
Chin. Ann. of Math.
20B: 1(1999),93-102.

SOME NEW FAMILIES OF FILTRATION FOUR
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Abstract

This paper proves the existence of 4 families of nontrivial homotopy elements in the stable

homotopy of spheres which are represented by α2bn,α2kn, α2gn and α2hnhm in the E4,∗
2 -

terms of the Adams spectral sequence respectively, where α2, bn, kn, gn and hnhm are the

known generators in the E2,∗
2 -terms whose internal degree are 4(p − 1) + 1, 2pn+1(p − 1),

(4pn+1 + 2pn)(p − 1),(2pn+1 + 4pn)(p − 1), (2pn + 2pm)(p − 1) respectively and p ≥ 5 is a
prime, m ≥ n+ 2 ≥ 4.

Keywords Stable homotopy of spheres, Adams spectral sequence, Derivations of

maps, M -module spectra

1991 MR Subject Classification 55Q45

Chinese Library Classification O189.23

§1. Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at an odd prime

p. To determine the stable homotopy groups of spheres π∗S is one of the central problem in

homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS)

Es,t2 = Exts,tA (Zp, Zp) =⇒ πt−sS, where the Es,t2 -term is the cohomology of the Steenrod

algebra A. If a family of generators xi in E
s,∗
2 converges nontrivially in the ASS, then we

get a family of homotopy elements fi in π∗S and fi is represented by xi ∈ Es,∗2 and has

filtration s in the ASS. So far, not so many families of homotopy elements in π∗S have been

detected. For example, a family ζn−1 ∈ πpnq+q−3S, which has filtration 3 and is represented

by h0bn−1 ∈ Ext3,p
nq+q

A (Zp, Zp), was detected in [2], where q = 2(p− 1). The main purpose

of this paper is to detect some new families of homotopy elements in π∗S of filtration 4 in

the ASS.

From [3], Ext2,∗A (Zp, Zp) has Zp-base consisting of the generators α2, a
2
0, a0hn(n > 0),

gn(n ≥ 0), kn(n ≥ 0), bn(n ≥ 0) and hnhm(m ≥ n + 2, n ≥ 0) whose internal degree are

2q + 1, 2, pnq + 1, pn+1q + 2pnq, 2pn+1q + pnq, pn+1q and pnq + pmq respectively. Our main

result is the following theorem.
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Theorem A. Let p ≥ 5. Then the products

α2gn ̸= 0 ∈ Ext4,p
n+1q+2pnq+2q+1

A (Zp, Zp), n ≥ 2,

α2kn ̸= 0 ∈ Ext4,2p
n+1q+pnq+2q+1

A (Zp, Zp), n ≥ 2,

α2bn ̸= 0 ∈ Ext4,p
n+1q+2q+1

A (Zp, Zp), n ≥ 1,

α2hnhm ̸= 0 ∈ Ext4,p
nq+pmq+2q+1

A (Zp, Zp), m ≥ n+ 2, n ≥ 2,

and they all converge in the ASS so that the corresponding homotopy elements in π∗S are

nontrivial and of order p.

From [4, p.513, Corollary 9.6 (b)], gn, kn(n ≥ 2), hnhm(n ≥ 2,m ≥ n+2) ∈ Ext2,∗A (Zp, Zp)

do not converge in the ASS. From [6], bn ∈ Ext2,p
n+1q

A (Zp, Zp) admits a nontrivial differential

d2p−1(bn) ̸= 0, i.e. bn also do not converge in the ASS. So, the homotopy elements obtained

in Theorem A are indecomposable elements in π∗S. They have filtration 4 in the ASS and,

by degree reasons, they should have filtration 3 in the Adams-Novikov spectral sequence

(ANSS)

Es,t2 = Exts,tBP∗BP
(BP∗, BP∗) =⇒ πt−sS.

Let M be the Moore spectrum modulo an odd prime p given by the cofibration

S
p−→ S

i−→M
j−→ ΣS. (1.1)

Theorem A leads to the following conjecture.

Conjecture. (1) There are generators gn, kn, bn(n ≥ 0), hnhm(m ≥ n + 2 ≥ 2) in

Ext2,∗BP∗BP
(BP∗, BP∗M) so that their images under the Thom map Φ : Ext2,∗BP∗BP

(BP∗,

BP∗M) −→ Ext2,∗A (H∗M,Zp) (see [4, p.511–512]) are

Φ(gn) = i∗(gn) ∈ Ext2,∗A (H∗M,Zp),

Φ(kn) = i∗(kn) ∈ Ext2,∗A (H∗M,Zp),

Φ(bn) = i∗(bn) ∈ Ext2,∗A (H∗M,Zp),

Φ(hnhm) = i∗(hnhm) ∈ Ext2,∗A (H∗M,Zp),

where i∗ : Ext2,∗A (Zp, Zp) → Ext2,∗A (H∗M,Zp) is a homomorphism induced by i : S −→M .

