) = —1p.

Moreover, we consider the derivation of the right-hand side of (3.9). Note that KGsy is
an M-module spectrum and we write the M-module action as mg : M A KGgs41 — KGg41,
mg : YKGs11 — M NKGgiq. Then KG,q1 A K’ also is an M- module spectrum with
M-module action

magAlg  MAKGo 1 ANK' —  KGei1 ANK/,
mg ANg : XKGepn NK' — MAKG 1 ANK'
By applying d to (3.9) we have
(Cor1 ANMram)(Axa,., ANY)(hox)
= (esr1 Arrnan)d(1xG,a Alir A) - (LG A0)(Rot)
+ (53+1 A\ 1K’/\M)(1KG3+1 ANl A ’L')d(lKGSJrl 74\ ’U) . (hox) (310)

Since hox € [SHHIM, KGypy A M] is a dy-cycle, ie. (bsiotsrt A La)(hoz) = 0, then

d(1ka,,, Av) - (hoz) € [BTIT2M, KGoyq A K'] also is a dy-cycle. To check this, we need to
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prove the commutativity

(b5+255+1 AN ]-K’) . d(]-KGs_H A U) = d(lKGs+2 A U) . (b5+255+1 AN 1M)

Note that
d(lKGSJrl A ’U) = (mG A 1K’)(1M A 1KGs+1 A U)(T/\ 1M)(1KG3+1 /\m),

where m : XM — M A M is the M-module action of M. Then it suffices to prove the
following diagram commutes (up to homotopy)

MAKGs1 % KGen

llM A 634_2534_1 l63+258+1

MAKG. s % KGepo
Consider the induced homomorphism in Z,-cohomology. Since there is a homotopy equiv-
alence M N KGs11 = KGs41 VEKGg41 and mg : M AN KGsy1 — KGsyq is the projec-
tion, m¢, : H*(KGs41) =& H* (M N KGs11) = H*(M) @ H*KG,41 is the injection, i.e.
mi(c) =17®ce€ H*M ® H*KGy11 for 7 € H°M and any ¢ € H*KGj41,5 > 0. Hence, for
any a € H* KG9,

Mg (bs2Cs+1)" (@) = 7 ® (bs12Cs11)" (a)
= (1as Absi2Cei1)* (T ®a) = (1as A bsrabsi1) mé(a).
This proves the above commutativity and so d(1xq,,, Av)(hox) € [SHHIT2M, KG oy AK'] s
a di-cycle which represents an element in Ea:tsA+1’t+q+2 (H*K',H*M). However, this group
is zero, this follows from the following exact sequence induced by (3.2)
Ext’ ™ T2 (M, H M) 2 Ext ST (K HM) 2 Extt TN (2, HM),
where the left group is zero by Ext’t" 9" (7, Z,) = 0 for r = 1,2,3 and the right group is

also zero by Extfl’tH(Zp, Z,) = 0 or has a unique generator a3z’ (see the supposition (3))

A

and Ext™""(Z,, Z,) has a unique generator agx satisfying a3z # 0. Hence, d(1ka,,,

v) - (hox) is a di-boundary and so (3.10) becomes
(41 ALioarr) (1 Guys A 9) (o)
= (s Maonan)d(Li s AL AD) - (L, Av) (o). (3.11)

Recall from (3.7) that we have (1xq,,, A v)(lfzgg)ij = (bsy 165 A 1x1)g" - j. Moreover, by
the same reason as stated above, we have the commutativity

d(l}((;'sJrl Nl A 7,) . (bs-l,-lés A IK/) = (bs-l,-lés A lK'/\M) . d(lKGs ANlgr A Z)

(Note : Here, we need only to check the commutativity g (bsy1¢s) = (1ar Abgy1Es )M and
this can be checked by the induced homomorphism in Z,-cohomology.)
Then, from (3.11) we have

(Csr1 A lioan)(IkG, ., A ) (how)i
= (o1 A goan)d(lka, . A Ai) - (k. Av)(hox)ij =0,
and so
(541 A Lirans) (Lo, AP)(ho) i = f3-p for some f3 € TyiqyoBaya AK AM
= (g, o Ngianm AD)fz =0. (3.12)
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This shows that 1, (hor) € Ext’T"" "2 (H*K' A M, Z,) is a permanent cycle in the ASS.
Let L be the cofibre of a; = jai : ¥971S — S given by the cofibration

we-tg o g p I g (3.13)
and consider the following commutative diagram of 3 x 3 lemma in stable homotopy category
M — LAK A sig
N AV AE N A
K AW (3.14)

o ANl N S Nee
YIlK — Sating - M
Note that j'(aq A 1g) = «ijj’, then XIW = 9K’ A M which is the cofibre of aijj’ :
YLK — $9TLM (see (3.6)). Then we have a cofibration
A S NG (GG S I VR ) V) (3.15)

Since (i Alk)i’ : M — L A K induces an epimorphism, then e : XK' A M — XM induces
zero homomorphism in Z,-cohomology. Also from (3.14) we have ep = a : XIM N
SIUKAM - M.

