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Abstract

In this paper, the Ext groups of Hardy modules over the polydisk algebra A(Dn) are cal-
culated. Of particular importance is that the calculating of Ext-groups is closely related to

harmonic analysis of polydisks. Finally, the authors point out that Ext-groups reveal rigidity
of Hardy submodules over A(Dn) for n > 1.
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§1. Introduction

A Hilbert module is a Hilbert space H which is also a module over a function algebra

A, i.e., there is an associative bilinear multiplication A × H → H which is continuous in

both variables. The first systematic study of Hilbert modules appeared in the monograph

of Douglas and Poulsen[2]. This coordinate free approach to multivariable operator theory

has some remarkable consequences. In [1], Carlson and Clark introduced one of the central

concepts from homological algebra, Ext-functor, into the discussion of Hilbert modules.

Basically, they considered the following problem of classifying extensions in the category

H(A) of all Hilbert modules over A. Suppose that H and K are in H(A). Let S(K,H)

be the set of all short exact sequences E : 0 −→ H
α−→ J

β−→ K −→ 0, where α, β are

Hilbert-module maps. We call two elements E,E′ to be equivalent if there exists a Hilbert

module map θ such that the diagram

E : 0 −−−−→ H
α−−−−→ J

β−−−−→ K −−−−→ 0∥∥∥ yθ

∥∥∥
E′ : 0 −−−−→ H

α′

−−−−→ J ′ β′

−−−−→ K −−−−→ 0

commutes. The set of equivalence classes of S(K,H) under this relation is defined to be the

extension group, Ext(K,H). In fact, Ext(−,−) is a bifunctor from the category H(A) to
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the category of abelian groups, and contravariant in the first and covariant in the second

variables (see [1]). Since the categories of Hilbert modules lack enough projective and

injective objects, it is impossible to define the functor Ext as the derived functor of Hom as

in [3]. However, because of the special structure of Hilbert modules, Carlson and Clark[1]

showed that Ext(−,−) has a natural form:

Theorem 1.1.[1] Ext(K,H) ∼= U/B, where U is the set of all continuous (in both

variables) bilinear maps σ : A × K → H such that aσ(b, k) + σ(a, bk) = σ(ab, k), where

a, b ∈ A and k ∈ K, and B is the set of all σ ∈ U having the form σ(a, k) = aTk − Tak,

where T : K → H is a bounded linear operator.

With the aid of Theorem 1.1, Carlson and Clark studied the extensions of Hilbert modules

over the disk algebra A(D). Their methods seem to be valid only in the case of the disk

algebra. In this paper, we will calculate Ext-groups of Hardy modules over the polydisk

algebra A(Dn). Of particular interest is that the calculation of Ext-groups is closely related

to harmonic analysis of polydisks. Finally, we point out that Ext-groups reveal rigidity of

Hardy submodules over A(Dn) for n > 1.

At the end of this section, we give the following concept, which is basic for our analysis.

LetG be a semigroup. An invariant mean ofG is a state µ on l∞(G) such that µ(F ) = µ(gF ),

where gF (g′) = F (gg′) for all g in G and F in l∞(G). A basic fact is that every Abelian

semigroup has an invariant mean[4].

§2. Ext for Hardy Modules over the Polydisk Algebra A(Dn)

Let A(Dn) be the polydisk algebra, and H2(Dn) be the usual Hardy module over A(Dn).

By P to denote the orthogonal projection from L2(Tn) onto H2(Dn), for φ ∈ L2(Tn), a

Hankel operatorHφ: H
2(Dn) →H2(Dn)⊥ is defined byHφf = (I−P )(φf) with the domain

H∞(Dn), and a Toeplitz operator Tφ: H
2(Dn) → H2(Dn) is defined by Tφf = P (φf) with

the domain H∞(Dn), i.e., Hφ, Tφ are densely defined operators in H2(Dn). It is well known

that in the case n = 1, a Hankel operator Hφ (φ ∈ L2(T ) ) is bounded if and only if

(1) there is a function φ′ ∈ L∞ (T ) such that Hφ′ = Hφ on the domain of Hφ and

∥ Hφ ∥=∥ φ′ ∥∞, if and only if

(2) there is a function φ0 ∈ BMO
∩

H2(D)⊥ and some h ∈ H2(D) such that φ = φ0 + h,

and ∥ Hφ ∥= ∥ φ0 ∥BMO, if and only if

(3) there is a function φ1 ∈ L∞ (T ) such that (I − P )φ = (I − P )φ1.