(2) Let v1 be a known generator in Ext0,qBP∗BP
(BP∗, BP∗M), then the products v21gn,

v21kn, v
2
1bn, v

2
1hnhm ∈ Ext2,∗BP∗BP

(BP∗, BP∗M) are permanent cycles in the ANSS and the

homotopy elements obtained in Theorem A are represented in the ANSS by

j∗(v
2
1gn), j∗(v

2
1kn), j∗(v

2
1bn), j∗(v

2
1hnhm) ∈ Ext3,∗BP∗BP

(BP∗, BP∗)

respectively, where

j∗ : Ext2,∗BP∗BP
(BP∗, BP∗M) −→ Ext3,∗BP∗BP

(BP∗, BP∗)

is the boundary homomorphism induced by j :M → ΣS.

(3) For some appropriate value of the integers r and n,m, the elements j∗(v
r
1gn),

j∗(v
r
1kn), j∗(v

r
1bn), j∗(v

r
1hnhm) are nontrivial in Ext3,∗BP∗BP

(BP∗, BP∗) and they all converge

in the ANSS.

Theorem A will be proved by some technique on derivations of maps between M - module

spectra processing in the Adams resolution of certain spectra. The basic knowledge on this

technique is given in section 2 and the proof of Theorem A is given in Section 3.
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§2. Derivations of Maps between M-Module Spectra

In this section, we recall some basic knowledge on M -module spectra developed in [8].

Let M be the Moore spectrum modulo an odd prime p given by the cofibration (1.1).

M is a commutative ring spectrum with multiplication mM : M ∧ M → M such that

mM (i ∧ 1M ) = 1M and there is mM : ΣM → M ∧ M such that (j ∧ 1M )mM = 1M ,

mMmM = 0, mM (j ∧ 1M ) + (i ∧ 1M )mM = 1M∧M , mMT = −mM , TmM = mM , where

T :M ∧M →M ∧M is the switching map.

A spectrum X is called an M -module spectrum if the map p ∧ 1X : X → X is nulhomo-

topic, i.e. p ∧ 1X = 0 ∈ [X,X]. If X is an M -module spectrum, then the cofibration

X
p∧1X−→ X

i∧1X−→ M ∧X j∧1X−→ ΣX (2.1)

splits, i.e. there is a homotopy equivalence M ∧ X = X ∨ ΣX and there are maps mX :

M ∧X → X, mX : ΣX →M ∧X satisfying

mX(i ∧ 1X) = 1X , (j ∧ 1X)mX = 1X ,

mXmX = 0, mX(j ∧ 1X) + (i ∧ 1X)mX = 1M∧X .

The maps mX ,mX are called the M -module actions of the M -module spectrum X.

Let X and X ′ be M -module spectra. Then we define a homomorphism

d : [ΣsX ′, X] −→ [Σs+1X ′, X]

by d(f) = mX(1M ∧ f)mX′ for f ∈ [ΣsX ′, X]. This operation d is called a derivation (of

maps between M -module spectra) which has the following properties.

Theorem 2.1.[8, p.210, Theorem 2.2] (i) d is derivative : d(fg) = fd(g)+(−1)deg gd(f)g for

f ∈ [ΣsX ′, X], g ∈ [ΣtX ′′, X ′], where X,X ′, X ′′ are M -module spectra.

(ii) Let Y ′, Y be arbitrary finite spectra and h ∈ [ΣrY ′, Y ]. Then d(h ∧ f) = (−1)deg hh ∧
d(f) for f ∈ [ΣsX ′, X].

(iii) If X ′ and X are associative M -module spectra, then

d2 = 0 : [Σ∗X ′, X]→ [Σ∗+2X ′, X].

Consider the spectra V (k) given in [9] such that the Zp-cohomology

H∗V (k) ∼= E(Q0, Q1, · · · , Qk),

the exterior algebra generated by Milnor basis elements Q0, Q1, · · · , Qk in A. From [9] we

know that V (0) = M and V (1) exists for p ≥ 3, being a ring spectrum for p ≥ 5 and it is

the cofibre of the Adams map α : ΣqM →M , where q = 2(p− 1).

We briefly write V (1) as K which is the cofibre of α : ΣqM →M given by the cofibration

ΣqM
α−→M

i′−→ K
j′−→ Σq+1M. (2.2)

Then, from [8, p.218 (3.7)], M and K are M -module spectra and d(α) = d(i′) = d(j′) = 0,

d(ij) = −1M .

