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Abstract

The authors consider the boundedness of Weyl quantization in an as broad as possible

frame and take the results already obtained as just particular cases. The notions of almost-
diagonalizable operators and boundedness modulo a regularizing operator are proposed.
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§1. Introduction

Quantization is a fundamental process in quantum physics. Among various quantizations,

the one formulated by H. Weyl associates to a certain function a(x, ξ) (the symbol) an

operator

Au(x) = aw(x,D)u = (2π)−n

∫∫
ei(x−y)ξa

(x+ y

2
, ξ
)
u(y)dydξ. (1.1)

Since quantized physical quantities are represented as operators in the state space H,

which is a Hilbert space, hence canonically L2(Rn), a basic problem is to consider its bou-

undedness in H, i.e., its L2(Rn)-boundedness. There has been quite a lot references on

L2-boundedness of pseudo-differential operators (PsDO for short)

a(x,D)u = (2π)−n

∫∫
ei(x−y)ξa(x, ξ)u(y)dydξ (1.2)

(or the natural quantization of a(x, ξ)), and the problem is related to the symbol class and

its differentiability. See [1] of Wang and Li and [2] of Hwang for details and a rather complete

literature. N. Lerner[3] uses Wigner function

H(u, v)(x, ξ) =

∫
u
(
x+

y

2

)
v
(
x− y

2

)
e−2πiyξdy (1.3)

to give an elementary proof of classical results, which are optimal in the sense that counter-

examples can be found when violating the assumptions in the results.

In this paper, we consider the boundedness of Weyl quantization in an as broad as possible

frame and take the results already obtained as just particular cases. In section 2, we consider

L2-boundedness of Weyl quantization, here we use modified Wigner function as is done in [3]
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and obtain a generalization of Hwang’s and Lerner’s result which is very close to be optimal

but we fail to find counter-examples as in the case of natural quantization. In section 3,

we prove some general propositions on LΩ
p spaces, which are the foundation for the scales

of function spaces considered in section 4 where we consider two basic scales Bs
p,q and F s

p,q

(notation of H. Triebel[4] is used) which contain many significant spaces, e.g., Besov spaces.

Thus our results are applicable to many different spaces. In the last section 5, we propose the

notions of almost-diagonalizable operators and boundedness modulo a regularizing operator.

§2. L2-Boundedness of Weyl Quantization

In Weyl quantization (1.1), a(x+y
2 , ξ) is just an amplitude for a PsDO. In what follows,

we go a little further to prove the L2-boundedness of a PsDO

Au(x) = (2π)−n

∫∫
ei(x−y)ξa(x, y, ξ)u(y)dydξ. (2.1)

First, we write (2.1) weakly as

(Au, v) = (2π)−n

∫∫∫
ei(x−y)ξa(x, y, ξ)u(y)v(x)dydxdξ

= (2π)−3n

∫∫∫∫∫
ei[(x−y)ξ+yζ−xη]a(x, y, ξ)û(ζ)v̂(η)dydxdξdηdζ.

(2.2)

For the moment, we assume u and v to be in S(Rn) and then extend it to the case

u, v ∈ L2(Rn). Our main result in this section is

Theorem 2.1. Assume that a(x, y, ξ) ∈ S0
0,0,0(R3n), the operator A in (2.1) can be

extended to a bounded linear operator L2 → L2 :

|(Au, v)| ≤ C∥u∥L2∥v∥L2 , (2.3)

where C depends on ∂α
x ∂

β
y ∂

γ
ξ a(x, y, ξ) with orders up to |α|, |β| ≤ 2([n4 ]+ 1), |γ| ≤ 2([n2 ]+ 1).

Proof. Let u, v ∈ L2(Rn). (2.2) is at present only a formal expression, since integrability

in ξ is not guaranteed and a certain regularization is required. Since this is just a standard

practice, we would omit the details.

It is readily seen that

[(1 + |x− y|2)−1(I −∆ξ)]
ν [(1 + |ξ − η|2)−1(I −∆x)]

µ

· [(1 + |ζ − ξ|2)−1(I −∆y)]
µei((x−y)ξ+yζ−xη) = ei((x−y)ξ+yζ−xη).

Substituting into (2.2) and integrating by parts gives

(Au, v) =
∑

Ij,l,s, (2.4)

where

Ij,l,s =

∫∫∫∫∫
ei((x−y)ξ+yζ−xη)∂αj

x ∂βl
y ∂γs

ξ a(x, y, ξ)

· Pj(ξ − η)Ql(ζ − ξ)Rs(x− y)û(ζ)v̂(η)dydxdξdηdζ.