However, in the case n > 1, the corresponding statement to (1) does not hold. For (2)

and (3) , a new function space is need, and is called the coordinate BMO , denoted by

CBMO. Let f ∈ L2(Tn), a system of functions (φ1, φ2, · · ·φn) satisfying for each m =

(m1,m2, · · ·mn) ∈ Zn, f̂(m) = φ̂1(m) if m1 < 0 , · · ·, f̂(m) = φ̂n(m) if mn < 0 is called

a coordinate for f , where“ ˆ ” denotes the Fourier transform. We say that f belongs to

CBMO, if f has a L∞-coordinate (φ1, φ2, · · ·φn), i.e., every argument φi of the coordinate

(φ1, φ2, · · ·φn) of f belongs to L∞(Tn) ( i = 1, 2, · · ·n). For f ∈ CBMO, we define

∥f∥CBMO = inf{max(∥φ1∥∞, ∥φ2∥∞, · · ·, ∥φn∥∞) |
all L∞ − coordinate (φ1, φ2, · · ·φn) of f}.
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Writing CBMOd for all such f , f having a diagonal L∞-coordinate, that is , there is a

L∞-coordinate (φ1, φ2, · · ·φn) of f such that φ1 = φ2 = · · · = φn.

Lemma 2.1.[5] Let φ ∈ L2(Tn). A Hankel operator Hφ in Hardy space H2(Dn) is

bounded if and only if φ ∈ CBMO and ∥φ∥CBMO ≤ ∥Hφ∥ ≤
√
n∥φ∥CBMO. In particular, a

Hankel operator Hφ is equal to some Hf (where f ∈ L∞(Tn)) if and only if φ ∈ CBMOd.

Lemma 2.2. Let A be a densely defined operator in H2(Dn) with its domain A(Dn) and

A : (A(Dn), || · ||∞) → H2(Dn) be continuous, also

Tz̄1m1 z̄2m2 ···z̄nmnATz
m1
1 z

m2
2 ···zmn

n
= A, (m1,m2, · · · ,mn) ∈ Zn

+ .

Then there exists a function φ ∈ L2(Tn) such that A = Tφ.

Proof. For simplicity, the proof is sketched for n = 2 , while conclusion holds for all n ≥ 1.

Put A = { z̄1
m1 z̄2

m2h | (m1,m2) ∈ Z2
+ , h ∈ H2(D2) }. Clearly, A is a dense subspace of

L2(T 2). We define a map Φ from A to all complex numbers C by

Φ(z̄1
m1 z̄2

m2h) = ⟨h,A(zm1
1 zm2

2 )⟩.

Then Φ is well-defined and linear. In fact, if z̄1
m1 z̄2

m2h = z̄1
m′

1 z̄2
m′

2h′ , we notice that

Φ(z̄1
m1 z̄2

m2h) = ⟨h,A(zm1
1 zm2

2 )⟩ = ⟨h, T
z̄1

m′
1 z̄2

m′
2
AT

z
m′

1
1 z

m′
2

2

(zm1
1 zm2

2 )⟩

= ⟨zm
′
1

1 z
m′

2
2 h,A(z

m′
1+m1

1 z
m′

2+m2

2 )⟩ = ⟨zm1
1 zm2

2 h′, ATz
m1
1 z

m2
2

(z
m′

1
1 z

m′
2

2 )⟩

= ⟨h′, Tz̄1m1 z̄2m2ATz
m1
1 z

m2
2

(z
m′

1
1 z

m′
2

2 )⟩ = ⟨h′, A(z
m′

1
1 z

m′
2

2 )⟩ = Φ(z̄1
m′

1 z̄2
m′

2h′).