§3. Proof of the Main Theorem

The main theorem A will follow easily from the following general Theorem 3.1.
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Theorem 3.1. Let p ≥ 5 and x be the unique generator of Exts,tA (Zp, Zp) so that α2x ̸=
0 ∈ Exts+2,t+2q+1

A (Zp, Zp) and a0x ̸= 0, h0x ̸= 0 are the unique generator of Exts+1,t+1
A (Zp,

Zp), Ext
s+1,t+q
A (Zp, Zp) respectively, where α2, a0, h0 are the known generators in Ext2,2q+1

A

(Zp, Zp), Ext
1,1
A (Zp, Zp), Ext

1,q
A (Zp, Zp) respectively.

Suppose that :

(1) a20x ̸= 0 ∈ Exts+2,t+2
A (Zp, Zp).

(2) Exts+1,t+q+r
A (Zp, Zp) = 0 for r = 1, 2, 3.

(3) Exts+1,t
A (Zp, Zp) = 0 ,Exts+1,t+2

A (Zp, Zp) = 0 or has unique generator a20x
′ with

x′ ∈ Exts−1,t
A (Zp, Zp) , Exts,t+1

A (Zp, Zp) = 0 or has unique generator a0x
′ with x′ ∈

Exts−1,t
A (Zp, Zp) . Then the product α2 · x ∈ Exts+2,t+2q+1

A (Zp, Zp) is a permanent

cycle in the ASS.

Before proving Theorem 3.1, we do some preliminaries. Let K ′ be the cofibre of jj′ :

Σ−1K → Σq+1S given by the cofibration in the following commutative diagram of 3 × 3

lemma in stable homotopy category (see [7, p.292–293])

Σ−1K
jj′−→ Σq+1S

p−→ Σq+1S

↘ j′ ↗ j ↘ z ↗ y

ΣqM K ′ (3.1)

↗ i ↘ α ↗ v ↘ x

ΣqS
αi−→ M

i′−→ K

From the above diagram, we know that K ′ also is the cofibre of αi : ΣqS →M , i.e. we have

two cofibrations

ΣqS
αi−→M

v−→ K ′ y−→ Σq+1S, (3.2)

Σ−1K
jj′−→ Σq+1S

z−→ K ′ x−→ K. (3.3)

Proposition 3.1. Let z : Σq+1S → K ′ and y : K ′ → Σq+1S be the maps in (3.1), then

the composition z · y = 1K′ ∧ p : K ′ → K ′.

Proof. Since y(z · y − 1K′ ∧ p) = p · y − p · y = 0, (z · y − 1K′ ∧ p) ∈ v∗[K ′,M ] = 0 by

the following exact sequence induced by (3.2)

· · · (αi)
∗

←− [M,M ]
v∗←− [K ′,M ]

y∗←− [Σq+1S,M ] = 0,

where (αi)∗ is monic since [M,M ] has unique generator 1M . The proof is finished.

The cofibre of 1K′ ∧ p : K ′ → K ′ is K ′ ∧M and K ′ ∧M also is the cofibre of αijj′ :

Σ−1K → ΣM , which can be seen by the following commutative diagram of 3× 3 lemma in

stable homotopy category

K ′ 1K′∧p−→ K ′ x−→ K

↘ y ↗ z ↘ 1K′ ∧ i ↗ ρ

Σq+1S K ′ ∧M (3.4)

↗ jj′ ↘ αi ↗ ψ ↘ 1K′ ∧ j
Σ−1K

αijj′−→ ΣM
v−→ ΣK ′

That is, we have two cofibrations

K ′ 1K′∧p−→ K ′ 1K′∧i−→ K ′ ∧M 1K′∧j−→ ΣK ′, (3.5)

Σ−1K
αijj′−→ ΣM

ψ−→ K ′ ∧M ρ−→ K. (3.6)
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Since d(i′) = d(j′) = 0 and d(ij) = −1M , d(αijj′) = 0 by Theorem 2.1(i). Hence, by [8,

p.211, Lemma 2.3], we have

Proposition 3.2. K ′ ∧M is an M -module spectrum and d(ψ) = 0 ∈ [Σ2M,K ′ ∧M ] ,

d(ρ) = 0 ∈ [ΣK ′ ∧M,K] , where d’s are derivations of maps between M -module spectra.

Now we proceed to prove Theorem 3.1. We first prove the following lemma.

Lemma 3.1. On the supposition of Theorem 3.1, we have

(1) There is unique generator h0x ∈ Exts+1,t+q+1
A (H∗M,Zp) so that its image under j∗ :

Exts+1,t+q+1
A (H∗M,Zp) → Exts+1,t+q

A (Zp, Zp) is j∗(h0x) = h0x and h0x = (αi)∗(x), where

(αi)∗ : Exts,tA (Zp, Zp)→ Exts+1,t+q+1
A (H∗M,Zp) is the boundary homomorphism induced by

αi : ΣqS →M .