(2.5)

Summation in (2.4) is extended to |αj | ≤ 2µ, |βl| ≤ 2µ, |γs| ≤ 2ν, and it is easy to see that
|Pj(t)| ≤ C

(1 + |t|)2µ ,

|Ql(t)| ≤ C
(1 + |t|)2µ ,

|Rs(t)| ≤ C
(1 + |t|)2ν ,

(2.6)
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hence integration by parts are legitimate. Then, we need only to consider integrals of the

form

I =

∫∫∫∫∫
ei((x−y)ξ+yζ−xη)û(ζ)v̂(η)b(x, y, ξ) ·P (ξ−η)Q(ζ−ξ)R(x−y)dydxdξdηdζ, (2.7)

where b(x, y, ξ) is bounded, P,Q and R satisfy (2.6). Denote

A(y, ξ) =

∫
û(ζ)Q(ζ − ξ)eiyζdζ, B(x, ξ) =

∫
v̂(η)P (ξ − η)e−ixηdη.

It is easy to see, A and B ∈ L2(R2n) when 4µ > n and

∥A∥L2(R2n) = ∥u∥L2(Rn)∥Q∥L2(Rn), ∥B∥L2(R2n) = ∥v∥L2(Rn)∥P∥L2(Rn). (2.8)

For I, we have for 4µ > n, 2ν > n,

|I| ≤ C

∫∫
|R(x− y)|dxdy

∫
|A(y, ξ)B(x, ξ)|dξ

≤ C∥R∥L1(Rn)∥P∥L2(Rn)∥Q∥L2(Rn)∥u∥L2(Rn)∥v∥L2(Rn)

≤ C∥u∥L2(Rn)∥v∥L2(Rn). (2.9)

Hence, finally we have

|(Au, v)| ≤ C∥u∥L2(Rn)∥v∥L2(Rn). (2.10)

From (2.10) we have that A can be extended to a linear operator L2 → L2 with norm

∥A∥ ≤ C, where C depends on ∂α
x ∂

β
y ∂

γ
ξ a(x, y, ξ) with orders up to |α|, |β| ≤ 2µ, |γ| ≤ 2ν

and µ = [n4 ] + 1, ν = [n2 ] + 1.

§3. LΩ
p and Fundamental Propositions

Now consider our problem in Besov spaces and other related spaces. Their definitions are

based on that of LΩ
p .

Definition 3.1. LΩ
p is the set of f ∈ S ′(Rn) which belongs itself to Lp with spectrum

concentrated in a compact set Ω ⊂ Rn :

LΩ
p = {f ; f ∈ S ′(Rn)

∩
Lp(Rn), suppf̂(ξ) ⊂ Ω ⊂⊂ Rn}. (3.1)

Proposition 3.1. When a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1 and

a(x, ξ) = 0 for |ξ| ≥ kR, (3.2)

the Weyl quantization A = aw(x,D) of (1.1) is a bounded linear operator Lp → Lp(1 ≤ p ≤
∞) with norm

∥A∥ ≤ CRn. (3.3)

C is independent of R but depends on ∂α
ξ a(x, ξ) up to order |α| ≤ 2λ with λ = [n2 ] + 1.

Proof. Using integration by parts and the Young’s or Schwarz’s inequality, one can write

the proof easily.

Now consider the case when the symbol vanishes in a ball centered at ξ = 0. We have

Proposition 3.2. Let a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1, δ < 1 and

a(x, ξ) = 0 for |ξ| ≤ hR. (3.4)
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Then A = aw(x,D) : LΩ
p → Lp is bounded and

∥A∥ ≤ CRn+2µδ. (3.5)

Here 1 ≤ p ≤ ∞ and Ω = {ξ; |ξ| ≤ R}, C is independent of R but depends on ∂β
x∂

α
ξ a(x, ξ)

with |α| ≤ 2λ, λ = [n2 ] + 1; |β| ≤ 2µ, µ = [ n
2(1−δ) ] + 1.

Proof. It is well-known that S(Rn)
∩

LΩ
p is dense in LΩ

p (see [4, p.24]), where Ω is

required to have a ‘segment property’ which is true when Ω is a ball. Hence we may assume

for the moment that u ∈ S(Rn)
∩
LΩ
p and a standard density argument would lead to the

final result. Integrating by parts in y gives

Au(x) = (2π)−n

∫∫
ei(x−y)ξ(−|ξ|2)−µ(∆y)

µ
(
a
(x+ y

2
, ξ
)
u(y)

)
dydξ.

This is legitimate since u(y) ∈ S(Rn) causing all terms outside the integral in y vanishing

and the fact that a(x, ξ) = 0 for |ξ| ≤ hR makes the factor |ξ|−2µ harmless.