Φ is thus well-defined. It can be obtained as the above proof that Φ is linear. According to

the definition of Φ , we see that

|Φ(z̄1m1 z̄2
m2h)| ≤ ||A||∞|| z̄1m1 z̄2

m2h ||, (m1,m2) ∈ Z2
+ , h ∈ H2(D2),

where ||A||∞ denotes the norm of the map A : (A(D2), || · ||∞) → H2(D2) . The Riesz

representation theorem leads to the conclusion that there exists a function φ ∈ L2(T 2) such

that

Φ(z̄1
m1 z̄2

m2h) = ⟨h,A(zm1
1 zm2

2 )⟩ = ⟨z̄1m1 z̄2
m2h, φ⟩ .

Therefore A(zm1
1 zm2

2 ) = Tφ(z
m1
1 zm2

2 ), (m1,m2) ∈ Z2
+. Since all polynomials are dense in

A(D2), the above equations imply that A = Tφ on their domain A(D2). This completes the

proof of Lemma 2.2.

Now we return to calculate Ext(H2(Dn),H2(Dn)). According to Theorem 1.1, we must

determine continuous bilinear map σ: A(Dn)×H2(Dn) → H2(Dn) with the form

σ(f1f2, h) = f1σ(f2, h) + σ(f1, f2h), f1, f2 ∈ A(Dn), h ∈ H2(Dn) . (2.1)

If we define δ : A(Dn) → B(H2(Dn)) by δ(f) = σ(f, ·) , f ∈ A(Dn), then δ is a bounded

linear map and satisfies

δ(f1f2) = Tf1δ(f2) + δ(f1)Tf2 , f1, f2 ∈ A(Dn). (2.2)

A bounded linear map δ : A(Dn) → B(H2(Dn)) is called a derivation, if it satisfies (2.2),

where B(H2(Dn)) denotes the set of all linear bounded operators on H2(Dn). We say that

a bounded derivation δ is inner, if there is a bounded linear operator T on H2(Dn) such

that δ(f) = TfT − TTf , f ∈ A(Dn). Thus, a map σ with the form (2.1) determines a

bounded derivation δ from A(Dn) to B(H2(Dn)) . In another words, a bounded derivation
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δ from A(Dn) to B(H2(Dn)) corresponds a map σ: A(Dn) ×H2(Dn) → H2(Dn) defined

by σ(f, h) = δ(f)h, f ∈ A(Dn), h ∈ H2(Dn). It is to see that σ is clearly a continuous

bilinear map and satisfies (2.1). In particular, δ is inner if and only if the corresponding σ

belongs to B in Theorem 1.1 in §1.
Lemma 2.3. Let φ ∈ CBMO. Define δφ : A(Dn) → B(H2(Dn)) by δφ(f) = H∗

f̄
Hφ,

f ∈ A(Dn). Then δφ is a bounded derivation. In particular, δφ is inner if and only if

φ ∈ CBMOd .

Proof. It is easy to check that δφ satisfies (2.2). δφ is thus a bounded derivation. If

φ ∈CBMOd, Lemma 2.1 implies that δφ is inner. In another words, if δφ is inner, that

is, there exists a bounded linear operator T such that δφ(f) = TfT − TTf , f ∈ A(Dn),

then the definition of δφ immediately leads to that the following is true for any f ∈ A(Dn),

TφTf − TfTφ = TfT − TTf , where two sides of the above equation are defined on A(Dn).

That is, we have (T + Tφ)Tf = Tf (T + Tφ), ∀ f ∈ A(Dn) . Set

g = (T + Tφ)1 ∈ H2(Dn).

Then for any f ∈ A(Dn), T f = Tg−φf . We claim that g − φ belongs to L∞(Tn). In fact, if

we use kz to denote the normalized Hardy reproducing kernel at z ∈ Dn, then

kz(θ) =

n∏
j=1

(1− |zj |2)
1
2

1− eiθj z̄j
, θ = (θ1, θ2, · · · , θn) ∈ Tn .

Thus we get |kz(θ)|2 = P (z, θ) by [6, p.17], where P (z, θ) is the Poisson kernel at z ∈ Dn.