(2) Exts+1,t+q+1
A (H∗K ′, Zp) = 0.

Proof. (1) Consider the following exact sequence

Exts+1,t+q+1
A (Zp, Zp)

i∗−→ Exts+1,t+q+1
A (H∗M,Zp)

j∗−→ Exts+1,t+q
A (Zp, Zp)

p∗−→

induced by (1.1). From the supposition, the left group is zero and the right group has unique

generator h0x. Since

p∗(h0) = a0h0 = 0 ∈ Ext2,q+1
A (Zp, Zp),

p∗(h0x) = 0 and so Exts+1,t+q+1
A (H∗M,Zp) has unique generator h0x so that j∗(h0x) = h0x.

Moreover, jαi : Σq−1S → S induces zero homomorphism in Zp-cohomology and it is

a map represented by h0 ∈ Ext1,qA (Zp, Zp) in the ASS, then jαi : Σq−1S → S induces a

boundary homomorphism (jαi)∗ : Exts,tA (Zp, Zp) → Exts+1,t+q
A (Zp, Zp) which is a multipli-

cation by h0 ∈ Ext1,qA (Zp, Zp). Then j∗(h0x) = h0x = (jαi)∗(x) = j∗(αi)∗(x) and we have

h0x = (αi)∗(x) since Exts+1,t+q+1
A (Zp, Zp) = 0.

(2) Consider the following exact sequence

(αi)∗−→ Exts+1,t+q+1
A (H∗M,Zp)

v∗−→ Exts+1,t+q+1
A (H∗K ′, Zp)

y∗−→ Exts+1,t
A (Zp, Zp)

induced by (3.2). The left group has unique generator h0x = (αi)∗(x), then im v∗ = 0. From

the supposition (3), the right group is zero, so the result follows.

Let

· · · ā2−→ Σ−2E2
ā1−→ Σ−1E1

ā0−→ E0 = Syb̄2 yb̄1 yb̄0
Σ−2KG2 Σ−1KG1 KG0 = KZp

be the minimal Adams resolution of S satisfying

(1) Es
b̄s−→ KGs

c̄s−→ Es+1
ās−→ ΣEs are cofibrations for all s ≥ 0 which induce short

exact sequences 0→ H∗Es+1
c̄∗s−→ H∗KGs

b̄∗s−→ H∗Es → 0 in Zp-cohomology.

(2) KGs is a wedge sum of suspensions of Eilenberg-Maclane spectra of type KZp.

(3) πtKGs are the E
s,t
1 -terms, (b̄sc̄s−1)∗ : πtKGs−1 → πtKGs are the d

s−1,t
1 - differentials

of the ASS and πtKGs ∼= Exts,tA (Zp, Zp). Then

· · · ā2∧1Y−→ Σ−2E2 ∧ Y
ā1∧1Y−→ Σ−1E1 ∧ Y

ā0∧1Y−→ Yyb̄2 ∧ 1Y

yb̄1 ∧ 1Y

yb̄0 ∧ 1Y

Σ−2KG2 ∧ Y Σ−1KG1 ∧ Y KG0 ∧ Y
is an Adams resolution of arbitrary finite spectrum Y .
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Proof of Theorem 3.1. By Lemma 3.1(1) and the following exact sequence induced by

(1.1)

0 = Exts+1,t+q+2
A (H∗M,Zp)

j∗→ Exts+1,t+q+1
A (H∗M,H∗M)

i∗→ Exts+1,t+q+1
A (H∗M,Zp)

p∗→

we know that Exts+1,t+q+1
A (H∗M,H∗M) has a unique generator h̃0x so that i∗(h̃0x) =

h0x ∈ Exts+1,t+q+1
A (H∗M,Zp), where the left group is zero by supposition (2) and p∗(hox)

= p∗(αi)∗(x) = (αi)∗p
∗(x) = α∗i∗p∗(x) = 0.