Now, we can rewrite Au(x) as

Au(x) = (2π)−n

∫∫
ei(x−y)ξ|ξ|−2µ

∑
|β1+β2|=2µ

Cβ1,β2D
β1
y a

(x+ y

2
, ξ
)
Dβ2

y u(y)dydξ.

Since δ < 1, when |β| > 0 we may apply to each term of Au(x) the fact

(I −∆ξ)
λei(x−y)ξ = (1 + |x− y|2)λei(x−y)ξ

and integrate by parts in ξ to reduce each term of Au(x) to the form

Jβ1(x) = (2π)−nCβ1,β2

∫∫
(I −∆ξ)

λ
{
|ξ|−2µDβ1

y a
(x+ y

2
, ξ
)}

Dβ2
y u(y)

(1 + |x− y|2)−λei(x−y)ξdydξ

= (2π)−n

∫∫
ei(x−y)ξaλβ1

(x+ y

2
, ξ
)
(1 + |x− y|2)−λDβ2

y u(y)dydξ.

Since a(x, ξ) ∈ S0
ρ,δ, we have ∣∣∣aλβ1

(x+ y

2
, ξ
)∣∣∣ ≤ C|ξ|−2µ(1−δ),

where C depends on ∂β
x∂

α
ξ a(x, ξ) with orders as high as |α| ≤ 2λ, λ = [n2 ] + 1; |β| ≤ 2µ, µ =

[ n
2(1−δ) ] + 1. Estimating the integral in ξ we will obtain

|Jβ1 | ≤ CRn−2µ(1−δ)

∫
|Dβ2

y u(y)|(1 + |x− y|2)−λdy. (3.6)

Integrate |Jβ1 |p in x, by Young’s inequality

∥Jβ1∥Lp ≤ CRn−2µ(1−δ)∥Dβ2
y u(y)∥Lp .

Using the Bernstein’s inequality(see [4, p.17]) and u ∈ LΩ
p , we obtain

∥Au∥Lp ≤ CRn+2µδ∥u∥Lp .

Combining Proposition 3.1 and Proposition 3.2, we obtain the following

Theorem 3.1. Let a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1, δ < 1. Then the Weyl quantization

A = aw(x,D) is a bounded linear operator LΩ
p → Lp with norm

∥A∥ ≤ CRn+2µδ, (3.7)

where Ω is the ball Ω = {ξ; |ξ| ≤ R}, C depends on ∂β
x∂

α
ξ a(x, ξ) with orders |α| ≤ 2λ, λ =

[n2 ] + 1; |β| ≤ 2µ, µ = [ n
2(1−δ) ] + 1 and is independent of R.
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Proof. Construct a function φ(ξ) ∈ C∞
0 (Rn) such that 0 ≤ φ(ξ) ≤ 1, and

φ(ξ) =

{
1, |ξ| ≤ hR,
0, |ξ| ≥ kR, h < k

(3.8)

and denote

a1(x, ξ) = φ(ξ)a(x, ξ), a2(x, ξ) = (1− φ(ξ))a(x, ξ).

Apply Proposition 3.1 to A1 = aw1 (x,D) and Proposition 3.2 to A2 = aw2 (x,D), then (3.7)

is proved immediately.

Corollary 3.1. If a(x, ξ) ∈ Sm
ρ,δ with all the assumptions on a(x, ξ) as before, then

A : LΩ
p → Lp is bounded with

∥A∥ ≤ CRm+n+2µδ,

C depends on ∂β
x∂

α
ξ a(x, ξ) and |α| ≤ 2λ, λ = [n2 ] + 1; |β| ≤ 2µ, µ = [ m+n

2(1−δ) ] + 1.

§4. Boundedness in Scales of Function Spaces

Many function spaces which are important in mathematical physics, PDE and harmonic

analysis can be organized into various scales, the most remarkable are Bs
p,q and F s

p,q (for

notation, see [4, 5]). These scales are defined through the Littlewood-Paley dyadic decompo-

sition in frequency domain (see [4, 6, 7]): let Φ denote the set of vectors Φ(ξ) = {φj(ξ)}∞j=0

such that φj(ξ) ∈ C∞
0 and

suppφ0(ξ) ∈ {ξ; |ξ| ≤ 2},
suppφj(ξ) ∈ {ξ; 2j−1 ≤ |ξ| ≤ 2j+1},

φj(ξ) ≥ 0,
∞∑
j=0

φj(ξ) = 1,
(j > 0), (4.1)

and moreover

2j|α||∂αφj(ξ)| ≤ Cα, (4.2)

where Cα are independent of j. Usually, we always take φ ∈ C∞
0 such that {φj(ξ)}∞j=1 =