Since kz ∈ A(Dn), we see that for every z ∈ Dn,

|⟨Tkz, kz⟩| = |⟨Tg−φkz, kz⟩| =
1

(2π)n

∣∣∣ ∫
Tn

(g − φ)|kz|2dθ
∣∣∣

=
1

(2π)n

∣∣∣ ∫
Tn

(g − φ)(θ)P (z, θ)dθ
∣∣∣ ≤ ||T ||.

Furthermore, for almost every θ ∈ Tn , the following is true by [6, Theorem 2.3.1]

(g − φ)(θ) = lim
r→1

1

(2π)n

∫
Tn

(g − φ)(θ′)P (rθ, θ′)dθ′.

The function g − φ is thus in L∞(Tn). That is, φ belongs to BMOd. The proof of Lemma

2.3 is completed.

According to Lemma 2.3, we can establish an injective homomorphism of groups

τ : CBMO/CBMOd → Ext(H2(Dn),H2(Dn))

by τ([φ]) = [ δφ] , where [ δφ] denotes the coset δφ+D , D is the space of all inner derivations.

Theorem 2.1. The group Ext(H2(Dn),H2(Dn)) is isomorphic to CBMO/CBMOd, and

the correspondence is given by τ([φ]) = [δφ], φ ∈ CBMO.

Proof. For simplicity, the proof is sketched for n = 2, while conclusion holds for

all n > 1 . According to the preceding statement, we only need to prove that τ is sur-

jective. Let δ be a bounded derivation from A(D2) to B(H2(D2)). For any C in the trace

class B1(H
2(D2)) , a function FC on Z2

+ is defined by

FC(m,n) = ⟨Tz̄mw̄nδ(zmwn), C⟩ = tr(Tz̄mw̄nδ(zmwn)C), (m,n) ∈ Z2
+.

Then

∥Fc∥ ≤ ∥δ∥ ∥C∥tr. (2.3)
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Let µ be an invariant mean of Z2
+. Defining a bounded functional ℑ on the trace class

B1(H
2(D2)) by ℑ(C) = µ(FC) , C ∈ B1(H

2(D2)), we see that there exists a bounded linear

operator T such that ℑ(C) = ⟨T,C⟩ = tr(TC), C ∈ B1(H
2(D2)). Therefore, for every

(m,n) ∈ Z2
+ and C ∈ B1(H

2(D2)), we have

⟨TzmwnT − TTzmwn , C⟩ = ⟨T,CTzmwn − TzmwnC⟩
= ℑ(CTzmwn − TzmwnC) = µ(FCTzmwn−TzmwnC).

Since, for (k, l) ∈ Z2
+,

FCTzmwn−TzmwnC(k, l) = ⟨Tz̄kw̄lδ(zkwl), CTzmwn − TzmwnC⟩
= ⟨TzmwnTz̄kw̄lδ(zkwl), C⟩ − ⟨Tz̄kw̄lδ(zkwl)Tzmwn , C⟩
= ⟨TzmwnTz̄kw̄lδ(zkwl), C⟩ − ⟨Tz̄kw̄lδ(zk+mwl+n), C⟩+ ⟨δ(zmwn), C⟩
= ⟨TzmwnTz̄kw̄lδ(zkwl), C⟩ − ⟨P(m,n)Tz̄kw̄lδ(zk+mwl+n), C⟩
− ⟨TzmwnTz̄k+mw̄l+nδ(zk+mwl+n), C⟩+ ⟨δ(zmwn), C⟩,

where P(m,n) is the orthogonal projection from H2(D2) onto (zmwnH(D2))⊥ . For each

(m,n) ∈ Z2
+ , and C ∈ B1(H

2(D2)) , defining a function F
(m,n)
C on Z2

+ by

F
(m,n)
C (k, l) = ⟨P(m,n)Tz̄kw̄lδ(zk+mwl+n), C⟩, (k, l) ∈ Z2

+,

we have

⟨TzmwnT − TTzmwn , C⟩ = µ(FCTzmwn−TzmwnC) = ⟨δ(zmwn), C⟩ − µ(F
(m,n)
C ).