Recall that

· · · ā2∧1M−→ Σ−2E2 ∧M
ā1∧1M−→ Σ−1E1 ∧M

ā0∧1M−→ Myb̄2 ∧ 1M

yb̄1 ∧ 1M

yb̄0 ∧ 1M

Σ−2KG2 ∧M Σ−1KG1 ∧M KG0 ∧M
is an Adams resolution of M , then there is a d1-cycle h0x ∈ πt+q+1KGs+1∧M which repre-

sents h0x ∈ Exts+1,t+q+1
A (H∗M,Zp). Since KGs+1 ∧M is an M -module spectrum, there is

a d1-cycle h̃0x ∈ [Σt+q+1M,KGs+1∧M ] which represents h̃0x ∈ Exts+1,t+q+1
A (H∗M,H∗M)

and satisfies h̃0x · i = h0x. Moreover,

d(h̃0x) ∈ [Σt+q+2M,KGs+1 ∧M ] = 0

by the following exact sequence induced by (1.1)

0 = πt+q+3(KGs+1 ∧M)
j∗−→ [Σt+q+2M,KGs+1 ∧M ]

i∗−→ πt+q+2(KGs+1 ∧M) = 0,

where both side of groups are zero since πt+q+rKGs+1
∼= Exts+1,t+q+r

A (Zp, Zp) = 0 for

r = 1, 2, 3 by supposition (2).

Now we first prove that (c̄s+1∧1K′∧M )(1KGs+1∧ψ)(h0x) = 0 ∈ [Σt+q+2S, Es+2∧K ′∧M ],

where ψ : ΣM → K ′ ∧M is the map in (3.6). That is to say, we will prove that ψ∗(h0x) ∈
Exts+1,t+q+2

A (H∗K ′ ∧M,Zp) is a permanent cycle in the ASS.

Recall that v : M → K ′ is the injection map in (3.2), then (1KGs+1 ∧ v)(h̃0x) · i ∈
πt+q+1KGs+1 ∧ K ′ is a d1-cycle which represents an element in Exts+1,t+q+1

A (H∗K ′, Zp).

However, this group is zero by Lemma (3.1)(2), i.e. (1KGs+1∧v)(h̃0x)·i ∈ πt+q+1KGs+1∧K ′

is a d1-boundary, so (1KGs+1 ∧ v)(h̃0x) · i = (b̄s+1c̄s ∧ 1K′)g′ for some g′ ∈ πt+q+1KGs ∧K ′

and we have

(c̄s+1 ∧ 1K′)(1KGs+1 ∧ v)(h̃0x) · ij = 0. (3.7)

Recall from (3.4) that there is a factorization v = (1K′∧j)ψ : ΣM
ψ−→ K ′∧M 1K′∧j−→ ΣK ′,

then from (3.7) and (3.5) we have

(c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ ψ)(h̃0x)ij = (1Es+2 ∧ 1K′ ∧ i)f

for some f ∈ [Σt+q+1M,Es+2 ∧K ′]. Hence (ās+1 ∧ 1K′∧M )(1Es+2 ∧ 1K′ ∧ i)f = 0 and so by

(3.5) we have

(ās+1 ∧ 1K′)f = (1Es+1
∧ 1K′ ∧ p)f2 for some f2 ∈ [Σt+qM,Es+1 ∧K ′]

= f2(1M ∧ p) = 0.

Thus f = (c̄s+1 ∧ 1K′)g for some g ∈ [Σt+q+1M,KGs+1 ∧K ′] and we have

(c̄s+1 ∧ 1K′∧M )(1KGs+1
∧ ψ)(h̃0x)ij = (c̄s+1 ∧ 1K′∧M )(1KGs+1

∧ 1K′ ∧ i)g. (3.8)

It follows that (b̄s+2c̄s+1 ∧ 1K′∧M )(1KGs+1
∧ 1K′ ∧ i)g = 0, and (b̄s+2c̄s+1 ∧ 1K′)g =

(1KGs+2 ∧ 1K′ ∧ p)g2 = 0 (with g2 ∈ [Σt+q+1M,KGs+2 ∧ K ′]) since 1KGs+2 ∧ 1K′ ∧ p
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= 0. That is, g ∈ [Σt+q+1M,KGs+1 ∧ K ′] is a d1-cycle which represents an element in

Exts+1,t+q+1
A (H∗K ′,H∗M). We claim that this group has a unique generator v∗(h̃0x), this

can be proved as follows.

Consider the following exact sequence induced by (3.2)

Exts,tA (Zp,H
∗M)

(αi)∗−→ Exts+1,t+q+1
A (H∗M,H∗M)

v∗−→ Exts+1,t+q+1
A (H∗K ′,H∗M)

y∗−→ Exts+1,t
A (Zp,H

∗M),

where Exts+1,t+q+1
A (H∗M,H∗M) has a unique generator h̃0x. So, it suffices to prove Exts,tA

(Zp,H
∗M) = 0 = Exts+1,t

A (Zp,H
∗M). This follows from the following exact sequences

p∗−→ Exts+1,t+1
A (Zp, Zp)

j∗−→ Exts+1,t
A (Zp,H

∗M)
i∗−→ Exts+1,t

A (Zp, Zp),

Exts,t+1
A (Zp, Zp)

j∗−→ Exts,tA (Zp,H
∗M)

i∗−→ Exts,tA (Zp, Zp)
p∗−→

induced by (1.1), where the upper right group is zero by supposition (3) and the upper left

group has a unique generator a0x = p∗(x) so that im j∗ = 0, the lower left group is zero or

has a unique generator a0x
′ = p∗(x′) by the supposition (3) so that im j∗ = 0 , the lower

right group has unique generator x satisfying p∗x = a0x ̸= 0 ∈ Exts+1,t+1
A (Zp, Zp) so that

im i∗ = 0. This proves the claim.