{φ(2−jξ)}∞j=1 satisfy (4.1). With the help of vectors Φ, we can associate to every f ∈ S ′(Rn)

a vector

{fj} = {φj(D)f}∞j=0

(
= {φ0(D)f, φ(2−jD)f, j > 0}

)
, (4.3)

and we obtain Littlewood-Paley decomposition in S ′(Rn):

f(x) =
∞∑
j=0

fj(x). (4.4)

Now we can define two scales of function spaces in Lp frame. Namely,

Definition 4.1. (1) Bs
p,q is the set of f ∈ S ′(Rn) such that fj in (4.3) are in Lp and

∥f∥
Bs

p,q
=

( ∞∑
j=0

∥2sjfj∥qLp

)1/q

=
( ∞∑

j=0

∥2sjF−1(φjFf)∥q
Lp

)1/q

< ∞, (4.5)

or more directly, the weighted (by 2sj) L-P decomposition of f belongs to lq(L
p(Rn)).

(2) F s
p,q is the set of f ∈ S ′(Rn) such that

( ∞∑
j=0

|2sjfj |q
)1/q ∈ Lp and

∥f∥
Fs
p,q

=
∥∥∥( ∞∑

j=0

|2sjfj |q
)1/q∥∥∥

Lp

< ∞. (4.6)
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By Paley-Wiener theorem, we see all the sums and integrals above make sense.

We assume now −∞ < s < +∞, 1 ≤ p < +∞, 1 ≤ q < +∞. We can prove that both

Bs
p,q and F s

p,q are Banach spaces with ∥f∥
Bs

p,q
in (4.5) and ∥f∥

Fs
p,q

in (4.6) their norms

respectively.

Bs
p,q is called the Besov space.

Remark 4.1. We can prove that for various φ ∈ C∞
0 , the norms in (4.5) (or (4.6)) are

equivalent, hence the structure of the resulting Banach spaces are equivalent. This is why

we omit a mark for φ such as ∥f∥φ
Bs

p,q
in our notations (4.5) and (4.6).

Remark 4.2. Bs
p,q and F s

p,q actually can be defined even for −∞ < s < +∞, 0 ≤ p ≤
+∞, 0 ≤ q ≤ +∞ (but for F s

∞,q, a slight modification is needed). Many function spaces

are their particular cases, e.g., Zygmund spaces Zs = Bs
∞,∞ (s > 0), Sobolev space Hs

p =

F s
p,2 (−∞ < s < +∞, 1 < p < +∞), inhomogeneous Hardy space and inhomogeneous BMO

space etc. Particularly Lp(Rn) is equivalent to F 0
p,2 (this is just the classical Littlewood-

Paley theorem for Lp), while L2(Rn) (i.e., H
0) is equivalent to B0

2,2. Hence Lp(Rn) is not a

Besov space, which helps to explain, at least partially, why the Lp-boundedness arguments

are different from that of L2-boundedness. For more details see [4, 6, 7].

Now deal with the boundedness of A in Bs
p,q. For u ∈ Bs

p,q, consider

Au =
∞∑
j=0

Auj , (4.7)

which will be shown later to be convergent in Lp. Our goal is to prove the following

Theorem 4.1. Let a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1, δ < 1, then the Weyl quantization

A = aw(x,D) is a bounded linear operator A : Bs
p,q → Lp with norm

∥A∥ ≤ C.

C depends on ∂β
x∂

α
ξ a(x, ξ) with |α| ≤ 2λ, λ = [n2 ] + 1, |β| ≤ 2µ, µ = [ n

2(1−δ) ] + 1. Here we

also assume

s > σ = n+ 2µδ. (4.8)

Proof. We first prove the convergence of (4.7) in Lp. Actually, by Theorem 3.1, Auj ∈ Lp

and

∥Auj∥Lp ≤ C2j(n+2µδ)∥uj∥Lp = C2jσ∥uj∥Lp .

Note that uj ∈ LΩ
p and Ω = {ξ; |ξ| ≤ 2j+1}, hence we may replace R by 2j . Since s > σ, we

have

∥Auj∥Lp ≤ C2j(σ−s) · 2js∥uj∥Lp

and Schwartz’s inequality gives
∞∑
j=0

∥Auj∥Lp ≤ C
( ∞∑

j=0

2j(σ−s)q′
)1/q′( ∞∑

j=0

(2js∥fj∥Lp )
q
)1/q

≤ C1∥u∥Bs
p,q

,

where q′ is the dual index of q: 1
q + 1

q′
= 1. This prove the convergence of (4.7) and

∥Auj∥Lp ≤ C∥u∥
Bs

p,q
. (4.9)
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Remark 4.3. This proof is also valid for p = ∞ and q = ∞, the modification needed

is very easy.