Denoting TfT − TTf by δT (f), f ∈ A(D2), we have

⟨(δ − δT )(z
mwn), C⟩ = µ(F

(m,n)
C ), (m,n) ∈ Z2

+, C ∈ B1(H
2(D2)).

Clearly, by the definition of F
(m,n)
C , the following

⟨(δ − δT )(z
mwn), CTzmwnTz̄mw̄n⟩ = 0, (m,n) ∈ Z2

+, C ∈ B1(H
2(D2))

holds. Thus, for all (m,n) ∈ Z2
+ , we have

Tz̄mw̄n(δ − δT )(z
mwn) = 0. (2.4)

Writing δ′ for δ − δT , an operator A in H2(D2) with its domain A(D2) is defined by

Af = δ′(f)1, f ∈ A(D2), that is, A is a densely defined operator in H2(D2) . For every

f ∈ A(D2) , it is easy to check that the following is true , where two sides of (2.5) are seen

to be defined on A(D2).

δ′(f) = ATf − TfA. (2.5)

By (2.4) and (2.5), we see that on the domain A(D2) of A , the following holds

Tz̄mw̄nATzmwn = A, (m,n) ∈ Z2
+.

Using Lemma 2.2, we see that there exists a function φ ∈ L2(T 2) such that A = Tφ. By

(2.5), this implies that for any f ∈ A(D2) , the following equation holds, where two sides of

equation are seen to be defined on A(D2),

δ′(f) = TφTf − TfTφ = −H∗
f̄Hφ.

What we shall do next is to prove that Hφ can be continuously extended onto H2(D2). Let
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h ∈ A(D2). Since

∥δ′(zmwn)h∥2 = ∥P (zmwnHφh)∥2

=
∑

(k,l)∈Z2
+

|⟨P (zmwnHφh), z
kwl⟩|2 =

∑
(k,l)∈Z2

+

|⟨Hφh, z
k−mwl−n⟩|2,

∥Hφh∥ = lim
m→∞
n→∞

∥δ′(zmwn)h∥ ≤ ∥δ′∥∥h∥.

This implies that Hφ can be continuously extended onto H2(D2). Therefore φ belongs

to CBMO by Lemma 2.1. That is, we have shown that δ = δT + δ′ = δT + δ−φ . The

homomorphism τ is thus surjective. This finishs the proof of Theorem 2.1.

Remark 2.1. In the case n = 1, Ext(H2(D),H2(D)) = 0. This was first proved by

Carlson and Clark[1]. However, the techniques from [1] fail to work for higher dimensions.

In the case n > 1, Ext(H2(Dn),H2(Dn)) ̸= 0.

Our next goal is to calculate Ext(H2(Dn)/M,H2(Dn)) over the polydisk algebra A(Dn),

where M is a non-zero A(Dn)−submodule of H2(Dn). We may identify the quotient module

H2(Dn)/M with H2(Dn)⊖M . The action of A(Dn) on H2(Dn)⊖M is given by the formula

f ◦h = PH2(Dn)⊖M (fh) , where PH2(Dn)⊖M is the orthogonal projection from H2(Dn) onto

H2(Dn)⊖M .

According to Theorem 1.1 in §1, we must also determine the following continuous bilinear

map σ : A(Dn)× (H2(Dn)⊖M) → H2(Dn) with the property

σ(f1f2, h) = Tf1σ(f2, h) + σ(f1, f2 ◦ h). (2.6)

For all f ∈ A(Dn) we define δ : A(Dn) → B(H2(Dn) ⊖ M,H2(Dn)) by δ(f) = σ(f, ·).
Then δ is a bounded linear map and satisfies

δ(f1f2) = Tf1δ(f2) + δ(f1)PH2(Dn)⊖MTf2 , f1,f2 ∈ A(Dn). (2.7)

In another words, a bounded linear map δ from A(Dn) to B(H2(Dn) ⊖ M,H2(Dn)) with

the property (2.7) determines a map σ : A(Dn) × (H2(Dn) ⊖ M) → H2(Dn) with the

property (2.6) by σ(f, h) = δ(f)h , f ∈ A(Dn) , h ∈ H2(Dn) ⊖M . Let φ ∈ CBMO, then

kerHφ is an A(Dn)− submodule of H2(Dn). Denoting the set {φ ∈ CBMO : kerHφ ⊇ M}
by K(M), K(M) is clearly an A(Dn)−module. For φ ∈ K(M) , we define δφ : A(Dn) →
B(H2(Dn)⊖M,H2(Dn)) by δφ(f) = H∗

f̄
Hφ. Then the following conclusions hold.