Then g = λ · (1KGs+1 ∧ v)(h̃0x) modulo a d1- boundary with λ ∈ Zp and (3.8) becomes

(c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ ψ)(h̃0x)ij

= (c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ 1K′ ∧ i)(1KGs+1 ∧ v)(h̃0x), (3.9)

where we omitted the scalar λ ∈ Zp which is inessential in the argument below.

Now we will use some technique on derivations of maps between M -module spectra. The

spectra Es+2 ∧ K ′ ∧M , KGs+1 ∧ K ′ ∧M and KGs+1 ∧M are M -module spectra with

M -module structure determined by the right M , then the derivations d(c̄s+1 ∧ 1K′∧M ) =

c̄s+1∧d(1K′∧M ) = 0, d(1KGs+1∧ψ) = 1KGs+1∧d(ψ) = 0 (see Theorem 2.1(ii) and Proposition

3.2). So, by Theorem 2.1(i), the derivation of the left-hand side of (3.9) equals to −(c̄s+1 ∧
1K′∧M )(1KGs+1 ∧ ψ)(h̃0x) since d(h̃0x) = 0 and d(ij) = −1M .

Moreover, we consider the derivation of the right-hand side of (3.9). Note that KGs+1 is

an M -module spectrum and we write the M -module action as mG :M ∧KGs+1 → KGs+1,

mG : ΣKGs+1 → M ∧ KGs+1. Then KGs+1 ∧ K ′ also is an M - module spectrum with

M -module action

mG ∧ 1K′ :M ∧KGs+1 ∧K ′ −→ KGs+1 ∧K ′,

mG ∧ 1K′ : ΣKGs+1 ∧K ′ −→ M ∧KGs+1 ∧K ′.

By applying d to (3.9) we have

(c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ ψ)(h̃0x)

= (c̄s+1 ∧ 1K′∧M )d(1KGs+1 ∧ 1K′ ∧ i) · (1KGs+1 ∧ v)(h̃0x)

+ (c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ 1K′ ∧ i)d(1KGs+1 ∧ v) · (h̃0x). (3.10)

Since h̃0x ∈ [Σt+q+1M,KGs+1 ∧M ] is a d1-cycle, i.e. (b̄s+2c̄s+1 ∧ 1M )(h̃0x) = 0, then

d(1KGs+1 ∧ v) · (h̃0x) ∈ [Σt+q+2M,KGs+1 ∧K ′] also is a d1-cycle. To check this, we need to
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prove the commutativity

(b̄s+2c̄s+1 ∧ 1K′) · d(1KGs+1 ∧ v) = d(1KGs+2 ∧ v) · (b̄s+2c̄s+1 ∧ 1M ).

Note that

d(1KGs+1 ∧ v) = (mG ∧ 1K′)(1M ∧ 1KGs+1 ∧ v)(T ∧ 1M )(1KGs+1 ∧m),

where m : ΣM → M ∧M is the M -module action of M . Then it suffices to prove the

following diagram commutes (up to homotopy)

M ∧KGs+1
mG−→ KGs+1y1M ∧ b̄s+2c̄s+1

yb̄s+2c̄s+1

M ∧KGs+2
mG−→ KGs+2

Consider the induced homomorphism in Zp-cohomology. Since there is a homotopy equiv-

alence M ∧ KGs+1 = KGs+1 ∨ ΣKGs+1 and mG : M ∧ KGs+1 → KGs+1 is the projec-

tion, m∗
G : H∗(KGs+1) → H∗(M ∧ KGs+1) = H∗(M) ⊗ H∗KGs+1 is the injection, i.e.

m∗
G(c) = τ ⊗ c ∈ H∗M ⊗H∗KGs+1 for τ ∈ H0M and any c ∈ H∗KGs+1, s ≥ 0. Hence, for

any a ∈ H∗KGs+2,

m∗
G(b̄s+2c̄s+1)

∗(a) = τ ⊗ (b̄s+2c̄s+1)
∗(a)

= (1M ∧ b̄s+2c̄s+1)
∗(τ ⊗ a) = (1M ∧ b̄s+2c̄s+1)

∗m∗
G(a).