Now it follows from (3.12) that there is an f’ € 74 q10Es41 A K' A M such that (bsy 1 A
Lgiam)f' = (1kG.ya A ¥)(hoz). Then

(ESJrl A 1M)(1Es+l N G)f/ = (1KGS+1 N €¢)(m) =0
since (1xq,,, Ne) =0. Thus (1g,,, A€)f' = (as41 ALln)f” for some f” € myyoq12FEsioa ANM
and
boio(1p, s NG = o € myyog i1 KGoyo = Ext’>"2t (7, 7,).
This is because (apay - -+ as A Lgran)f € m K’ AN M is represented by
V. (hor) € ExtS VI (HY K A M, Z,)
in the ASS. Then
Aoy ast1(1g, o AJ)f" = (G0@1 - as)(1g, ., Aje)f € mS
must be represented by
jeesth(ho) = jua(how) = jeanauil(z) = agw # 0 € Ext ™20 (7, Z,)
in the ASS. Here we use the fact that the following composition
Ext’!(Z,, Z,) ~ Ext'(H* M, Z,) 25 ExtS 0 (H M, 7,)
Sy ExtS 2R (e 7)) 2 Extt et (7 7))
is a multiplication by ay € Ext3*%"(Z,,7,). (Note : this fact follows from that ja2i €
Taq_18S is represented by ao € Ext%°77(Z,, Z,) in the ASS). Hence
g € Exti Ptz 7))

is a permanent cycle in the ASS and the proof of Theorem 3.1 finishes.

Proof of Theorem A. Consider x = gy, kn(n > 2),b,(n > 1) and hphpy(n > 2,m >
n+2) in Ext}"(Z,, Z,) with s = 2,t = p"*'q + 2p"q,2p" " q + p"q,p"'q and p"q +p™q
respectively. We need to check that these elements satisfy the conditions of Theorem 3.1.
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From [1], the Z,-base of Ext%*(Z,, Z,) has been completely determined. From [1, p.110,
Table 8.1] we know that

(1) apz # 0, hox # 0 is the unique generator of Ext% (2, Z,), Ext%""9(Z,, Z,) respec-
tively. (Note : the name of ag, ho in [1, Table 8.1] are h_1, hg. The names of g,,, ky, by, in [1,
Table 8.1] are hy 21, hn,w,Xn respectively. Moreover, in these degrees, there are no other
generators).

(2) Ext%T (7, 2,) = 0 for r =1,2,3 .

(3) BExt}"(Zp, Z,) = 0, Ext%"(Z,,Z,) = 0 or has a unique generator a2h,, when
t = pntly. Exti’tﬂ(Zp, Z,) = 0 or has a unique generator agh,+1 when t = p"*1q, where
t = p" g+ 2pnq, 2p" g + pTg(n > 2), p"tlg(n > 1) or pg+p™q(n > 2,m > n+2).

From [10], the Z,-base of Exti’*(Zp, Zp) has been completely determined. From the table
listed in [10, Theorem 4.1], we know that

(1) agz £0 € Exti’t“q"'l(Zp, Zyp), where aagn, aoky,, agby,, ashy,hy, are corresponding to
the generators in [10, Theorem 4.1] of number (31), (32), (23), (22) respectively.

(2) a2z # 0 € Exty'(Z,, Z,), where a2gn, a3k, a3b,, a3hnh.y, are corresponding to the
generators in [10, Theorem 4.1] of number (47), (48), (10), (16) respectively.

Then, all the conditions of Theorem 3.1 are satisfied for x = g,,k,(n > 2),b,(n >
Dy hphm(n > 2,m > n+2)in Exti*(Zpr) and so we conclude that asgy, sk, (n >
2),asb,(n > 1), achphy,(n > 2m > n+2)in Exti’*(Zp,Zp) are permanent cycles in the
ASS.

From [3], Ext"?Y(Z,, Z,) = 0 for t = p"*lq+2p"q, 2p" g+ p"q,p" g and p"q+p™q,
and then aggn, agk,(n > 2), asb,(n > 1), aahphm(n > 2,m > n +2) € Exty*(Z,, Z,)

cannot be hit by differentials in the ASS. This completes the proof of Theorem A.
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