For the boundedness of A in F s
p,q we have

Theorem 4.2. Let a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1, δ < 1. Then the Weyl quantization

A = aw(x,D) is a bounded linear operator A : F s
p,q → Lp, here −∞ < s < +∞, 1 ≤ p <

+∞, 1 ≤ q ≤ +∞ with norm

∥A∥ ≤ C. (4.10)

C depends on ∂β
x∂

α
ξ a(x, ξ) with |α| ≤ 2λ, λ = [n2 ] + 1, |β| ≤ 2µ, µ =

[ n
2(1− δ)

]
+ 1, and we

also assume s > σ = n+ 2µδ.

Proof. It is well-known that there are continuous embeddings (see [4, 4.46])

Bs
p,min(p,q)⊂−→F s

p,q⊂−→Bs
p,max(p,q). (4.11)

A = aw(x,D) can also be defined on Bs
p,max(p,q). Thus for u ∈ F s

p,q, l(u) ∈ Bs
p,max(p,q), Au

can be written as

Au
∣∣∣
u∈F s

p,q

= (A ◦ l)u
∣∣∣
u∈F s

p,q

.

By Theorem 4.1, the conclusion of Theorem 4.2 is immediate.

In Theorems 4.1 and 4.2 we note the decreasing of the upper index s. In fact, Lp = F 0
p,2.

Since in a certain sense, s is a measure of differentiability, the action of A causes loss of

differentiablity. Thus, in order to make the action Amore precise, it is well that we introduce

differentiability of function into the definition of function space. Thus we introduce

Definition 4.2. Let Ds,m
p,q denote the completion of the set of vectors f = {f0, f1, · · · ,

fj}, fj ∈ C∞(Rn) with respect to the norm

∥f∥
D

s,m
p,q

=
( ∞∑

j=0

2sjq
( ∑

|α|≤m

∥Dαfj∥Lp

)q)1/q

. (4.12)

Since ∥ · ∥
D

s,m
p,q

is evidently a norm, we see that Ds,m
p,q is a Banach space when 1 ≤ p ≤

∞, 1 ≤ q ≤ ∞, 1 < s < +∞ and the proofs of the following facts are staightforward.

Proposition 4.1. (1) Bs
p,q ⊂ Ds,0

p,q in the sense that f = {f0, f1, · · · , fj , · · · }, fj =

φ(2−jD)f.

(2) When m′ < m, Ds,m′

p,q ⊂ Ds,m
p,q .

(3) Ds
p,q

∆
=

∩
m
Ds,m

p,q is a Frechet space with (4.12) as semi-norms.

(4) Hs = Ds
2,2(s > 0) and Cs = D

s,[s]+1
∞,∞ .

The last statement is just the Littlewood-Paley decomposition of Hs(Rn) and Cs(Rn)

(see [8, Theorems 2.1.4 and 2.1.7]).

As an application of this function space, we consider the boundedness of PsDO of Sm
1,1

class. As is well-known, classical PsDO of S0
1,1 class is not bounded in H0 = L2. E. M. Stein

proved that it is bounded in Hs when s > 0, but the proof is not published. L. Hörmander[9]

offered a proof of this fact (see [10, 11] for more details), and we want to offer another proof

here.
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First consider the PsDO

Au(x) = (2π)−2n

∫∫
ei(x−y)ξa(x, y, ξ)u(y)dydξ (4.13)

with Sm
1,1 amplitude a(x, y, ξ). Its Littlewood-Paley decomposition is

a(x, y, ξ) =
∞∑
j=0

aj(x, y, ξ) =
∞∑
j=0

φj(ξ) a(x, y, ξ).

We first prove the

Lemma 4.1. Let Aj be the PsDO with amplitude aj(x, y, ξ) replacing a(x, y, ξ) in (4.13).

Then Dα
xAj is Lp-bounded with norm

∥Dα
xAju∥Lp ≤ Cα2

j(m+|α|)∥u∥
Lp , u ∈ S(Rn). (4.14)

Proof. It is easy to see (integrate by parts) that

Dα
xAju(x) = (2π)−2n

∫∫
ei(x−y)ξbj,α(x, y, ξ)u(y)dydξ,

where bj,α(x, y, ξ) = (ξ +Dx)
αaj(x, y, ξ) ∈ S

m+|α|
1,1 . Since

suppξbj,α(x, y, ξ) ⊂ {ξ; 2j−1 ≤ |ξ| ≤ 2j+1},

the inequality (4.14) is easily derived by a simple calculation.