This proves the above commutativity and so d(1KGs+1∧v)(h̃0x) ∈ [Σt+q+2M,KGs+1∧K ′] is

a d1-cycle which represents an element in Exts+1,t+q+2
A (H∗K ′,H∗M). However, this group

is zero, this follows from the following exact sequence induced by (3.2)

Exts+1,t+q+2
A (H∗M,H∗M)

v∗−→ Exts+1,t+q+2
A (H∗K ′,H∗M)

y∗−→ Exts+1,t+1
A (Zp,H

∗M),

where the left group is zero by Exts+1,t+q+r
A (Zp, Zp) = 0 for r = 1, 2, 3 and the right group is

also zero by Exts+1,t+2
A (Zp, Zp) = 0 or has a unique generator a20x

′ (see the supposition (3))

and Exts+1,t+1
A (Zp, Zp) has a unique generator a0x satisfying a20x ̸= 0. Hence, d(1KGs+1 ∧

v) · (h̃0x) is a d1-boundary and so (3.10) becomes

(c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ ψ)(h̃0x)

= (c̄s+1 ∧ 1K′∧M )d(1KGs+1 ∧ 1K′ ∧ i) · (1KGs+1 ∧ v)(h̃0x). (3.11)

Recall from (3.7) that we have (1KGs+1 ∧ v)(h̃0x)ij = (b̄s+1c̄s ∧ 1K′)g′ · j. Moreover, by

the same reason as stated above, we have the commutativity

d(1KGs+1 ∧ 1K′ ∧ i) · (b̄s+1c̄s ∧ 1K′) = (b̄s+1c̄s ∧ 1K′∧M ) · d(1KGs ∧ 1K′ ∧ i).

(Note : Here, we need only to check the commutativity mG(b̄s+1c̄s) = (1M ∧ b̄s+1c̄s)mG and

this can be checked by the induced homomorphism in Zp-cohomology.)

Then, from (3.11) we have

(c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ ψ)(h̃0x)ij

= (c̄s+1 ∧ 1K′∧M )d(1KGs+1
∧ 1K′ ∧ i) · (1KGs+1

∧ v)(h̃0x)ij = 0,

and so

(c̄s+1 ∧ 1K′∧M )(1KGs+1 ∧ ψ)(h̃0x) · i = f3 · p for some f3 ∈ πt+q+2Es+2 ∧K ′ ∧M
= (1Es+2 ∧ 1K′∧M ∧ p)f3 = 0. (3.12)
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This shows that ψ∗(h0x) ∈ Exts+1,t+q+2
A (H∗K ′ ∧M,Zp) is a permanent cycle in the ASS.

Let L be the cofibre of α1 = jαi : Σq−1S → S given by the cofibration

Σq−1S
α1−→ S

i′′−→ L
j′′−→ ΣqS (3.13)

and consider the following commutative diagram of 3×3 lemma in stable homotopy category

M −→ L ∧K j′′∧1K−→ ΣqK

↘ i′ ↗ i′′ ∧ 1K ↘ r ↗ ρ

K ΣqW (3.14)

↗ α1 ∧ 1K ↘ j′ ↗ ψ ↘ ϵ

Σq−1K −→ Σq+1M
α−→ ΣM

Note that j′(α1 ∧ 1K) = αijj′, then ΣqW = ΣqK ′ ∧ M which is the cofibre of αijj′ :

Σq−1K → Σq+1M (see (3.6)). Then we have a cofibration

M
(i′′∧1K)i′−→ L ∧K r−→ ΣqK ′ ∧M ϵ−→ ΣM. (3.15)

Since (i′′ ∧ 1K)i′ :M → L ∧K induces an epimorphism, then ϵ : ΣqK ′ ∧M → ΣM induces

zero homomorphism in Zp-cohomology. Also from (3.14) we have ϵψ = α : ΣqM
ψ−→

Σq−1K ′ ∧M ϵ−→M .

Now it follows from (3.12) that there is an f ′ ∈ πt+q+2Es+1 ∧K ′ ∧M such that (b̄s+1 ∧
1K′∧M )f ′ = (1KGs+1 ∧ ψ)(h0x). Then

(b̄s+1 ∧ 1M )(1Es+1 ∧ ϵ)f ′ = (1KGs+1 ∧ ϵψ)(h0x) = 0

since (1KGs+1 ∧ ϵ) = 0. Thus (1Es+1 ∧ ϵ)f ′ = (ās+1∧1M )f ′′ for some f ′′ ∈ πt+2q+2Es+2∧M
and

b̄s+2(1Es+2 ∧ j)f ′′ = α2x ∈ πt+2q+1KGs+2
∼= Exts+2,t+2q+1

A (Zp, Zp).