(I) δφ is a bounded linear map from A(Dn) to B(H2(Dn) ⊖ M,H2(Dn)), and satisfies

(2.7).

(II) If there exists an operator A ∈ B(H2(Dn) ⊖M,H2(Dn)) such that δφ(f) = TfA −
APH2(Dn)⊖MTf for all f ∈ A(Dn), then δφ = 0, i.e, φ ∈ H2(Dn).

In fact, for (I), it is immediate from the definition of δφ.

For (II), it is easy to check that φ ∈ BCMOd. Lemma 2.1 implies that there exists a

function φ′ ∈ L∞(Tn) such that Hφ = Hφ′ . It follows that

TfTφ′ − Tφ′Tf = TfAPH2(Dn)⊖M −APH2(Dn)⊖MTf , f ∈ A(Dn).

Then we see that there exists a function h ∈ H∞(Dn) such that Tφ′ − APH2(Dn)⊖M = Th.

Because φ′ belongs to K(M) and M ̸= {0} , the above equation implies that φ′ = h. That

is, Hφ(= Hφ′) is equal to zero. This leads to δφ = 0.
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From the previous discussion, we can establish an injective homomorphism of groups

τ : K(M)/H2(Dn) → Ext(H2(Dn)/M,H2(Dn)) by τ([φ]) = [δφ] for φ ∈ K(M), where [δφ]

denotes the coset δφ + D , D is the space of all such δ, for which there exists

A ∈ B(H2(Dn) ⊖ M,H2(Dn)) such that δ(f) = TfA − APH2(Dn)⊖MTf , f ∈ A(Dn). In

fact, τ is also surjective, and its proof is similar to that of Theorem 2.1. Thus we get the

following

Theorem 2.2. Let M be a nonzero A(Dn)− submodule of H2(Dn). Then the group

Ext(H2(Dn)/M,H2(Dn)) is isomorphic to K(M)/H2(Dn) . The correspondence is given

by τ([φ]) = [δφ] , where φ ∈ K(M).

Corollary 2.1. Let M be of finite codimension, and n > 1. Then

Ext(H2(Dn)/M,H2(Dn)) = 0.

Proof. For φ ∈ K(M), since

Hφ(H
2(Dn)) = Hφ(M ⊕ (H2(Dn)⊖M)) = Hφ(H

2(Dn)⊖M),

we see that Hφ is of finite rank. What we shall next do is to prove that φ ∈ H2(Dn) . In

fact , for each θ ∈ Tn , an operator Uθ on L2(Tn) is defined by

Uθ : L2(Tn) → L2(Tn) , (Uθf)(θ
′) = f(θ′ − θ), θ′ ∈ Tn, f ∈ L2(Tn) .

Clearly U∗
θHφUθ = Hφθ

, θ ∈ Tn, where φθ is the function φ(θ + ·). If φ /∈ H2(Dn) ,

then there exists some m = (m1 · · · mn) /∈ Zn
+ such that φ̂(m) ̸= 0. Since Hφθ

is weakly

measurable on Tn, we can define a bounded linear operator H(m) by

H(m) =
1

(2π)n

∫
Tn

e−imθHφθ
dθ,

where the integral is taken in the sense that for f ∈ H2(Dn) and g ∈ H2(Dn)
⊥
,⟨(∫

Tn

e−imθHφθ
dθ

)
f, g

⟩
=

∫
Tn

⟨e−imθHφθ
f, g⟩dθ.