Theorem 4.3. Let a(x, ξ) ∈ Sm
1,1. Then

a(x,D)u = (2π)−2n

∫
eixξa(x, ξ)û(ξ)dξ

is a bounded linear operator from Bs
p,q to Ds−m

p,q and

∥a(x,D)u∥
D

s−m
p,q

≤ C∥u∥
Bs

p,q
. (4.15)

C depends on sup
x,ξ

|∂α
ξ a(x, ξ)(1 + |ξ|2)−m

2 |, |α| ≤ 2([n2 ] + 1).

Proof. Let a(x, ξ) =
∞∑
j=0

aj(x, ξ) as in Lemma 4.1, then for u ∈ Bs
p,q, u =

∞∑
k=0

uk with

suppξûk(ξ) ⊂ {ξ; 2k−1 ≤ |ξ| ≤ 2k}. We have

a(x,D)u =
∞∑

k,j=0

aj(x,D)uk, (4.16)

where aj(x,D)uk = (2π)−n
∫
eixξaj(x, ξ)ûk(ξ)dξ. Since aj(x, ξ)ûk(ξ) = 0 whenever |k−j| ≥

2, we have aj(x,D)u =
j+2∑

k=j−2

aj(x,D)uk. By Lemma 4.1, we have

∥Dα
xaj(x,D)u∥

Lp ≤ Cα2
j(m+|α|−s)

j+2∑
k=j−2

2js∥uj∥Lp ,

i.e.,
∞∑
j=0

(2j(s−m−|α|)∥Dα
xaj(x,D)u∥

Lp )
q ≤ Cα

∞∑
j=0

(2js∥uj∥Lp )
q.

That is identical with (4.15).
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Remark 4.4. When s > 0, p = q = 2, a(x,D) : Hs(Rn) → Hs−m(Rn) (m < s) is

bounded, thus generalizing the result of E. M. Stein.

Remark 4.5. Bs
∞,∞(Rn) = Cs(Rn) is the Hölder-Zygmund space, thus our theorem

also gives a boundedness result of PsDO on Cs(Rn) → Cs−m(Rn) (m < s).

§5. Almost Diagonalizable Operators

There is a problem left open until now, i.e., the problem if the Weyl quantization aw(x,D)

will map LΩ
p into LΩ′

p where Ω ⊂⊂ Ω′. Actually, this is a question of deep relevance. Since

u ∈ LΩ
p has spectrum concentrated in a compact domain Ω, and after acted by aw(x,D), the

spectrum would be smeared, except when the symbol aw(x, ξ) is of very special form, for

instance when a(x, ξ) = a(ξ) and the Weyl quatization becomes convolution. In this sense

we should say that aw(x,D) is not localized. This is just the result of the appearance of

x-variables together with ξ-variables in the symbol. Thus it is clear that this phenomenon

is connected with a deep-lying fundamental law of the nature, the principle of uncertainty.

Thus, we should give a more reasonable formulation of our question: Can we decompose

aw(x,D) in two parts

aw(x,D) = A(x,D) +R(x,D), (5.1)

where A(x,D) : LΩ
p → LΩ′

p ,Ω = {ξ; |ξ| ≤ R},Ω′ = {ξ; |ξ| ≤ kR} with k > 1 and R(x,D)

is in a certain sense negligible, for instance, R ∈ S−∞? If so, we say aw(x,D) is almost

diagonalizable and the main goal of this section is just to provide an affirmative answer.

By Littlewood-Paley decomposition of u,

Au =

∞∑
j=0

Auj . (5.2)

By Littlewood-Paley decomposition of Au again, we have

Au =

∞∑
k=0

φk(D)Au =

∞∑
k,j=0

φk(D)Aφj(D)u =

∞∑
k,j=0

Akju,

Akj = φk(D)A(x,D)φj(D).

(5.3)

It is clear that Akj is the composition of φk(D), A(x,D) and φj(D). Hence we may turn

to the asymptotic expansion of Weyl quantization, which is given by Hörmander (see [12,

Chapter 18, 18.4–18.6]). If ai(x, ξ) ∈ S(Λmi , G), where G is a slow-varying metric, Λmi the

weights, then aw1 (x,D) ◦ aw2 (x,D) will have a symbol (a1#a2)(x, ξ) and

(a1#a2)(x, ξ)∼
∑
k

∑
|α|+|β|=k

(−1)β

α!β!
Dα

ξ ∂
β
xa1(x, ξ)D

β
ξ ∂

α
x a2(x, ξ). (5.4)

In our case, let φα = ∂αφ, then

φk(ξ)# a(x, ξ)#φj(ξ) ∼
∞∑

|α|+|β|=0

(−1)β

α!β!
2−k|α|−j|β|φα(2

−kξ)∂α+β
x a(x, ξ)φβ(2

−jξ).