This is because (ā0ā1 · · · ās ∧ 1K′∧M )f ′ ∈ π∗K ′ ∧M is represented by

ψ∗(h0x) ∈ Exts+1,t+q+2
A (H∗K ′ ∧M,Zp)

in the ASS. Then

ā0ā1 · · · ās+1(1Es+2 ∧ j)f ′′ = (ā0ā1 · · · ās)(1Es+1 ∧ jϵ)f ′ ∈ π∗S

must be represented by

j∗ϵ∗ψ∗(h0x) = j∗α∗(h0x) = j∗α∗α∗i∗(x) = α2x ̸= 0 ∈ Exts+2,t+2q+1
A (Zp, Zp)

in the ASS. Here we use the fact that the following composition

Exts,tA (Zp, Zp)
i∗−→ Exts,tA (H∗M,Zp)

α∗−→ Exts+1,t+q+1
A (H∗M,Zp)

α∗−→ Exts+2,t+2q+2
A (H∗M,Zp)

j∗−→ Exts+2,t+2q+1
A (Zp, Zp)

is a multiplication by α2 ∈ Ext2,2q+1
A (Zp, Zp). (Note : this fact follows from that jα2i ∈

π2q−1S is represented by α2 ∈ Ext2,2q+1
A (Zp, Zp) in the ASS). Hence

α2x ∈ Exts+2,t+2q+1
A (Zp, Zp)

is a permanent cycle in the ASS and the proof of Theorem 3.1 finishes.

Proof of Theorem A. Consider x = gn, kn(n ≥ 2), bn(n ≥ 1) and hnhm(n ≥ 2,m ≥
n + 2) in Exts,∗A (Zp, Zp) with s = 2, t = pn+1q + 2pnq, 2pn+1q + pnq, pn+1q and pnq + pmq

respectively. We need to check that these elements satisfy the conditions of Theorem 3.1.
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From [1], the Zp-base of Ext3,∗A (Zp, Zp) has been completely determined. From [1, p.110,

Table 8.1] we know that

(1) a0x ̸= 0, h0x ̸= 0 is the unique generator of Ext3,t+1
A (Zp, Zp),Ext

3,t+q
A (Zp, Zp) respec-

tively. (Note : the name of a0, h0 in [1, Table 8.1] are h−1, h0. The names of gn, kn, bn in [1,

Table 8.1] are hn,2,1, hn,1,2, λn respectively. Moreover, in these degrees, there are no other

generators).

(2) Ext3,t+q+rA (Zp, Zp) = 0 for r = 1, 2, 3 .

(3) Ext3,tA (Zp, Zp) = 0 , Ext3,t+2
A (Zp, Zp) = 0 or has a unique generator a20hn+1 when

t = pn+1q. Ext2,t+1
A (Zp, Zp) = 0 or has a unique generator a0hn+1 when t = pn+1q, where

t = pn+1q + 2pnq, 2pn+1q + pnq(n ≥ 2), pn+1q(n ≥ 1) or pnq + pmq(n ≥ 2,m ≥ n+ 2).

From [10], the Zp-base of Ext
4,∗
A (Zp, Zp) has been completely determined. From the table

listed in [10, Theorem 4.1], we know that

(1) α2x ̸= 0 ∈ Ext4,t+2q+1
A (Zp, Zp), where α2gn, α2kn, α2bn, α2hnhm are corresponding to

the generators in [10, Theorem 4.1] of number (31), (32), (23), (22) respectively.

(2) a20x ̸= 0 ∈ Ext4,t+1
A (Zp, Zp), where a

2
0gn, a

2
0kn, a

2
0bn, a

2
0hnhm are corresponding to the

generators in [10, Theorem 4.1] of number (47), (48), (10), (16) respectively.

Then, all the conditions of Theorem 3.1 are satisfied for x = gn, kn(n ≥ 2), bn(n ≥
1), hnhm(n ≥ 2,m ≥ n + 2) in Ext2,∗A (Zp, Zp) and so we conclude that α2gn, α2kn(n ≥
2), α2bn(n ≥ 1), α2hnhm(n ≥ 2,m ≥ n + 2) in Ext4,∗A (Zp, Zp) are permanent cycles in the

ASS.

From [3], Ext2,t+2q
A (Zp, Zp) = 0 for t = pn+1q+2pnq, 2pn+1q+pnq, pn+1q and pnq+pmq,

and then α2gn, α2kn(n ≥ 2), α2bn(n ≥ 1), α2hnhm(n ≥ 2,m ≥ n + 2) ∈ Ext4,∗A (Zp, Zp)

cannot be hit by differentials in the ASS. This completes the proof of Theorem A.
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