A simple computation shows that H(m) = φ̂(m)Hφm , where φm(θ′) = eimθ′
, θ′ ∈ Tn. Since

for every θ ∈ Tn, Hφθ
is compact and uniformly bounded, we get that Hφm is compact by

[7, Lemma 12]. This is impossible. Thus φ belongs to H2(Dn). Immediately from Theorem

2.2, we get Ext(H2(Dn)/M,H2(Dn)) = 0.

Remark 2.2 (1) Corollary 2.1 is true only for n > 1. The inverse of Corollary 2.1

does not hold in general. For example, taking M = (z − w)H2(D2), we can prove that

Ext(H2(D2)/M,H2(D2)) = 0, but M is of infinite codimension.

(2) In [1], Carlson and Clark calculated Ext(H2(D)/M,H2(D)). It is easy to see that

this is a corollary of Theorem 2.2 by Beurling’s theorem. However, the techniques from [1]

fail to work for n > 1.

§3. Application to Rigidity of Hardy Submodules over A(Dn) (n>1)

In this section, we shall point out that the calculation of Ext-groups for Hardy modules

over A(Dn) (n > 1) can reveal the rigidity of Hardy submodules. Firstly, we give the

following
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Theorem 3.1. For n > 1, let M1 be of finite codimension in H2(Dn) and M1 ⊆ M2 ⊆
H2(Dn). Then Ext(H2(Dn)⊖M1,M2) ∼= H2(Dn)⊖M2.

Proof. For the exact sequence

E : 0 −→ M2
i−→ H2(Dn)

π−→ H2(Dn)/M2 −→ 0,

where i is the inclusion map and π the quotient map. We use [1, Proposition 2.1.5] and

Corollary 2.1. This gives the following exact sequence

0 −→ Hom(H2(Dn)/M1,M2)
i∗−→ Hom(H2(Dn)/M1,H

2(Dn))

π∗−→ Hom(H2(Dn)/M1,H
2(Dn)/M2)

δ−→ Ext(H2(Dn)/M1,M2)−→0,

where δ is the connecting homomorphism. Let θ be an A(Dn)-Hilbert module map from

H2(Dn)/M1 to H2(Dn), i.e., θ ∈ Hom(H2(Dn)/M1,H
2(Dn)). It is easy to check that

θ can be extended into a Hilbert module map θ̃ from H2(Dn) to H2(Dn) by setting

θ̃(h1 + h2) = θ(h1), h1 ∈ H2(Dn) ⊖ M1, h2 ∈ M1. This implies that there exists an

f ∈ H∞(Dn) such that θ̃ = Mf . Since θ̃(M1) = 0, we see that f = 0. Therefore

Hom(H2(Dn)/M1,H
2(Dn)) = 0. It follows that the above connecting homomorphism

δ gives an isomorphism from Hom(H2(Dn)/M1,H
2(Dn)/M2) to Ext(H2(Dn)/M1,M2).

Using methods in [8], we see that H2(Dn) ⊖ M1 and H2(Dn) ⊖ M2 are contained in

H∞(Dn). For θ ∈ Hom(H2(Dn)/M1,H
2(Dn)/M2), it is easy to see that θ can be ex-

tended into a Hilbert module map θ̃ from H2(Dn) to H2(Dn)/M2 by setting θ̃(h1 + h2) =

θ(h1), h1 ∈ H2(Dn) ⊖ M1, h2 ∈ M1. Notice that θ is completely determined by θ̃(1) and,

θ̃(1) ∈ H2(Dn) ⊖M2 (⊂ H∞(Dn)). In another words, for φ ∈ H2(Dn)⊖M2 (⊂ H∞(Dn),

since M1 ⊆ M2, it follows that φM1 ⊆ M2. Thus φ induces a Hilbert module map from

H2(Dn)⊖M1 to H2(Dn)⊖M2. This completes the proof of Theorem 3.1.

From Theorem 3.1, one finds that for n > 1, a finite codimensional Hardy submodule

M( ̸= H2(Dn)) is never similar to H2(Dn). The reason is that Ext(H2(Dn)⊖M,H2(Dn)) =

0, but Ext(H2(Dn) ⊖M,M) ∼= H2(Dn) ⊖M . Of course, this observation is not new, and

we may compare it with that of [9].
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