At present, we have, at least formally, an expansion for the symbol a(x, ξ) of A(x,D) as

a(x, ξ) ∼
∞∑

k,j=0

∞∑
|α|+|β|=0

(−1)β

α!β!
φα(2

−kξ)∂α+β
x a(x, ξ)φβ(2

−jξ)2−k|α|−j|β|. (5.5)
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We should prove that, roughly speaking, in the expansion (5.5), the summation in α and

β is asymptotic, while that in k and j is convergent. To this end, we should notice that φ(ξ)

being contained in C∞
0 (Rn) lies in S−∞

1,0 =
∩
m
Sm
1,0. We may consider φ(ξ) belonging to the

class SM
1,0 for arbitrary M .

For definite α and β, let sup |φα| · sup |φβ | = Mαβ , since 1 + |ξ| ∼ 2k on suppξφ(2
−kξ)

and 1 + |ξ| ∼ 2j on suppξφ(2
−jξ). It is easy to see that∣∣∣ (−1)β

α!β!
2−k|α|−j|β|φα(2

−kξ)∂α+β
x a(x, ξ)φβ(2

−jξ)
∣∣∣

≤ CαβMαβ2
−kλ|α|−jλ|β|(1 + |ξ|)(λ+δ−1)|α+β|,

(5.6)

where Cαβ are the suitable constants depending only on α and β. Substituting into (5.5),

we see that the summation in k, j is convergent. Denoting the sum as aαβ(x, ξ), we have

a(x, ξ) ∼
∞∑

|α+β|=0

aαβ(x, ξ). (5.7)

Again, using (5.6) we see for λ small enough such that λ+ δ < 1,

|aαβ(x, ξ)| ≤ Aαβ(1 + |ξ|)(λ+δ−1)|α+β|. (5.8)

Thus, (5.7) is an asymptotic expansion of a(x, ξ) ∈ S0
ρ,δ, here 0 < δ1 = δ + λ < 1. Hence for

any definite integer N > 0, we can write

(a(x, ξ) ∼
N−1∑

|α+β|=0

aαβ(x, ξ) +

∞∑
|α+β|=N

aαβ(x, ξ)

= AN (x, ξ) +RN (x, ξ), RN (x, ξ) ∈ S
(δ1−1)N
ρ,δ1

.

(5.9)

By noticing that suppφ(2−kξ) ∩ suppφ(2−jξ) = ∅, whenever |k − j| > 2, (5.5) can be

rewritten as

a(x, ξ) ∼
∞∑
k=0

k+2∑
j=k−2

∞∑
|α|+|β|=0

(−1)β

α!β!
φα(2

−kξ)∂α+β
x a(x, ξ)φβ(2

−jξ)2−k|α|−j|β|.

Using the same procedure as above, we have an operator

Ã(x,D) =
∞∑
k=0

Ak(x,D), (5.10)

Ak(x,D) =

k+2∑
j=k−2

φk(D)A(x,D)φj(D). (5.11)

Convergence of (5.10) would be established later. At present we have asymptotic expansion

of (5.11) as

Ak(x,D) ∼
∞∑
l=0

k+2∑
j=k−2

φk(D)Al(x,D)φj(D)

=

N−1∑
l=0

k+2∑
j=k−2

φk(D)Al(x,D)φj(D) +

∞∑
l=N

k+2∑
j=k−2

φk(D)Al(x,D)φj(D)

= AkN (x,D) +RkN (x,D).
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Substituting into (5.10), we have Ã(x,D) = ÃN (x,D) + R̃N (x,D). Since Ã(x,D) and

A(x,D) have symbols with the same asymptotic expansion (5.5)

A(x,D) = Ã(x,D) mod (S−∞),

we have finally

A(x,D) ∼
∞∑
k=0

Ak(x,D) mod (S−∞). (5.12)

Ak(x,D) is very remarkable, since we have Ak : L
Ωj

p → L
Ωk

p by (5.11), where Ωl =

{ξ; |ξ| ≤ 2l+1}, l = j, k. We give

Definition 5.1. An operator A : L
Ω

p → L
Ω′

p ,Ω ⊂ Ω′ is called a diagonalizable (localizable)

operator. An operator which can be expanded asymptotically as sum of diagonalizable oper-

ators

A ∼
∞∑
k=0

Ak mod (S−∞), (5.13)

is called an almost diagonalizable operator.

The discussion above can be summed as a

Theorem 5.1. Let a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1, δ < 1, then its Weyl quantization aw(x,D)

is almost diagonalizable.

Definition 5.2. If A(x,D) = aw(x,D) can be expanded asymptotically as A(x,D) ∼
∞∑
k=0

Ak(x,D) mod (S−∞), while Ak(x,D) are bounded linear operator (modS−∞) : Bs
p,q →

Bs′

p,q, F
s
p,q → F s′

p,q, we say A(x,D) is bounded asymptotically.

Theorem 5.2. Let a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1, δ < 1, then its Weyl quantization aw(x,D)

is an asymptotically bounded operator: Bs
p,q → Bs′

p,q with s′ = s− n.

Proof. By Theorem 5.1, we have A(x,D) ∼
∞∑
k=0

Ak(x,D), and Ak(x,D)’s are defined by

(5.11).

Now we can apply the same argument used in the proof of Theorem 5.1 to the operator

φk(D)A(x,D) and we have

φk(ξ)#a(x, ξ) ∼
∞∑

|α|=0

1

α!
2−k|α|φα(2

−kξ)∂α
x a(x, ξ)

=
N−1∑
|α|=0

1

α!
2−k|α|φα(2

−kξ)∂α
x a(x, ξ) +RNk(x, ξ),

(5.14)

with RNk ∈ S−N . Summing RNk in k, and denoting RN (x, ξ) =
∞∑
k=0

RNk(x, ξ), we can

prove as before that RN (x, ξ) ∈ S−N . Here we make use of the fact that 2k ∼ 1 + |ξ| on
suppξφ(2

−kξ).

We shall prove now boundedness of Ak(x,D) : Bs
p,q → Bs′

p,q with s′ = s− n. Actually

Ak(x,D) =
k+2∑

j=k−2

φk(D)Auj .
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Since φk(D)A as a PsDO has a symbol supported on Ωk = {ξ; |ξ| ≤ 2k+1} and expandable

asymptotically as (5.14), we can use the methods in section 3 to each term of (5.14) and

note that 2k ∼ 1 + |ξ|,∣∣∣ ∫∫ ei(x−y)ξφα(2
−kξ)∂α

x a
(x+ y

2
, ξ
)
uj(y)dydξ

∣∣∣ ≤ C2−k|α|2kn∥uj∥Lp ,

since 2j ∼ 2k when |k − j| ≤ 2. Assuming uj = 0 for j < 0, we see

∥Ak(x,D)u∥
Lp ≤ C2kn(∥uk−2∥Lp + · · ·+ ∥uk+2∥Lp )

= C2k(n−s)(2(k−2)s∥uk−2∥Lp + · · ·+ 2(k+2)s∥uk+2∥Lp ).

Hence for Ak mod (S−∞), 2k(s−n)∥Ak(x,D)u∥
Lp ≤ C

k+2∑
j=k−2

2js∥uj∥Lp . Denote w = Au,

then (
2ks

′
∥wk∥Lp

)q

≤
[
C

k+2∑
j=k−2

2js∥uj∥Lp

]q
≤ C

k+2∑
j=k−2

(
2js∥uj∥Lp

)q
.

Summing up in k, we have ∥w∥
Bs′

p,q

≤ C∥u∥
Bs

p,q
, i.e., for Amod(S−∞), ∥Au∥

Bs′
p,q

≤ C∥u∥
Bs

p,q
,

and the theorem is proved.

Next, we are to consider asymptotical boundedness of Aw(x,D) in F s
p,q, here 0 < p <

+∞. We also use the embedding of the scales of function spaces as follows (see [4, §2.3.2,
Proposition 2])

F s
p,q(Rn)⊂−→Bs

p,max(p,q)(Rn),

Bs
p,q0(Rn)⊂−→Bs−ε

p,q1 (Rn), ε > 0, Bs−ε
p,min(p,q)(Rn)⊂−→F s−ε

p,q (Rn).

Theorem 5.3. If a(x, ξ) ∈ S0
ρ,δ, 0 ≤ ρ, δ ≤ 1, δ < 1, then aw(x,D) = A(x,D) is an

asymptotically bounded linear operator F s
p,q → F s′−ε

p,q . Here s′ = s − n, ε > 0 is arbitrary,

1 ≤ p < +∞, 1 ≤ q ≤ +∞.

Proof. The mapping A : F s
p,q → F s′−ε

p,q can be splitted into four steps:

F s
p,q

l1→ Bs
p,q0 (q0 = max(p, q)), Bs

p,q0

A→ Bs′

p,q0 (s′ = s− n),

Bs′

p,q0

l2→ Bs′−ε
p,q1 (q1 = min(p, q)), Bs′−ε

p,q1

l3→ F s′−ε
p,q .

All mappings are continuous with norms depending only on a(x, ξ). The theorem is proved.
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